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Abstract. Mathematics uses formulae to express knowledge about ob-
jects concisely and economically. Mathematical formulae are at the same
time an indispensable tool for the initiated and a formidable barrier to
novices. Surprisingly little is known about the cognitive basis of this prac-
tice. In this paper we start to rectify this situation with an investigation
of how humans read (and understand) mathematical expressions.
A previous exploratory study suggested the interplay of visual patterns
and content structure as a key ingredient of decoding and understanding
math expressions that differentiates between math-literate and -illiterate
subjects. The main contribution of this paper is an eye-tracking study on
mathematically trained researchers conducted to verify the mathematical
practices suggested by the first study and refine our understanding of the
mechanisms.

1 Introduction

The art of expressing mathematical knowledge in math expressions evolved over
the last three centuries and has revolutionized the way this is created, stored, and
communicated. Given their importance for mathematical practice, surprisingly
little is known about the cognitive basis of reading, understanding, and creating
formulae.

As math expressions can neither be considered text nor image, it was previ-
ously suggested that they form a separate category (see e.g., [Fre]) which humans
perceive differently. This perception was coined by Arcavi “symbol sense”, i.e.,
a “complex and multifaceted ‘feel’ for symbols [. . . ] a quick or accurate appreciation,

understanding, or instinct regarding symbols” [Arc03, p. 31]. In 2005 W. Schnotz
presented a study proving that “comprehension is highly dependent on what kind of

information is presented and how it is presented” [Sch05, p. 73]. Even though he
used only text and image information chunks, it is suspected that math expres-
sions build a category that enables math-oriented persons to understand math
in their own way. The “formula shock” [SGM10] effect is well-known, but how
exactly do math-oriented people read math expressions differently? If we can get
a deeper understanding, then we might get new insights for the design of math
software or information systems. Let us summarize:

In [BR14] an eye-tracking study showed that people with a high mathemat-
ical expertise related proof items with an according supportive image. They
found that the participants tend to jump between text and image and it was



suggested that relating the different representations enables the relation in dif-
ferent memory stores. Thus, more effective and efficient retrieval and creation of
math knowledge is enabled by the use of math expressions. In particular, with
their visual and textual aspects they present a sophisticated cognitive tool for
mathematicians.

In [KT13] Kamali and Tompa studied the retrieval for content in mathe-
matical documents. Their empirical research also indicates that math expressions
are special. They conclude that math expressions should neither be used as con-
ventional document fragments nor with a too exact retrieval algorithm as both
result in very poor search results. Instead they showed that algorithms that are
based on making use of the Content MathML representation of the document
corpus fare much better.

In this paper we report on two eye-tracking studies we have conducted to
better understand the reading and understanding of formulae. Eye-tracking is an
interesting angle of attack, as there is a demonstrable correlation between what
a participant attends to and where she is looking at – see for example [Ray98]
for an overview. The “eye-mind hypothesis” [HWH99] even claims a correlation
between the cognitive processing of information and the person’s gaze at the
specific location of the information.

The paper starts off by briefly reporting on our exploratory eye-tracking
pilot study in Section 2. That identified some potential mathematical practices
when decoding and understanding math expressions by comparing students with
different affinities towards math. For this paper we have conducted a new study
with trained math researchers, which we report on in Section 3. Section 4 reports
on how the new data affects the hypotheses developed in the pilot study. The new
data suggests more math practices, which we explore in Section 5. In particular,
we refine the “Operator Tree Practice” into the “Gestalt Tree Hypothesis”, which
combines the visual and conceptual sides of formulae. Section 6 concludes the
paper.

2 The Math Expressions Pilot Study

To explore and identify idiosyncratic practices with math expressions, we invited
23 participants to look at concrete math expressions, e.g., the expression in the
back of Fig. 1 in an eye-tracking study. [KF16] gives a detailed description. The
goal of this exploratory study consisted in finding relevant discrepancies within
various user groups. The only difference we could make out though was the one
between math-oriented and non-math-oriented subjects.

Group Female Male
Math 5 5
¬Math 7 6

The math expressions were shown to the partici-
pants as images on a Tobii t60 Eye Tracking Screen
(17” and 4:3 ratio with 60Hz). They were asked to
think aloud while reading/understanding expressions;

audio/video recordings were collected together with the eye-tracking data.
This data was analyzed to establish which practices are particular to math-

ematically inclined participants. On this basis [KF16] postulated a set of “math
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Fig. 1. Exemplary Math Expression with Heatmap of Math-oriented Subjects

practices” which were to be confirmed or rejected by a bigger study focused on
mathematicians and more diverse mathematical expressions – the original goal
for our main experiment.

We will confirm the following math practices from this pilot study [KF16]:
P-MP1: “Math-oriented people use visual patterns for math detection”.
P-MP2: “Simple math expressions can be treated as placeholders for argument posi-

tions and therefore as neglectable in the math expression decomposition process”.

P-MP3: “The decomposition of a math expression is organized along its procedural

character”.
P-MP4: “In the decomposition of a math expression, some symbols carry structural

information, which is read independently from its functional information”.
and discuss

P-MP5: “The decoding of a math expression starts from the left until a first meaning-

ful sub-expression is grasped. Further comprehension is chunked into understanding

sub-expressions and their relations”.
Before we venture there, we report yet another conjectured math practice

based on the pilot study data: We observed that non-math-oriented tended to
look over the integral in Fig. 1 in a left-to-right fashion like reading text, while
math-oriented subjects seemed to follow on the one hand P-MP3 and on the
other P-MP5. A more precise account of the latter is given in Fig. 2, which su-
perimposes the sequence of fixations by an exemplary math-oriented subject over
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Fig. 2. Math-Exploration of Expression 3

the (first subexpression of) the Inte-
gral represented as an operator tree
in content MathML. The first two
steps (1,2) segment the formula: the
proband looked at large left bracket
for orientation, identified the first fac-
tor c1(δ(x))−λ1) to its left, and then
found the matching right bracket. Steps
3, moves to the integral symbol and step
4 fixes the lower bound – the upper limit
does not seem to receive much by the
math group. Finally, step 5 passes to the body of the integral before step 6
discovers that the integral has the exponential function applied to it. Then the
attention shifts to the first factor again and explores its base and exponent (steps
7 and 8). This exploration of the left-hand-side of the inequality is followed by
an orientation towards the right-hand-side via the two “≤” symbols, and then
an exploration of the right hand side that is very similar to the one detailed in
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Fig. 2. Thus, we suggest the combination of P-MP3 and P-MP5 as a stronger
and better framed mathematical practice:

MP1: “Math expressions are decoded in the order of a depth-first traversal of

the corresponding operator tree”.

This is somewhat surprising, since the gaze plot is induced by the proband’s
process of decoding the mathematical expression, whereas the operator tree –
represented as a content MathML expression in [KF16] – represents the result of
the decoding process. In particular, one would think that the decoding process
would follow “visual patterns” and be driven by “visual cues”.

To verify the established set of mathematical practices we conducted the
experiment, we report on in the following.

3 The Math Expressions Study with Mathematicians

Group Female Male
Math 1 28
¬Math 0 0

This eye-tracking study was carried out at the CICM
2016 conference in Bialystok in July 2017. We were
able to recruit 29 participants – all not only math-
oriented but except one even mathematically highly

trained scientists. The set-up was very similar to the one in our pilot study: we
used the same Tobii t60 Eye Tracking Screen (17” and 4:3 ratio with 60Hz) but
in a mobile setup.

We selected three math expressions (see Fig. 3) from CICM talks to use for
the study, so that we could assume participants were relatively familiar with
them. The study contrasted them with various manually constructed (variations

Fig. 3. The Math Expressions of our Eye-Tracking Study

of) “visual patterns” consisting of a subset of the expression structure replaced
by blank space or empty boxes like e.g. the extreme case � = � . Fig. 7 and 8
show more examples. Probands were asked to carefully look at the equations from
Fig. 3 and then for each of a group of visual patterns to determine if these were
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“representations”3 of the respective expression. Subjects were encouraged to
think aloud during the process but to be as fast as possible. The eye-movements,
the questionnaire data, and the think-aloud protocol were recorded.

In the study we have gathered data concerning the order of fixations, the
specific areas of the fixations, their length and amount of occurrences, and the
questionnaire data. As the questions in the questionnaire were all of the same
type – a 3-point Likert scale with options “yes”, “no”, and “I’m not sure” – we
use (if at all) the standard mean as simple quantitative measure for the analysis
of the questionnaire data.The eye-tracking specific data like data about fixations
were analyzed via visual tools.

In particular, to get a better understanding of the order and intensity in
which objects in math expressions are looked at, we used the visualization in
form of a gaze plot, in which eye fixations are represented by dots that are
connected, numbered, and accumulated according to their occurrence in a given
time frame and whose size indicates the length of the gaze. Heatmaps as the
one in Fig. 1 are another visual analysis tool. In an eye-tracking study the longest
and most fixated areas are the hottest (red), the rarely fixated ones the coldest
(green).

The general approach of our analysis of the new data was to inspect gaze
plots and heat maps of randomly chosen probands for conspicuous patterns,
interpret these, and check the remaining ones for typicality. We integrate the
patterns found in [KF16] into this discussion.

4 Result: Math Practices wrt. Math Expression Decoding

In the following we concisely explain the conjectured math practices and argue
confirmation or rejection.

Confirming MP1 and P-MP3; Discussing P-MP5: In Section 2 we have
used an operator tree analysis for the left branch of the expression in Fig. 1 to
formulate MP1 (“Math expressions are decoded in the order of a depth-first traversal

of the corresponding operator tree”).
We studied all gaze plots of the math expressions in Fig. 3 to gain more insigt

on this. Fig. 4 shows the (sequence of) fixations by proband P04 when reading
expression (1) in Fig. 3 as a typical example – the corresponding operator tree
on the left of Fig. 11. We distributed all 28 fixations over images a.) – d.) to
conserve readability. Generally, the last fixation of the previous box is taken up
as the first one (“1”) in the following. In the top box we see the very first scan
of a formula presented to P04. In particular, the subject doesn’t know yet of
the tasks to come wrt. this formula. The scan starts roughly in the middle, then
fixates all the major components in a left-right-left sweep (fixations “1”-“10”)

3 As expected the term “representation” triggered various philosophical comments
concerning its interpretation space and the resulting potentially different correct
answers in the questionnaire.
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Fig. 4. The Gaze Plot for P04 on expression (1)

ending on the “dx” followed by an operator analysis according to the operator
tree and finishing with some cross-checking with respect to the bound variable.

Our data fully confirms MP1 and thus the weaker P-MP3 (“The decomposi-

tion of a math expression is organized along its procedural character”): we consistently
see fixations follow the operator tree in the expressions in Fig. 3. In particular,
we verified that 21 out of the 29 participants followed the operator tree for ex-
pression (1), 18 for (2) and 21 for (3). Fig. 5 shows three data lines for tracing
the operator tree which superpose if the values coincide. Note that the conspic-
uous absence of the blue and red line indicates that most subjects answered
consistently.

Fig. 5. Operator Tree Tracing

We could not confirm the unconstrained left-to-right aspect in P-MP5 (“The

decoding of a math expression starts from the left until a first meaningful sub-expression

is grasped. Further comprehension is chunked into understanding sub-expressions and
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their relations”): by and large the first fixations are near the center of the formula,
and then tend to move into the leftmost argument of the first operator (as is
consistent with MP1). We now attribute the left-to-right aspect in P-MP5 to
the fact that the equation in Fig. 1 is an inequality chain, whose visual pattern
(cf. P-MP1, but also see below) probands directly recognize and move into the
left-most argument – i.e. all the way left in the expression. The chunking on the
other hand could be observed, see Def. 2 for more discussion.

Confirming P-MP2: For P-MP2 (“Simple math expressions can be treated as

placeholders for argument positions and therefore as neglectable in the math expression

decomposition process”) we have to show more evidence that simple subexpressions
in math expressions are ignored by most subjects in our study.

Fig. 6. Detecting Top-Level Structure in Formulae

We observed (see Fig. 6) that probands almost consistently did not fixate
the lower limit m – a variable – of expression (1), whereas they overwhelmingly
fixated the lower bound δ(x) and neglected the upper limit η in the integral of
the exploratory study in Fig. 1. We conclude that probands see single variables
in argument positions as “arbitrary” and only return to them if they also appear
in more restricting context. So, we confirm P-MP2.

We conjecture that the upper limit in expression (1) and the lower in Fig. 1
are used as visual anchors, since they are larger and more complex.

Confirming P-MP1: We can uphold P-MP1 (“Math-oriented people use visual

patterns for math detection”) for detection – i.e. determining that a text region
was “Math”: even though we only presented very reduced visual patterns (e.g.
� = �, � ≤ �) to probands, none of them complained that this is not “Math”.

Confirming P-MP4: The mathematical practice P-MP4 (“In the decompo-

sition of a math expression, some symbols carry structural information, which is read

independently from its functional information”) can be confirmed. In Fig. 6, we can
observe that the brackets and the integral are almost never fixated. Even the
equation sign and the number on the right hand side of the equation are mostly
unfocused. We remark that large (stretchy) operators like brackets and displayed
integrals are more salient as structuring operators.
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In Fig. 4 we have to assume that the overall structure of the formula has been
determined in the very first sweep. Thus, together with P-MP4 the top-level
structure of the expression seems to be visual, so that we conjecture

MP2: “Visual patterns are used for detection of top-level structure in expres-

sions”.

5 Result: The Gestalt Tree Hypothesis

Once more let us have a closer look at Fig. 4. We already observed that in box
a.) P04 essentially conducted a sweep of the expression from left to right to grasp
the top-level structure. In the next box b.) the head operator of the body of the
integral (the operator “+” in fixation 2) is fixated, then the first summand, the
upper integral limit, and the second summand to come back to the “dx”. In the
last sweep depicted in the lowest box containing c.) and d.) of Fig. 4 the fixations
jump between subexpressions and integral limits and seem to concentrate on the
bound variable x. One is tempted to interpret the gaze plot as containing three
phases. The first one establishes the nature as an integral equation, the second
one establishes the operator tree of the integrand, whereas the third pass checks
the occurrences of the bound variables.

5.1 Visual Structure and Gestalt in Math Expressions

The above gives us the leading intuition and further evidence strongly suggests
that an even stronger version of MP2 and MP1 may hold. Before we can
analyze and state this, we will have to invest in some terminology that combines
concepts from computer vision and formula structure.

Definition 1. The top-level (visual) structure (TLVS) of an expression con-
sists of a segment S – a set of pixels that is considered a meaningful part of the
image – that encompasses the expression, an operator O (also called the head
symbol), and sub-segments Si of S that mark arguments of O.

Example 1. The top-level structure of expression (1) is an “equation”, where S
is the whole image, O is the symbol “=”, and the sub-segments Si correspond
to the left/right hand sides of the equation:

Note that TLVSes can be nested; e.g. the left hand side of (1) is an integral, so
here O is the integral operator together with dx. We have three segments for
the limits and the body of the integral. This nesting structure induces a tree
structure, where the nodes are operators: the operator tree of the expression.
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Definition 2. The visual structure (VS) of a mathematical expression con-
sists of a hierarchical segmentation S of the expression together with an operator
tree T , such that S – seen as a tree given by the nesting structure of segments-
and T are isomorphic, i.e. tree structure and operators coincide.

Example 2. We obtain the following (two-level to ensure legibility) visual struc-
ture for (1), it yields the operator tree on the right:

=∫
. . .

The top-level heat map of expression (1) in Fig. 6 and the initial “sweep
phase” of the gaze-plot in Fig. 4 show us an interesting feature wrt. our data:
It seems that all of the segmentation of (1) in Example 2 is something the
experienced readers can take in at one go. Arguably (1) is an “integral equation”,
which is a – two-deep – visual structure in the sense of Definition 2.

This ‘holistic’ phenomenon seems to be closely related with the notion of
“Gestalt” as defined in [Wag+12, p. 1218]: “A Gestalt is an integrated, coherent

structure or form, a whole that is different from the sum of the parts. Gestalts emerge

spontaneously from self-organizational processes in the brain. Gestalts result from global

field forces that lead to the simplest possible organization, or minimum solution, given

the available stimulation.”. Even though classical Gestalt theory is controversial
modern versions are actively debated today [ibid.]. Following these ideas we
define

Definition 3. A condensed visual structure of an expression E consists of
a segment G that encompasses E, an operator tree T , and segments Si of G,
such that the Si correspond to the leaves of T .

The Gestalt of E is a condensed visual structure (G,T, Si) that can be
decoded by human readers holistically.

Example 3. The Gestalt of (1) is that of an “integral equation”, i.e.

=∫
. . .

Note that Gestalts can be nested just like TLVS. We call such a nested tree
a Gestalt tree (GT), and GT naturally induce operator trees a well (trees of
trees can be flattened to trees).

With Definition 3 we can postulate a set of Gestalt patterns for mathe-
maticians, i.e. operator tree/segmentation patterns that can be used to decode
mathematical expressions – in principle – modulo resource considerations like
the size of the argument segments. We conjecture that Gestalt patterns are
learned along with the mathematical concepts they correspond to. Thus, the set
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Q: representation of (1)? A: yes/no/unsure  22/4/3

Fig. 7. Accepting Visual Patterns

of Gestalt patterns is particular to a mathematician or mathematical community
of practice and defines what she/they can decode easily. Note also that Gestalt
patterns are very close to the visual patterns we use for testing in our study.

Using our new concepts, we can reformulate and strengthen MP2 to

MP3: “Gestalt patterns are used for decoding structure in math expressions”.

We remark that MP3 resolves the apparent contradiction in the observation
that the gaze plot seems to follow the operator tree of an expression which
should be the result of the decoding process: The (instantaneous) recognition
of the Gestalt of a formula establishes the inner segmentation, and so it is not
surprising that subsequent recursive exploration respects this.

Supporting MP3 in the Eyetracking Data: We observe that all probands
respect the segmentation of the Gestalt tree, e.g. in equations the first couple
of fixations are all in the left-hand side, and then switch over to the right-hand
side, only occasionally fixating the head symbol. Together with P-MP4 above
this strongly supports MP3: as the visual cues of the TLVS are not fixated,
but the segmentation is obeyed, it must be taken in precognitively – i.e., in one
piece.

MP3 is also borne out by probands’ answers in Fig. 7, where a majority
accepted the visualization of the TLVS of expression (1) in Fig. 3: when asked
whether this Fig. 7 is a representation of (1) 23 of 29 answered positively and
only 4 negatively. Finally, 28 of 29 probands rejected out of hand that the TLVS
visualization in Fig. 8 could be a representation of expression (3). This shows
that the operator O is a constitutive part of the TLVS and thus the Gestalt.

Q: representation of (3)? A: yes/no/unsure  1/28/0

Fig. 8. Rejecting Visual Patterns

5.2 Gestalt in Visual Imagery

The most baffling result of our study is that when confronted with visual patterns
that abstracted the equations from Fig. 3, directly after the (full) equations
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themselves, probands fixated the locations where salient parts of the hidden
subexpressions had been. Fig. 9 shows the situation; note that the fixations are
quite similar to those in the second box in Fig. 4, i.e. after the integral equation
Gestalt pattern has been decoded. The only real difference are fixations “6”,
“7”, and “9” in Fig. 9, which seem to delimit the body segment of the integral
Gestalt.

Fig. 9. Visual Imagery (P04) for a Visual Pattern for Expression (1)

We can describe this phenomenon in terms of visual imagery. The term
describes the experience of “seeing with the minds eye” or in other words the
human ability of “to conjure up a visual experience in the absence of retinal stimu-

lation” [CHH12]. Whether the mental image is stored in the human brain in a
pictoral form, a linguistic descriptive form, or a combination is still a vivid topic
of study in cognitive psychology, see [Tye00] for a discussion. Here, we simply use
the term for our observation of our subjects’ eye movements along mathematical
subexpressions that are absent in the image looked at in the study.

Surprisingly, visual imagery was not an isolated phenomenon, but in fact
widespread in 28 probands (the eye-tracking recording of one proband was dam-
aged and thus inconclusive) of our study. For expression (1) for instance, 16
clearly used visual imagery, for 9 subjects it was not sure and only 3 probands
definitely did not use visual imagery. Fig. 10 shows more gaze plots; here we
have superimposed the elided parts of the original formula in light blue to show
the precision of the visual imagery.

Fig. 10. More Visual Imagery of P02, P14, and P16
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On the other hand visual imagery was much less pronounced in the proba-
bilistic distribution function (2) and the type theory formula (3): For expression
(2) the decision whether subjects used visual imagery was much more difficult.
We identified 6 as clearly exhibiting visual imagery, with 10 we were not sure and
12 were not. For expression (3) we didn’t dare a valid assessment. This difference
to (1) may be a consequence of the fact that in subsequent visual patterns the
‘box abstraction’ became expected and thus only box sizes were taken into ac-
count: Instead of visual imagery of formula structures we start to see visual scans
of box boundaries or dimensions. We will have to conduct further experiments
to distinguish between effects here.

Even though the visual/structural imagery effect diminishes in our study, we
interpret it as a strong support for the notion that Gestalt patterns drive the
decoding process for mathematical expressions (in trained mathematicians), i.e
MP3.

The Formula Understanding Phase: But MP3 only covers part of the
data we observe when probands study formulae. Concretely, it covers the first
two sweeps we saw from P04 in the two top boxes in Fig. 4. But many probands
of the main study (and most math-oriented of the exploratory one) followed it
up with a “cross-checking phase”, which consists of fixations that directly access
interesting semantical features – e.g. bound variables in various subexpressions,
or other variables, literals, or subtrees that occur more than once. We conjecture
that this “direct access” is only possible because the Gestalt tree determines
the loci (i.e. locations in the presentation that correspond to subtrees in the
content/operator tree) for them. The few exceptions did consistently cross-check
after each of the last phases, which fits as well.

MP4: “Once the Gestalt tree is established, probands cross-check details across

loci in the Gestalt tree”.

We tentatively interpret this “cross-checking phase” we see the eye-tracker
data as a semantic understanding phase, where formula readers correlate infor-
mation from the subexpressions to each other. We conjecture that in this phase
readers also correlate subexpressions with expressions from the context. To check
this, we would have to conduct experiments, where some of the context is ex-
plicitly represented in the document presented to the user. We expect to see
fixations on the context expressions in the “cross-checking phase”.

The Gestalt Tree Hypothesis: We sum up MP3 and MP4 as

Gestalt Tree Hypothesis (GTH):
The process of decoding mathematical expressions has two phases
1. recursively establishing the Gestalt tree by matching the formula pre-

sentation against Gestalt patterns (the reading/parsing phase).
2. cross-checking structural detail across loci in the visual tree (the un-

derstanding phase).
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We formulate this as a hypothesis even though our data supports it quite
strongly, since our study was only designed to study the effects of “visual pat-
terns” on the formula decoding process of mathematicians and not particularly
the GTH.

Representing the Gestalt Tree: Now that we have identified potential mech-
anisms used by math-oriented human readers in reading and understanding for-
mulae, let us see how that relates to the representational practices in mathemat-
ical knowledge management.

The core intuition behind the Gestalt concept and by homomorphic extension
behind Gestalt trees is that they correlate visual patterns and operator structure.
This directly maps to the concept of “parallel markup via cross-references” in
MathML [Aus+10, section 5.4.2].

Fig. 11 shows the content MathML tree of expression (1) on the left and the
presentation tree on the right. The cross-references that mark up corresponding
subtrees are shown as green dashed lines. The content tree is made up of operator
applications (@ and their children) and bindings (β nodes). In our example the
binding is the integral where the first child of the β is the binding operator –
the integral with its limits –, the second is the bound variable x, and the third
is the integrand, which is an operator application again. In the layout tree we
find layout primitives like rows and sub/superscript patterns.
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=ce βci
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x

100cr

4mcu mcl

@cb

+cp e3xca1
exca2

rowpt

rowpi =pe 100pr

subuppii

∫
piii

subuppii rowpim dxpid

mpl 4mpu e3xpa1
+pap expa2

Fig. 11. Content and Presentation Trees of the Integral Expression (1)
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If we tease apart layer for layer con-
serving the cross-references, we get one-
level correspondences like the one shown
on the right that correspond directly
to TLVS or (more-level) VS, which can
be condensed into Gestalts by backgrounding inner cross-references. Coinci-
dentally, these structures directly correspond to the notation definitions for
OMDoc [KMR08]. The notation-definition-based parsing process we studied
in [TK16] can (after the fact) also be seen as an implementation of the first
phase in the Gestalt Tree Hypothesis.
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6 Conclusion

In this paper we have tried to shed some light on the processes governing how
trained mathematicians read and understand mathematical formulae. After an
exploratory study with a mixed group of math-oriented and non-math-oriented
students, which revealed cognitive practices particular to math-oriented subjects,
we conducted a follow-up study with 28 mathematically highly trained scientists
to study these mathematical practices in more detail. Our study is a qualitative
data analysis – for which 28 subjects is a very respectable number. In particular,
we do not claim a quantitative signiticance.

Our scientific contribution consists in the confirmation/refinement of several
math practices regarding the decoding of math expressions. In a nutshell, we
could show that math expressions are decoded in the order of a depth-first
traversal of the operator tree, simple ones often only serve as placeholders for
argument positions, and visual patterns are used for top-level structure detection
in math expressions.

In the eye-tracking data, it became apparent that the structure detection
phase of the parsing process is almost instantaneous and “holistic” which led
us to coin the concept of a formula Gestalt and hypothesize that Gestalt pat-
terns govern the way mathematicians parse formulae. While the Gestalt Tree
Hypothesis is strongly supported by the eye-tracking data obtained from our
study, the study itself was not designed to test this hypothesis per se. Therefore,
more careful studies are needed to prove it in the future.

Moreover, we noticed significant differences between the groups of partici-
pants that self-identified as computer scientists vs. mathematicians for gazing
at expression (3) in Fig. 3, which is in the domain of type-theory that is more
tied to CS than math: The CS group paid significantly more attention to the
type components, whereas the true mathematicians seemed more interested in
the homomorphic structure at the term level. This suggests that familiarity with
the domain affects the way probands read formulae. We leave the investigation
of this interesting aspect to future work.

Finally, it would be interesting to compile a catalog of Gestalt patterns com-
monly in use in Mathematics. Actually, given that we can represent Gestalt
patterns in notation definitions, we can interpret the notation definitions in the
SMGloM terminology base [Koh14] as a start that could be tested for cognitive
reality.
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[KF16] Andrea Kohlhase and Michael Fürsich. “Understanding Mathematical Ex-
pressions: An Eye-Tracking Study”. In: Mathematical User Interfaces Work-
shop. Ed. by Andrea Kohlhase and Paul Libbrecht. July 2016. url: http:
//ceur-ws.org/Vol-1785/M2.pdf.

[KL16] Andrea Kohlhase and Paul Libbrecht, eds. Mathematical User Interfaces
Workshop at CICM. July 2016. url: http://ceur-ws.org/Vol-1785/.

[KMR08] Michael Kohlhase, Christine Müller, and Florian Rabe. “Notations for Liv-
ing Mathematical Documents”. In: Intelligent Computer Mathematics. Ed.
by Serge Autexier et al. LNAI 5144. Springer Verlag, 2008, pp. 504–519.
url: http://omdoc.org/pubs/mkm08-notations.pdf.

[Koh14] Michael Kohlhase. “A Data Model and Encoding for a Semantic, Multilin-
gual Terminology of Mathematics”. In: Intelligent Computer Mathematics
2014. Ed. by Stephan Watt et al. LNCS 8543. Springer, 2014, pp. 169–183.
isbn: 978-3-319-08433-6. url: http://kwarc.info/kohlhase/papers/

cicm14-smglom.pdf.
[KT13] Shahab Kamali and Frank Wm. Tompa. “Retrieving Documents with

Mathematical Content”. In: Proceedings of the 36th International ACM
SIGIR Conference on Research and Development in Information Retrieval.
Ed. by Gareth J. F. Jones et al. Dublin, Ireland: ACM, 2013, pp. 353–362.
isbn: 978-1-4503-2034-4.

[Ray98] Keith Rayner. “Eye Movements in Reading and Information Processing:
20 Years of Research”. English. In: 124.3 (1998), pp. 372–422.

[Sch05] Wolfgang Schnotz. “An Integrated Model of Text and Picture Comprehen-
sion”. In: The Cambridge Handbook of Multimedia Learning. Ed. by R. E.
Mayer. Cambridge University Press, 2005 (2014), 49–69 (72–103).

[SGM10] Alexander Strahl, Julian Grobe, and Rainer Müller. “Was schreckt bei
Formeln ab? - Untersuchung zur Darstellung von Formeln”. In: PhyDid B
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