
A Data Model and Encoding for a Semantic,
Multilingual Glossary of Mathematics

Michael Kohlhase

Computer Science, Jacobs University Bremen
http://kwarc.info/kohlhase

Abstract. To understand mathematical language, we have to under-
stand the words of mathematics. In particular, for machine-supported
knowledge management and digital libraries, we need machine-actionable
terminology databases (termbases). However, terminologies for Mathe-
matics and related subjects differ from vocabularies for general natural
languages in many ways. In this paper we analyze these and develop a
data model for SMGloM the Semantic, Multilingual Glossary of Math-
ematics and show how it can be encoded in the OMDoc/MMT theory
graph model. This structured representation naturally accounts for many
of the terminological and ontological relations of a semantic terminology
(aka. glossary). We also demonstrate how we can account for multilin-
guality in this setting.

1 Introduction

Text-based information systems for mathematics and the linguistics of mathe-
matics are still in their infancy due to the inherent complexity of mathematical
documents, domains, and knowledge. One issue of particular importance is the
problem of dealing with mathematical vocabularies, since they are intimately
linked with both the underlying domain of mathematical knowledge and the
linguistic structures that make up the particular documents. In general natu-
ral language processing, the establishment of machine-actionable terminology
databases has kick-started so many applications and systems that the field is
unthinkable without such resources.

The SMGloM (Semantic Multilingual Glossary for Mathematics; see [Gin+])
is an attempt to jump-start applications as the ones facilitated by the general
lexical resources discussed above. In this paper we analyze the differences pe-
culiarities of terminologies for Mathematics and related subjects and develop a
data model for the SMGloM. This structured representation naturally accounts
for many of the terminological and ontological relations of a semantic terminol-
ogy (aka. glossary).

After establishing a terminological foundation in the next section, we present
and justify the SMGloM data model in Section 3. In Section 4 we show how this
data model can be represented in OMDoc/MMT. Section 5 concludes this paper.
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2 Preliminaries

Let us briefly recap the relevant linguistic and epistemological issues involved in
terminological databases to ground our discussion of the special case of mathe-
matical terminologies.

Glossaries Traditionally, a glossary consists of a list of technical/non-standard
terms with short definitions ordered alphabetically or in the chronology of the
document it illustrates. Figure 1 shows an example from Mathematics.

braid . . .
branch has multiple meanings:

1. In complex analysis, a branch (also called a sheet) is a portion of the
range of a multivalued function over which the function is single-valued.

2. In a directed graph G = 〈V,E〉 we call E the set of edges or branches
in G.

3. If T = 〈V,E〉 is a tree and u ∈ V , then the branch at u is the maximal
subtree with root u (Harary 1994, p. 35).

4. . . .
branch curve . . .

Fig. 1. A Glossary Entry for Mathematics

Terminologies Modern glossaries are usually generated from terminologies or
termbases – i.e. special ontologies that organize terms and their definitions by
terminological relations and/or the inherent structure of the underlying domain.
Let us recap some of the salient concepts to make this note self-contained.

Terms are words and compound words that in specific contexts are given
specific meanings, which may deviate from the meaning the same words have in
other contexts and in everyday language. More specifically, we consider terms
as lexemes which summarize the various inflectional variants of a word or com-
pound word into a single unit of lexical meaning. Lexemes are usually referenced
by their lemma (or citation form) – a particular form of a lexeme that is
chosen by convention to represent a canonical form of a lexeme. Grammatical
information about a lexeme is represented in a lexicon – a listing of the lexemes
of a language or sub-language organized by lemmata.

Terminological relations are semantic relations between terms1. The ones com-
monly used in terminologies are the following:
synonymy two terms are synonymous, if they have the same meaning, i.e. they

are interchangeable in a context without changing the truth value of the
proposition in which they are embedded.

1 In linguistics, these relations are usually called “semantic relations”, but in the
context of this note, the term “semantic” is so convoluted that we will highlight the
fact that they are relations between terms.
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hypernymy term Y is a hypernym of term X if every X is a (kind of) Y .
hyponymy the converse relation of hypernymy
meronomy term Y is a meronym of term X if Y is a part of X
holonymy the converse relation of meronomy
homonymy two terms are homonyms if they have the same pronunciation and

spelling (but different meanings).
antonomy two terms are antonyms, if they have opposite meanings: one is the

antithesis of the other.
We will call a termbase semantic, if it contains terminological relations and/or
a representation of the domain relations.

The paradigmatic example of a termbase organized along terminological re-
lations is WordNet [Fel98; WN]. In WordNet the synonymy relation is treated
specially: the set of synonyms (called “synsets” in WordNet) is taken to represent
a specific entity in the world – a semantic object – and forms the basic repre-
sentational unit of digital vocabularies. Indeed, all other terminological relations
are inherited between synonyms, so it is sensible to quotient out the synonymy
relation and use synsets.

Semantic terminologies are very useful linguistic resources, for instance Word-
Net been used as the basis for many different services and components in infor-
mation systems, including word sense disambiguation, information retrieval, au-
tomatic text classification, automatic text summarization, and machine transla-
tion. Note that WordNet and related lexical resources do not model the relations
of the objects the terms describe in other than via the terminological relations
above. For instance, WordNet is ignorant of the fact that a “son” is “male”2

and a “child” of another “man”. In particular, definitions are not first-class
citizens in WordNet-like resources, they are included into the data set for the
purposes documentation, primarily so that human lexicographers can delineate
the synsets. But to fully “understand” terms in their contexts – e.g. to automate
processing of documents that involve such terms, and drawing inferences from
them – domain relations like the ones above are crucial.

Domain Relations Semantic glossaries and digital vocabularies usually make
some relations between entries explicit, so that they can be used for reasoning and
applications. Linguistically, the domain relations – i.e. the relations between the
(classes of) objects denoted by words – come into play in the form of semantic
roles – the thematic relations tat express the role that a noun phrase plays with
respect to the action or state described by a sentence’s verb. The basic idea is
that one cannot understand the meaning of a single word without access to all
the essential knowledge that relates to that word.

Prominent examples of termbases with semantic roles include and FrameNet
[FN10; FN] and PropBank [PKG05; PB]. The former collects the semantic roles
into frames like Being born with a role Child, and additional roles like Time,
Place, Relatives, etc. Such resources allow additional natural language pro-

2 Do not confuse that with the grammatical gender of the word “son” is masculine or
the fact that “man” is a hypernym of “son”.
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cessing steps like “semantic role labeling”, which in turn allow the extraction
of facts from texts, e.g. in the form of RDF triples which can then be used
for textual entailment queries, question answering, etc.; see e.g. [Leh+13] for
applications and references.

A Semantic, Multilingual Termbase for Mathematics For the SMGloM we will
essentially start with the intuitions from term bases above, but adapt them
to the special situation of mathematical vernacular, the everyday language
used in writing mathematics in textbooks, articles, and to blackboard. This
is a mixture of natural language, formulae, and diagrams3 all of which utilize
special, domain-dependent, and dynamically extensible vocabularies. SMGloM
differs from resources like FrameNet in the domain representation: we will reuse
the OMDoc/MMT format for representing mathematical domains.

3 A Data Model for SMGloM

The data model of SMGloM is organized as a semantic term base with strong
terminological relations and an explicit and expressive domain ontology. The
terms are used as “named mathematical entities” in the sense that they are
rigid designators in Kripke’s sense, rather than univalent descriptions.

3.1 Components of Terminology in Mathematics

Whereas in general natural language word meanings are grounded in the per-
ceived world, the special vocabularies used in mathematics are usually grounded
by (more or less rigorous) definitions of the mathematical objects and concepts
they denote: We have learned to reliably and precisely recognize an object as a
“chair” even though we have a hard time when asked to give a precise definition4

of what constitutes a “chair”, but we cannot directly experience a “symplectic
group” and are left only with its definition to determine its meaning. In both
cases, the word references an object or a set of objects that are uniform in some
way so they can be subsumed under a concept; we will consider both as se-
mantic objects. As mathematical objects can still have multiple “names” with
which designate them, we will use the definitions themselves as the representa-
tives of the respective semantic objects. Every definition will have an identifier
which we call the symbol and use it for identifying the semantic object.

Note that even though the symbol name will in practice usually be (derived
from (the lemma of)) the english version of the definiens of the definition, it is not
(conceptually) the same. The technical terms normally found in glossaries arise
as “verbalizations” (see Section 3.6) of symbols in diverse languages. In general

3 Even though diagrams and their structural and lexical components are very inter-
esting subject of study, we leave them to future work.

4 Arguably such definitions exist – take for instance Wikipedia’s page on chairs, but
they are usually post-hoc and have little to do with our day-to-day use of the word
and its meaning derived from this practice.
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there is a many-to-many relationship between terms and symbols: several terms
pointing to the same definition, as well as several definitions communicated via
the same term. In this way, symbols roughly correspond to synsets in WordNet.

But mathematical vernacular also contains formulae as special phrasal struc-
tures. We observe that formulae are complex expressions that describe mathe-
matical objects in terms of symbols. In fact, they can be “read out” into equiva-
lent verbal phrases, e.g. for visually impaired recipients. In this transformation,
specific and characteristic parts of the formulae correspond to the symbols in-
volved. We call these their notations, they act as an additional lexical compo-
nent. Finally, we have the terminological and domain relations as above, only
that we have to re-interpret them to the more rigorous and structured domain
of mathematical knowledge.

For the purposes of SMGloM a glossary entry consists of four kinds of infor-
mation, which we will describe in the rest of this section.
1. a symbol identified by a definition (see Section 3.2)
2. its verbalizations (common names; see Section 3.6)
3. its various notations (formula representations; see 3.5)
4. terminological relations to other glossary entries. (see 4.5)
5. domain relations to other glossary entries. (see 4.6)

3.2 Symbols and their Definitions

A definition consists of a definiendum – the term introduced in the definition
– and a definiens – a text fragment that gives the definiendum its meaning.
In the simplest of all cases, the definiens is an expression or formula that does
not contain the definiendum and we can directly associate a symbol for the
definiendum with the definition as an identifier. We call this case a simple
definition.

Definition: A directed graph (or digraph) is a pair 〈V,E〉 such that V is a set of
vertices (or nodes) and E ⊆ V × V is the set of its edges.

Figure 1: A Definition for multiple concepts

We will rely on the reader’s mathematical experience and forego a classifi-
cation of definitional forms here, but note that definitions of structured math-
ematical objects often naturally define more than one term. Take, for instance,
the definition of a graph in Figure 1. This introduces three concepts: “directed
graph”, “vertex”, and “edge”, which we take as symbols and the synonym “node”
for “vertex”. We can allow such definitions in SMGloM without losing the prin-
cipal one-definition-one-symbol invariant if we understand them as aggregated
forms. The one in Figure 1 is an aggregation of the three definitions (one per
symbol) in Figure 2. But the separation of the definitions in Figure 2 is awkward
and artificial, and arguably readers would prefer to see the single definition in
Figure 1 in a glossary than one of the ones in Figure 2.
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Definition: A directed graph (or digraph)is a pair 〈V,E〉 of sets, such that E ⊆
V × V .
Definition: Let G = 〈V,E〉 be a digraph, then we call V the set of vertices (or nodes)
of G.
Definition: Let G = 〈V,E〉 be a digraph, then we call E the set of edges of G.

Figure 2: The Definition from Figure 1 separated into Simple Definitions

3.3 Glossary Modules

To support grouping symbols into semantic fields further, SMGloM we group into
modules: groups of glossary entries that belong together conceptually. SMGloM
modules are conceptually similar to OpenMath content dictionaries [Bus+04]
(CDs), and we follow the lead of OpenMath and identify glossary entries by
their module name (c) and their symbol name s (and their CD base g, the base
URI of the CDs) and write this as g?c?s following MMT conventions [RK13].

Note that there is a non-trivial design decision in taking the definitions as
representatives of mathematical semantic objects in SMGloM as there are of-
ten multiple, equivalent ways of defining the “same” mathematical objects. For
instance, a group can be defined as a base set with a binary i) associative op-
eration ◦ that admits a unit and inverses or ii) cancellative operation /. These
two definitions are logically equivalent, since we can define a/b as a ◦ b−1 and
a ◦ b as a/(b/(b/b)). As this example already shows, logical equivalence can be
non-trivial, and in many cases is only discovered a long time after the definition
of the mathematical objects themselves. Therefore different definitions receive
different glossary entries in SMGloM with different symbols.

In our example the two definitions give rise to two symbols group1 and
group2, and we do not consider them synonyms (they are in different synsets),
but homonyms words that have different “meanings” (which are logically equiv-
alent in this case). In a sense, the two symbols model how an objects appears to
the observer, similarly to the “evening star” and the “morning star” which both
refer to the planet Venus. It seems reasonable to conserve this level of modeling
in a linguistic/semantic resource like SMGloM.

3.4 Symbols and Multilinguality

Another SMGloM design decision we have to model is that we allow mathematical
vernacular for definitions. As mathematical language is tied to a particular nat-
ural language, we abstract from this arbitrary choice by allowing translations
of the definition in different languages, which we consider “indistinguishable” for
a SMGloM module.

Den Dde D...

Dsig

=l =l

Fig. 2. Language Equality

In Figure 2 we see a situation where the
content of a glossary entry Dsig is charac-
terized as the equivalence class of definitions
in specific languages D∗ that are translations
of each other – we call the translation rela-
tion language equality and we depict it by
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=l; see [KK06] for an in-depth discussion on
language-equality and related issues.

Concretely, the a glossary module is represented as n+ 1 glossary compo-
nents:
– one for the language-independent part (called the module signature, it

introduces the symbols, their dependencies, and notations, since they are
largely independent of the natural language), and

– n language bindings, which introduce the definitions – they are written in
a particular mathematical vernacular – and the language-specific verbaliza-
tions of symbols. We could imagine “language bindings” for different logical
systems as a possible future extension of the SMGloM, which adds formal-
izations. These would behave just like the regular language bindings, only
that they are fully formal.

The reason for this construction is that the vocabulary of mathematics is language-
independent, because it is grounded in definitions, which can be translated –
unlike general natural language vocabularies which where semantic fields do not
necessarily coincide.

To facilitate consistency management of SMGloM entries, we mark one of
the language bindings as primary. In cases of semantic conflict between lan-
guage bindings, the primary language it determines the intended semantics of the
symbols declared in the glossary module. Pragmatically, the primary language
binding will almost always be the English one.

3.5 Notations

Many mathematical objects have special symbols or formula fragments that
identify them. For instance, Euler’s number is written as e and the imaginary
unit of complex numbers is written as i (in mathematics, in electrical engineering
it is written as j; “standard” notations vary with the community). Parameterized
or functional mathematical objects, often have complex notations, e.g. the n-th
Bernoulli number is written as Bn and the special linear group of degree n over
a field F is traditionally written as SL(n, F ). In SMGloM, we treat notations as
mathematical objects themselves and reify them into notation definitions, since
we want to model them as glossary components. Notation definitions are pairs
consisting of a pair 〈C,P〉, where C is a content schema (a representation of a
formula with metavariables – here indicated by ?x) paired with a presentation
P of the same schema. For instance, the notation for a functional symbols like
the special linear group above, the head is a pattern of the form @(slg; ?n, ?f)5

and the body is the formula SL(?n, ?f). Notation definitions are useful in two
ways: used left-to-right (i.e. given a content representation) they can be used
for styling, i.e. transforming content representations (here Content MathML) to
presentations (here Presentation MathML). In the other direction, they can be
used for notation-based parsing – i.e. context-sensitive parsing with a dynamic
(formula) lexicon.

5 We will use @(a; l) to denote a content MathML application of a function a to an
argument list l.
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3.6 Verbalizations

Abstract mathematical concepts (named mathematical entities; NMEs) may
have multiple names – at least one per language, e.g. the English nouns “ver-
tex” and “node” in the example in Figure 1 and the corresponding German
noun“Knoten”. We specify this symbol to phrase relation via verbalization
definitions, which are symbol-phrase pairs. As the NMEs are often not part of
the regular lexicon of a language, we often need to specify syntactic/semantic
information about the phrases. We do this in the form of verbalization defini-
tions. Similarly to a notation definition, a verbalization definition is a pair
〈C,N〉, where the head C is a content schema and the body N is a natural
language phrase schema, i.e. a phrase with metavariables. For simple cases like
the verbalization “node” for the symbol vertex the verbalization definition is
rather simple, it is just the pair 〈vertex,node〉. For functional symbols like the
special linear group above, the head is a pattern of the form @(slg; ?n, ?f) and
the body is the text schema

[special linear group][of degree ?n][over the field ?f]

where phrases are delimited by square brackets. Note that verbalization defini-
tions can be used in both directions like notation definitions. Currently we are
more interested in using them as a linguistic resource for parsing, but also for
the generation of standard glossaries or wikifiers. In this note, we abstract from
grammatical information and reduce terms and phrases to their lemmata, as-
suming a suitable lexicon component that manages information about inflection
and aggregation schemata. For instance, with suitable notation and verbaliza-
tion definitions we can generate or parse aggregated declarations like “SL(n,R)
and SL(m,C) are the special linear groups of orders n and m over the fields R
and C”.

4 Implementing the Data Model in OMDoc/MMT

We (re)-interpret the data model introduced in the last section in terms of the
OMDoc/MMT theory graph (see [RK13] for a discussion of MMT theory graphs,
the formal core of OMDoc). A theory graph is a graph, where the nodes are the-
ories and the edges are theory morphisms: truth-preserving mappings from ex-
pressions in the source theory to expressions in the target theory. OMDoc/MMT
theories are essentially collections

– concept declarations, together with
– axioms (in particular definitions) that state what properties the concepts

have, and
– notation definitions that specify the presentation of symbols.

Theory morphisms come in four forms:

– structures which define their target theory to be an extension of the source
theory; inclusions are those structures whose mapping is the identity,
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– views which interpret the mathematical objects of the source theory as such
of the target theory (for instance, the natural numbers with addition can be
interpreted as a monoid if we interpret 0 as the unit element).

– metatheory-relations which import the symbols of the meta-language into
a theory.

Note that the notion theory morphism is rather strong in OMDoc/MMT, as it
allows renaming of concepts. Imports are truth/meaning-preserving by virtue of
the extension property, essentially the target theory is defined so that they are:
all symbols and axioms are in the target after translation. To establish a view,
we need to prove all the source axioms (after translation) in the target theory.

4.1 Glossary Components as OMDoc/MMT Theories

We can implement the SMGloM data model directly in OMDoc/MMT theory
graphs. Note that the setup in Figure 2 can directly represented by giving the-
ories for the module signature and its language bindings and interpreting the
dependencies as OMDoc/MMT inclusions. The language equalities are not rep-
resented in our implementation, but left to convention (they cannot be checked
by the system anyways).

Den Dde D...

Dsig

=l =l

MVen MVde MV...

MVsig

=l =l

Len Lde L...=l =l

Fig. 3. The Language Metalevel

But we can use the theory graph
to even more advantage in SMGloM,
if we take the MMT meta-level into
account. We can model the fact that
e.g. the language binding Den is writ-
ten in English by specifying the the-
ory MVen (English mathematical ver-
nacular) as its meta-theory. In Fig-
ure 3, we find the module/bindings
construction of Figure 2 at the bot-
tom layer, and their vernaculars in
the layer above. These, inherit from
generic language theories L∗ and a module signature MV for mathematical ver-
nacular6. Note that the mathematical vernacular meta-level (the middle layer in
Figure 3) is structurally isomorphic to the domain level. In particular, we can
think of MV as a signature of mathematical vernacular: it contains symbols for
meta-mathematical concepts like quantification, connectives, definitional equal-
ity, etc. In future extensions of the SMGloM by formal content, this is the spaces,
where the logics would live – see [Cod+11].

The third level in Figure 3 contains the generic (i.e. non-mathematical) vo-
cabularies of the respective natural languages. They are just stubs in SMGloM
that can be coupled with non-math-specific linguistic/lexical resources in the
future.

6 Actually, what we have depicted as a single theory here is a whole theory graph of
inter-dependent theories.
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4.2 Multilingual Theory Morphisms

MS

MS.en MS.de

NVS

NVS.en NVS.de

σ

σ.e

σ.d

Fig. 4. A multilingual view

In the SMGloM, where glos-
sary items are structured,
multilingual modules (see Fig-
ure 2), theory morphisms are
similarly structured. Con-
sider the situation on the
right, where we have a mod-
ule MS for metric spaces, and
another (NVS) for metric vec-
tor spaces. It is well-known
that a normed vector space
〈V, ‖ · ‖〉 induces a distance function d(x, y) := ‖x− y‖ and thus a metric space
〈V, d〉. The OMDoc/MMT views that make up this structured relation between
glossary modules is represented by the three dashed arrows in Figure 4. Here σ
is the translation that assigns the base set V to itself and d(x, y) to ‖x−y‖. The
two OMDoc/MMT views σ.e and σ.d include σ and add the proofs (in English
and German respectively) for the proof obligations induced by the metric space
axioms.

4.3 Notations & Verbalizations

We employ OMDoc notation definitions which directly implement the content/p-
resentation pairs in XML syntax (see [Koh10] for details). It turns out that the
for the structurally similar verbalization definitions introduced in Section 3.6, we
re-use the OMDoc/MMT notation definitions mechanism, only that the “presen-
tation” component is not presentation MathML, but in natural language phrase
structures (in the respective languages).

4.4 Synsets: Direct Synonymy

We have two forms of “synonyms” in SMGloM: direct synonyms that are
directly given in definitions, and induced ones (see below). For example, the
definition in Figure 1 introduces the terms “vertex” and “node” as direct syn-
onyms. Indeed, the definiendum markup gives rise to the verbalization definitions
〈dgraph?vertex, vertex〉 and 〈dgraph?vertex,node〉 respectively, i.e. the lemmata
“vertex” and “node” refer to the symbol vertex in the theory dgraph. In essence we
use symbol-synchronization for the representation of direct synonyms, and thus
we can use the symbols as representations of synsets of the SMGloM term base.
Note that this interpretation also sees translations as special cases of synonyms,
as they also refer to the same (language-independent) symbol. In SMGloM we
identify synsets with symbols and thus assume that the terminological relations
as relations between symbols. This allows us to model them as theory morphisms
and use the OMDoc/MMT machinery to explain their contributions and prop-
erties. For the moment we restrict ourselves to inclusions and leave structures
and views to Section 4.6.
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4.5 Direct Terminological Relations

In OMDoc/MMT theory graphs, we often have a systematic dualism between the
theory T as a structured object and the mathematical structure7 it introduces,
we call it the primary object and denote it with T , all other symbols are
called secondary. Consider for instance the case of directed graphs above, where
the theory has secondary symbols for vertices and edges; and incidentally, the
primary object of the glossary module in Figure 1 is the concept a digraph,
i.e. the structure 〈V,E〉 which consists of (sets of) vertices and edges (both
secondary concepts). Similarly, the theory of groups has a primary object made
up of its secondary objects: the base set, the operation, the unit, and the inverse
operation.

In our experience, secondary symbols mostly (all?) seem to be functional
objects whose first argument is the primary symbol. For instance the “edges
of” a graph. This makes the setup of SMGloM modules very similar to classes in
object-oriented classes, where the secondary objects correspond to methods, and
(more importantly for a linguistic resource like SMGloM) to frames in FrameNet,
where the secondary symbols correspond to the semantic roles. We will conduct
a survey on this on the SMGloM corpus once its more mature.

Hyper/Hyponomy For the hyponomy and hyperonymy relations, we employ
the notion of theory morphisms from OMDoc/MMT. If there is an import from S
to T , then T is a hypernym of S and that a hyponym of S. Consider for instance,
the notion of a “tree” as a digraph with special properties (a unique initial
node and in-degree 1 on all others). Extending the digraph glossary module
to one for trees naturally gives rise to an inclusion morphism that maps the
principal symbol digraph to the new principal symbol tree. Thus the term “tree” is
a hypernym of “digraph” (and “directed graph”, since that is a direct synonym).

For the secondary symbols we have a related effect. They are usually inherited
along theory morphisms together with the primary symbols, but they keep their
meaning, only that their domain is restricted to the more specialized primary
symbol. This relation which we tentatively call domain restriction is related
to the notion of selectional restriction in lexical semantics – cf. [Ash14] for a
recent contribution that seems compatible with the SMGloM data model.

Meronomy Note that the inclusion relation we have encountered above is very
naturally a theory morphism by construction: all objects and their properties of
the source theory are imported into the target theory. As the imports relation
is invoked whenever a mathematical object is referenced (used) in the definiens
of another, we interpret the inclusion relation as the SMGloM counterpart of
the meronymy relation: if there is an import from theory S to theory T , then
S is part of T . Take for instance a definition of a ring ring = 〈R,+, 0,−, ∗, 1〉
via an inclusion from a commutative group grp = 〈R,+, 0,−〉 and a monoid

7 We have an unfortunate name clash with MMT “structures” here we mean the
mathematical object, e.g. the pair 〈V,E〉 in Figure 1.
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mon = 〈R, ∗, 1〉. This directly gives us two meronomy relations: The monoid mon
and the commutative group grp are both “parts of” the ring. As a consequence,
inclusions where the primary symbol of the source is not mapped to the primary
symbol of the target theory give rise to meronomy relations between the primary
symbols.

4.6 Induced Terminological Relations

We now turn to the other kind of theory morphisms: structures and views and
their contribution to terminological relations. We first observe that structures
and views bridge a greater conceptual distance than inclusions, since the induced
mapping is not the identity. Note that the distinction made here between inclu-
sions and structures is a gradual one based on the complexity of the mapping. In
particular, structures with injective symbol mappings may seem closer to inclu-
sions than to structures that map to complex terms. Moreover, while inclusions
and structures are definitional (their targets are defined in terms of them), views
carry proof obligations that show their truth-preserving nature; this translate
into an even greater cognitive distance of the induced terminological relation.

Homonymy Logical equivalence of glossary modules – i.e. homonymy of the
terms that verbalize the primary symbols – is just a case of theory isomorphism.
In the example with the two groups from Section 3.3 we have two SMGloM
modules which are represented OMDoc/MMT theories. Their equivalence can be
encoded by a theory isomorphism: two views which compose to the identity. As
any logical equivalence can be expressed as theory isomorphisms (given suitable
glossary modules), homonymy is conservative over OMDoc/MMT theory graphs.

View-Induced Hyponomy (aka. Examples) We have already seen that
theory inclusions induce hyponomy (the “isa relation”) between the principal
symbols, e.g. a group “is a” monoid. The “induced hyponomy relation” – e.g.
〈N,+〉 “is a” monoid if we interpret 0 as the unit element is very salient in
mathematics: we consider 〈N,+, 0〉 as an example of a monoid. The proof obli-
gations of the underlying view verify that this is indeed true. Giving examples
– and counter-examples – from other mathematical areas is an important math-
ematical practice necessary for fully understanding mathematical concepts and
fostering intuitions about applications. Regular hyponyms are usually not con-
sidered good examples, since they are too direct.

Induced Synonymy But there are other kinds of synonyms: in a graph def-
inition in Harary’s 1969 book on “Graph Theory” [Har69] we find the terms
“0-simplex” for the nodes and “1-simplex” for the edges of a graph. We inter-
pret such “synonyms” as metaphoric. Given a definition

Definition: A k-simplex is a k-dimensional polytope which is the convex
hull of k + 1 affinely independent points in k-space.
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We can see that Harary’s definition makes sense if we map nodes to 0-simplices
and edges to 1-simplices. In SMGloM we would model this via a glossary module
for simplices and a view from the graph module to that. Then we can understand
Harary’s names as synonyms via this view. Note that in order for these to the
“synonyms” in the sense of this paper, we also need a (partial) view back from
simplices to edges (that is defined on them), but that is also easy to do. We call
such synonyms view-induced; the view directly accounts for the metaphoric
character. We “borrow” terms for graphs from a related (via the view) field of
simplices.

As the conceptual gap covered by views can vary greatly – the identity endo-
morphism covers none – the distinction between direct- and view-induced syn-
onyms is flexible (and in the mind of the beholder). A first delineation could be
whether the analogy mappings that give rise to the (originally metaphoric) names
are inner-mathematical or extra-mathematical. If they are inner-mathematical
then we should state the views, if they are not, then we cannot really. An ex-
ample of synonyms introduced by an extra-mathematical (from plant anatomy)
view is the junction/branch metaphor for vertices/edges in graphs. Given these
criteria, it becomes debatable whether to interpret the synonyms point/line for
vertex/edge via a view into point/line geometry.

A very positive effect of interpreting synonyms via views is that this also gives
an account of the coordination of synonyms. We observe that verbalizations are
coordinated in “conceptual systems”. In particular, we will seldom find “mixed
metaphors” in Math, where people use the word “point” for the concept of a
vertex and “branch” for an edge in the same situation. Requiring the existence
a view that maps the whole situation into a coherent glossary module explains
this observation nicely. Similar consideration should hold for notations, but we
will leave their study to future work.

5 Conclusion

We have presented a data model model for a mathematical termbase. As math-
ematical terminologies are based in definitions not in perceptions of the physical
world, modeling the domain of mathematical becomes as important as model-
ing the terminological relations for a machine-actionable resource. We integrate
both aspects by modeling glossary terms by OMDoc/MMT symbols, glossary
modules (semantic fields of terms correlated by their meaning) as theories, and
terminological relations by theory morphisms, so that we can make use of the
OMDoc/MMT machinery – and even implementation – for a glossary system.
The SMGloM system [Gin+] builds on the MMT API [Rab13] for this data
model and MathHub.info [Ian+] for archiving and editing support. It supplies
glossary-oriented web services that answer termbase queries, e.g. for terminologi-
cal relations, definitions, or translations and generates glossaries for sub-corpora.

Eventually, we will support multiple surface syntaxes for OMDoc, but ini-
tially, we use sTEX, a semantical variant of LATEX; see [Koh08; sTeX]. The current
glossary contains
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– ca. 150 glossary entries from elementary mathematics, to provide a basis for
further development

– ca. 350 are special concepts from number theory to explore the suitability of
the SMGloM for more advanced areas of mathematics

– a handful of views to establish the concept and serve as examples. As we have
seen above, views give rise to interesting semantic/linguistic phenomena, so
this is where we have to invest most of the curation efforts.

An feature of mathematical domain modeling which we have not included in
the SMGloM is the assignment of sorts/types to mathematical concepts. This is
probably the most immediate next step after consolidating the initial corpus to
the data model described in this paper: Sortal and type-restrictions are impor-
tant cognitive devices in semantic domains and representing them significantly
enhances the expressivity and adequacy of lexical/linguistic as well as logical
modeling. But the integration of linguistic and logical constraints – in partic-
ular selectional restrictions of verbs and adjectives – into a universal sort/type
system for mathematics is no small feat, therefore we leave it to future work.
But we conjecture that the SMGloM data model of a mathematical term base
with a theory graph structure is the right setting to investigate selectional re-
striction in lexical semantics. We plan to use all “unary predicate symbols” in
SMGloM as possible types and study what this means for the selection restric-
tions taking [Ash14] into account as a departure for this work.
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