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Abstract. Mathematical knowledge is publicly available in dozens of
different formats and languages, ranging from informal (e.g. Wikipedia)
to formal corpora (e.g., Mizar). Despite an enormous amount of over-
lap between these corpora, few machine-actionable connections exist.
We speak of alignment if the same concept occurs in different libraries,
possibly with slightly different names, notations, or formal definitions.
Leveraging these alignments would create a huge potential for knowledge
sharing and transfer, e.g., integrating theorem provers or reusing services
across systems.

Formally describing and verifying alignments is extremely expen-
sive, as it typically requires not only aligning two concepts but whole
libraries together with their foundations, or may even be impossible in
case of alignments between semi-formal or informal concepts. Therefore,
we introduce a lightweight approach that focuses on identifying the align-
ments while abstracting from formal definitions. Notably, this is already
sufficient for many practically valuable applications.

We present a classification of alignments and design a simple format
for describing alignments as well as an infrastructure for sharing them.
We propose these as a centralized standard for the community to collect
and curate alignments from the different kinds of mathematical corpora,
including proof assistant libraries, computer algebra and programming
language algorithms, and semi-formal libraries.

1 Introduction

The sciences are increasingly collecting and curating their knowledge systemat-
ically in machine-processable corpora. For example, in biology many important
corpora take the form of ontologies, e.g., as collected on BioPortal. These corpora
typically overlap substantially, and much recent work has focused on integrating
them. A central problem here is to find alignments: pairs (a1, a2) of identifiers
from different corpora that describe the same concept.

For ontologies, this problem has been relatively well-studied under the head-
ing ontology matching [ESC07]. The situation in mathematics is somewhat spe-
cial because mathematical knowledge involves rigorous notations, definitions,
and properties, and attempts to capture it fully lead to very diverse corpora.
Logical corpora have been developed in proof assistants and feature machine-
understandable theorems and proofs. Computational corpora have been devel-
oped in computer algebra systems and feature executable definitions and con-
structions. And narrative corpora have been developed in wikis and related tools



featuring human-oriented semi-formal descriptions. For each kind, there are mul-
tiple large corpora, often the result of dozens of person-years of investment.

Alignments between computational corpora occur in bridges between the
run time systems of programming languages. Alignments between logical and
computational corpora are used in proof assistants with code generation such
as Isabelle [WPN08] and Coq [Coq15]. Here functions defined in the logic are
aligned with their implementations in the programming language in order to
generate fast executable code from formalizations.

Wiedijk [Wie06] explored a single theorem (and its proof) across 17 proof as-
sistants implicitly providing alignments between the concepts present in the the-
orem’s statement and proof. However, finding alignments has proved extremely
difficult in general. There are three reasons for this: the conceptual differences
between the three kinds of corpora; the differences between the underlying for-
mal languages and tools; and the differences between the organization of the
knowledge in the corpora.

The dominant methods for integrating logical corpora so far have focused on
truth-preserving translations between the underlying knowledge representation
languages. For example, [KS10] translates from Isabelle/HOL to Isabelle/ZF.
[KW10] translates from HOL Light to Coq, [OS06] to Isabelle/HOL, and [NSM01]
to Nuprl. Older versions of Matita [ACTZ06] were able to read Coq compiled
theory files. [CHK+11] build a library of translations between different logics.

However, most translations are not alignment-aware, i.e., it is not guaranteed
that a1 will be translated to a2 even if the alignment is known. This is because
a1 and a2 may be subtly incompatible so that a direct translation may even lead
to inconsistency or ill-typed results. [OS06] was — to the authors knowledge —
the first that could be parametrized by a set of alignments. The OpenTheory
framework [Hur09] provides a number of higher-order logic concept alignments.
In [KR16], the second and fourth author discuss the corpus integration problem
and conclude that alignments are of utmost practical importance. Indeed, corpus
integration can succeed with only alignment data even if no logic translation is
possible. Conversely, logic translations contribute little to corpus integration
without alignment data.

Due to the size of the involved corpora, it is desirable to find alignments
automatically. Recently, the first author has developed heuristic methods for
automatically finding alignments [GK14] targeted at integrating logical corpora
[KK13] including HOL Light, HOL4, and Isabelle/HOL discovering 398 pairs of
isomorphic concepts. Consistent name hashing combined with statement normal-
ization was used to discover 39 symbols with equivalent definitions [KU15] in the
Flyspeck development [H+15]. Ginev built a library of about 50,000 alignments
between narrative corpora including Wikipedia, Wolfram Mathworld, Planet-
Math and SMGloM [GC14]. Many practical services are enabled by even im-
perfect alignments, such as searching for a single query expression in multiple
corpora at once, or providing more precise recommendations for automated rea-
soning [GK15].
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Contribution and Overview Our contribution is two-fold. First, we present a
phenomenological study of alignments between mathematical corpora in Section
2. Most importantly, we collect the various subtle reasons why an alignment may
be imperfect because not all properties of the aligned symbols transfer exactly.

Our standardization includes a standardization of forming MMT URIs [RK13]
for a number of a major logical corpora in Section 3. These assign a canonical
URI to every symbol in a way that is unique across corpora and across logics.
We use these URIs to give several examples from logical corpora in Section 4.
The examples focus on logical corpora, but our results carry over to other kinds
of corpora as well.

Second, we propose a standard for storing and sharing alignments in Sec-
tion 5. Most corpora are developed and maintained by separate, often disjoint
communities. That makes it difficult for researchers to utilize alignments because
no central repository exists for jointly building a large collection of alignments.
We have started such a central repository — it is public, and we invite all
researchers to contribute their alignments. We seeded our repository with the
alignment sets mentioned above. Moreover, we are hosting a web-server that al-
lows for conveniently querying for all symbols aligned with a given symbol. We
describe this infrastructure in Section ??.

2 Types of Alignments

Let us assume two corpora C1, C2 with underlying foundational logics F1, F2.
We examine examples for how two concepts ai from Ci can be aligned.

Perfect Alignment If a1 and a2 are logically equivalent modulo a translation ϕ
that is fixed in the context, we speak of a perfect alignment. More precisely, all
formal properties (type, definition, axioms) of a1 carry over to a2 and vice versa.
Typical examples are primitive types and their associated operations. Consider:

Nat1 : Type Nat2 : Type

then translations between C1 and C2 can simply interchange a1 and a2.
The above example is deceptively simple for two reasons. Firstly, it hides the

problem that F1 and F2 do not necessarily share the symbol Type. Therefore, we
need to assume that there are symbols Type1 and Type2, which have been already
aligned (perfectly). Such alignments are crucial for all fundamental constructors
that occur in the types and characteristic theorems of the symbols we want to
align such as Type, →, bool, ∧, etc. These alignments can be handled with the
same methodology as discussed here. Therefore, here and below, we assume we
have such alignments and simply use the same fundamental constructors for F1

and F2.
Secondly, it ignores that we usually only want certain formal properties to

carry over, namely those in the interface theory in the sense of [KR16]. For
example, in Section 4 we give many perfect alignments between symbols that
use different but interface-equivalent definitions.
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Alignment up to Argument Order Two function symbols can be perfectly aligned
except that their arguments must be reordered when translating.

The most common example is function composition, whose arguments may
be given in application order (f ◦g) or in diagram order (f ; g). Another example
is given

contains1 : (T : Type)→ SubSetT → T → bool

in2 : (T : Type)→ T→ SubSetT → bool

Here the expressions contains1(T,A, x) and in2(T, x,A) are aligned.

Alignment up to Determined Arguments The perfect alignment of two function
symbols may be broken because they have different types even though they agree
in most of their properties. This often occurs when F1 uses a more fine-granular
type system than F2, which requires additional arguments.

Examples are untyped and typed (polymorphic, homogeneous) equality: The
former is binary, while the latter is ternary

eq1 : Set→ Set→ bool eq2 : (T : Type)→ T → T → bool.

The types can be aligned, if we apply ϕ(Set) to eq2. Similar examples arise
between simply- and dependently-typed foundations, where symbols in the latter
take additional arguments.

These additional arguments are uniquely determined by the values of the
other arguments, and a translation from C1 to C2 can drop them, whereas the
reverse translations must infer them – but F1 usually has functionality for that.

The additional arguments can also be proofs, used for example to represent
partial functions as total functions, such as a binary and a ternary division
operator

div1 : Real→ Real→ Real div2 : Real→ (d : Real)→` d 6= 0→ Real

Here inferring the third argument is undecidable, and it is unique only in the
presence of proof irrelevance.

Alignment up to Totality of Functions The functions a1 and a2 can be aligned
everywhere where both are defined. This often happens since it is often con-
venient to represent partial functions as total ones by assigning values to all
arguments. The most common example is division. div1 might both have the
type Real→ Real→ Real with x div1 0 undefined and x div2 0 = 0.

Here a translation from C1 to C2 can always replace div1 with div2. The re-
verse translation can usually replace div2 with div1 but not always. In translation-
worthy data-expressions, it is typically sound; in formulas, it can easily be un-
sound because theorems about div2 might not require the restriction to non-zero
denominators.
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Alignment for Certain Arguments Two function symbols may be aligned only
for certain arguments. This occurs if a1 has a smaller domain than a2.

The most fundamental case is the function type constructor → itself. For
example,→1 may be first-order in F1 and→2 higher-order in F2. Thus, a trans-
lation from C1 to C2 can replace →1 with →2, whereas the reverse translation
must be partial.

Another important class of examples is given by subtyping (or the lack
thereof). For example, we could have

plus1 : Nat→ Nat→ Nat plus2 : Real→ Real→ Real.

Another way for a1 to have a smaller domain is to take less arguments. For
example, we might have

ln1 : Real→ Real log2 : Real→ Real→ Real

where ln2(x) can be translated to log2(e, x).

Alignment up to Associativity An associative binary function (either logically
associative or notationally right- or left-associative) can be defined as a flexary
function, i.e., a function taking an arbitrarily long sequence of arguments. In
this case, translations must fold or unfold the argument sequence. For example

plus1 : Nat→ Nat→ Nat plus2 : List Nat→ Nat.

Contextual alignments Two symbols may be aligned only in certain contexts.
For example, the complex numbers are represented as pairs of real numbers in
some proof assistant libraries and as an inductive data type in others. Then only
selected occurrences of pairs of real numbers can be aligned with the complex
numbers.

Alignment with a Set of Declarations Here a single declaration in C1 is aligned
with a set of declarations in C2. An example is a conjunction a1 in C1 of axioms
aligned with a set of single axioms in C2. More generally, the conjunction of a set
of C1-statements may be equivalent to the conjunction of a set of C2-statements.

Here translations are much more involved and may require aggregation or
projection operators.

Alignment between the Internal and External Perspective on Theories Logical
theories can be represented in two ways. We define them only by example. We
speak of the internal perspective if we use a theory like

theory Magma1 = {u1 : Type, ◦1 : u1 → u1 → u1}

and of the external perspective if we use operations like

Magma2 : Type, u2 : Magma2 → Type, ◦2 : (G : Magma)→ u2 G→ u2 G→ u2 G

Here we have non-trivial, systematical translation from C1 to C2; a reverse may
also be possible, depending on the details of F1.

5



Corpus-Foundation Alignment Orthogonal to all of the above, we have to con-
sider alignments, where a symbol is primitive in one system but defined in an-
other. More concretely, a1 can be built-into F1 whereas a2 is defined in F2. This
is common for corpora based on significantly different foundations, as each foun-
dation is likely to select different primitives. Therefore, it mostly occurs for the
most basic concepts. For example, the boolean connectives, integers and strings
are defined in some systems but primitive in others, as in some foundations they
may not be easy to define.

The corpus-foundation alignments can be reduced to previously considered
cases if we follow the “foundations-as-theories” approach [KR16], where the foun-
dations themselves are represented in an appropriate logical framework. Then
a1 is simply an identifier in the corpus of foundations of the framework F1.

Opaque Alignments The above alignments focused on logical corpora, partially
because logical corpora allow for precise and mechanizable treatment of logical
equivalence. Indeed, alignments from a logical into a computational or narrative
corpus tend to be opaque: Whether and in what way the aligned symbols corre-
spond to each other is not (or not easily) machine-understandable. For example,
if a2 refers to a function in a programming language library, that functions spec-
ification may be implicit or given only informally. Even worse, if a2 is a wiki
article, it may be subject to constant revision.

Nonetheless, such alignments are immensely useful in practice and should not
be discarded. Therefore, we speak of opaque alignments if a2 refers to a symbol
whose semantics is unclear to machines.

3 Global Identifiers

An essential requirement for relating logical corpora is standardizing the iden-
tifiers so that each identifier in the corpus can be uniquely referenced. It is
desirable to use a uniform naming schema so that the syntax and semantics of
identifiers can be understood and implemented as generically as possible. There-
fore, we use MMT URIs [RK13], which have been specifically designed for that
purpose.

3.1 General Structure

Syntax MMT URIs are triples of the form

NAMESPACE ? MODULE ? SYMBOL

The namespace part is a URI that serve as globally unique root identifiers of
corpora (e.g., http://mathhub.info/MyLogic/MyLibray). It is not necessary
(although often useful) for namespaces to also be URLs, i.e., a reference to a
physical location. But even if they are URLs, we do not specify what resource
dereferencing should return. Note that because MMT URIs use ? as a separator,
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MODULE ? SYMBOL is the query part of the URI, which makes it easy to implement
dereferencing in practice.

The module and symbol parts of an MMT URI are logically meaningful
names defined in the corpus: The module is the container (e.g., a signature,
functor, theory, class, etc.) and the symbol is a name inside the module (of a type,
constant, axiom, theorem etc.). Both module and symbol name may consist of
multiple /-separated segments to allow for nested modules and qualified symbol
names.

MMT URIs allow arbitrary Unicode characters. However, ? and /, which
MMT URIs use as delimiters, as well as any character not legal in URIs must
be escaped using the %-encoding. We refer to RFC 3986/7 for details.

Both the corpus itself and the system with which it was processed may be
subject to change. Therefore, it may be useful to record a version in an MMT
URI. However, most developers take care to avoid semantically critical changes
at least to the widely used parts of their corpora. Since those parts are also
the most interesting ones for integration, we omit issues of versioning here and
simply remark that the version can be recorded as a part of the root namespace.

Formation Principles The precise formation of MMT URIs may depend subtly
on the foundational logic underlying the corpus. In the sequel, we identify some
general principles that allow stating the formation rules concisely.

The most important physical structure of a corpus is usually a directory tree,
whose leaves are files containing modules. In this case, the following principles
are typical options to define namespaces:
– flat structure: All modules use the same namespace as the root namespace

of the corpus regardless of their physical location in the corpus. This naming
schema is most well-known from SML.

– directory-based structure: The namespace of a module is formed by con-
catenating the root namespace with the path to the directory containing it.
There are two subcases regarding the treatment of the file name:
• files-as-modules: The file contains exactly one module. The name of

the module may be given explicit ly in the file or may be implicit. Either
way, the name of the module must be the same as the file name without
the file name extension. Files as explicitly named modules is most well-
known as the convention of Java.

• irrelevant file names: The file name is irrelevant, i.e., the grouping of
modules into files within the same directory is arbitrary. In particular, a
file can contain multiple modules.

– file-based structure: The namespace of a module is formed by concatenating
the root namespace of the corpus with the path to the file containing it.

3.2 URIs for Selected Proof Assistants

Using the principles defined above, we describe the MMT URI formation princi-
ples for some important proof assistants. In all cases, we also assign MMT URIs
for the underlying foundations in order to refer to built-in concepts.

7



PVS [ORS92] uses directory-based namespaces with irrelevant file names.
We propose the following root URIs for some important PVS-related corpora:
– the PVS foundation: http://pvs.csl.sri.com/foundation
– the standard library that is shipped with PVS: http://pvs.csl.sri.com/Prelude
– the NASA corpus: http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library

Within a PVS corpus, the top-level modules are theories and (co)datatype
declarations. The only possible nesting between them is that theories may con-
tain (co)datatype declarations. Consequently, the module names have at most
two segments. If a module is a (co)datatype, its symbols are the constructors,
testers, etc. These are not hierarchical. If a module is a theory, its symbols are
all declarations declared in it. These are not hierarchical. However, if a symbol
name N is declared multiple times in the same module (due to overloading), we
use two-level names of the form N/i where i numbers all declarations of N in
that module (starting from 1).

Coq [Coq15] uses directory-based namespaces with files as implicitly named
modules. We propose the following root URIs:
– the Coq foundation: https://coq.inria.fr/foundation
– the standard library shipped with Coq: https://coq.inria.fr/theories
– the Coq contributions: https://coq.inria.fr/contribs
– the Mathematical Components corpus (including SSReflect):

http://ssr.msr-inria.inria.fr/math-comp

Coq modules can be nested. Besides the module name given implicitly by the
file, Coq files can contain modules and module types. Symbols are all declara-
tions inside a module. Their names can be hierarchic due to generative functor
instantiation.

Matita uses the same URIs as Coq except for not allowing nested modules.
We suggest the following root URIs:
– the Matita foundation: http://matita.cs.unibo.it/foundation
– the Matita standard library: http://matita.cs.unibo.it/library

Mizar uses a flat namespace. We propose the following root URIs:
– the Mizar foundation: http://mizar.org/foundation
– the Mizar Mathematical Library (MML): http://mizar.org/library

The Mizar modules are the articles. The name of a module is the name of
the article without the file name extension. There is no nesting of modules. The
Mizar symbols are all the declarations inside an article. Their names are obtained
through a heavily idiosyncratic naming schema that includes generating unique
names by numbering the declarations of the same kind in each article. For exam-
ple, the MMT URI of conjunction is http://mizar.org/corpus?XBOOLEAN0?K4

HOL Light does not have an obvious MMT URI formation principle because
it does not maintain all its identifiers itself — instead it relies on the OCaml
toplevel to store the assigned values. There are three kinds of HOL Light symbols:
types, constants, and theorems; only the former two are visible to the HOL Light
kernel. For each type or constant, we use the name visible to the HOL Light
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kernel. For each theorem, we use the OCaml binding name. OCaml toplevel
symbols may be grouped into OCaml modules. This feature is seldom used, as
it only affects theorem names: the kernel is also not aware of the OCaml module
in which the definitions of constants or types are introduced.

This has the effect that different HOL Light files can be incompatible with
each other. There are two reasons for this incompatibility: First, toplevel symbols
may be overwritten by others, which means that the original ones are no longer
accessible and a formalization might fail. This happens for example in case of the
OCaml basic output function open in which gets overwritten by a theorem with
the same name. Second, the loading of a file may change the state of HOL Light
kernel or packages to one that is no longer compatible with another file [Wie09].
For example the theories complexnumbers.ml and complexes.ml both introduce
the type complex but with different definitions.

Thus, HOL Light’s names do not uniquely identify symbols. Therefore, we
use directory-based namespaces with files-as-modules. For constants and types
introduced by a module we add the prefixes const/ and type/ respectively. If a
file contains OCaml modules, we use their names to form multi-segment module
names. Accordingly, if symbols result from OCaml structures, we form multi-
segment symbol names. This has the effect that HOL Light URIs are formed in
exactly the same way as for Coq.

We propose the following root URIs:
– the HOL Light foundation and the library shipped with it:

http://github.com/jrh13/hol-light

– the Formal Proof of Kepler formalization [H+15]:
http://github.com/flyspeck/flyspeck

For example, the Flyspeck theorem well defined unordered pair is as-
signed the URI: http://github.com/flyspeck/flyspeck?text_formalization/
packing/marchal3?Matchal_cells_3.well_defined_unordered_pair.

HOL4 internal module names correspond to names of files, however the
names of types and constants are not associated with the modules. Furthermore,
the names of constants and types are separate. To avoid ambiguity we use the
same module names as for HOL Light. We propose the following root URIs:
– the HOL4 foundation and the library shipped with it:

https://hol-theorem-prover.org

Isabelle is a logical framework: Its distribution includes a number of object
logics, and each Isabelle theory uses an object logic (or declares a new one).
Isabelle uses files as explicitly named modules. However, it disregards the direc-
tory structure: The system makes sure that two modules with same name cannot
be loaded in the same session even if they are stored in different directories. But
as different object logics and different developments often declare incompatible
notions, we still use directory-based namespaces to make sure all theories have
unique namespaces.

Isabelle allows several module mechanisms including locales and type classes
[HW06]. Therefore, we form nested module names by concatenating theory and
locale/type class names. We propose the following root URIs:

9

http://github.com/jrh13/hol-light
http://github.com/flyspeck/flyspeck
http://github.com/flyspeck/flyspeck ? text_formalization/packing/marchal3 ? Matchal_cells_3.well_defined_unordered_pair
http://github.com/flyspeck/flyspeck ? text_formalization/packing/marchal3 ? Matchal_cells_3.well_defined_unordered_pair
https://hol-theorem-prover.org


– Isabelle foundation and distributed libraries: http://isabelle.in.tum.de/
– the Archive of Formal Proofs: http://afp.sf.net/
– the TLA+ logic: http://tla.msr-inria.inria.fr/

For example the type of streams is represented by the URI:
http://isabelle.in.tum.de/?HOL/corpus/Stream?stream

4 Examples of Alignments

Using the MMT URIs defined in Sect. 3, we give a detailed presentation of
alignments across proof assistants for three representative concepts. We also
include some alignments to programming languages, which are relevant for code
generation. In all cases, we will see how big the differences between the details
are across the logical corpora even though most of the alignments are in fact
perfect.

Cartesian Product In constructive type theory, there are two common ways of
expressing the non-dependent Cartesian product. First, if the foundation has
inductive types such as the Calculus of Inductive Constructions, it can be an
inductive type with one binary constructor. Second, if the foundation has a
dependent sum type, Cartesian products can be the non-dependent special case.
The first two symbols below use the former, the last one the latter approach:
– http://coq.inria.fr/theories?Init/Datatypes?prod.ind

– http://matita.cs.unibo.it/?datatypes/constructors?Prod.ind

– http://isabelle.in.tum.de/?CTT/CTT?times

In higher-order logic, the only way to introduce types is by using the typedef
construction, which constructs a new type that is isomorphic to a certain subtype
of an existing type. In particular, most HOL systems introduce the Cartesian
product A×B by using an appropriate unary predicate on A→ B → bool:
– http://github.com/jrh13/hol-light?pair/type?prod

– http://hol-theorem-prover.org/?pair/type?prod

– http://isabelle.in.tum.de/?HOL/Product?prod

In PVS, the product type constructor is part of the system itself:
– http://pvs.csl.sri.com/foundation?PVS?tuple_tp

In set theory, it is also possible to restrict dependent sum types to obtain the
Cartesian product. This is used in Isabelle/ZF. In Mizar the Cartesian product
is defined implicitly as a first order functor, which involves discharging the well-
definedness condition. Therefore, we give the URIs of both the definition and
the generated functor.
– http://isabelle.in.tum.de/?ZF/ZF?cart_prod

– http://mizar.org/library/?ZFMISC_1?K2

(defined by http://mizar.org/library/?ZFMISC_1?def_2)
Finally, Cartesian products appear in most programming languages and we

list here a number of constructions that can be aligned:
– http://caml.inria.fr/?core?*

– http://haskell.org/?core?,
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– http://scala-lang.org/?core?,

– http://cppreference.com/?std?pair

Informal sources that can be aligned are e.g.:
– https://en.wikipedia.org/wiki/Cartesian_product

– https://en.wikipedia.org/wiki/Product_type

– http://mathworld.wolfram.com/CartesianProduct.html

Addition In constructive type theory, addition of natural numbers is typically
defined as a fixed points of certain equations.
– http://coq.inria.fr/theories?Init/Nat?add

– http://matita.cs.unibo.it/?nat/plus?plus

Higher-order logic proof assistants usually use high-level constructions for
primitive recursion. Interestingly, here the alignment is very obvious at this
high-level even though the elaboration into core language features may result in
very different-looking, but logically equivalent definitions. This is how addition is
implemented in HOL Light and HOL4. Isabelle/HOL uses a similar construction
but inside a type class for commutative monoids with difference.
– http://github.com/jrh13/hol-light?arith/const?+

– http://hol-theorem-prover.org/?arithmetic/const?+

– http://isabelle.in.tum.de/?HOL/Nat?plus_nat_inst.plus_nat

In set theory, defining addition is surprisingly the least straightforward: In
Isabelle/ZF, addition uses the primrec construction together with a coercion
from non naturals to naturals. PVS defines a general addition on number fields,
which all the concrete number spaces (reals, integers, etc.) inherit. In Mizar,
it is the restriction of complex addition to natural numbers. Mizar’s complex
addition itself is built from the real number addition, which in turn is built from
positive real addition, rational addition, and ordinal addition. So in principle it
would be possible to align with Mizar’s ordinal addition.
– http://pvs.csl.sri.com/Prelude?number_fields?+

– http://isabelle.in.tum.de/?ZF/Arith?add

– http://mizar.org/library/?NAT_1?K2

Most programming languages do not implement arbitrary precision natural
numbers. However, it is possible to find partial mappings, which are in fact
already used by efficient code generation [HN10] for Isabelle/HOL natural num-
bers and the representation of Coq natural numbers by its extended bytecode
machine [AGST10].
– http://caml.inria.fr/?Big_Int?add_big_int

– http://haskell.org/?core?+

– http://www.smlnj.org/?IntInf?+

Concatenation of Lists In constructive type theory (e.g. for Matita, Coq), the
append operation on lists can again be defined as a fixed point. In higher-order
logic, append for polymorphic lists can be defined by primitive recursion, as done
by HOL Light and HOL4. Isabelle/HOL slightly differs from these two because
it uses lists that were built with the co-datatype package [B+14].
– http://coq.inria.fr/theories?Init/Datatypes?app
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– http://github.com/jrh13/hol-light?lists/const?APPEND

– http://hol-theorem-prover.org/?list/const?APPEND

– http://isabelle.in.tum.de/?HOL/List?append

In set theory, PVS and Isabelle/ZF also use primitive recursion for monomor-
phic lists. In Mizar, lists are represented by finite sequences, which are func-
tions from a finite subset of natural numbers (one-based FINSEQ and zero-based
XFINSEQ) with append provided.
– http://pvs.csl.sri.com/Prelude?list_props?append

– http://isabelle.in.tum.de/?ZF/List_ZF?app

– http://mizar.org/library/?ORDINAL4/K1

Concatenation of lists is also common in programming languages.
– http://caml.inria.fr/?core?@ http://haskell.org/?core?++

– http://scala-lang.org/?core?++

5 A Standard and Databse for Alignments

Based on the observations of the previous sections, we now define a standard for
alignments that covers the practically relevant examples. We use the following
formal grammar for collections of alignments:

Collection ::= (NSDef | Alignment | Comment)∗

NSDef ::= namespace String URI
Alignment ::= URI URI (String = ”String”)∗

Comment ::= // String

Here NSDef defines abbreviations for CURIEs (as defined by the W3C), which
allows shortening URIs with the same long namespaces. An alignment is just a
pair of URIs with a list of key-value pairs, which allows adding author/source,
certainty scores, translation instructions, etc.

We also standardize some special keys and possible values that are important
for practical applications. As a guiding criterion for defining these keys, we use
how and in which directions expressions with head s1 or s2 can be translated.

The simplest case is the following:

Definition 1. A simple alignment uses the key direction with the possible
values forward, backward, and both. It induces the translation that replaces
every occurrence of s1 with s2, or of s2 with s1 according to the value of the key.

This subsumes perfect alignments (where the direction is both) and several uni-
directional cases: alignment up to totality of functions or up to associativity, and
alignment for certain arguments. The absence of this key indicates alignments
where no translation is possible, in particular opaque alignments.

The following case covers alignments up to argument order or determined
arguments:

Definition 2. An argument alignment uses the key arguments whose value
A is of the form (i, j)∗ where i and j are natural numbers.
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It induces the translation of s1(x1, . . . , xm) to s2(y1, . . . , yn) where yj is the
recursive translation of xi if (i, j) is among the pairs in A and inferred from the
context if there is no i for which (i, j) is in A.

Example 1. We obtain the following argument alignments for some of the exam-
ples from Section 2:

Nat1 Nat2 direction = ”both”
eq1 eq2 arguments = ”(1, 2)(2, 3)”

contains1 in2 arguments = ”(1, 1)(2, 3)(3, 2)”

Fig. 1. The MMT Server Showing Formal and Informal Alignments

We have implemented alignments in the MMT system [Rab13]. Moreover,
we have created a public repository3 and seeded it with a number of alignments
including the ones mentioned in this paper. The MMT system can be used to
read and serve all these alignments, implement the transitive closure, and (if
possible) translate expressions according to alignments.

As an example service, we have added alignment support to the MMT web
browser: Figure 1 shows a screenshot from browsing the HOL Light library, in
particular a snapshot of the pairs module. The symbol prod is aligned with sev-
eral formal and informal sources, which can be shown and navigated to by right-
clicking the symbol in an expression (here in the type of the symbol ABS prod).

3 https://gl.mathhub.info/alignments/Public
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6 Conclusion

We have motivated and proposed a standard for aligning mathematical corpora.
We presented examples of alignments between logical, computational, and semi-
formal corpora and classified the different examples. The presented MMT-based
system for sharing such alignments has been preloaded with thousands of align-
ments between the various kinds of concepts, including proof assistant types and
constants, programming language (including computer algebra) algorithms, and
semi-formal descriptions.

Future work includes extending the automated discovery of alignments [GK14]
to foundations other than HOL. Our main focus was on the logical corpora, but
we expect to be able to find much more opaque alignments. We invite the com-
munity to use the service. Finally we plan to integrate the use of the alignments
database in the various mathematical knowledge management systems.
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