
intro.tex 783 2012-03-04 10:53:46Z kohlhase

MathWebSearch 0.5:
Scaling an Open Formula Search Engine

Michael Kohlhase and Corneliu C. Prodescu

Computer Science, Jacobs University Bremen
http://kwarc.info

Abstract. MathWebSearch is an open-source, open-format, content-
oriented search engine for mathematical formulae. MathWebSearch is
a complete system capable of crawling, indexing, and querying expres-
sions based on their functional structure (operator tree) rather than their
presentation.1 EdNote:1
In version 0.5, we concentrate on scalability issues in MathWebSearch
to take advantage of corpora in the giga-formula range. We re-implemented
the index to make it distributable and made all the APIs web standards
conformant. Our experiments show that this architecture results in a
scalable application.

1 Introduction

As the world of information technology grows, being able to quickly search data
of interest becomes one of the most important tasks in any kind of environ-
ment, be it academic or not. Here we tackle the problem of finding information
that is given in the form of (mathematical) formulae. Standard search engines
like Google cannot deal with formulae at all, severely limiting the reach and
utilization of technical, scientific, and engineering documents.

In this paper we present new work in the context of the MathWebSearch
system; a search engine that addresses the problem of searching mathematical
formulae from a semantic point of view, it finds formulae by their structure and
meaning not via their presentation.

In [KŞ06] we have presented the motivation, query language, and web front
end of MathWebSearch 0.1. In [KK07] we have re-examined the value propo-
sition of semantic search for mathematical knowledge homing in on the ben-
efits and sacrifices induced by the various search approaches [You06b; MM06;
LM06], from a user’s perspective. The result of this analysis is MathWeb-
Search 0.5, which we describe in this paper. The new version features significant
efficiency gains (space efficiency increased by a factor of five), new management
features, advanced searching capabilities, and a new user interface. The Math-
WebSearch system (see [MWS] for details) is released under the Gnu General
Public License.

The motivation for the work reported in this paper is the availability of
large1 corpora, such as the arXMLiv corpus [SK08] with almost three quar-

1 EdNote: Review2: MathWebSearch as start for the first two sentences
1 We deem a corpus as large if it has more than 20 million expressions

http://kwarc.info

querying.tex 804 2012-03-29 02:11:52Z cprodescu

ters of a million scientific articles and an estimated giga-formula. This has not
only re-kindled interest in formula search2, but also severely taxes the scala-
bility of systems. Scalability issues for presentation-based search engines have
been addressed in [SL11]. Such engines map formulae to “special words” which
can then be indexed by conventional bag-of-word information retrieval engines,
which have become extremely scalable over the last years. The case for Math-
WebSearch is completely different, since the content-based unification queries
it offers require an index data structure that reflects the inner structure of for-
mulae (rather than just pointers to words). Even with the space efficiency gains
in MathWebSearch 0.5, the indices will surpass the main memory of most
machines. Therefore, we have laid the foundations for distributing the Math-
WebSearch in this version.

Before we present MathWebSearch 0.5 from a technical perspective in
Section 3, we will recap unification-based querying. We evaluate the system on a
large corpus in Section 4 and see that we need to distribute MathWebSearch
to cope with linear RAM usage. Section 5 presents the necessary extensions of
the indexing. Section 6 concludes the paper and discusses future work.

2 Querying Mathematics by Unification

Retrieval of mathematical knowledge and information via unification-based queries
for content-encoded mathematical formulae is very natural. In [KŞ06] we have
already discussed instantiation queries, which can be used to retrieve par-
tially remembered formulae, e.g. the query for the formula for energy of a given
signal s(t) in Figure 1. Note that instantiation queries are more expressive as
a query language than e.g. regular expressions supported by some text-based
search engine, since we can use variable co-occurrences to query for co-occurring
subterms.

Query (query variables marked as named boxes) Result (Parseval’s Theorem)∫ max

min
f (x)2dx

1

T

∫ T

0

s2(t)dt =

∞∑
k=−∞

‖ck‖2

Fig. 1. An Instantiation Query

To see the full power of unification-based querying consider a student who
encounters

∫
R2 | sin(t) cos(t)|dt and wishes to know if there are any mathemati-

cal statements (like theorems, identities, inequalities) that can be applied to it.
Indeed, there are many such statements (for example Hölder’s inequality) and
they can be found using generalization queries. The idea behind answering
generalization queries is that the index marks universal3 variables in subterms

2 The next NTCIR-10 Challenge in spring 2013 will have a “math track”. NTCIR
evaluates information access technologies in a series of competition events in Japan

3 We consider an identifier as universal if it can be instantiated without changing the
truth value of the containing expression. In formal representations like first-order

2

system.tex 791 2012-03-05 05:24:38Z kohlhase

as generalization targets. Hence, the search engine looks for terms in the index
which, after instantiating the universal identifiers, become equal to the query. For
our example, we have in the index the term (we reuse the box notation for gen-
eralization targets in the index) in Figure 2, which the search engine instantiates

x 7→ t, f 7→ sin, g 7→ cos, D 7→ R2 in order to find the generalization query.

Note that the variant query
∫
R2 | sin(t) cos(2t)|dt will not find Hölder’s inequality

since that would introduce inconsistent substitutions x 7→ t and x 7→ 2t.

∫
D

∣∣∣ f (x) g (x)
∣∣∣ d x ≤ (∫

D

∣∣∣ f (x)
∣∣∣p d x

) 1

p

(∫
D

∣∣∣ g (x)
∣∣∣ q d x

) 1

q

Fig. 2. A Formula with Universal Variables in the Index

A very similar idea is used in variation queries where the indexed terms
are searched to match the search expression but only renamings of generic terms
are allowed. This type of queries prove to be helpful when the structure of the
term needs to be maintained.

Sometimes, however, one is in the position that the searching criteria is
somewhere between instantiation queries (i.e. parts are unknown) and gener-
alization queries (parts are probably instantiated already). In this case we give
the possibility to pose unification queries. As the name suggests, the query
just finds terms which are unifiable with the search expression. A query like

g2 cos(x) + b sin(
√
y) would match the term a cos(t) + b sin(t) as we can sub-

stitute x 7→ √y, t 7→ √y, a 7→ g2, b 7→ b to get the term g2 cos(
√
y)+b sin(

√
y).

3 The MathWebSearch System, Version 0.5

The MathWebSearch system consists of the three main components pictured
in Figure 3. The crawler subsystem collects data from the corpora4. It trans-
forms the mathematical formulae in the corpus into MWS Harvests (XML files
that contain formula-URIreference pairs) and feeds them into the core system.
The core system (the MathWebSearch daemon mwsd) builds the search index
and processes search queries: it accepts the MathWebSearch input formats
(MWS Harvest and MWS Query ; see [KohPro:MWSmanual]) and generates
the MathWebSearch output format (MWS Answer Set). These are communi-
cated through the RESTful interface restd which provides a public HTTP API
conforming to the REST paradigm.

logic, such variable occurrences can be effectively computed, but in semi-formal
settings like mathematical textbooks, they have to be approximated by heuristic
methods; see the discussion in the conclusion for details.

4 Note that we envision essentially one crawler per corpus. The crawlers are specialized
to the respective formula representation, the organization and access methods to the
corpus, etc. We have only implemented a crawler for the arXiv (see Section 4), but
additional crawlers can be patterned after this (see Section 6.1).

3

system.tex 791 2012-03-05 05:24:38Z kohlhase

Fig. 3. MWS-0.5 System Structure

These components have been implemented using POSIX-compliant [Pos]
C++. We use the MicroHTTPd library [Mic] API for handling HTTP, and
LibXML2 [Vei] API for XML parsing. The meta-data accompanying the internal
index is stored using an external database system. As we are dealing mainly with
key-value retrieval, the BerkeleyDB [Ber] API was preferred.

The system supports two main workflows:
1. The crawler sends an MWS Harvest to mwsd. The XML is parsed and an

internal representation is generated. This is used to update the Substitution
Indexing Tree and consequently the database.

2. The user sends an MWS Query to mwsd. The XML is parsed, an internal
query is generated. Using an efficient traversal of the index tree, formulas
matching the search term are retrieved and aggregated into a result. This is
translated to an MWS Answer Set and sent back to the user.

3.1 Substitution Tree Indexing in MathWebSearch

As we are interested in indexing mathematical formulae at a large scale (docu-
ment archives, text corpora), repetitive content is expected. After all, theorems
are built on top of other theorems and terms on top of subterms. With this in
mind, we chose a space-efficient internal representation based on substitutions.

In the previous version of MathWebSearch, we used a technique borrowed
from Automated Theorem Proving called Substitution Indexing [Gra96]. It in-
volves indexing expressions in a tree based on generality. The root is a generic
variable and, as we go from a node to one of its children, one or more substitu-
tions occur. For this version, we kept the substitution tree model and performed
a few changes to better fit our design goals.

@0

@1(@2)

f(@2)

b

f(a) f(b)

@1(@2) b

f

a b

Fig. 4. Example DFS Sub-
stitution Tree

As such, we improved query times, by impos-
ing a fixed substitution ordering. Hence, the query
term describes a deterministic path through the in-
dex. The chosen ordering instantiates the left-most
variable first, equivalent to DFS traversal of the op-
erator tree. An example index, containing the terms
f(a), f(b) and b, is presented in Figure 4. Note that
the edges in the tree are labeled with the operators

4

analysis.tex 804 2012-03-29 02:11:52Z cprodescu

and operations: @1(@2) stands for the application
operation.

Additionally, we save space by performing two
steps of pre-processing for inserted terms, as well as
query terms.

Firstly, we detect and reduce identical subterms. This is done by breaking
the term into all possible subterms and detect equivalent subterms. Following
this, the term is rewritten using only unique subterms (repeated matches are
replaced through references to the first match in DFS order). For example the
term f(a, g(b), g(b)) can be rewritten to f(a, g(b),@[4]), where @[4] represents
the 4th term in DFS order: the subterms in DFS order are: f(a, g(b),@[4]), f , a,
g(b), g, b.

Furthermore, query terms with repeating identical query variables are re-
duced and handled as query terms with no repeating query variables. More
importantly, this makes the search process stateless, as no previously matched
query variable instantiations need to be stored.

Secondly, we hold an internal dictionary which maps symbols (in Content-
MathML, represented by element name, attributes and text content) to integer
IDs. The encoding relies on the fact that there are relatively few distinct tokens
(compared to the number of expressions, for example). This achieves significant
memory savings at a small price, since each (inserted or query) term is encoded
exactly once.

3.2 Search Frontends and Embeddings

For practical applications, mwsd serves as a search back-end that needs to be em-
bedded into a front-end system, which hides some of the complexities of writing
MathWebSearch queries from the user. One example of a front-end system
we are experimenting with is given in Figure 55 Here the user can enter queries
in the LATEX extended with the \qvar macro for query variables. This is then
transformed into the content-MathML-based MathWebSearch queries by the
LATEXML daemon [GSK11] (the formula is also presented to the user with the
query variables colored red). Upon receiving the resulting URIs, the frontend
assembles a list of formulae and paper titles which link to the original paper.
In this situation we are making use of the fact that TEX/LATEX is a lingua
franca for technical communication in the Mathematics community. For other
communities, leveraging the MS Office equation editors might be an attractive
option. For active document settings (e.g. in semantic publishing systems like
Planetary [Koh+11]), formulae might be instrumented with a “search similar for-
mulae” interaction. The same holds for integrated semantic development system
such as Mathematica.

5 The demo is temporarily available at http://arxivdemo.mathweb.org/index.php?

p=/article/MWS; we will provide a more permanent location for the final version of
the paper.

5

http://arxivdemo.mathweb.org/index.php?p=/article/MWS
http://arxivdemo.mathweb.org/index.php?p=/article/MWS

analysis.tex 804 2012-03-29 02:11:52Z cprodescu

Fig. 5. MWS-0.5 arXivDemo Search Interface

4 Evaluation

We evaluate the MathWebSearch implementation on a large corpus of math-
ematical formulae:

The arXMLiv Corpus Our group is working on the translation of the almost
750.000 TEX/LATEX articles on Physics, Mathematics, and Computer Science in
the Cornell ePrint archive (see http://www.arXiv.org) to MathML [SK08].
The arXMLiv corpus is the result of translating ∼72% of the arXiv papers.
For our evaluation we have harvested ca 65% (the fragment that have been con-
verted without errors), resulting in a total of 115 million expressions. A trivial
estimation suggests that the full arXMLiv corpus would contain approx. 245 mil-
lion formulae. To harvest these, the arXMLiv crawler goes recursively through
the pages of [arXMLiv] extracting the content MathML6 elements, combines
them with URI references, and reports them to MathWebSearch. We will
now report on a performance analysis for MathWebSearch parametrized on
harvest size (see Figure 6). As our index also indexes subformulae, we include
them in the harvest size. Note that in the arXMLiv corpus a formula has 5.6
proper subformulae on average7 so we estimate the number of indexable formula

6 The result of the transformation contains both Content and Presentation MathML
representations in parallel markup.

7 This rather low number comes from the fact that roughly 2/3 of the formulae in
the arXMLiv corpus consist of only one letter; these are largely irrelevant for search
purposes.

6

http://www.arXiv.org

analysis.tex 804 2012-03-29 02:11:52Z cprodescu

occurrences in the arXiv corpus to be 6.6 × 245 × 108 or 1.6 billion. Note that
many of these formulae will actually be identical, leading to space savings in the
index: recall that the URIs of the subformula occurrences are stored in a data
base indexed by the leaves of the index (see Figure 3). Thus the index grows
with the formula, whereas the database grows with the formula occurrences.

(a) Query Times (b) Memory Usage

Fig. 6. Experimental Performance Analysis

2 EdNote:2

Average query times We’ll start with the time efficiency aspect, as this is highly
relevant for a search system. The average query times 8 are presented in Fig-
ure 6(a). This experiment involves measuring several query response times. A
standard query has answsize = 30 and limitmin < 9000. Response times are mea-
sured for standard queries (fresh and cached) from 0 up to 5 qvars. Additionally,
stress queries with answsize = 10000 are used.

As one can see, the query response times are fairly constant as the harvest
data increases. This fits with the theory, as the querying process will follow the
same paths in the index (because the query data remains constant). The small
increase is due to the slightly higher density of the index tree (which affects
retrieval of the right path).

The gap between the fresh and cached stress queries is expected, due to the
fact that the current bottleneck is retrieving the meta-data from the external
database. Hence, caching significantly improves the results.

In comparison to MathWebSearch 0.1 [KŞ06], which reported query times
below 50 ms for simple queries and 200 ms for stress queries on a harvest size of
1.6 million, we see that the query times have not increased (even after normal-
ization for hardware effects).

Memory usage The graph in Figure 6(b) presents the memory footprint of the
mwsd process, as the system indexed 11.5 million expressions (67 million includ-

2 EdNote: Review2:Figures 5, 6a, 6b: too small
8 Note that the queries were sent from the local network, to eliminate any channel

delays

7

distributed.tex 804 2012-03-29 02:11:52Z cprodescu

ing subterms) harvested from the arXMLiv corpus. In comparison to Math-
WebSearch 0.1, which reported a memory footprint of 770 MB for a harvest
size of 1.6 million, we see a space efficiency improvement by a factor of five. Con-
trary to our expectations of logarithmic increase, we see a fairly linear graph;
the fact that the gradient became steeper after ∼33 million expressions is par-
ticularly unexpected. We are still investigating this.

Nevertheless, the experimental results are valuable to estimate the memory
necessary to index the entire arXiv corpus. Assuming linear scaling across the
245 million formulae estimated for the arXiv, the memory necessary to index all
the formulae would be 245 × 8/11.5 ≈ 170Gb according to our experiment. As
this transcends the RAM of most machines, we have extended mwsd so that it
can be distributed: a reasonable size computer cluster could easily accommodate
the entire arXMLiv corpus and thus provide content-based formula search for
arXiv.org.

5 Distributing MathWebSearch

We are currently implementing a distributed version of MathWebSearch. The
core components like the RESTful interface, the data formats, and the indexing
data structures remain the main building blocks, but we implement data per-
sistency, distribution and migration on top of these. We will now present the
extended index structure and data migration.

5.1 A Distributable Substitution Tree

As presented in Section 3, the main indexing data structure is a DFS substitution
tree. To represent the tree in a manner which supports cross-machine links, we
use three types of index nodes:

Internal Index Nodes They are used to navigate through most parts of the
tree. Their data stores mappings from token ID to the corresponding index
node.

Leaf Index Nodes They represent the end of a particular formula and its cor-
responding ID in the URL+URI database.

Remote Index Nodes They represent cross-sector links. Their data consists
of a pair of memory sector ID and node ID, which uniquely determine the
corresponding index node.

As harvests are fed into the system, the index is built. Notice that, instead
of building it on the heap (with no control over individual node’s memory loca-
tions), the system places it inside specific memory sectors.

Memory sectors are continuous areas of memory of fixed sizes9, usually rep-
resented as memory mapped files. They are the smallest units of replication,

9 The exact size depends on the RAM sizes of the nodes where the system will run,
typical values ranging between 128Mb and 2048Mb.

8

arXiv.org

distributed.tex 804 2012-03-29 02:11:52Z cprodescu

migration, and load balancing. When the system starts, an initial memory sec-
tor is created and the tree is built in this area. As terms get inserted, the sector
fills. When it reaches a given threshold, a new sector is created and the contents
of the original sector get split between the two.

Memory Sector 1 [9/12]

@0

@1(@2)

f(@2)

b

f(a)

@1(@2) b

a

f

(a) Initial Index Tree

Memory Sector 1 [10/12]

@0

@1(@2)

f(@2) g(@2)

b

f(a)

@1(@2) b

a

f g

Memory Sector 2 [7/12]

g(@2)

g(@3(@4))

g(f(@4))

g(f(x))

@3(@4)

f

x

(b) Distributed Index Tree

Fig. 7. Tree Distribution across Memory Sectors

In Figure 7, we present an example of term insertion which causes a tree
split. Consider the initial tree containing the expressions f(a) and b and Memory
Sectors of size 12 units, as depicted in Figure 7(a). We consider a memory model
where each link and each node costs 1 unit. Let’s insert g(f(x)). As the resulting
tree would overflow the current memory sector, a new one is created and parts
of the tree are migrated to the new memory sector (See Figure 7(b)). To split
the tree, the system performs a DFS traversal, as long as the size needed to store
the explored and queued nodes does not exceed a given threshold (in our case,
10). Once a node expansion would go over it, all the internal nodes in the queue
are transformed into remote nodes and the rest is moved to the other memory
sector.

5.2 Distribution of Indexing and Querying

The advantage of the new data structures is that indexes can be distributed
over multiple computers: when the memory usage on one machine goes above
a specific threshold, a percentage of the memory sectors are migrated to other
machines. As the tree uses only relative pointers and the sectors are represented
as memory mapped files, it is enough to flush the memory sector to the file,
send it across the network, and re-map it into the new system’s memory (of
course, we assume endian-compatible machines). All operations on memory sec-
tors (splits, migrations) are coordinated by a master node, which keeps track of
their locations, as well as cross-sector links.

9

concl.tex 804 2012-03-29 02:11:52Z cprodescu

Fig. 8. Structure of a Distributed Index

3 This process will result in a mem-EdNote:3
ory organization as pictured in Figure 8
on the right. Note that this scheme tries
to keep the “spine” of the index on the
master node. As queries will normally
only request an initial segment of results,
this will minimize cross-sector and cross-
machine query continuations.

For a distributed instance of Math-
WebSearch we have the following
setup: All nodes in the network of
MathWebSearch machines run mwsd
(with the index and the URI database).
MathWebSearch has only one restd, which resides on the master node. Upon
receiving Q restd passes it to mwsd on the master node, which start DFS search
on its substitution tree index fragment. Whenever mwsd hits a remote index
node whose target sector is on a different machine, it forwards the respective
subquery Q′ to the mwsd on the remote machine, while continuing processing
on the current machine.

In result-unlimited queries, the master mwsd will just wait for the slave mwsd
to return the results and aggregate that with its own result set. In result-limited
cases, some of the slave’s results may be irrelevant, since the result limit has
already been reached. The tradeoffs and efficiency issues involved in such effects
will still need to be investigated. Similarly, the top of the index tree (which
resides on the master node) will receive much higher processing loads, possibly
becoming a bottleneck to the overall system; we will investigate strategies for
replication of that.

6 Conclusion and Future Work

We have presented a scalable extension of a search engine for mathematical for-
mulae. In contrast to other approaches, MathWebSearch uses the full content
structure of formulae and is easily extensible to other content-oriented formats.
Our first evaluation shows that query times are low and essentially constant
in index/harvest size, so that a search engine can scale up to web proportions.
Contrary to our expectations, index size is linear in harvest size for the arXiv
corpus, which transcends the main memory limits of standard servers. There-
fore, developing parallelization/distribution strategies is a priority. This paper
reports the the establishment of the core distribution algorithms and function-
ality; exploring the distribution, management, and load balancing is beyond the
scope of this paper. We conclude the paper with a tabulation of open research
areas for information retrieval in mathematical/technical documents.

3 EdNote: New figure

10

concl.tex 804 2012-03-29 02:11:52Z cprodescu

6.1 Additional Corpora

The arXiv corpus we are currently using for benchmarking is paradigmatic for
the “informal but rigorous mathematics” that dominates mathematical commu-
nication today. Here, the Content MathML has to be heuristically reconstructed
from the presentation in the sources. This is unnecessary for corpora of formal-
ized mathematics, e.g. the Mizar Mathematical Library [Miz] with over 50 000
formal theorems. The problems of obtaining the content MathML are different
here: Even though the representations are formal in principle, the surface lan-
guages are human-oriented, and fully explicit representations need reconstruc-
tion processes (e.g. for reconstructing elided types and arguments, resolution
of operator overloading, etc.). We are currently working on Content MathML
exporters for the Mizar Library and the TPTP (Thousands of Problems for
Theorem Proving) library [SS]. Other future targets could be the input files of
mathematical software systems e.g. computer algebra systems like Mathematica,
numerical computation systems like MatLab, or statistics programs like the R
system [Tee11].

6.2 Extending the Indexing

A current weakness of the system is the fact that it can only search for formu-
lae that match the query terms up to α-equivalence. Many applications would
for instance benefit from stronger equalities. Our search in the running exam-
ple might be used to find a useful identity for

∫∞
0
f(x) · g(x)dx, if we know that

s(x)·s(x) = s2(x). MathWebSearch can be extended to an E-Retrieval engine
(i.e., search modulo an equational theory E or logical equivalence) without com-
promising efficiency by simply E-normalizing index and query terms (see [NK07]
for a first implementation).

In the long run, we plan to extend MathWebSearch, so that it can take
more document context information into account, i.e., not just keywords from
the text around the formulae but e.g. the topology of theories in the OMDoc
format: It would be very useful, if we could restrict searches to formulae that
are consistent with current (mathematical) assumptions.

6.3 Result Ranking

Advances in ranking have made word-based search engines scalable from a user
point of view. For formula search engines ranking is an open research question,
there is only one paper that covers this in a more presentation-search oriented
setting [You06a]. To solve the problem, we have to consider the following aspects:
– What is a good measure for relevance in theory (pagerank only applies to

pages)?
– How can be compute this efficiently.
– Can we organize the index, so that it finds the most relevant hits (as esti-

mated by this measure) first?
– Is a single measure enough?

11

concl.tex 804 2012-03-29 02:11:52Z cprodescu

We plan to look at the following simple measures as starting points:
– pagerank by citations over the papers
– the size (whatever that means) of the substitutions (small might be beautiful)
– similarly, the size of the formulae
– popularity of the papers (by download)

Finally, we would like to allow specification of content queries using more widely
known formats, like LATEX: strings like \frac{1}{x^2} or 1/x^2 could be pro-
cessed as well. This can be reached by applying an extension (by query variables)
of the LATEX to XML transformation used on the arXiv to process queries. The
new LATEXML daemon [GSK11] allows integrating this efficiently.

6.4 Advanced Search Services

Another important application of the unification search in MathWebSearch
is applicable theorem search (like our example with Hölder’s inequality in Sec-
tion 2). The MathWebSearch system already supports the necessary queries
(unification), but the arXiv corpus we are currently using does not have the nec-
essary degree of formalization (explicitly marked up universal quantifications).
We plan to utilize (possibly shallow) linguistic technologies to reliably analyze
phrases like “Let f and g be functions from R to R. . . ” that mark the identifiers
f and g as universal and to retrieve the associated sortal restrictions. Note that
the linguistic capabilities of the variable spotter have to be considerable to de-
tect the difference between “. . . where c is a natural number” and “. . . where x
is the number between 1 and n, such that. . . ” (only is c universal) or to detect
that universals in a negative scope are indeed existential.

References

[arXMLiv] arXMLiv Build System. url: http://arxmliv.kwarc.info (vis-
ited on 05/15/2010).

[Ber] Berkeley DB. url: http://www.oracle.com/technology/products/
berkeley-db/index.html (visited on 03/03/2010).

[BF06] Jon Borwein and William M. Farmer, eds. Mathematical Knowledge
Management (MKM). LNAI 4108. Springer Verlag, 2006.

[Dav+11] James Davenport et al., eds. Intelligent Computer Mathematics.
LNAI 6824. Springer Verlag, 2011. isbn: 978-3-642-22672-4.

[Gra96] Peter Graf. Term Indexing. LNCS 1053. Springer Verlag, 1996.
[GSK11] Deyan Ginev, Heinrich Stamerjohanns, and Michael Kohlhase. “The

LATEXML Daemon: Editable Math on the Collaborative Web”. In:
Intelligent Computer Mathematics. Ed. by James Davenport et al.
LNAI 6824. Springer Verlag, 2011, pp. 292–294. isbn: 978-3-642-
22672-4. url: https://svn.kwarc.info/repos/arXMLiv/doc/
cicm-systems11/paper.pdf.

[Kau+07] Manuel Kauers et al., eds. MKM/Calculemus. LNAI 4573. Springer
Verlag, 2007. isbn: 978-3-540-73083-5.

12

http://arxmliv.kwarc.info
http://www.oracle.com/technology/products/berkeley-db/index.html
http://www.oracle.com/technology/products/berkeley-db/index.html
https://svn.kwarc.info/repos/arXMLiv/doc/cicm-systems11/paper.pdf
https://svn.kwarc.info/repos/arXMLiv/doc/cicm-systems11/paper.pdf

concl.tex 804 2012-03-29 02:11:52Z cprodescu

[KK07] Andrea Kohlhase and Michael Kohlhase. “Reexamining the MKM
Value Proposition: From Math Web Search to Math Web ReSearch”.
In: Towards Mechanized Mathematical Assistants. MKM/Calcule-
mus. Ed. by Manuel Kauers et al. LNAI 4573. Springer Verlag, 2007,
pp. 266–279. isbn: 978-3-540-73083-5. url: http://mathweb.org/
projects/mws/pubs/mkm07.pdf.

[Koh+11] Michael Kohlhase et al. “The Planetary System: Web 3.0 & Active
Documents for STEM”. In: Procedia Computer Science 4 (2011):
Special issue: Proceedings of the International Conference on Com-
putational Science (ICCS). Ed. by Mitsuhisa Sato et al. Finalist at
the Executable Papers Challenge, pp. 598–607. doi: 10.1016/j.
procs.2011.04.063. url: https://svn.mathweb.org/repos/
planetary/doc/epc11/paper.pdf.

[KŞ06] Michael Kohlhase and Ioan Şucan. “A Search Engine for Mathemat-
ical Formulae”. In: Proceedings of Artificial Intelligence and Sym-
bolic Computation, AISC’2006. Ed. by Tetsuo Ida, Jacques Calmet,
and Dongming Wang. LNAI 4120. Springer Verlag, 2006, pp. 241–
253. url: http://kwarc.info/kohlhase/papers/aisc06.pdf.

[LM06] Paul Libbrecht and Erica Melis. “Methods for Access and Retrieval
of Mathematical Content in ActiveMath”. In: Proceedings of ICMS-
2006. Ed. by N. Takayama and A. Iglesias. LNAI 4151. Springer
Verlag, 2006, pp. 331–342. url: http://www.activemath.org/
publications/Libbrecht-Melis-Access-and-Retrieval-ActiveMath-

ICMS-2006.pdf.
[Mic] GNU MicroHTTPd Library. seen Jul 2011. url: http://www.gnu.

org/software/libmicrohttpd/ (visited on 07/11/2011).
[Miz] Mizar Mathematical Library. url: http://www.mizar.org/library

(visited on 12/02/2009).
[MM06] Rajesh Munavalli and Robert Miner. “MathFind: a math-aware

search engine”. In: SIGIR ’06: Proceedings of the 29th annual inter-
national ACM SIGIR conference on Research and development in
information retrieval. Seattle, Washington, USA: ACM Press, 2006,
pp. 735–735. isbn: 1-59593-369-7. doi: http://doi.acm.org/10.
1145/1148170.1148348.

[MWS] Math Web Search. https://trac.mathweb.org/MWS/. seen Jan.
2011. url: https://trac.mathweb.org/MWS/.

[NK07] Immanuel Normann and Michael Kohlhase. “Extended Formula
Normalization for ε-Retrieval and Sharing of Mathematical Knowl-
edge”. In: Towards Mechanized Mathematical Assistants. MKM/-
Calculemus. Ed. by Manuel Kauers et al. LNAI 4573. Springer Ver-
lag, 2007, pp. 266–279. isbn: 978-3-540-73083-5.

[Pos] IEEE POSIX. ISO/IEC 9945. 1988.
[SK08] Heinrich Stamerjohanns and Michael Kohlhase. “Transforming the

arXiv to XML”. In: Intelligent Computer Mathematics. 9th Interna-
tional Conference, AISC, 15th Symposium, Calculemus, 7th Interna-
tional Conference MKM (Birmingham, UK, July 28–Aug. 1, 2008).

13

http://mathweb.org/projects/mws/pubs/mkm07.pdf
http://mathweb.org/projects/mws/pubs/mkm07.pdf
http://dx.doi.org/10.1016/j.procs.2011.04.063
http://dx.doi.org/10.1016/j.procs.2011.04.063
https://svn.mathweb.org/repos/planetary/doc/epc11/paper.pdf
https://svn.mathweb.org/repos/planetary/doc/epc11/paper.pdf
http://kwarc.info/kohlhase/papers/aisc06.pdf
http://www.activemath.org/publications/Libbrecht-Melis-Access-and-Retrieval-ActiveMath-ICMS-2006.pdf
http://www.activemath.org/publications/Libbrecht-Melis-Access-and-Retrieval-ActiveMath-ICMS-2006.pdf
http://www.activemath.org/publications/Libbrecht-Melis-Access-and-Retrieval-ActiveMath-ICMS-2006.pdf
http://www.gnu.org/software/libmicrohttpd/
http://www.gnu.org/software/libmicrohttpd/
http://www.mizar.org/library
http://dx.doi.org/http://doi.acm.org/10.1145/1148170.1148348
http://dx.doi.org/http://doi.acm.org/10.1145/1148170.1148348
https://trac.mathweb.org/MWS/
https://trac.mathweb.org/MWS/

concl.tex 804 2012-03-29 02:11:52Z cprodescu

Ed. by Serge Autexier et al. LNAI 5144. Springer Verlag, 2008,
pp. 574–582. url: http://kwarc.info/kohlhase/papers/mkm08-
arXMLiv.pdf.

[SL11] Petr Sojka and Martin Ĺı̌ska. “Indexing and Searching Mathematics
in Digital Libraries – Architecture, Design and Scalability Issues.”
In: Intelligent Computer Mathematics. Ed. by James Davenport et
al. LNAI 6824. Springer Verlag, 2011, pp. 228–243. isbn: 978-3-642-
22672-4.

[SS] Geoff Sutcliffe and Christian Sutner. The TPTP Problem Library
for Automated Theorem Proving. url: http : / / www . tptp . org

(visited on 12/20/2011).
[Tee11] Paul Teetor. R Cookbook. second. ISBN: 978-3486705171. O’Reilly,

2011. url: http://oreilly.com/catalog/9780596809157.
[Vei] Daniel Veillard. The XML C parser and toolkit of Gnome; libxml.

url: http://xmlsoft.org (visited on 07/11/2011).
[You06a] Abdou Youssef. “Methods of Relevance Ranking and Hit-content

Generation in Math Search”. In: Mathematical Knowledge Manage-
ment (MKM). Ed. by Jon Borwein and William M. Farmer. LNAI
4108. Springer Verlag, 2006, pp. 393–406.

[You06b] Abdou Youssef. “Roles of Math Search in Mathematics”. In: Math-
ematical Knowledge Management (MKM). Ed. by Jon Borwein and
William M. Farmer. LNAI 4108. Springer Verlag, 2006, pp. 2–16.

14

http://kwarc.info/kohlhase/papers/mkm08-arXMLiv.pdf
http://kwarc.info/kohlhase/papers/mkm08-arXMLiv.pdf
http://www.tptp.org
http://oreilly.com/catalog/9780596809157
http://xmlsoft.org

	MathWebSearch 0.5:Scaling an Open Formula Search Engine

