
RECHERCHE

Higher–Order Colored Unification:
A Linguistic Application

Claire Gardent† Michael Kohlhase‡ Karsten Konrad‡

†Department of Computational Linguistics
‡Department of Computer Science

Universität des Saarlandes
D–66041 Saarbrücken, Germany

RÉSUMÉ. Au cours de la dernière décennie, l’Unification d’Ordre Supérieur (UOS) est devenue
un outil privilégié pour construire la représentation sémantique des expressions de la langue
naturelle. Pourtant, elle présente un problème de taille: elle sur-génère, c’est-à-dire qu’elle pro-
duit des solutions qui, quoique valides au plan mathématique, sont incorrectes d’un point de vue
linguistique car elles ne représentent pas une interprétation possible de l’expression analysée.
Dans cet article, nous montrons que l’unification colorée d’ordre supérieur (UCOS) permet de
remédier à ce problème et nous présentons les aspects linguistiques, logiques et informatiques
d’un système de construction sémantique pour la langue naturelle basé sur l’UCOS.

ABSTRACT. During the last decade, Higher-Order unification (HOU) has become a popular
tool for constructing the semantic representation of natural language expressions. But there is
a well-known problem with this approach: it over-generates that is, it produces solutions which
although they are mathematically valid, are linguistically incorrect because they do not represent
possible meanings of the expression being analysed. In this paper, we argue that Higher-Order
Colored Unification (HOCU) can help prevent over-generation and we describe the linguistic,
logical and computational aspects of an HOCU–based approach to semantic construction.

MOTS-CLÉS: Unification d’ordre supérieur, Structures de traits, Sémantique de la langue na-
turelle

KEY WORDS: Higher-Order Unification, Feature Trees, Natural Language Semantics

1 Introduction
In the field of inductive theorem proving, there is a technique for guiding induction
proof search which is known as term coloring [HUT 97b, HUT 99] and uses a mod-
ified version of higher-order unification (HOU), namely Higher-Order Colored Unifi-
cation (HOCU). Crucially, coloring allows one to add arbitrary information to term
occurrences, and to maintain and exploit this information during the inference process
(this differentiates coloring from such semantic annotation techniques as sorts which
maintain attributes of symbols but not attributes of symbol occurrences). In this paper,

1



we argue that this property makes the HOCU framework a more appropriate basis for
natural language semantics than simple Higher-Order Unification (HOU).

HOU has become increasingly popular in computational linguistics as a tool for
constructing the semantic representation of constructs such as ellipsis (the ommission
of semantically redundant material), focus (the salient accentuation of part of an ut-
terance) and deaccenting (the prosodic reduction of semantically redundant material).
This is because HOU provides a well-defined means of producing functions (the solu-
tions to an HOU problem are substitutions which assign λ-terms and typically functions
and predicates to free variables) and because such functions are necessary for interpret-
ing the above mentioned constructs. In sentence (1) for instance, the meaning of the
elliptical verb phrase (VP) does is the property of “liking mary”, a meaning which in
the long standing tradition of Montague Grammar (the theory which underlies the con-
temporary semantic theories of natural language) can be modeled as a function from
individuals to truth values or equivalently as the λ-abstraction λX.like(X,m).

(1) Jon likes Mary and Peter does too

However, this meaning is not given by the VP-ellipsis (the omission of a seman-
tically redundant VP, henceforth VPE) does itself. Rather it must be recovered from
the present context in this case, the preceding sentence Jon likes Mary. The underlying
motivation for using HOU to model the interpretation of such cases is the following in-
sight: given the appropriate semantic representation and the adequate equations, HOU
will yield the “missing” meaning of the VPE – namely the function λZ.like(Z,m)
– and will do so on the basis of a well-defined computational procedure. Hence the
interest for computational linguists.

Unfortunately the fit between HOU and linguistic analysis is not a perfect one and
given a linguistic problem, HOU will systematically over-generate. That is, it pro-
duces solutions which although they are mathematically valid, are linguistically incor-
rect. The reason for this is that HOU operates on semantic representations whereas in
general, the semantic construction process (i.e., the process of constructing semantic
representations for natural language expressions) is subject to constraints stemming
from sources of linguistic knowledge other than semantics1. Semantic construction
can for instance be constrained by syntactic, by prosodic or by pragmatic information.
More specifically, there are two unsolved problems with using HOU as a tool for do-
ing semantic construction. First, distinct occurrences of the same term might have to
be treated differently. Failure to do so leads to over-generation. Second, linguistic
constraints on semantic construction might stem from very distinct (but interacting)
modules. This in turn suggests a modular treatment of the interaction between the dif-
ferent linguistic components. The goal of this paper is to show that HOCU solves the
over-generation problem encountered by HOU analyses of natural language semantics
in that it enables a correct modeling of the interacting constraints placed by the various
linguistic modules on semantic construction.

1Linguistic theory usually distinguishes between several sources of linguistic knowledge or modules e.g.,
the syntactic module which encompasses knowledge about the structure of linguistic constituents (usually in
the guise of rewrite rules), the prosodic module which contains knowledge about intonation and accentuation
or the semantic module in which knowledge about meaning is stored. The pragmatic module pertains to al-
most everything else e.g., user modeling, world knowledge, the effect of discourse structure on interpretation
and the import of communication principles on meaning.

2



The paper is structured as follows. Section 2 starts by showing how the typed
λ-calculus and Higher-Order Unification are used in natural language theory. It then
discusses in more detail why HOU approaches to natural language semantics over-
generate. Section 3 provides a partial answer to this problem and shows how (atomic)
colors permit the necessary distinction between different occurrences of the same term.
Section 4 generalizes the approach to capture the interaction of independent constraints
and their effect on semantic construction. The proposal is to have colors as feature trees
rather than atoms, the underlying intuition being that feature structures provide a natu-
ral way of dynamically creating complex constraints out of simple ones. In section 5,
we present the HOCU algorithm first from a logical and second, from a computational
perspective. Section 6 presents an implemented system which uses both HOU and
HOCU to do semantic construction for natural language and describes the coverage of
the approach. Section 7 concludes with links to other usages of HOCU and identifies
topics for further research.

2 Natural language semantics
Language communicates meaning and at the very least, a theory of natural language
semantics should provide a means to systematically associate meaning not only with
simple but also with complex expressions of natural language. Another way to put it
is that a semantic theory should tell us how the meaning of a complex expression can
be derived from the meaning of its parts. This is the question Montague [MON 74] ad-
dressed and for which he proposed to use the simply typed λ-calculus. The idea is that
each natural language expression is associated with some model theoretic object which
can be represented by a λ-term. The rules of natural language syntax are then coupled
with semantic rules which say how the semantics of the sub-constituents described by
this rule combine to yield the semantics of its resulting constituent. A short example
will illustrate this. Suppose the sentence whose meaning we want to determine is:

(2) Jon loves Mary

The lexicon of a Montague-type grammar will associate with each word in this sentence
the following meanings and syntactic categories:

Jon λP.P (j) NP
love λO.λZ.O(λW.love(Z,W )) V
Mary λP.P (m) NP

The syntactic and semantic rules will be:

rule 1 S→ NP, VP
S’= NP’(VP’)

rule 2 VP→ V, NP
VP’= V’(NP’)

where S, NP, VP and V stand for the syntactic categories: sentence, noun phrase, verb
phrase and verb respectively and the prime indicates meanings (so for instance S’ is the
meaning of S). Under this approach, the syntactic and semantic analysis of the sentence
in (2) is represented by the following tree:

3



S
love(j,m)

NP
λP.P (j)

VP
λZ.love(Z,m)

V
λOλZ.O(λW.love(Z,W ))

NP
λP.P (m)

In short, Montague’s approach gives us a systematic tool for assigning meanings
to natural language expressions, a tool which is based on the use of the simply typed
λ-calculus as a semantic representation language.

More recently, another tool has become increasingly standard in natural language
semantics namely, Higher-Order Unification (HOU).

[DAL 91] shows that it allows a treatment of VP–Ellipsis (the omission of a verb
phrase) which successfully captures the interaction of VP-ellipsis with quantification
(the use of quantifying noun phrases e.g., every man, no woman) and nominal anaphora
(phonologically non-empty elements such as he whose meaning is given by the linguis-
tic or situational context). For instance, they show that HOU permits reconstructing the
meaning of the missing VP in the second clause of (3a); that it correctly predicts the
ambiguity of (3b) where due to the presence of a pronoun (his) in the first clause and
assuming that his refers to Jon, the second clause can be interpreted either as Peter likes
Jon’s cat or as Peter likes Peter’s cat; and that it captures the fact that although the first
clause of (3c) does contain a pronoun, the presence of the quantifier every boy results
in (3c) having one rather than the expected two readings.

(3) a. Jon likes mary and Peter does too.
b. Jon likes his cat and Peter does too.
c. Every boy likes his cat. Peter does for instance.

[PUL 97, GAR 96a] use HOU to model the interpretation of focus (i.e., prosodic
prominence) and its interaction with various linguistic constructs. Consider for instance
the examples in (4) where upper letters indicate prosodic prominence.

(4) a. Jon only introduced MARY to Sue
b. Jon did not introduce MARY to Sue
c. Jon always introduces MARY to Sue

In each case, moving the focus from Mary to Sue induces a change in meaning.
For instance, (4a) means that the only x such that Jon introduced x to Sue is Mary.
By contrast, if the focus were on Sue, (4a) would mean that the only x such that Jon
introduced Mary to x is Sue. To account for this effect of focus on meaning, linguists
have developed theories which have in common that they require a function to be built
which denotes that part of the utterance which is not in focus (e.g., in (4a) above, the
function of Jon introducing x to Sue). [PUL 97, GAR 96a] show that HOU provides an

4



appropriate tool for computing that function and hence a good basis for a computational
treatment of focus.

[GAR 96c, GAR 97, ?] show that [DAL 91]’s treatment of ellipsis can be gener-
alised to apply to deaccenting and correctly predicts a number of phenomena resulting
from the interaction of parallelism (the structural similarity of two semantic represen-
tations), anaphora and deaccenting.

Finally, [PIN 96] uses HOU to resolve (i.e. fully specify) under-specified semantic
representations. The idea is to assign ambiguous sentences an under-specified semantic
representation containing free variables. The value of these free variables is then de-
termined by solving equations using HOU. Typically, HOU will yield several solutions
thus capturing the fact that the under-specified semantic representation actually stands
for several fully specified ones.

Although HOU has been put to many different uses, the idea underlying the HOU–
approach to semantic construction is invariant and can be summarised as follows.

First, a semantic representation is built which contains one or more free variable(s).
For instance, a VP-ellipsis will be represented by a free variable of type e → t where
e is the type associated with individuals and t is the type of truth-values (in the simply
typed λ-calculus, predicates are usually represented by functions of type e→ t). Given
(5a), this induces a semantic representation as in (5b) where R is the free variable
representing the VP-ellipsis does.

(5) a. Jon likes Mary and Peter does too.
b. like(j,m) ∧ R(p)

Second, equations are systematically set up which define the value of these free
variables. For instance in [GAR 96c, GAR 97, ?], the proposal is that the interpre-
tation of elliptical sentences such as (5) is subject to a semantic constraint (the par-
allelism constraint) which in essence requires that elliptical and deaccented clauses
share a common semantics with the preceding clause. It is assumed that contrastive
elements are given (contrastive elements are structurally parallel elements which are
semantically conflicting. For instance, in (5) above, Jon is contrastive to Peter).

Parallelism constraint
Let 〈S, T 〉 be a pair of semantic representations such that S is the seman-
tic representation of the source (i.e., first) utterance and T that of an el-
liptical or deaccentuated utterance, the target (i.e., second) utterance. Let
S1, . . . , Sn, T1, . . . , Tn be the semantic representations of the source and
target contrastive elements respectively; and let C be a free variable of the
appropriate type. Then S and T must obey the following constraint:

C(S1, . . . , Sn) = S
C(T1, . . . , Tn) = T

Under this proposal, the equations which determine the value of R in (5b) are:

(6) C(j) = l(j,m) C(p) = R(p)

5



Third, HOU is used to solve the available equations and thereby determine the value
of the free variables occurring in the unresolved (i.e., under-specified) semantics. Given
the equations in (6) for instance, HOU will return the solution (7a). Applying this
substitution to (5b) yields the resolved (i.e., fully specified) meaning (7b), a proposition
which correctly captures the meaning of (5a).

(7) a. σ = {R← λX.like(X,m), C ← λX.like(X,m)}
b. σ(like(j,m) ∧ R(p))= like(j,m) ∧ like(p,m)

But there is a well-known problem with using HOU for doing linguistics: HOU
systematically over-generates. For instance in the treatment of (5a) above, we saw that
HOU permits reconstructing the correct meaning for the elliptical verb phrase namely
λZ.like(Z,m). Unfortunately, it also yields two additional solutions neither of which
is linguistically valid:

Sol. 2 {C ← λZ.l(Z,m), R← λZ.l(p,m)}
Sol. 3 {C ← λZ.l(j,m), R← λZ.l(j,m)}

Sol. 2 is linguistically incorrect because it assigns the VP-ellipsis the meaning
λZ.l(p,m), a constant function which assigns to all individuals the proposition of Peter
liking Mary. Sol. 3 is incorrect because it resolves the elliptical clause to Jon likes Mary
while (5) means that Jon likes Mary and Peter likes Mary, not: Jon likes Mary and Jon
likes Mary.

Indeed, the problem is quite general and affects all HOU-based treatments of NL-
semantics. As [GAR 96b] shows, it affects [PUL 97, GAR 96a]’s treatment of focus,
[DAL 91]’s analysis of ellipsis and [?]’s account of deaccenting. For all of these analy-
ses, HOU will over-generate. Intuitively, the reason for this is that HOU allows solutions
of the form {X ← λY.Φ} where Y does not occur in Φ. That is, it allows substitutions
which assign constant functions (functions which return the same object whatever their
input). Linguistically, this is most unfortunate as the motivation for using HOU in se-
mantics is the need to construct “real” (i.e., non constant) functions. On the face of this,
it might seem that a simple way out would be to exclude from the set of linguistically
valid solutions these solutions which involve constant functions. But as the following
example illustrates, this proposal fails to generalize.

(8) Jon loves his cat and Peter does too.

Assuming that his refers to Jon, (8) is ambiguous between the following two readings:

(9) a. Jon loves Jon’s cat and Peter loves Jon’s cat.
b. Jon loves Jon’s cat and Peter loves Peter’s cat.

Traditionally [ROS 67], the first reading is referred to as strict (the binding of the
pronoun his to John is preserved when reconstructing the meaning of the second clause)
whereas the second is referred to as sloppy (the binding is not preserved). Under
[GAR 96c, GAR 97, ?]’s approach, the ambiguity of (9) is captured as follows. First,
(8) is assigned the following semantic representation:

l(j, c(j)) ∧R(p)

Second, the equations resulting from the parallelism constraint are:

6



(10) C(j) = l(j, c(j)) C(p) = R(p)

Given these equations, HOU yields nine solutions, only three of which are linguis-
tically correct: Sol. 1 yields the strict reading while Sol. 3 and 6 yield the sloppy
reading.

Sol .1 {C ← λZ.l(Z, c(j)), R← λZ.l(Z, c(j))}
Sol .2 {C ← λZ.l(Z, c(j)), R← λZ.l(p, c(j))}
Sol .3 {C ← λZ.l(Z, c(Z)), R← λZ.l(Z, c(Z))}
Sol .4 {C ← λZ.l(Z, c(Z)), R← λZ.l(p, c(Z))}
Sol .5 {C ← λZ.l(Z, c(Z)), R← λZ.l(p, c(p))}
Sol .6 {C ← λZ.l(Z, c(Z)), R← λZ.l(Z, c(p))}
Sol .7 {C ← λZ.l(j, c(Z)), R← λZ.l(j, c(p))}
Sol .8 {C ← λZ.l(j, c(Z)), R← λZ.l(j, c(Z))}
Sol .9 {C ← λZ.l(Z, c(j)), R← λZ.l(j, c(j))}

It is clear that in this case, ruling out solutions involving constant functions does
not help.Sol. 4 and Sol. 8 do not involve constant functions. Nevertheless, they are
linguistically incorrect. Sol. 4 is incorrect because it assigns to the VP-ellipsis the
function λZ.like(p, c(Z)) whereas the intended meaning is either λZ.like(Z, c(j)) or
λZ.like(Z, c(Z)). Sol. 8 is incorrect because it assigns to the VP-ellipsis the function
λZ.like(j, c(Z)).

The key observation is that different occurrences of the same term may be subject
to different constraints. Thus a linguistically plausible constraint that would adequately
deal with such examples as (8) is the following:

Constraint 1: The term occurrences representing contrastive elements2

may occur neither in the common semantics nor in that of the VP-ellipsis.

Applied to example (8), this constraint requires that the term occurrences repre-
senting the meaning of the contrastive elements Jon and Peter be abstracted over in
the solution. In other words, both p and the first occurrence of j may not occur in the
solution (by contrast, the second may). Under this constraint then, solutions 4 and 8
are ruled out as Sol. 4 contains p and Sol. 8 contains the first occurrence of j.

More generally, what this example shows is that an HOU-based approach to se-
mantic construction ought to be able to treat distinct occurrences of the same term
differently. As we shall see in section 3, this is precisely what Higher-Order Colored
Unification (HOCU) gives us: colors are syntactic objects enabling a differentiated
treatment of various term occurrences. But this is not quite enough. To see this, con-
sider the following example:

(11) Jon said that Mary kissed Peter. No, Tim said she did.

Assuming that she in the second sentence refers to Mary, the semantic representa-
tion and equations associated with this discourse are as follows:

s(j, k(m, p)) ∧ s(t, R(m))
C(j) = s(j, k(m, p)) C(t) = s(t, R(m))

2Recall that contrastive elements are those elements in the target utterance which have an overt, se-
mantically conflicting parallel counterpart in the source utterance (the utterance from which it derives its
interpretation).

7



The solutions given by HOU are:

Sol. 1 {C ← λZ.s(Z, k(m, p)), R← λZ.k(Z, p))}
Sol. 2 {C ← λZ.s(Z, k(m, p)), R← λZ.k(m, p))}
Sol. 3 {C ← λZ.s(j, k(m, p)), R← λZ.k(Z, p))}
Sol. 4 {C ← λZ.s(j, k(m, p)), R← λZ.k(m, p))}

Linguistically, only Sol. 1 is correct. Assuming Constraint 1 above would rule out
Sol. 3 and Sol. 4 because they contain the representation of the contrastive element Jon.
But Sol. 2 would still be generated. To rule out this unwanted solution, the following
additional constraint needs to be stated:

Constraint 2: The term occurrences representing the subject of a VP-
ellipsis and its parallel counterpart may not occur in the representation of
that ellipsis.

Importantly, this constraint is very different in nature from Constraint 1. Constraint
1 refers to a pragmatic notion (that of contrastive elements) and therefore should be
seen as stemming from the pragmatic component of language theory. In contrast, Con-
straint 2 evidently originates in the syntax in that it makes reference to such syntactic
notions as subject and VP-ellipsis. Moreover note that the two constraints can inter-
act. For instance, in example (8), Peter is both the subject of the VP-ellipsis and a
contrastive element.

Moreover, as we saw at the beginning of this section, HOU is used for several
distinct semantic phenomena (e.g., focus, ellipsis, deaccenting). Now these phenomena
can interact. For instance, in (12) below, there is both a focus on Sarah in the first clause
and a VP-ellipsis does in the second clause.

(12) Jon only likes SARAH. So does Peter.

To rule out all linguistically invalid readings, constraints pertaining both to focus
and to VP-ellipsis needs to be stated and combined within a single HOU framework. It
would take us to far afield to discuss the details of such an analysis (but see [GAR 96b]
for such details). The important point is that the interaction of linguistic phenom-
ena forces an interaction of constraints which may stem from very distinct linguistic
modules. More generally, it appears that semantic construction is subject to multiple,
interacting constraints which can stem from distinct linguistic modules. Feature trees
are used in computational linguistics to model just these kind of multi-dimensional
interactions. Indeed this is the key insight unification-based grammars such as Head-
Driven Phrase Structure Grammar [POL 94] or Lexical Functional Grammar [KAP 82]
capitalize on. In these grammars, constituent categories are feature trees grouping to-
gether various types of information (i.e., syntactic, semantic, phonologic) about the
constituent. Rewriting rules can then operate simultaneously on the various levels and
capture possible interactions. Therefore, it seems natural to use feature trees to repre-
sent the interacting constraints governing semantic construction. In what follows, we
show that a version of HOCU which allows colors as feature trees helps us deal with the
above data and more generally, with the over-generation problem faced by HOU-based
approaches to semantic construction.

8



3 Colors as atoms
In this section, we introduce a simple version of HOCU in which colors are atoms.
We then show how it permits differentiating between term occurrences and thereby
provides an appropriate basis for modeling linguistic constraints on semantic construc-
tion.

Since the formal presentation of the HOCU-theory involves a lot of technical ma-
chinery which we cannot present fully here, we concentrate instead on presenting its
underlying intuitions and motivations. For details and proofs, we refer the reader
to [HUT 97b, HUT 99].

The colored λ-calculus is a variant of the simply typed λ-calculus [CHU 40], where
symbol occurrences can be annotated with so-called colors (color constants C =
{a, b, . . .} and color variables X = {A,B, . . .}). Colors are indicated by subscripts
labeling symbol occurrences. Whenever they are irrelevant, we simply omit them.

The set wffα of well-typed formulae of type3 α consists of

• colored constants cαb , fαa , fαA , . . . of type α i.e., triples consisting of a constant,
a color and a type,

• colored variables Xα
b , G

α
a , F

α . . .i.e., triples consisting of a variable, a color
and a type (these should not be confused with “color variables”). We assume an
infinite supply of colored variables for each type and color,

• (uncolored) placeholders Zα,Wα of type α (of which we also assume an infi-
nite supply for each type),

• (function) applications of the form Mβ→αNβ and

• λ-abstractions of the form λZβ .Mγ , where Z is a placeholder and the type of
λZβ .Mγ is α = (β → γ).

We chose the somewhat non-standard notion of bound variables as “placeholders” to
emphasize the difference between free and bound variables with respect to colors. This
difference is only terminological and does not change the logic itself.

We call a formula M well-formed iff it does not contain unbound placeholders and
we call it c-monochrome if all constants and variables in M are annotated by a single
color c ∈ X ∪ C.

Since we can restrict the supply of colors to a single color constant, the colored
λ-calculus is clearly a generalization of the simply typed λ-calculus (see [HIN 86,
BAR 84] for an introduction). Therefore we will use various elementary concepts of
the λ-calculus, such as free and bound occurrences of variables or substitutions with-
out defining them explicitly. We will denote the substitution of a term N for all free
occurrences of X in M with {X ← N}M.

It is crucial for our system that colors annotate symbol occurrences (i.e., colors
are not sorts!). In particular, it is intended that different occurrences of symbols can
carry different colors (e.g., f(Xa, Xb)) and that symbols that carry different colors are

3Since for the purposes of this informal introduction types play a largely theoretical role (they for in-
stance make βη-reduction terminating and therefore βη-equality decidable), they are often omitted from the
examples.

9



treated differently. This observation leads to the notion of C-substitution (well-colored
substitutions), a notion of substitutions that takes the color information of formulae into
account. In contrast to traditional (uncolored) substitutions, a colored substitution σ is
a pair 〈σt, σc〉, where the term substitution σt maps colored variables (i.e., the pair
Xc of a variable X and the color c) to formulae of appropriate types and the color
substitution σc maps color variables to colors. In order to be a legal C-substitution
such a mapping σ must obey the following constraints:

Erasure condition: If A and B are different colors, then |σ(XA)| =
|σ(XB)|, where |M| is the color erasure of M i.e., the formula ob-
tained from M by erasing all color annotations in M.

Monochromicity condition: If c ∈ C is a color constant, then σ(Xc) is
c-monochrome.

The first condition ensures that the color erasure of a C-substitution is a classical
substitution of the simply typed λ-calculus. The second condition formalizes the fact
that free variables with constant colors stand for monochrome subterms. In contrast,
variable colors do not constrain the substitutions.

Note that since the bound variables (placeholders) do not carry color information,
βη-reduction in the colored λ-calculus is just the classical notion:

(λX.A)B→β {X ← B}A λX.CX →η C

where the variableX is not free in C. Note that in particular the substitution {X ← B}
is uncolored and there is no applicability condition on either of the reduction relations.
Thus we can lift all the known theoretical results from the simply typed λ-calculus
to the colored case. In particular, βη-reduction is terminating and confluent in the
presence of α-conversion (alphabetic renaming of bound variables, which we consider
as built into the system) and we can decide βη-equality by reducing to βη-normal form.

Higher-order unification computes substitutions σ such that σ(M) =βη σ(N) for
a given equation M = N. However, since most of these solutions (called higher-order
unifiers) introduce un-necessary instantiations, one is not interested in the set of all
higher-order unifiers, but rather in a subset that generates this set by instantiation: A
substitution σ is called more general than τ iff there is a substitution ρ, such that τ =βη

ρ ◦ σ i.e., τ can be reconstructed from σ by instantiation with ρ. In general, the higher-
order unification problem is undecidable and there need not be most general solutions
to solvable equations. We will discuss a variant of Huet’s semi-decision algorithm for
HOU and its theoretical and practical implications in section 5.

In the colored λ-calculus the space of solutions is further constrained by requiring
the solutions to be C-substitutions: A C-substitution is called a C-unifier of colored for-
mulae M and N. Note that the instantiation ordering for higher-order unifiers must also
be adapted to the colored case by requiring that the substitution ρ be a C-substitution.
Thus the higher-order colored unification problem is not just a refinement of the HOU
problem. In particular, it is possible, that a colored equation can be unsolvable, even
if its color erasure is: Consider the equation Xcad = bd, Xa = b has the solution
{X ← λZ.b}, but the colored variant {Xc ← λZ.bd} violates the monochromicity
condition. Furthermore, it is possible that an equation has a single most general uncol-
ored unifier, but more than one most general colored unifier: Consider for instance the

10



equation
λXY ZW.FaXY ZW =t λXY ZW.FbY XZW

where a, b ∈ C. Obviously, the colored equation has two most general solutions

Sol. 1 {Fa ← λXY ZW.Z, Fb ← λXY ZW.Z}
Sol. 2 {Fa ← λXY ZW.W,Fb ← λXY ZW.W}

In constrast, its color erasure has only one most general unifier namely,

{F ← λXY ZW.HZW}

where H is a new variable of appropriate type.
Having introduced the formal framework, let us now go back to the problem dis-

cussed in section 2, the problem of unwanted readings. Consider example (8) again
repeated here as (13):

(13) Jon loves his cat and Peter does too.

In the preceding section, we proposed using the following constraint to eliminate over-
generation:

Constraint 1: The term occurrences representing contrastive elements
may occur neither in the common semantics nor in that of the VP-ellipsis.

Within the HOCU framework, this constraint finds a natural encoding. We start by
assuming two colors: c (for “contrastive”) and n (for “non-contrastive”). We then color
the semantic representation of contrastive elements c whereas the variables C and R
representing the common semantics and the VP-ellipsis respectively, are colored n. All
other symbols are colored with color variables (which are ommitted in the equations).
Given the monochromicity condition mentioned above, this guarantees that no con-
trastive element (i.e., c-colored symbols) occur in the terms assigned to C and R or
in other words that these terms abstract over the contrastive elements. In specific, ex-
ample (8) is analyzed as follows. The (colored) equations triggered by the parallelism
constraint are

Cn(jc) = l(jc, c(j)) Cn(pc) = Rn(pc)

for which there are only two legal C-substitutions namely:

Sol. 1 {Cn ← λZ.ln(Z, cn(jn)), Rn ← λZ.ln(Z, cn(jn))}
Sol. 3 {Cn ← λZ.ln(Z, cn(Z)), Rn ← λZ.ln(Z, cn(Z))}

As before (cf. section 2), solution 1 yields the strict reading Peter loves Jon’s cat
whereas solution 3 gives us the sloppy reading Peter loves Peter’s cat. However, those
substitutions which in the uncolored framework yield linguistically incorrect solutions
are not legal C-substitutions because they all violate the monochromicity condition on

11



free variables:

Sol. 2 {Cn ← λZ.l(Z, c(jn)), Rn ← λZ.l(pc, c(jn))}
Sol. 4 {Cn ← λZ.l(Z, c(Z)), Rn ← λZ.l(pc, c(Z))}
Sol. 5 {Cn ← λZ.l(Z, c(Z)), Rn ← λZ.l(pc, c(pc))}
Sol. 6 {Cn ← λZ.l(Z, c(Z)), Rn ← λZ.l(Z, c(pc))}
Sol. 7 {Cn ← λZ.l(jc, c(Z)), Rn ← λZ.l(jc, c(Z))}
Sol. 8 {Cn ← λZ.l(jc, c(Z)), Rn ← λZ.l(jc, c(pc))}
Sol. 9 {Cn ← λZ.l(jc, c(jc)), Rn ← λZ.l(jc, c(jc))}

In short, HOCU enables the differentiation of distinct term occurrences and thereby
a straightforward encoding of the required linguistic constraints. But as was noted in
section 2, this is not sufficient. One must also be able to capture multiple, interacting
constraints. This is the object of the next section.

4 Colors as feature trees
We now extend the HOCU specification given in the previous section as follows: instead
of having purely atomic colors, we allow colors to be feature trees.

Feature trees are trees whose branches are labeled by symbols called attributes or
features and whose leaves are labeled by symbolic labels. Branches in feature trees
are identified by their feature rather than by their order as in conventional trees.

Feature logics are logical systems for describing feature trees and doing inference
with them. There is a variety of feature logics available, developped mostly for ap-
plications in linguistics and logic programming languages (see for instance [CAR 92,
SMO 92, AÏT 94, MÜL 97]). Feature logics vary for instance in the general expressiv-
ity of their languages (e.g., whether and which forms of negation can be expressed),
the semantic model of the underlying trees and of course, in the inference methods that
are defined for them.

The feature system that we chose for our colors is based on a very simple one
namely, Smolka and Treinen’s records for logic programming [SMO 94]. These records
are rational feature trees i.e., trees that may contain cycles but have only finitely many
nodes. The only inference method for them that we are interested in is unification
which is efficiently decidable (see below).

There are two kinds of labels in the feature trees used by HOCU: constant labels
(called color values in our setting) and variables (the color variables). Features are
used to distinguish different symbolic colors or to group colors that are related to each
other. For instance, a feature tree might carry an attribute syntax whose value is again
a feature tree with attributes that are related to linguistic information about syntax.

We will use a, b, c, . . . as meta-variables for feature trees (colors) and A,B,C, . . .
for variables within feature trees (color variables). Further, we will represent feature
trees by their attribute-value matrices. The following are example attribute-value ma-
trices for two equivalent well-formed feature trees:

[p +, e −, agr [num p, case A]]
[agr [case A, num p], e −, p +]

12



A feature tree can alternatively be described by a set of constraints i.e., a set of
formulas that defines which nodes carry which features and which values are associated
with them. For instance, the tree [p +, e [case A]] can be described by the set

{r0〈p〉+, r0〈e〉r1, r1〈case〉A}

where r〈p〉+ means that node r carries value + at feature p. Here, we use an
identifier r0 for the root node of the tree [p +, e [case A]] while r1 denotes the root
node of the subtree [case A].

Feature tree unification is a process that unifies two feature tree under the same
root node and decides whether the result denotes a well-formed feature tree. For the
records in [SMO 94], this process is a variant of first-order unification which sim-
ply decomposes trees and recursively unifies sub-trees until finally comparing/unifying
atomic information. Variables in feature trees behave like logical variables in standard
first-order unification. For instance, unifying [p A, e A] and [p +, e −] is not possible
because A can not simultaneously be bound to + and −. As [SMO 94] shows, record
unification can be decided in quasi-linear time.

Two feature trees a and b are compatible iff they can be unified. The notion of
feature trees as constraints allows us to define the concept of a constraint store, a set
of feature constraints that may refer to several feature trees with different root nodes
r1, r2, . . . , rn. A constraint store CS is satisfiable if each set Ri of feature constraints
with the same root ri describes a well-formed feature tree. Again, this constraint solv-
ing problem can be efficiently decided.

Naturally, the monochromicity condition, we have imposed on C-substitutions now
has to be generalized to feature term compatibility:

Generalized monochromicity condition: A substitution {Xc ← M} is
only well-colored iff every color annotation d in M is compatible with c.

With colors as feature trees, we can now return to the more complex example in-
troduced in section 2:

(14) Jon said that Mary kissed Peter. No, Tim said she did.

To deal with such examples, we saw that two interacting constraints are necessary:

Constraint 1: The term occurrences representing contrastive elements
may occur neither in the common semantics nor in that of the VP-ellipsis.
Constraint 2: The term occurrences representing the subject of a VP-
ellipsis and its parallel counterpart may not occur in the representation of
that ellipsis.

Using feature-tree colors, these constraints can be encoded using the following col-
ors: [c +] (for “contrastive”), [c −] (for “non-contrastive”), [e +] (for “VPE subject or
parallel counterpart”) and [e −] (for “neither VPE-subject nor parallel counterpart”).
We then color the semantic representation of contrastive elements [c +] whereas the
variable C representing the common semantics and the variable R representing the
VP-ellipsis are colored [c −]. Similarly, the terms representing the VPE subject and
its parallel counterpart are [e +] colored whereas the VPE variable is [e −] colored.
Now example (14) is analyzed as follows. The equations triggered by the parallelism
constraint become:

13



(15)
C[c −](j[c +]) = s(j[c +], k(m[e +], p))
C[c −](t[c +]) = s(t[c +], R[e −,c −](m[e +]))

And the only C-substitution4 satisfying these equations is:

(16) Sol. 1 {C[c −] ← λZ.s(Z, k(m[e +], p)), R[e −,c −] ← λZ.k(Z, p))}

In contrast, the following substitutions are ill-formed as they violate the generalized
monochromicity condition defined above.

Sol. 2 {C[c −] ← λZ.s(Z, k(m[e +], p)), R[e −,c −] ← λZ.k(m[e +], p))}
Sol. 3 {C[c −] ← λZ.s(j[c +], k(m[e +], p)), R[e −,c −] ← λZ.k(Z, p))}
Sol. 4 {C[c −] ← λZ.s(j[c +], k(m[e +], p)), R[e −,c −] ← λZ.k(m[e +], p))}

Sol. 2 is ill-formed because it assigns the [e −, c −]-colored variable R a term con-
taining the color annotation [e +]. Since [e −] and [e +] fail to unify (the feature
e is assigned the two incompatible values + and -), there is a color annotation in
the value assigned to R which is not compatible with R’s color. Hence the gener-
alised monochromicity condition is violated. Hence the substitution is not a legal C-
substitution. Similarly, Sol. 3 is ruled out as it assigns to C[c −] a term containing
the color annotation [c +] whereby [c −] and [c +] cannot unify. Sol. 4 combines the
ill-formedness of both Sol. 2 and Sol. 3.

So far, the motivation we gave for having colors as feature trees is that the linguistic
constraints which regulate semantic construction can stem from very different linguis-
tic modules. For instance, in the above example, the [c +] constraint indicates that an
element is a contrastive element. This information (i.e., information about parallelism)
stems from the discourse component, that module in the linguistic theory which de-
scribes relations between utterances. In contrast, the [e +] color signals the subject of
a VP-ellipsis and is thus given by the syntactic component i.e., that component which
describes the syntax of natural language. Similarly, the [c −]-colored C variable is in-
troduced at the discourse level whereas the [e −]-colored R variable representing the
ellipsis results from sentence level semantic construction and is thus introduced by the
semantic component.

Of course the fact that linguistic constraints may stem from different linguistic
modules is no argument in and of itself, for having colors as feature trees. However,
the fact that they sometimes overlap and jointly constrain the same piece of semantic
information is. So for instance, the ellipsis subject Peter in example (13) is both a
contrastive element (hence [c +]-colored) and the subject of the ellipsis (hence [e +]-
colored). If colors are feature trees, this double-labeling simply results from the unifica-
tion ([e +, c +]) of two feature trees attached to the same piece of semantic information
by different modules. In the atomic HOCU framework introduced in section 3, such in-
formation would require the use of an additional atomic color say [ec +]. Although this
is certainly technically feasible, it is linguistically rather unsatisfactory as it requires a
tight interrelation between two linguistic modules (the syntax and the discourse mod-
ule) which are normally fairly independent from another: the discourse module when

4To improve readability those colors that cannot lead to unification failure have been ignored. For in-
stance, Sol. 1 really is:
{C[c −]←λZ.s[e −,c −](Z,k[e −,c −](m[e +],p[e −,c −])),R[e −,c −]←λZ.k[e −,c −](Z,p[e −,c −]))} .

14



marking contrastive elements must check whether these elements are or not colored
[e +] by the syntactic component and in the positive case, change this color to [ec +].
The scenario is all the more unappealing in that it is non-monotonic and forces the
over-writing of information.

There are at least two further reasons for having colors as feature trees. First, note
that given the above two colors [c +] and [e +] all the combinations of these colors
can be realized namely [e +, c +],[e −, c −],[e +, c −] and [e −, c +]. [e −, c −] is
the color associated with a VP-ellipsis representation, [e −, c +] that of a contrastive
parallel element that is not structurally parallel to the subject of a VP-ellipsis, [e +, c −]
marks e.g., the subject of a VPE that is not a contrastive element and finally, [e +, c +]
is the color associated with an element that is both contrastive and either the subject of
an ellipsis or its parallel counterpart.

But such combination paradigms are precisely the sort of information feature tree
unification was designed for: instead of postulating a potentially very large set of
atomic colors, a small set of features is used which are then combined using unification
to yield the much larger set resulting from their combinatorics.

An additional reason for having colors as feature trees is the efficient and straight-
forward account of under-specification it permits. Consider an example such as (17)
where the antecedent clause (the first clause in the text) of the ellipsis contains an ele-
ment in focus (i.e., a prosodically prominent element) namely, MARY.

(17) Jon likes MARY. No, TIM does.

Assuming an HOU-based treatment of focus as advocated in [PUL 97, GAR 96a],
the semantic representation of the element in focus will have to be marked by a specific
color, say [f +]. As a result, the equations resulting from the parallelism constraint are:

C[c −](j[c +]) = l(j[c +],m[f +]) C[c −](t[e +,c +]) = R[e −](t[e +,c +]))

for which the only C-substitution is:

{C[c −] ← λZ.l(Z,m[f +]), R[e −] ← λZ.l(Z,m[f +])}

The important point is that the substitution is well-colored even though it assigns to
a [c −]-colored variable a term containing an [f +] subterm. Intuitively, this is because
feature trees allow us to underspecify constraints with respect to all irrelevant features
and to do so in an efficient way. Within an atomic setting, this type of underspecifi-
cation would lead us to introduce boolean operators. For instance (see [GAR 96b] for
details) the constraint that C be [c −]-colored would be replaced by a negative con-
straint say ¬p stating that the subterms of the term assigned to C may be labeled with
any color except p. In general however, we don’t need the full expressivity of proposi-
tional logic (which in general has an NP-complete satisfiability problem instead of the
quadratic one for feature tree constraints). Therefore, it seems preferable to stay in the
more constrained setting of feature tree unification5.

5Another possibility – which we do not explore here – would be to identify a more tractable fragment of
propositional logic that is sufficiently expressive for our purpose

15



5 The HOCU algorithm

5.1 Logical aspects of the algorithm
Since HOCU is the principal computational device of the analysis in this paper, we will
now try to give an intuition for the HOCU problem. In this section we will only consider
the logical side of the algorithm and leave implementational questions to section 5.3.

It is well-known that for first-order terms there is always a unique most general
unifier for any equation that is solvable at all. This is not the case for higher-order (col-
ored) unification where variables can range over functions, instead of only individuals.
Here, a solvable equation can have more than one most general solution and we use
this to model ambiguity in the linguistic application.

Just as in the case of unification for first-order terms, the higher-order unification
algorithm is a process of recursive decomposition and variable elimination that trans-
form sets of equations into so-called solved forms, which have unique and obvious
most general C-unifiers that also solve the initial set of equations.

Since C-substitutions have two parts, a term– and a color part, we need two kinds
of equations (M =t N for term equations and c =c d for color equations).

A set E of equations is in C-solved form iff all color equations are of the form
A =c c, where A occurs exactly once in E and all term equations are of the form
Xc = Mc such that

1. the colored variable Xc occurs exactly once in E ,

2. Mc is well-formed (i.e., does not contain unbound placeholders) and

3. c-compatible and finally, for all equations Xd =t Md in E , the color erasures of
Mc and Md are equal (i.e., {Xc ←Mc}, . . . , {Xd ←Md} is a C-substitution).

There are several rules that decompose the syntactic structure of formulae, we will
only present two of them. The rule for abstractions transforms equations of the form
λZ.A =t λW.B to {Z ← Z ′}A =t {W ← Z ′}B, where Z ′ is a new place holder
of appropriate type, while the rule for applications decomposes ha(A1, . . . ,An) =t

hb(B1, . . . ,Bn) to the set {a =c b,A1 =t B1, . . . ,An =t Bn}, provided that h is
a constant or a placeholder. The color equations are solved by first-order feature tree
unification. Furthermore equations are kept in βη-normal form.

The variable elimination process for color variables is very simple, it allows to
transform a set E ∪ {A =c d} of equations to {A ← d}E ∪ {A =c d}, making the
equation {A =c d} solved in the result. In case of formula equations, elimination is not
that simple, since we have to ensure that |σ(Xa)| = |σ(Xb)| to obtain a C-substitution
σ. Thus we cannot simply transform a set E∪{Xd =t M} into {Xd ←Md]E∪{Xd =t

M}, since this would (incorrectly) solve the equations {Xc = fc, Xd = gd}. The
correct variable elimination rule transforms E ∪ {Xd =t M} into σ(E) ∪ {Xd =t

M, Xc1 = M1, . . . , Xcn
=t Mn}, where ci are all colors of the variable X occurring

in M and E , the Mi are ci-monochrome variants (same color erasure) of M and σ is
the C-substitution that eliminates all occurrences of X from E . Of course we also have
to ensure that X is not free in |M| and that |M| is well-formed.

Due to the presence of function variables, systematic application of these rules can
terminate with equations of the form Xc(A1, . . . ,An) =t hd(B1, . . . ,Bm). Such

16



equations can neither be further decomposed, since this would lose unifiers (if G and
F are variables, then Ga = Fb has a solution λZ.c for F and G, but {F = G, a =
b} is unsolvable), nor can the right hand side be substituted for X as in a variable
elimination rule, since the types would clash. To see what a possible solution would
be, let us consider a concrete example, the uncolored equation X(a) =t a which has
the solutions (λZ.a) and (λZ.Z) for X .

The standard solution [HUE 75] for finding a complete set of solutions in this so-
called flex/rigid situation is to substitute a term for X that will enable decomposition
to be applicable afterwards. For finding all C-unifiers it is sufficient to bind X to the
most general terms of the same type as X (otherwise the unifier would be ill-typed)
that either

• have the same head as the right hand side; the so-called imitation solution (λZ.a
in our example) or

• where the head is a placeholder that enables the head of one of the arguments of
X to become the head; the so-called projection binding (λZ.Z).

If X has type6 α = βn → δ and hd has type γm → δ, then these so-called general
bindings have the following form:

Ghα = λZβ1 . . . Zβn .h(H1(Z), . . . ,Hm(Z))

where the Hi are new variables of type βn → γi. If h is one of the placeholders Zαi ,
then Ghβ is called a projection binding and else, (h is a constant or a free variable)
an imitation binding. It turns out (for details and proofs see [SNY 91]) that these
general bindings suffice to solve all flex/rigid situations, possibly at the cost of creat-
ing new flex/rigid situations after elimination of the variable xc and decomposition of
the changed equations (the elimination of x changes xc(s1, . . . , sn) to Ghc (s1, . . . , sn)
which has head h).

The general rule for flex/rigid equations in HOCU is just the one for the uncolored
case; it simply adds the uncolored equation Xα = Ghα to a set containing a flex/rigid
equation of the form {Xc(A1, . . . ,An) = hd(B1, . . . ,Bm)}. Intuitively, this fixes the
uncolored information about a particular binding for the head variable xc.

In order to get a better understanding of the situation, let us reconsider our example
using colors: X(ac) = ad. For the imitation solution (λZ.ad) we “imitate” the right
hand side, so the color on a must be d. For the projection solution we instantiate
(λZ.Z) for X and obtain (λZ.Z)ac, which β-reduces to ac. We see that this “lifts” the
constant ac from the argument position to the top. Incidentally, the projection is only a
C-unifier of our colored example, if c and d are identical.

Finally, in the only remaining case, the heads of both sides of the equation are free
variables; this is the so-called flex/flex case. The solution of this case is either to project
as in the flex/rigid case or to “guess” (computationally: to search for) the right head for
the equation and bind the head variable to the appropriate imitation binding. Clearly
this need for guessing the right head leads to a serious explosion of the search space,
which makes higher-order colored unification computationally infeasible. Moreover,

6For the construction of general bindings, types do play a crucial role, since they e.g., determine the
length of the binder.

17



in contrast to the uncolored case, flex/flex-equations may be unsolvable under a set of
color constraints (see [HUT 97b, HUT 99] for a discussion).

Fortunately, for our application, we do not need higher-order unification in full
generality, so we will not go into the discussion of flex/flex situations here. In fact,
if we look at our examples (e.g., 6), we see that even though they do contain flex/flex
equations (in the second equation), the first equation only contains variables on the
left-hand side. So here, higher-order unification reduces to the so-called higher-order
matching problem, which has been proven to be decidable for the subclass of fourth-
order formulae [PAD 96] and is conjectured to be for the general case7. The examples
in this paper actually only require second-order equations, so we know that there is a
finite set of most general unifiers for each (higher-order matching problem [HUE 78]).
Thus if we start by solving the first equation (obtaining a set of solutions for C), then
we can eliminate C from the second equation and reduce this to a matching problem
too.

In general though, the methods presented in this paper are not restricted to matching
and there are similar linguistic applications (see e.g., [GAR 96c]), where higher-order
colored unification is needed.

5.2 An HOCU Example
Before we turn to the implementation, let us work through example (14) and solve the
higher-order unification problem given in (15). We start with the first equation:

C[c −](j[c +]) = s(j[c +], k(m[e +], p))

is a flex/rigid situation, so we bind8 the variable C to the general uncolored imita-
tion binding λZ.s(H1(Z), H2(Z)). Variable elimination with the induced substitution
{C[c −] ← λZ.s(H1

[c −](Z), H2
[c −](Z))} yields

s(H1
[c −](j[c +]), H2

[c −](j[c +])) = s(j[c +], k(m[e +], p))

and subsequent decomposition the flex/rigid equations

H1
[c −](j[c +]) = j[c +] H2

[c −](j[c +]) = k(m[e +], p)

Now let us turn to the first equation: we have two possibilities

imitation with the instantiation binding {H1
[c −] ← λZ.j[c −]} yields the unsolvable

equation j[c −] =t j[c +] and thus to failure

projection binding H1
[c −] to λZ.Z yields the trivial equation j[c +] = j[c +] and thus

to success.
7In general, decidability and complexity results for restricted versions of HOCU can be established with

the same methods as those for HOU, since the rules for flex/rigid equations are identical. The only exception
is in the flex/flex situations (which are irrelevant e.g., for higher-order matching), where a special treatment
is needed. An example is that of higher-order pattern unification [MIL 92], where the unique most general
unifier property is lost (there may be finitely many most general unifiers).

8We will not pursue choices of bindings that would lead to immediate failure, like the projection binding
in this example.

18



In the second equation, we can only imitate three times and then project twice, even-
tually binding H2

[c −] to λZ.k(m[e +], p), which is a C-substitution, since [e +] is com-
patible with [c −]. If we collect the successful bindings, we obtain the partial solution

{C[c −] ← λZ.s(Z, k(m[e +], p))}

which we can apply to the second equation in (15) to obtain the equation

s(t[c +], k(m[e +], p)) = s(t[c +], R[e −,c −](m[e +]))

which can be decomposed to

k(m[e +], p) = R[e −,c −](m[e +])

Imitation for R[e −,c −] (binding it to λZ.k(H5
[e −,c −](Z), H6

[e −,c −](Z))) gives the
equations

H5
[e −,c −](m[e +]) = m[e +] H6

[e −,c −](m[e +]) = p

Again we do not have a choice in this situation, since we are forced by the colors to
project for H5 and by the term part to imitate for H6. Collecting the bindings, we
obtain the unique solution in (16).

5.3 Implementation
In this section we outline an implementation of the HOCU algorithm sketched in sec-
tion 5. This implementation is used as the main inference module of the natural-
language processing system CHOLI [?] with which we extensively tested the approach
described in sections 3 and 4 and which is described in more detail in section 6.

5.3.1 HOCU as an Algorithm

HOCU as an algorithm is a recursive process of simplification, flexible head elimination
and color constraint solving. These sub-processes can be implemented as two separate
procedures: a deterministic part, called Simpl in Huet’s original specification of HOU
and GB (for General Bindings), that implements the nondeterministic choice of general
bindings for flex/rigid equations (called Match by Huet).

Simpl mainly decomposes formulas, removes trivial equations of the form a = a
and detects “clashes” of the form a = b where a and b are different constants. Simpl
also treats the trivial case of variable elimination triggered by equations of the form
X = t where X does not occur free in term t.

Solving color constraints is deterministic as well: eliminating a variable X by sub-
stitution from the set of equations initiates a constraint propagation process that im-
plements the monochromicity condition that we demand for well-colored substitutions
(see section 4). As discussed above, color compatibility is defined over feature uni-
fication. We store all constraints that define which feature trees must be compatible
(unifiable) into a global constraint store CS and test its satisfiability each time we make
a change that could affect CS’s satisfiability.

19



The nondeterministic part GB selects an arbitrary flex/rigid equation from the cur-
rent set of equations and computes its general bindings (see section 5.1). We do not
consider any color information in GB (these are handled within Simpl) but use the
standard process of computing general bindings in HOU.

Like Huet’s original algorithm [HUE 75], the HOCU search branches over the finite
set of approximated bindings. Hence, HOCU is a search in an OR-tree (see figure 1)
where each node is associated with a set of equations, a binding environment for free
variables and a color constraint store. The arcs of the search tree are applications of
either Simpl or GB. Disjunctive choices occur when GB computes more than one
general binding i.e., an imitation I and one or more of n projections P1, . . . Pn.

Figure 1: A HOCU search tree

The pseudo-code shown in figure 2 sketches the HOCU procedure. HOCU applies
Simpl to its input set of equations while considering a binding environment E for
free variables and a color constraint store CS . If simplification is successful i.e., if
no clash between constant heads or color constraints occurs, then HOCU selects an
arbitrary flex-rigid equation. GB then computes possible approximative bindings for
this equation and chooses one with which HOCU continues computation. The actual
selection of the approximated binding is done by the overall search strategy.

proc HOCU ({s1 . . . sn}: equations, E: environment, CS: constraints );
Φ← Simpl({s1 . . . sn}, E, CS)
case Φ = false

then return fail
else

case Φ = 〈S′, E′, CS ′〉
then g ← FlexRigid(Φ)
case g = false

then return Φ
else

choose ei ∈ GB(g) do
HOCU({ei} ∪ S′, E′, CS ′)

end
end

end
end

end

Figure 2: The HOCU main procedure in pseudo-code.

5.3.2 An OZ implementation

OZ [Pro 98] is a constraint logic programming language that combines several paradigms

20



such as higher-order functional programming, constraint logic programming and con-
current objects with multiple inheritance.

The OZ implementation of HOCU [KON 97] makes extensive use of OZ’s special
capabilities. For instance, the logical variables of OZ give us an elegant binding mech-
anism for free variables in the λ-calculus. OZ’s encapsulated search, the abstraction
of algorithms from their search strategies, helped us to experiment with different search
strategies such as depth-first, iterative deepening or even visual search where search
trees can manually be explored and compared in a graphical browser [SCH 97].

The implementation is concurrent. Each equation in the set of HOU constraints
is treated by a separate process, called a thread in OZ terminology, that tries to solve
its own equation. Threads share common data structures such as the constraint store
which among other things contains variable bindings. Formula decomposition leads to
new threads that again try to simplify and solve sub-formulas. This implementation
technique is especially useful for the treatment of flex/flex-equations. If a thread en-
counters a flex/flex-equation, it simply suspends computation and waits until another
thread instantiates one of the flexible heads. In this way, flex/flex-equations can basi-
cally be ignored within HOU until they become flex/rigid-equations by instantiation9.
By using a concurrent implementation, no central control structure is necessary any
more for dealing with sets of equations.

For HOCU’s comparably simple color feature trees, we use OZ’s built-in record
constraints. In our implementation, each occurrence of a colored variable and constant
carries a data slot which is initially bound to an unspecified OZ record that can be
seen as a variable referring to the root node of a feature tree. A binding of a logical
variableX to a term A initializes all colored variablesXa with a fresh copy of A that is
colored with a. Color information is applied to terms while decomposition takes place:
An equation ca = cb is eliminated by unifying the colors a and b.

OZ’s open records implement rational (i.e., possibly cyclic) feature trees [SMO 94].
OZ provides a fast unification for records that generalizes the feature unification that
we need for HOCU and which propagates information about unified information into a
global constraint store.

The global constraint store and the satisfiability check that we need for color con-
straints are built-in features of the OZ language. While OZ can handle cyclic trees,
we have not found any use for this feature in our application—cyclic color information
could only come from faulty grammar specifications. Since cyclic records are easy to
detect in the output, we have left out an occur check for cycles.

Although efficiency was not our primary concern while implementing HOCU, we
reused the code almost unchanged for automated higher-order theorem proving HOT [KON 98].
Higher-order theorem proving is a demanding application for HOU since even small
proof problems can create thousands of unification problems that must be solved in a
reasonable amount of time. Note that our implementation has been kept simple and
does not use complex techniques such as explicit substitutions [DOW ].

9In particular, this automatically gives the ordering that reduces the HOCU problem to a higher-order
colored matching problem discussed at the end of section 5.1.

21



6 Natural Language Processing with HOCU

Although HOU is a popular tool in the computational linguistic literature on semantic
construction, there is to the best of our knowledge no implemented system with which
to test and evaluate existing HOU-based analyses. In what follows, we describe the
natural language processing system CHOLI [?], a system which was developed to fill
this gap.

6.1 The CHOLI system
CHOLI integrates standard techniques and tools from computational linguistics and
extends them with an HOU/HOCU inference engine. More specifically, the CHOLI
system consists of three main components: a dedicated graphical user interface which
realizes a menu-driven interaction and control of both the linguistic parsing component
and the HOCU inference module; a parsing component which given a string of words
returns a (possibly under-specified) semantic representation for that string; and a res-
olution component, which given an under-specified semantic representation and some
equations returns a fully specified semantic representation.

Figure 3: Parsing and resolving in the CHOLI system

The parsing component consists of a lexicon, a Head-Driven Phrase Structure gram-
mar (HPSG) for English and of a chart-parser for that grammar. The lexicon contains
around three hundred inflected words and their associated categories while the HPSG
grammar covers all the basic constructions of English including: simple declarative
sentences, simple sentence coordination, relative clauses, topicalisation and adjuncts.
As is traditional in HPSG, the linguistic categories used in the grammar are feature
trees. The idea is that each feature in these feature trees represents a different type
of linguistic information. In particular, syntactic, semantic and pragmatic information
are grouped as values of the three features synt, sem and prag. Contrary to the HPSG
tradition, the semantic representation which is the value of the sem feature is not a term
(combined with others through unification) but a λ-term (combined with other using
β-reduction). In this way, a Montague-like semantic construction process (cf. section
2) can be modeled. As output, the system displays a graphical chart showing the parse
tree(s) of the input. The user can then use several menu- and clicking options to see
either the full category of a given constituent in the chart or its semantic representation.

The resolution component allows the user to select either HOU or HOCU as the in-
ference procedure and to choose contrastive elements (cf. section 2) from the graphical
representation of the parse tree (see figure 3). As a result, the system automatically sets
up the corresponding equations and passes these equations to the HOU/HOCU engine
which resolves them. Once the equations are resolved, the system returns a window
giving: the under-specified semantic representation input by the parsing component,
the equations set up with the user’s help, the substitution(s) returned by the unifier and
the resolved semantic representation (i.e., the under-specified semantic representation

22



after application of the result substitutions).

6.2 The coverage of CHOLI

CHOLI implements the HOU/HOCU based analyses discussed in [?, GAR 96c, GAR 97,
GAR 96a, GAR 96b]. More specifically, it encompasses the treatment of VP-ellipsis
presented in [DAL 91], the treatment of parallel structures presented in [?, GAR 96c],
the treatment of focus described in [GAR 96a] and the use of Higher-Order Colored
Unification to prevent over-generation.

The test-suite for these analyses is of around one hundred distinct cases and covers
most of the challenge examples to be found in the linguistic literature on ellipsis, focus
and deaccenting. It is structured as a disjoint set of phenomena that can serve as a
scalable test set for semantic analysis systems. Each test-suite example can be tested
either with the simple higher-order unifier or with the colored one. In what follows, we
briefly describe the functioning of each analysis and the constraining effect of colors.

VP-Ellipsis. [DAL 91] presents an HOU-based treatment of VP-ellipsis which can
be summarized as follows. Given a source clause followed by a target clause con-
taining a VP-ellipsis, the semantic value of this ellipsis is determined by the equation
SSem = R(SP1, . . . , SPn) where SSem is the semantic representation of the source
clause, R that of the target VP-ellipsis and SP1, . . . , SPn the representations of the
source contrastive elements. The test-suite for this analysis covers the interaction of
VP-ellipsis with anaphora, proper nouns (e.g., Mary, Paul) and control verbs (i.e., verbs
such as try whose subject “control” i.e., is co-referential with some other element in
the verb complement).

Deaccenting. As mentioned in section 2, [?] generalizes [DAL 91]’s analysis to
deaccenting structures. The test-suite for this analysis covers the interaction of deac-
centing with: anaphora, VP-ellipsis, context and sloppy/strict ambiguity.

Focus. [GAR 96a] argues that an HOU-based construction of the Ground/Focus
partitioning has both computational and theoretical advantages. The basic idea is that
given a sentence S with semantics Sem and focus F, the ground Gd of this sentence is
determined by the equation Sem = Gd(F). This ground is then used to determine the
meaning of S. For instance, given the sentence John only likes MARY, the following
representations and equations are computed:

1. like(john)(mary) ∧ ∀x(G(x)→ x = mary)

2. like(john)(mary) = G(mary)

3. {G← λx.like(john)(x)}

4. {G← λx.like(john)(mary)}

5. like(john)(mary) ∧ ∀x(like(john)(x)→ x = mary)

6. like(john)(mary) ∧ ∀x(like(john)(mary)→ x = mary)

The first line gives an under-specified meaning representation of Jon only likes
Mary. On the second line, the equation is given which helps determine the underspec-
ified element namely G (the ground). The third and fourth line give the substitutions

23



returned by HOU and the fifth and sixth line the corresponding fully-specified meaning
representations of the input sentence. When HOCU is used instead of HOU only one
substitution is returned (namely the third) and subsequently a single resolved semantics
is (correctly) output namely the semantics given on line 5.

The test suite for this phenomena includes sentences with varying and ambiguous
foci. It is currently being extended to sentences with multiple foci and the interaction
with deaccenting.

Colors. As already mentioned all of the examples in the test suite can be tested
with or without colors. Three colors are used: c (for (non)-contrastive), e (for (non)-
VP subject), f (for (non)-focus). In all cases, colors filter out unwanted readings, the
number of which varies depending on the analysis and on the sentence being analyzed.
Here are some examples.

(18) a. John runs and Peter does too (2→ 1,1→ 1)
b. John saw his mother and Peter did too (4→ 2,6→ 2)
c. John tried to run and Peter did too. (4→ 1,8→ 1)
d. John tried to like his mother and Peter did too. (8→ 2,12→ 2)
e. John’s mother says that John runs. Peter’s mother does too. (2→ 1)

The annotation N→M at the end of each example indicates the constraining effect
of colors on the number of generated readings: N is the number of readings generated
by the HOU-approach, M the number of readings generated by the HOCU-approach.
The first N→M pair relates to the Dalrymple, Shieber & Pereira analysis, the second
to the deaccenting account. In each case, M is the number of linguistically correct
readings. In other words, colors cuts down the number of generated readings to exactly
these readings which are linguistically acceptable.

7 Conclusion
We have advocated the use of HOCU for doing semantic analysis in contrast to HOU as
was so far used in computational linguistics. So far, the motivation we gave for using
HOCU is that it enables rstricting over-generation. But there are several additional
reasons for using HOCU rather than some other means.

First, HOCU was not specifically developed for linguistics. Rather it was developed
for guiding the proof search of inductive theorem provers and is as such an off-the shelf
mechanism with well-studied mathematical and computational properties. Importantly,
this mechanism has both a declarative and a procedural interpretation. This enables
linguists to both state linguistic problems declaratively (in terms of equations) and test
these analyses on a computational implementation which in essence builds on Huet
classic HOU’s algorithm ([HUE 75]).

Second, as shown in section 3, the HOCU–framework is a fairly conservative exten-
sion of the HOU one. In particular, the colored λ-calculus is a simple generalization of
the simply typed λ–calculus. This is important as it means that linguistic results which
build on the use of the λ–calculus and of HOU can be preserved. By contrast the use
of some other logic or mechanism would require ‘starting from scratch’ again: all the

24



insights embodied in the various HOU-based analyses of natural language semantics
would need to be recast within this particular logic or with respect to this particular
mechanism.

Third, the HOU-approach is (despite the worst-case complexity predicted by the
theoretical results) tractable in practice. In all of the examples treated in CHOLI, the
computation of all higher-order unifiers is a sub-second task on a medium-sized PC. By
contrast, if some other logic such as intuitionistic or linear logic were used for semantic
construction, automated theorem proving techniques for these logics would have to be
resorted to, which are currently far less efficient, if they exist at all.

Finally, we want to emphasize that logically, the notion of adding colors to symbol
occurrences in a logical system constitutes a fundamentally new logical concept (it was
introduced by Dieter Hutter for first-order logic; see [HUT 97a] for details and refer-
ences) that adds the necessary expressivity to encode an interface to extra-semantical
information into the logical system. In this respect it is similar to the idea of labeled
deduction systems (LDS [GAB 96]) with which it shares basic intuitions. Both use
annotations to restrict the applicability of inference rules and provide a mechanism for
maintaining the annotations during the inference. However, while LDS attach labels
to formulae, HOCU annotates symbol occurrences with colors. It seems plausible that
colored logics can be embedded into suitable LDS if we assume that the labels have
the same algebraic structure as the formulae they are attached to. Moreover, any LDS
that deals with equality will probably need to maintain labels in such a term-structured
form, since equality operates on subterm occurrences which have to be represented
in some way. Interestingly, the colored λ-calculus allows one to deal with labels and
formulae in a uniform and efficient way taking advantage of the common structure of
both. We leave a formal analysis of the relation between LDS and colored logics to
further research.

Acknowledgments
The results reported here owe much to clarifying discussions with Martin Müller and
Dieter Hutter. We would also like to thank the anonymous referees for their com-
ments. Finally, we thank Stephan Thater, Ralf Debusman and Anouk Perquin for their
contribution to the implementation of CHOLI. For financial support, we gratefully ac-
knowledged the Deutsche Forschungsgemeinschaft (DFG) in Sonderforschungsbere-
ich SFB–378, Project C2 (LISA). Claire Gardent would like to thank Aravind Joshi
and the staff of the Institute for Research in Cognitive Science, University of Penn-
sylvania, for their hospitality while the final version of this paper was being prepared.
Michael Kohlhase is similarly grateful to Jan van Eijck and the Centrum for Wiskunde
and Informatica (CWI).

Bibliographie
[AÏT 94] Aı̈t-Kaci H., Podelski A.Smolka G., A Feature Constraint System for Logic

Programming with Entailment . Theoretical Computer Science, 122, 263–283,
1994.

25



[BAR 84] Barendregt H. P., The Lambda Calculus. North Holland, 1984.

[CAR 92] Carpenter B., The Logic of typed feature structures. Cambridge University
Press, 1992.

[CHU 40] Church A., A Formulation of the Simple Theory of Types . Journal of
Symbolic Logic, 5, 56–68, 1940.

[DAL 91] Dalrymple M., Shieber S.Pereira F., Ellipsis and Higher-Order Unification .
Linguistics & Philosophy, 14, 399–452, 1991.

[DOW ] Dowek G., Hardin T.Kirchner C., Higher-Order Unification via Explicit Sub-
stitutions (Extended Abstract) . 366–374.

[GAB 96] Gabbay D., Labelled Deductive Systems. 33 Oxford Logic Guides. Oxford
University Press, 1996.

[GAR 96a] Gardent C.Kohlhase M., Focus and Higher–Order Unification . Proceed-
ings of the 16th International Conference on Computational Linguistics, Copen-
hagen, 1996.

[GAR 96b] Gardent C.Kohlhase M., Higher–Order Coloured Unification and Natural
Language Semantics . Proceedings of the 34th Annual Meeting of the ACL, Santa
Cruz, 1996.

[GAR 96c] Gardent C., Kohlhase M.van Leusen N., Corrections and Higher-Order
Unification . Proceedings of KONVENS’96, 268–279, Bielefeld, Germany, 1996.
De Gruyter.

[GAR 97] Gardent C., Sloppy Identity. Retoré C., , Logical Aspects of Computational
Linguistics, 188–207. Springer, 1997.

[HIN 86] Hindley J.Seldin J., Introduction to Combinators and Lambda Calculus.
Cambridge University Press, 1986.

[HUE 75] Huet G. P., A Unification Algorithm for the Typed λ-Calculus . Theoretical
Computer Science, 1, 27–57, 1975.

[HUE 78] Huet G. P.Lang B., Proving and applying Program Transformations ex-
pressed with Second Order Logic . Acta Informatica, 11, 31–55, 1978.

[HUT 97a] Hutter D., Colouring Terms to Control Equational Reasoning . Journal of
Automated Reasoning, 18, 399–442, 1997.

26



[HUT 97b] Hutter D.Kohlhase M., A Coloured Version of the λ-Calculus . Proceed-
ings of CADE’97, 291–305, 1997.

[HUT 99] Hutter D.Kohlhase M., Managing Structural Information by Higher-Order
Colored Unification . Journal of Automated Reasoning, 1999. forthcoming.

[KAP 82] Kaplan R.Bresnan J., Lexical-Functional Grammar: A formal system for
Grammatical Representation. The Mental Representation of Grammatical Rela-
tions, 173–280. MIT Press, 1982.

[KON 97] Konrad K., 1997. ColorLambda: An implementation of the simply typed
λ-calculus in OZ. http://www.ags.uni-sb.de/˜konrad/soft.html.

[KON 98] Konrad K., HOT: An Automated Theorem Prover based on Higher-
Order Tableaux . Seki Report SR-98-03, Fachbereich Informatik, Universität
Saarbrücken, 1998. To appear in: TPHOLs’98: The 11th International Confer-
ence on Theorem Proving in Higher Order Logics. Springer Verlag LNCS, 1998.

[MIL 92] Miller D., Unification under a mixed Prefix . Journal of Symbolic Compu-
tation, 14, 321–358, 1992.

[MON 74] Montague R., The Proper Treatment of Quantification in Ordinary English.
Thomason R., , Formal Philosophy. Selected Papers. Yale University Press, New
Haven, 1974.

[MÜL 97] Müller M., Niehren J.Podelski A., Ordering Constraints over Feature
Trees . Smolka G., , Proceedings of the Third International Conference on Princi-
ples and Practice of Constraint Programming, 1330 Lecture Notes in Computer
Science, 297–311, Schloss Hagenberg, Linz, Austria, 1997. Springer-Verlag.

[PAD 96] Padovani V., Filtrage d’order supérieur . Thése de doctorat, Université
Paris VII, 1996.

[PIN 96] Pinkal M., Radical underspecification . Dekker P.Stokhof M., , Proceedings
of the 10th Amsterdam Colloquium, 587–606, Amsterdam, 1996. ILLC.

[POL 94] Pollard C.Sag I., Head-driven Phrase Structure Grammar. CSLI and Uni-
versity of Chicago Press, 1994.

[Pro 98] Programming Systems Lab Saarbrücken, 1998. Oz Webpage: http://
www.ps.uni-sb.de/oz/.

[PUL 97] Pulman S., Higher Order Unification and the Interpretation of Focus . Lin-
guistics & Philosophy, 20, 73–115, 1997.

27



[ROS 67] Ross J., Constraints on Variables in syntax . PhD thesis, MIT, 1967.

[SCH 97] Schulte C., Oz Explorer: A Visual Constraint Programming Tool . Naish
L., , Proceedings of the Fourteenth International Conference on Logic Program-
ming, 286–300, Leuven Belgium, July 1997. MIT Press.

[SMO 92] Smolka G., Feature Constraint Logics for Unification Grammars . Journal
of Logic Programming, 12, 51–87, 1992.

[SMO 94] Smolka G.Treinen R., Records for Logic Programming . Journal of Logic
Programming, 18, 3, 229–258, 1994.

[SNY 91] Snyder W., A Proof Theory for General Unification. Progress in Computer
Science and Applied Logic. Birkhäuser, 1991.

28


