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Abstract. With more than 120.000 articles published annually in math-
ematical journals alone, mathematical search has often been touted as a
killer application of computer-supported mathematics. But the artefacts
of mathematics – e.g. mathematical documents, formulas, examples, al-
gorithms, concrete data sets, or semantic web-style graph abstractions –
that should be searched cover a variety of aspects. All are organized in
complex ways and offer distinct challenges and techniques for search. Ex-
isting representation languages, the corresponding query languages and
search systems usually concentrate on only one of these aspects. As a
consequence, each system only partially covers the information retrieval
needs of mathematical practitioners, and integrated solutions allowing
multi-aspect queries are rare and basic.
We present an architecture for a generic multi-aspect search system and
analyze the requirements on paradigmatic practical information retrieval
needs.

1 Introduction and Related Work

Motivation Computers and Humans have complementary strengths: Computers
can handle large data and computations flawlessly at enormous speeds. Humans
can sense the environment, react to unforeseen circumstances and use their in-
tuitions to guide them through only partially understood situations. We speak
of a horizontal task if it involves systematically sifting through large volumes
of data or carrying out large computations. This contrasts with a vertical task,
which involves intricately combining multiple previously unclear methods in a
limited domain. In general, humans excel (only) at vertical tasks, while ma-
chines excel (only) at horizontal ones. For example, in mathematics humans
explore mathematical theories and come up with novel insights/proofs but may
delegate symbolic/numeric computation, proof checking/search, data storage,
and typesetting of documents to computers.

A general goal is to develop solutions for horizontal problems in mathemat-
ics and dovetail the solutions into the vertical workflows of practicing math-
ematicians. One of the most important horizontal problems is Mathematical



Information Retrieval (MIR), i.e., finding mathematical objects with particular
properties — e.g. a counterexample, a theorem that allows rewriting a formula
into a more tractable form, an article that describes a method applicable to a
current problem, or an algorithm that computes a particular value.

Despite significant efforts and successes, current MIR systems are far behind
practical needs. It is not even clear how to best design a good MIR system. Many
existing mathematical tools are highly specialized, e.g., into proof assistants,
computer algebra systems, mathematical databases, or narrative languages like
LATEX or HTML+MathML. Current MIR solutions often exploit this specializa-
tion by custom-fitting indexing and querying solutions to the data model of the
tool, e.g., using substitution tree indexing for a set of theorems or SQL queries
for a mathematical database. But MIR is often needed outside such a tool, e.g.,
imagine a mathematics-aware Google-like interface that finds semantically rel-
evant results in the Coq library, the arXiv, and the OEIS. Thus, the question
arises how to query heterogeneous mathematical knowledge, i.e., how to design
representation and query languages that allow finding results in many different
libraries using vastly different representation languages.

Contribution We present the high-level design of an indexing and querying in-
frastructure that we believe to be an interesting candidate for a comprehensive
solution. We cannot provide a detailed scalable solution at this point. In fact, we
believe more conceptual and experimental research is needed before that would
be feasible.

Concretely, our design is based on the ideas of [Car+20a], which classify
mathematical libraries and objects by five aspects: deductive, computational,
narrative, databases containing concrete objects, and organizational ontologies
— a classification that matches existing tools and optimized indexing and query-
ing solutions quite well. Our key ideas are: (i) While every library typically has
one primary aspect (e.g., deductive for a Coq library), it may contain objects
of any other aspect as well (e.g., narrative comments). (ii) Our solution is cen-
tered around a set of specialized indexes (one per aspect), and indexing a library
generates entries in each of these indexes. (iii) For each index, existing solutions
provide optimized querying support (e.g., SQL for concrete databases), and these
supply the atomic queries of a comprehensive MIR system. (iv) Complex queries
arise by combining atomic ones (e.g., intersection), and query evaluation is based
on decomposing a query into atomic ones that are executed by the respective
tools.

Related Work Information retrieval (IR) is the activity of obtaining informa-
tion relevant to an information need from a collection of resources. In MIR,
both the resources and the information need are mathematical in nature. Cur-
rent approaches to MIR have mostly been technology-oriented, focusing either
on formula search or on adapting traditional IR techniques to include formula
data. [GSC15] gives a survey and [Aiz+16] a description of the NTCIR MIR
challenges. An exception to this is the work reported in [ST16; Sta+18] which



concentrates on extracting semantic/mathematical information from mathemat-
ical documents and then use it for information retrieval.

Our architecture can be seen as a variant of the data integration system using
a Global-as-View schema mapping in the sense of [DHI12], which combines differ-
ent relational databases. They use a query language based on what they call the
mediated global schema, which is induced as the union of the local schemas under
a database view. That kind of heterogeneity problem is much simpler because
it involves only mediating between different schemas in a fixed aspect (namely
relational databases) whereas the MIR problem requires mediating across dif-
ferent aspects. It remains an open question whether such SQL-specific solutions
can be applied directly to MIR: the awkwardness of encoding knowledge of the
other aspects in SQL may be offset by the high levels of optimization in existing
solutions such as Apache Drill [AD]; but also see [Cho+05].

Overview In the next section we will show that mathematical resources and in-
formation needs have more aspects than the formulas and words used in MIR so
far. In Section 3 we present an architecture for a generic multi-aspect represen-
tation and search system, in Section 4 we discus indexing concrete mathematical
data, and in Section 5 we specify a cross-aspect query language for MIR. Sec-
tion 6 evaluates both on paradigmatic MIR examples.Section 7 concludes the
paper.

A Multi-Aspect Library The Online Encyclopedia of Integer Sequences (OEIS)
[Slo03; OEIS], a popular web portal that contains information on more than
300.000 integer sequences, is an example of a mathematical library whose con-
tents range over multiple aspects.

Internally, the OEIS uses a line-based text format to represent this infor-
mation. Listing 1.1 shows a fragment of the representation for the Fibonacci
numbers. Lines are prefixed by a classifier letter (%I for identifiers, %S for a
prefix of the sequence, %N for the “name”, %C for comments, %D for references,
%A for the OEIS author, and %F for formulae) that indicates the item class.

%I A000045 M0692 N0256
%S A000045 0 , 1 , 1 , 2 , 3 , 5 , 8 , 1 3 , 2 1 , 3 4 , 5 5 , 8 9 , 1 4 4 , 2 3 3 , 3 7 7 , 6 1 0 , 9 8 7
%N A000045 F i b o n a c c i numbers : F ( n ) = F ( n−1) + F ( n−2) w i t h F ( 0 ) = 0 and F ( 1 ) =

1 .
%C A l s o somet imes c a l l e d Lamés s e q u e n c e .
%D A000045 V . E . Hoggatt , J r . , F i b o n a c c i and Lucas Numbers . Houghton , Boston ,

MA, 1 9 6 9 .
%F A000045 F ( n ) = ((1+ s q r t ( 5 ) ) ˆn−(1− s q r t ( 5 ) ) ˆn ) /(2ˆ n∗ s q r t ( 5 ) )
%F A000045 G . f . : Sum {n>=0} x ˆn ∗ P r o d u c t {k =1. . n} ( k + x ) /(1 + k∗x ) . − P a u l

D. Hanna , Oct 26 2013
%F A000045 This i s a d i v i s i b i l i t y s e q u e n c e ; t h a t i s , i f n d i v i d e s m, then a ( n

) d i v i d e s a (m)
%A A000045 N . J . A . S l o a n e , Apr 30 1991

Listing 1.1. OEIS Sources for Sequence A000045 (Fibonacci Numbers)

The OEIS portal features a simple boolean search engine which allows to
search for sequences by OEIS ID, name, keywords, and subsequence (this can
contain anonymous wildcards for integers and subsequences). Additionally, atomic



queries can be qualified by prefixes that restrict keywords to the various classes
of items or change the sequence matching algorithm (e.g. from signed to unsigned
equality on components). The query results of this query are a sequence of com-
plete presentations of the sequence information ordered by “relevance”, which
combines match quality, sequence popularity and number. There is a variant
called superseeker (an e-mail server) that “ tries hard to find an explanation for
a number sequence” combining information from the OEIS and other sources.

2 Aspects of Math Resources and Information Needs

In [Car+20a] we have identified the following five basic aspects of mathematics:
i) Inference: deriving statements by deduction (i.e., proving), abduction (i.e.,

conjecture formation from best explanations), and induction (i.e., conjecture
formation from examples).

ii) Computation: algorithmic manipulation and simplification of mathemat-
ical expressions and other representations of mathematical objects.

iii) Concretization: generating, collecting, maintaining, and accessing collec-
tions of examples that suggest patterns and relations and allow testing of
conjectures.

iv) Narration: bringing the results into a form that can be digested by hu-
mans, usually in mathematical documents like articles, books, or preprints,
that expose the ideas in natural language but also in diagrams, tables, and
simulations.

v) Organization, i.e., the modular structuring of mathematical knowledge.

Narration

Inference
Organization

Computation

Concretization

Fig. 1. Five Aspects of Math Artefacts

These aspects — their existence
and importance to mathematics —
should be rather uncontroversial. Fig-
ure 1 illustrates their tight relation: we
locate the organization aspect at the
centre and the other four aspects at
the corners of a tetrahedron, since the
latter are all consumers and producers
of the mathematical knowledge repre-
sented by the former. [Car+20b] gives
a survey of paradigmatic mathemati-
cal software systems by the five aspects
they address.

We use the term symbolic to cover deductive (aspect Inference) or compu-
tational (aspect Computation) in this paper. While these libraries are pragmat-
ically very different and are thus distinguished in the classification above they
can be treated in the same way for the purpose of search. Coming back to OEIS,
we see that it contains all five aspects of mathematical knowledge:
1. symbolic knowledge: the formulae, even though in this case they are informal

ASCII art; there is also computer code,
2. concrete knowledge: the sequence prefix,



3. narrative knowledge: the name and comments,
4. organizational knowledge: the identifiers and references.

Mathematical information needs typically involve combinations of these five
aspects. A paradigmatic example is the quest for “all published integer sequences
that are not (yet) listed in the OEIS” of an OEIS editor who wants to extend
OEIS coverage. Answering this information need will involve finding integer se-
quences in documents (a combination of concretized and narrative knowledge),
determining whether these documents are published (i.e. part of the archival
literature; this involves organizational metadata), and pruning out the OEIS
sequences. An OEIS user might be interested in “the integer sequences whose
generating function is a rational polynomial in sin(x) that has a Maple im-
plementation not affected by the bug in module M”. This additionally involves
symbolic knowledge about generating function (formula expressions), and Maple
algorithms.

We take these examples as motivation to develop an approach for multi/cross-
aspect information retrieval now. Section 6 develops a concrete example.

3 Heterogeneous Indexing of Mathematical Libraries

We motivate and introduce some general concepts that can be seen as funda-
mental assumptions from which much of our proposed design is derived.

Fragments of a Library We require that libraries of any aspect define document
fragments and assign unique identifiers (URIs) to them. These fragments will
be used critically in the interface specification for query engines. In particular,
query results contain at least a set of fragments that match the query (plus
possibly other information, e.g., how or how well they match the query).

Identifying and Producing the fragments is natural as individual libraries
typically already have a corresponding concept, e.g.:
– An organizational library already focuses on introducing concepts with unique

identifiers. Each such concept is a fragment, with the same id.
– A symbolic library is structured into files which contain a tree structure of

nested theories/modules/etc. whose leaves are declarations for named types,
functions, etc.. Each node is a fragment with a qualified identifier. The un-
derlying languages usually already define fragments and their identifiers in
this way because they need them for intra-logical referencing.

– A concretized library is essentially a set of database tables (however the
actual implementation may look like), and each table row is a fragment. In
practice, typically one column serves as a key, and the triple of database,
table name, and key provides the fragment identifier. For example, in many
mathematical tables that contain enumerations of objects (e.g., in LMFDB
[Lmf]), the key can be obtained by concatenating multiple properties of the
object that, together, uniquely characterize it.

– A narrative library is structured both non-semantically into sections, para-
graphs, etc. and semantically into statements like definitions and theorems.



These are often numbered in the presentation, and internally labels are used
to identify them. Those are the fragments, and their identifiers.

Thus, it is straightforward to extend an existing implementation of a language
L in such a way that it can produce the list of fragment-id pairs in a L-libraries.
This is the basic functionality of what we call a harvester for L below.

Findable Objects in a Fragment Next, to describe what it means for a fragment
to match a query, we assume that every fragment has some internal structure
that allows defining occurrences of objects in the fragment. This is the main task
of the harvester: it has to define what exactly an occurrence is and produces for
each fragment the list of objects in it.

Most of the time, these objects have the same aspect as the containing library.
For example, if L is a symbolic language, the most important objects are symbolic
expressions such as the types of the declarations or the formulas in theorems.
Similarly, in a narrative library, they are n-grams of words, and in a table-based
database, they are the primitive database values in the table cells.

However, it is critical to observe that the same library may contain objects
of many different aspects. In fact, libraries of any primary aspect can and in
practice often do contain objects of the other aspects as well. Some of these
objects work in the same way across libraries, although the concrete syntax may
vary. Any library can contain:
– metadata attributing narrative or symbolic objects to a fragment,
– cross-references to fragments of any other library,
– contain narrative comments.

Other such cross-aspect objects are specific to the combination of aspects, e.g.:
– The text of a fragment of a narrative library may be interspersed with sym-

bolic expressions. This occurs in virtually every scientific document.
– A table in a database can use a schema that declares some columns to contain

objects of other aspects. These may be narrative objects represented as a
string, or symbolic objects encoded as primitive database values (e.g., a
polynomial encoded as a list of integer coefficients).

– An expression in a symbolic fragment may contain references to concrete
objects stored externally, e.g., when using a database for persistent mem-
oization. This can be useful in mathematical computation systems1, which
often need to handle complex pure functions.
?? gives an overview of common cross-aspect occurrences of objects.
Thus, it would be a mistake to assume that a library of aspect A is indexed

in an A-index and queried with an A-query language. Instead, every library
fragment F can contain objects Oi of any aspect Ai. We require that it be
possible to find F as a result of queries in any aspect Ai. For example, a symbolic
query (i.e., a symbolic expression with some free variables) can be matched
against the symbolic objects found in F irrespective of the aspect of the library
containing F .

1 https://github.com/OpenDreamKit/OpenDreamKit/raw/master/WP6/D6.9/

report-final.pdf

https://github.com/OpenDreamKit/OpenDreamKit/raw/master/WP6/D6.9/report-final.pdf
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/WP6/D6.9/report-final.pdf
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Fig. 2. Heterogeneous Indexing

Heterogeneous Indexing While every library
can contain objects of any aspect, the aspects
of the objects may not be neglected: index-
ing and efficient querying differs vastly across
aspects. For example, querying n-grams of
words is different from querying symbolic ex-
pressions.

From the above, we can derive the general
design of an indexing infrastructure. Figure 2
gives an overview. For every library, we need
to run a harvester, which returns the set of
findable objects, each consisting of (i) an aspect and an object of that aspect
(ii) the identifier of the containing fragment, (iii) optionally, any other informa-
tion about the occurrences of the object, e.g., the position within the fragment.
The findable objects of all libraries are collected and stored in aspect-specific
indexes, i.e., we use one index per aspect and arbitrarily many libraries. (If this
runs into scalability issues, we can federate the individual indexes, but that is
an implementation issue.)

For example, these indexes could be
– a triple store like GraphDB [Eso] for organizational metadata and cross-

references,
– a substitution tree index like MathWebSearch [HKP14] for symbolic objects,
– a text indexer like Elastic search [Eso] for narrative objects,
– a yet-to-be-developed index for concrete values that we discuss in Section 4.

The harvesters are specific to a library language and often integrated with
the respective tool. For example, a Coq harvester could be integrated with Coq
to harvest any library written in Coq while compiling it; a CSV harvester could
be a stand-alone tool to harvest any concrete database represented as a CSV
dump. Alternatively, if the language-specific part has already been abstracted
away by exporting libraries in aspect-independent formats such as OMDoc, one
can write language-independent harvesters once and for all.

In all cases, it may make sense to write four different harvesters (one for
each index aspect) for the same language. For example, the Coq harvester for
narrative objects may be written as a stand-alone parser of the Coq language
that extracts all comments.

Indexing Induced Objects Finally, we mention an optional concept that we expect
to become relevant in practice as well even though it might not be present in
the first implementations: harvesters that generate new objects that did not
physically occur in the fragment but logically belong to it. We call these induced
objects. There are many instances of induced objects, e.g.:
– In an organizational library, we can take the transitive closure of a relation.
– In a symbolic language that uses some kind of inheritance or logical imports,

a fragment F might be a class/module etc., and we can index also objects
logically occurring in F through inheritance. That is already done routinely
in many documentation generation tools, especially for object-oriented pro-



gramming languages. We also built a symbolic index like that for Mmt in
[IKP14].

– Sometimes, especially in deduction systems, the most feasible way to imple-
ment the harvester is to instrument the kernel. But the kernel may perform
extensive normalization, in which case the index will contain the objects in-
duced by normalization. Unfortunately, that also means it might not contain
some objects originally in the library (because they are normalized away),
which is a known problem with indexing deductive libraries.

4 Indexing Concrete Values

Motivation Above we have described concrete values as being stored in rela-
tional databases. Conceptually, this fits well for all the datasets we have sur-
veyed [MDT; Ber19]. In practice, the situation may differ a bit. Sometimes the
information is more efficiently retrieved by on demand computation. For exam-
ple, the authors of the GAP small groups library [EBO] used computer algebra
system integration to bring the average space demand down to less than two bits
per group without significantly sacrificing the speed of retrieval. When compu-
tation is not feasible, custom compression is often needed to manage the size of
large datasets like [FL]. All of these datasets could be stored as simple tables,
but that has not been seen as advantageous so far.

Even if all libraries used relational tables, an indexing and querying solution
should not necessarily be built on operations such as filters and joins. These
are what SQL focuses on, and work for MIR needs where the user knows the
data format and how to extract information from it. SQL is less useful for more
exploratory MIR tasks, which is what we focus on in this paper. Relational
database indexes usually focus on each index providing fast access to the rows in
one table. This is not as suitable for the design from Section 3, where we require
a single index holding all objects (i.e., the entries of all cells) searcheably.

It is therefore helpful to develop an indexing solution that goes beyond just
taking the union of the individual datasets. We have already collected some ini-
tial experiences in the MathDataHub system [DMH], where datasets are broken
down into parts that roughly correspond to mathematical properties (group or-
der, number of triangles in a graph, ...). Such an approach supports indexing
subsets of datasets and allows for building new datasets from old ones. Even
though that work predates and is in fact not always consistent with the ideas
developed in this paper, some parts of it can be seen as an ad-hoc prototype
solution of a concrete index.

An underlying idea for concrete datasets is to index complex objects such as
integer sequences, groups, etc. via their mathematical invariants (fingerprints).
This idea was proposed in [BT13] and adapted to examples of objects in [BV20].

In the sequel, we follow our design from the previous section and specify how
a relational database can be used to build an index of concrete objects. Note that
in this design, the entire database serves as the index, and that use of the word



“index” must be distinguished from any internal indexes kept by the database
implementation.

The Symbolic-Concrete Spectrum We use the following intuition to distinguish
between symbolic and concrete objects: Symbolic objects include free names
(constants, variables) and thus cannot always be reduced to a value. Concrete
objects, on the other hand, are closed and fully evaluated. The distinction is not
as clear-cut as one might think:
– A closed expression containing bound variables is a borderline case; we con-

sider it symbolic.
– A polynomial (with evaluated coefficients) contains the variable name; but if

we consider those names to be string values (which is done in many datasets),
the whole polynomial can be seen as concrete.

– Irrational numbers such as e or
√

2 contain names but are still generally
considered to be values.
The distinction is important because it leads to differences in indexing. The

MIR needs for symbolic objects focus on their structure. Symbolic objects can be
stored efficiently in a substitution tree index and queried by unification queries
as done in MathWebSearch. However, the more desirable querying up to infer-
able/computable properties is difficult, e.g., search/unification up to associative
and commutative properties is a well-known difficult problem. On the other
hand, many interesting properties of concrete objects are (often efficiently) com-
putable, e.g., it is easy to check if a finite prefix of an integer sequence contains
a certain subsequence. Thus, it is desirable to index concrete objects and their
properties in a way that supports such queries.

To make the distinction precise, we have introduced a rigorous treatment in
[WKR17]. Firstly, we standardized a set of types (numbers, strings, lists, and
tuples) for concrete objects commonly used in data representation languages such
as JSON or CSV. Secondly, we standardized a notation of codecs that represent
symbolic objects as concrete ones. This allows treating any mathematical object
as a triple of its symbolic representation, a codec, and the corresponding encoded
concrete object.

An Index Design We use a relational database with one table for each type in
our standardized language of concrete objects. Each table has a column “value”
holding the object using a chosen standard encoding.

For each type we define a set of operations that are precomputed and stored
with the objects (e.g., the factorization of an integer or the roots of a polynomial),
and their results are stored in additional columns. However, these columns do
not hold the actual result objects; instead, the results are concrete objects that
are themselves stored in the index, and the columns just hold references to them.
(A recursion threshold is used in case this process does not terminate.)

In practice, we must distinguish between different kinds of precomputed op-
erations. Some will require so much mathematical knowledge that they can only
be computed by computer algebra systems. Those computations may or may
not be linkable via the database’s foreign function interface. On the other end



of the spectrum, some computations will be so easy that they can be carried out
by the database on the fly, e.g., in a function-based SQL index.

Overall, this design has the advantage of being extensible. We can easily add
new types (i.e., tables) and new precomputed operations (i.e., columns). This
results in a formal language of types, constructors for objects of these types,
and operations on such objects, which we call MDDL (for mathematical data
description language).

Concrete Queries A concrete query over this index is of the form SELECT X1 :
T1, . . . , Xn : Tn WHERE P (X1, . . . , Xn). Here the Ti are types and P is a com-
putable MDDL-expression of boolean type. The Xi represent objects in the
index of type Ti and are bound in P . The intended semantics is that it returns
all substitutions to the Xi for which P is true.

It is straightforward to develop more complex query languages, but even
this simple form is quite difficult to implement. Most critically, even if P is
computable, it may not be efficiently computable. And even if it is, it may not
be practical to program the computation inside an SQL database.

On the other hand, many simple forms of P can be directly translated to SQL
queries. For example, if f is one of the precomputed values for T , then SELECT X :
T WHERE f(X) = 5 becomes the SQL query SELECT value FROM T WHERE f = 5.

Open Problems While we are convinced in general of the utility of this design,
several open problems remain, for which further research is needed. We discuss
these in the remainder.

In some cases, our design will explode. For example, storing all subsequences
of an OEIS sequence may become infeasible quickly even if attention is restricted
to fixed-length prefixes of sequences. Thus, special indexing techniques must be
developed for individual types and operations.

Another issue is the choice of codec in the index. For each type, we can choose
a standard codec and use it to represent the objects in that type’s table. Then
harvesters that find encoded objects in different encodings must transcode them
into the standard encoding. However, in some cases this will be inefficient — the
most common example is the trade-off between sparse and dense encodings of
lists.

But even in the seemingly trivial case of integers, this can become an issue:
For example, in [WKR17], we encountered multiple different encodings of unlim-
ited precision integers transcoding between which was not always trivial. This
is aggravated in connection with the next issue discussed below: different codecs
may commute more easily with different mathematical operations. Therefore, it
may be necessary to use multiple tables for the same type — one per codec.
This will make retrieval harder as results from all tables have to be considered;
moreover, the same object might exist in multiple tables.

Finally, if an index is hosted by a relational database, it is desirable to match
mathematical operations to primitive database operations. But this is difficult
because the database only sees the encoding. For example, computing the degree
of a univariate polynomial encoded as a list of coefficients can easily be done by



the database by taking the length of the list. But computing its roots requires
decoding it, computing the roots in custom code, presumably in a computer
algebra system, and then encoding the results.

5 A Heterogeneous Query Language

Libraries

lib 1

...

lib n

Indexes

sym:MWS

narr:Elastic

conc:SQLDB

org:GraphDB
...

Querying

QuComp

ResAgg

Q1:unif

R1

Q 2
:B

oW

R2

Q
3
:S
Q
L

R3

Q
4
:S

P
A
R
Q
L

R4

Q

R

Qp

Q∗
s

Fig. 3. The Search Architecture

Overview Figure 3 shows the
general search architecture
we propose. On the left we
have any number of libraries,
which are harvested into four
aspect-specific indexes as de-
scribed above. A user query
Q is expressed in a cross-
aspect query language de-
scribed below. It is passed to
a query engine that separates
Q into a set of aspect-specific
atomic queries Qi, for which
the respective database re-
turns result Ri. These are then aggregated into the overall result R that is
returned to the user. Note that our drawing uses exactly one query Qi per aspect
— that is just an example, and there can be any number of queries (including
zero) per index. It is also straightforward to extend the design with additional
indexes if new kinds of indexes are conceived.

In this paper, we focus on a relatively simple format for the queries: Every
query Q consists of
– a list of query variables X1, . . . , Xn, we use upper case letters for them,
– a list of atomic queries Qi(X1, . . . , Xn).

Each atomic query is aspect-specific and resolved by lookup in the respective
index. The intuition of the overall result R is to return the intersection of the
atomic queries Qi. More formally, the results Ri and R of the queries are sub-
stitutions for the query variables. The atomic queries are evaluated sequentially;
each time some query variables may already have been instantiated by previous
atomic queries, and the results are substitutions for the remaining ones.

More complex queries can easily be conceived, but this simple fragment cap-
tures not only the most practically relevant cases but also one of the biggest
difficulties of heterogeneous queries: How can queries of different aspects mean-
ingfully share query variables? The latter is what we discuss in the remainder.

Atomic Queries with Shared Variables To specify our query language in detail,
we have to spell out the structure of the atomic queries. Here, we are mostly
bound by the capabilities of the existing aspect-specific indexes except for occa-
sionally deriving improvement suggestions for them.

All atomic queries are relative to a set of query variables ranging over formal
objects. All query variables may by typed with MDDL types. The results are



substitutions of the query variables with formal objects. Here the set of formal
objects should be a large enough to subsume content MathML but should also
allow any URI as an identifier even if it is not declared in some content dictionary
(e.g., any identifier of a paper, author, etc.) as well as sufficient literals as needed
to build concrete objects.

Concretely, we assume the following:

– An organizational atom is an RDF triple s p o possibly containing a query
variable as the subject s or object o. It instantiates these with identifiers or
literals.

– A symbolic atom is of the form F ∈ Symb(S(X1, . . . , Xn)) where S is
some formal object with free query variables and F is a query variable. It
substitutes F with the identifier of the fragment that contains an object
matching S and substitutes the Xi according to that match.

– A concrete atom is as described in Section 4 except that the free variables
are taken from the globally bound query variables Xi. Thus, it is simply an
MDDL predicate. It substitutes the query variables with pairs of concrete
object and codec.

– A narrative atom is of the form F ∈ Narr(W1, . . . ,Wm) where F is a
query variable and each Wi is a string-valued object. The query instantiates
F with the identifier that matches the bag of words containing the Wi. Due
to the nature of implementations of narrative queries, the bag of words may
not contain any free variables when sent to the narrative index, i.e., any
Wi that are query variables must have been instantiated previously (with a
string value) by some other atoms.

Both SPAQRL and MDDL queries naturally use a SELECTWHERE form with the
WHERE clause containing a conjunction of atoms. This inspires our overall syntax
for heterogeneous queries: SELECT V ∗ WHERE A∗ where each V declares a query
variable X as X : T , and each A is one of the four atoms. For convenience,
we also allow undeclared query variables — these are simply dropped from the
returned substitutions.

Notably, stand-alone symbolic query engines only use S as the query (rather
than F ∈ Symb(S)) and return pairs of fragment identifiers and substitutions.
Similarly, stand-alone narrative query engines usually only use the bag of words
as the query. But in heterogeneous queries, we may want to use the fragment
identifier in other atoms of the query. Therefore, we have extended the syntax
for symbolic and narrative atoms with an explicit query variable referring to
the fragment. The corresponding extension is not needed for organizational and
concrete atoms. These are already two-part queries where the first part declares
query variables and the second part is a conjunction of atomic predicates that
should hold about them.

A key difficulty is that atoms of different aspects instantiate variables with
different kinds of objects, and these cannot always be directly substituted into
atoms of other aspects. For example, consider a symbolic atom F ∈ Symb(X2)
that substitutes X with some identifier MathML symbol s. We can still use the
variable X is a subsequent narrative atom by converting it to a string, e.g., by



using the name of s. But if X is substituted with a composite MathML object,
we have to first evaluate it into a string, which may or may not be possible or
easy. Similarly, we can still use X in a subsequent concrete atom, but only if
we infer a codec that should be used to encode X into a concrete object; this
codec can be inferred from the type declared for X in the query or in some cases
simply from the shape of X. Therefore, for each pair (a, b) of aspects, we need
conversion rules that allow converting objects substituted by a-atoms to objects
usable in b-atoms. Figure 4 gives an overview of possible conversions for column
heads a and row head b.

instantiating query∗ organizational symbolic concrete
instantiates with id or literal symb. obj. conc. obj.+codec

used by . . . queries via . . .

organizational as is ids, literals: as is
other: evaluate

symbolic as is as is decode

concrete literals: as codes encodeP as is
ids: fail

narrative ids: name as string value as string
literals: as string

other: evaluate
∗: narrative queries never instantiate variables; P marks partial conversions

Fig. 4. Conversions of objects across queries of different aspects

Of course, if a query contains multiple atoms of the same aspects, it may be
reasonable to merge them. Multiple organizational atoms can be directly joined
into a SPARQL query, and similarly, multiple concrete atoms can be translated
jointly into a single SQL query. However, two additional and conflicting imple-
mentations strategies must be considered: On the one hand, it is desirable to
first execute those atomic queries that fill in many query variables. That makes
later queries more specific and thus more efficient. On the other hand, it is desir-
able to first execute those atomic queries that return the fewest results. Because
every result leads to a different substitution, all subsequent atomic queries using
those query variables must be duplicated for each result. It remains an open
question which strategy works best in practice, and it is unlikely that a single
best strategy exists. But there is a large databases literature to draw experience
from.

Ranking of Results

6 Examples and Evaluation

While it is, in our experience, not very common to find queries that naturally
combine all four index types, combinations of two or three are quite common.



Example 1. Consider a concrete library of graphs in a table that additionally
stores human-recognizable names and arc-transitivity for each graph (for exam-
ple, [EET]). These are harvested into a concrete index with a type and codec
for graphs, e.g., the sparse6 format [McF], a Boolean computed property for
the arc-transitivity, and a string property for the name. Additionally, consider
all papers from the Cornell e-Print arXiv harvested into the same narrative
index [SK08], and an organizational index that stores triples for the BIBO pub-
lication and SPAR semantic publishing ontologies.

Q1: Find arc-transitive graphs that are mentioned by name in articles
in journals with h-index greater than 50.

can be encoded in the following query using the concrete, narrative, and orga-
nizational aspects:

SELECT G : Graph WHERE

arcTransitive(G), F ∈ Narr(Name(G), ”graph”),
F partOf P, P bibo: publishedIn J, J spar: hasHindex H,H > 50

The first atom in the WHERE-clause returns all arc-transitive graphs G in the
concrete index.

The second atom retrieves the names of these graphs and runs a narrative
query for them. This includes evaluating the expression Name(G) into a string
by retrieving the corresponding value from the concrete index. To avoid false-
positives, we include the word ”graph” in the narrative atom. It instantiates F
with the identifier of the matching fragment, presumably a part of a paper.

The next three atoms are organizational atoms that perform a SPARQL
query retrieving first the identifier P of the paper containing F , the identifiers
J of the journal it appeared in, and its h-index H. H is a concrete value that is
reused in the final concrete query on the size of H.

Finally, we throw away all variables from the obtained substitutions except
for the graphs G. Alternatively, we could include P in the SELECT-clause to also
return the paper.

In the above example, we see how a query compiler should consider merging
consecutive organizational atoms into a single SPARQL query. In that case, the
last concrete atom of the example could, because it is so simple, alternatively
and more efficiently be included in that SPARQL query as well. Moreover, the
atoms in the WHERE-clause were ordered in a way that previous queries restrict
the scope of the subsequent ones. More generally, the query compilers should
reorder the atoms automatically.

1. Find theorems with non-elementary proofs
2. Find algorithms that solve NP-complete graph problems
3. Find integer sequences whose generating function is a rational polynomial in

sin(x) that has a Maple implementation not affected by the bug in module
x.



SELECT X: $\mathbb{N}\ r i g h t a r r ow \mathbb{Z}$
WHERE

4. CAS implementations of Groebner bases that conform to definition in AFP
5. Find all group representations that are good for X (say a software engineer

working on something and doesn’t know group theory), maybe “computing
with in/finite groups”.

6. Math software systems that implement algorithms from MSC48CXX (or that
compute a particular thing)

7. All areas of math that Nicolas G. de Bruijn has worked in and his main
contributions.

8. All the researchers that have worked on problem X (where X does not have
a good name, maybe connected to “Go”)

9. Areas of mathematics that immediate descendants of X worked on
10. All graphs whose order is larger than the publication record of its “inventor”

(name patron)
11. Integer sequences that grow sub-exponentially
12. Published integer sequences not listed in the OEIS
13. Find all polynomials whose list of coefficients occurs as a subsequence of a

specific OEIS sequence

7 Conclusion and Future Work

We have presented a high-level design for a cross-aspect query language and
search engine for mathematical information retrieval. The crucial observation is
that mathematical information needs address multiple aspects and even though
mathematical libraries often have a primary aspect, they usually also contain or
reference material of other aspects as well. Our cross-aspect search architecture
proposes to harvest all objects into aspect-specific indexes. Correspondingly, the
proposed query language combines atomic queries from existing aspect-specific
query languages and a query compiler distributes them to the respective indices.
The query language is more than just a sum of the four parts as it allows to
share variables between the aspect-specific sub-queries and compute non-trivial
joins.

We have conducted a requirement analysis on the respective basis technolo-
gies and have confirmed the principal adequacy of the query language on paradig-
matic, cross-aspect information needs. This shows that existing search/indexing
technologies are essentially sufficient for cross-aspect search except for the con-
crete aspect, where our previous work in MathDataHub provides a good first
step.

The obvious next step is an implementation of a distributed cross-aspect
search engine as sketched as part of the MathHub system. MathHub already has
already collected most of the largest theorem prover libraries (symbolic), the
1.5M preprints of the arXiv, and several large collections of concrete mathemat-
ical objects in a common representation format and assigned uniform identifiers



to their fragments. MathHub already integrates symbolic and narrative indices,
and the MMT system which MathHub employs for knowledge management –
while not a dedicated index – can already answer complex symbolic and organi-
zational queries [Rab12].
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