A Better Role System for OpenMath

Florian Rabe, Michael Kohlhase

Computer Science, Jacobs University Bremen
{f .rabe,m.kohlhase}@jacobs-university.de

Abstract. OpenMath is a standard for the representation and commu-
nication of mathematical objects, which are built up from symbols and
variables using applications, binding expressions, and key-value attribu-
tions. OpenMath2 introduced a set of symbol roles that can be specified
in content dictionaries to restrict the occurrences of the respective sym-
bols. This yields a simple, high-level notion of well-formed objects.
While this system is appealing in its simplicity, the definition of well-
formedness is purely extensional without an intuitive or formal condition
that distinguishes well-formed objects from ill-formed ones. Moreover,
some well-formed objects should arguably rather be ill-formed. We try to
remedy that with a refined role system while preserving the simplicity of
the existing one. In particular, by distinguishing syntactic and semantic
roles, we can capture the intuitive notion of well-formedness better.

1 Introduction

OpenMath is a standard for the representation and communication of mathe-
matical objects, which are built up from symbols and variables as applications,
binding expressions, attribution. To provide a simple, high-level well-formedness
criterion the OpenMath2 standard [BCCT04] introduced a set of symbol roles
that can be specified in content dictionaries to restrict the occurrences of the
respective symbols. In the rest of this section we point out some problems of
the OpenMath Role system before we will try to solve them in the Section
Section [d] concludes the paper.

1.1 General Problems of the OpenMath2 Role System

However, even though OPENMATH attempts to use the role system for a high-
level well-formedness check, its status remains somewhat unclear. The text says
that

A symbol [...] cannot be used to construct a compound OpenMath object
in a way which requires a different role (using the definition of construct
given earlier in this section). This means that one cannot use a sym-
bol which binds some variables to construct, say, an application object.
[BCCT 0/, subsection. 2.1.4]

the compliance chapter [BCC'04, Chapter 5] does not mention the role system at
all. Furthermore, even the text above is not consequent enough to forbid clearly
ill-formed expressions where binders and keys occur anywhere in an expression or
where symbols without any role are used as binders. Even worse: The standard
permits composed objects as the first child of a binder; thus, any symbol can be
used as a binder after all by wrapping it in a meaningless attribution.

Thirdly, while it is reasonable to avoid a type system in OPENMATH, it would
be easily possible and extremely helpful to restrict the number of arguments that
a symbol can be applied to.

1.2 Complex Binding Operators and Attribution Keys

In a nutshell, the OPENMATH role system uses the roles binder, error, attribution

and semantic-attribution, application, and constant. The underlying de-
sign principle of the OPENMATH role system is that binders, errors, keys, and
applications occur as the first children of OMBIND, OME, OMATP, and OMA objects.
While this is certainly appealing, there are several disadvantages.

However, composed expressions must be allowed as applications in order to
permit anonymous functions. Therefore, we have the choice to either permit
composed binders, errors, and keys or to break the symmetry between the con-
structors.

Considering the former option, it is indeed often convenient to use binders
and keys that are composed expressions, namely the results of applications. For
instance we have found that integration can be expressed most elegantly if the
integral is an operator that takes the domain of integration as the argument and
returns the binder . For example,

<OMBIND>
<OMA >
<OMS cd="calculsl” name="integral” />
<OMA>
<OMS cd="intervall” name="interval” />
<OMYV name="a”" />
<OMYV name="b"/>
</OMA>
</OMA>
<OMBVAR><OMYV name="x"/></OMBVAR>

</OMBIND >

is a most natural representation of fj f(z)dz. Here and in the future, we will use
boxed mathematical formulae to abbreviate OpenMath Objects wher the XML
representations is immaterial to the exposition.

Keys are typically atomic but not always. For example, the typing relation
in a language with an infinite type hierarchy is parametrized by an integer value
for the type level.

Furthermore, both for binder and for keys, it is conceivable to use symbols
wrapped in non-semantic attributions, i.e., to attach presentation information
to them.

2 A two-dimensional Role System

Roles are associated with symbols in content dictionaries. We propose to gener-
alize the role of a symbol into two orthogonal aspects:

— role represents the syntactic role of a symbol. It corresponds roughly to the
role of OPENMATH2.
— arguments represents the number of arguments that a symbol takes.

In this section, we will present the extended role system on a conceptual level
and deal with syntactic issues in Section
The semrole has three possible values:

— term: This role represents all kinds of expressions as they occur in mathe-
matics and type theories. It is the default if no role is given.

— binder: This role represents binding operators. There is an informal con-
sensus among mathematicians and computer scientists that expressions and
binders are to be distinguished. The characteristic feature of binders is that
they need variables and scope and cannot occur alone. For example, in
lambda calculus almost everything is an expression but not the A itself (and
not the application operator, which is present in OPENMATH already any-
way). Similarly, every mathematician would interpret a | symbol occurring
by itself as the non-binding operator on functions and never as a binder.

— attribution and semantic-attribution: These roles represent keys that
can occur in attributions. Just like binders, they do not carry mathematical
meaning on their own and only become meaningful within an attribution.

We will abbreviate these four values as 7, B, A, and S, respectively.

There is no value error because we hold that the property of being an error
is not a syntactic property like those of being a binder or a key. Rather, it is a
semantic property. This is confirmed by programming languages such as Java or
SML where exceptions are treated as normal expressions that only obtain their
special semantics in the type-checking and execution phase. Therefore, we argue
that OME objects should be abandoned in favor of OMA objects. The property of
being an error should be marked up by introducing a second role attribute for
semantic roles. This new attribute is not only useful to mark up errors, but can
also be used to mark up other semantic roles such as element, sort, proof, or
judgment. We come back to this in Sect. 2.2

There is no value application either. This is because the argument why
binders and keys should be separated from expressions does not carry over to
applications: A symbol designated as an application may very well occur sepa-
rately and has a well-defined meaning if it does. For example, in the context of
natural numbers, + has the set-theoretical meaning {((x,y),2) | * +y = z}.

We do not consider the property of constructing an application to be alter-
native to that of constructing a binder or a key. Rather do we consider it as an
orthogonal property via the arguments attribute.

The attribute arguments has as values a natural number or the special value
*. Its intended semantics is that it gives the number of arguments a symbol takes.

In particular, by making the number of arguments 0 a symbol is forbidden from
occurring as the first child of an OMA element. We also permit the special value %
to make the number of arguments unrestricted. If a symbol has the semrole of
a binder or key, the default value of arguments is 0. This reflects the fact that
binders and keys are typically atomic. If the semrole is term, the default value
is .

2.1 Well-formed Objects

We define the well-formed objects F and their syntactic roles R(E) € {T,B, A,S}
in a mutual induction.

1.

Every symbol E = OMS(S) is a well-formed expression, and R(E) is the
value of the semrole attribute of S.

. Every variable is a well-formed expression with role 7.
. EEq,...,E, (n > 0) are well-formed expressions, R(E;) = 7T for all i,

and either
— FE is a composed expression and R(E) =T or
— E refers to a symbol and the value of that symbol’s arguments attribute
is % or n,

then OMA(E, E1, ..., E,) is well-formed, and its role is R(E).

It E W, ..V, B are well-formed expressions, R(E) = B, R(E') =7, and

all V; are well-formed attributed variables and R(V;) = 7, then
OMBIND(E, (V4,...,V,), E') is a well-formed expression with role 7.

. If E,K,E’ are well-formed expressions, R(E’) = 7, and R(K) € {S, A},

then OMATTR(E,K := FE’) is a well-formed expression with role R(FE).
(For simplicity, we omit the analogous case of multiple attributions.)

. All elements of specific domains (numbers, strings) and all foreign objects

are well-formed expression with role 7.

Note that we again omit the case of error objects. We come back to them in

Sect. 2.2

It is simple to make a RelaxNG schema out of the above definition. The

schema can be generated from the CDs as in [Koh08§].

Our role system satisfies the following invariants:

Only terms may occur as arguments in applications, variables or scopes in
bindings, or values in attributions.

Keys and binders can only occur as the heads of attributions and bindings,
respectively, and nothing else can occur in these positions.

All symbols can take arguments, and the role of the symbol determines the
role of the result. Symbols can be prevented from taking arguments and
thus from occurring as the head of an application by making their number
of arguments 0.

All expressions can be attributed, and attributions do not change the role
of the attributed expression.

In Case [5, it may be reasonable to additionally require R(E) = 7, which
has the effect that only terms may be attributed. While it seems reasonable to
permit attributions to binder or keys, this might be sacrificed for backwards
compatibility (see below). (*)

2.2 Semantic Roles

In addition to distinguishing syntactic roles, it is often useful to give symbols with
syntactic role 7 an additional semantic role attribute semrole. The intuition
behind this becomes clear from the following list of possible values.

— element and sort: These roles represent mathematical objects and their
containers.

— proof and judgment: Following the Curry-Howard correspondence, these
roles represent proof terms and their containers, namely judgments about
mathematical objects.

— error and error-type: These roles represent error objects and their con-
tainers.

In order to define the semantic role of an arbitrary term, we additionally
permit the semrole attribute on an OMV element when occurring within an
OMBVAR element. This is useful to give variables a semantic role. For example to
distinguish between a lambda abstraction over elements or over types.

Both on variables and symbols, element is the default if no semantic role is
given.

The semantic role of a well-formed expression with syntactic role 7 is defined
as follows:

. For a symbol: according to the declaration of the symbol.

. For a variable: according to the declaration of the variable.

The semantic role of an application is that of the first child.

. The semantic role of a binding is that of the third child.

. The semantic role of an attribution is that of the attributed expression.

. The semantic role of an element from a specific domain or foreign object is
element.

O U W N

Then the OME objects of OPENMATH2 can be recovered as syntactic sugar
for OMA objects with semantic role error.

2.3 Conservativity and Backwards Compatibility

The current roles of the OPENMATH2 standard can be translated to ours as
follows:

— constant: role 7 with 0 arguments,
— application: role 7 with % arguments,
— error: role 7 with x arguments and semantic role error.

— binder: role B with 0 arguments,
— attribution: role A with 0 arguments,
— semantic-attribution: role S with 0 arguments,

Under this translation, we can prove the following restrictions for well-formed
expressions in our sense over content dictionaries in the OPENMATH2 sense:

— constant: This symbol may only occur by itself or with attributions: on
toplevel, as an argument of an application, as the scope of a binding, or as
a value of an attribution.

— application or error: This symbol may only occur as the first child of
an application (possibly with attributions) or anywhere where symbols with
role constant can occur.

— binder: This symbol may only occur as the first child of a binding (except
that in that position it may have attributions)™.

— attribution or semantic-attribution: This symbol may only occur as the
key of an attribution (except that in that position it have attributions)*.

Here the caveats marked with T disappear if we adopt the variant of the
definition of well-formed objects marked (*) in Sect.

This means that OPENMATH2 content dictionaries can be translated to our
role system in a way that well-formed expressions in our sense come as close to
the apparently intended meaning of the OPENMATH2 standard as possible.

3 Proposed Changes to the OpenMath Standard

We propose the following changes to the OPENMATH standard.

1. Symbols declarations in content dictionaries have three attributes
— role, values: term (default), attribution, semantic-attribution, binder,
— arguments, values: natural numbers or *, * is default if role is term, 0
is default otherwise,
— semrole, values: element (default), sort, proof, judgment, error, error-type.
2. OMV elements in variable declarations have a semrole attribute as above.
OMATP elements may have arbitrary objects as the first child.
4. The definitions of well-formed object, syntactic role of an object, and seman-
tic role of a term from Sect. are added to the standard and replace the
existing descriptions of well-formed objects.
5. OME elements become syntactic sugar for OMA element where the first
child has semantic role error.

©w

4 Conclusion

In this paper we have critically re-accessed the role system introduced in the
OPENMATH 2 standard. While this system is appealing in its simplicity, it has

several drawbacks that we try to solve in this paper by generalizing roles into
independent syntactic and semantic flavors.

This has the benefit that a straightforward and formal definition of well-
formed objects can be achieved that preserves the generality and simplicity of
OPENMATH 2 while ruling out many so far permitted nonsensical objects. By
adding the possibility of restricting the number of arguments of a symbol, users
are able to succinctly restrict the possible uses of a symbol without incurring a
significant gain in complexity.

Users can exploit our role system to characterize the possible first children
of composed expressions more strictly as before, and these restrictions lead to
invariants that are available to applications. Our role system would also tremen-
dously simplify our definition of a set-theoretic semantics of OPENMATH ([?]),
which currently has to go out of its way to interpret practically useless objects.

Our extension is conservative in the sense that existing content dictionaries
can be translated to our proposed system. Formerly well-formed objects stay
well-formed except for those cases which the OPENMATH2 role system — acci-
dentally in our opinion — permitted.

References

BCC™04. Stephen Buswell, Olga Caprotti, David P. Carlisle, Michael C. Dewar, Marc
Gaetano, and Michael Kohlhase. The Open Math standard, version 2.0.
Technical report, The Open Math Society, 2004.

Dav99. James Davenport. A small OPENMATH type system. Technical report, The
OPENMATH Esprit Project, 1999.

Koh08. Michael Kohlhase. Compiling OPENMATH type systems to Relax NG gram-
mars. In Olga Caprotti, Sebastian Xambd, Maria- Antonia Huertas, Michael
Kohlhase, and Mika Seppalé, editors, 3rd JEM Workshop — Joining Educa-
tional Mathematics, 2008.

	A Better Role System for OpenMath
	Florian Rabe, Michael Kohlhase

