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Abstract. Spreadsheets are mathematical documents that are heavily
employed in administration, financial forecasting, education, and science
because of their intuitive, flexible, and direct approach to computation.
In this paper we show that spreadsheets are interesting applications for
MKM techniques which can alleviate usability and maintenance prob-
lems as spreadsheet-based applications grow evermore complex and long-
lived. We present the software and information architecture of a semantic
enhancement of MS Excel spreadsheets that aims at compensating the
computational bias in spreadsheets.

1 Introduction

Spreadsheets programs are mathematical software systems: they contain math-
ematical formulae and are used in financial forecasting, education, and science
because of their intuitive, flexible, and direct approach to mathematical com-
putation. It has been estimated that each year tens of millions professionals
and managers create hundreds of millions of spreadsheets [Pan00]. This prob-
ably makes spreadsheets the most heavily used mathematical software systems
at this point of time and should therefore be an interesting testbed for MKM
applications. But it seems that the MKM community has not risen to this oppor-
tunity; possibly since the mathematical aspects are geared almost exclusively to
computational concerns and the declarative aspects of mathematical knowledge
that are the concern of the MKM community seem to play a subordinate role in
spreadsheets at first glance.

In this paper we show that semantic knowledge management techniques can
be used to enhance the interaction with spreadsheets and alleviate usability
problems appearing with spreadsheet complexity: in many spreadsheet-based
applications even longtime users cannot interpret all data and are not certain
about their origins (see [AE06] and its references for a discussion), which often
results in errors on the data level and misinterpretation or misapprehension of
the underlying model.

In the next section we will start out with an analysis of the semantic layers
of spreadsheets. To compensate the diagnosed computational bias we propose to
augment the two existing semantic layers of a spreadsheet — the surface struc-
ture and the formulae — by a third that makes the intention of the spreadsheet



author explicit. In the SACHS project we encode the intention as an accompany-
ing OMDoc [Koh06] document and can thereby provide multi-layered, semantic
help services.

2 Semantic Layers in Spreadsheets

Instead of developing the general theory, we will expose the salient parts of our
approach using Winograd’s example spreadsheet from [Win06] (re-represented
in MS Excel in Figure 1 on page 3) as a running example. We will differentiate
the three semantic layers in turn and draw conclusions viewing this spreadsheet
as both an active and a semantic document.

2.1 Active and Semantic Documents

We call a document semantic, iff it contains an infrastructure that distinguishes
between content and form. Note that such an infrastructure can range from su-
perficial styling information in PowerPoint slide masters or LATEX document
classes, over RDFa [W3C08] annotations in web pages to formal logic specifica-
tions of program behaviors. The idea is that this infrastructure makes relations
between the objects described in the document explicit, so that they can be
acted upon by machines. In particular, semantic documents can be interpreted
by “presentation engines” that operationalize the semantic relations by allowing
the reader to interact with various aspects of the semantic properties. We call the
combination of a semantic document with a presentation engine that can adapt
the surface structure of the document to the environment and user input an ac-
tive document. Our definition is between the concept of embedding semantic
networks into hyper-documents employed by Gaines and Shaw in [GS99] and
the rather visionary notion of documents that can answer arbitrary questions
about their content proposed by Heinrich and Maurer [HM00]. Crucially both
presuppose some kind of content representation in or near the document and a
suitable “presentation engine”.

For the purposes of this paper, we will neglect the fact that most presenta-
tion engines also incorporate editing facilities and concentrate on the interac-
tion with active documents for reading and exploration. This view is similar to
what [UCI+06] call “intelligent documents”.

A paradigmatic example of an active document is a Mathematica note-
book [Wol02], where equations and mathematical objects can be inspected, vi-
sualized, and manipulated by the user. Here, the semantic document is written in
the Mathematica markup language which includes a content markup scheme
for mathematical formulae and a high-level programming language. The presen-
tation engine is the Mathematica front-end which presents interactive docu-
ments to the user and calls the Mathematica kernel for evaluation of program
fragments and computation of mathematical properties.

Spreadsheets are another paradigmatic class of active documents. Here the
semantic document contains representations of the cell values or formulae to-
gether with display information such as cell color, font information, and current



viewport. The presentation engine is a spreadsheet program like MS Excel, which
presents the semantic document to the user by giving it a grid layout and re-
calculates values from formulae after each update. But what is the underlying
semantic model, i.e. what is the “activeness” of spreadsheets based on?

2.2 The Surface/Data Layer

If we look at the example in Figure 1, we see that the grid of cells can be
roughly divided into three areas. The darker, ochre area in the center contains
values of actual and past expenses and revenues; the lighter, yellow box on the
right contains values projected from these. The white region that surrounds
both boxes supplies explanatory text or header information that helps users to
interpret these numbers. Generally, non-empty cells that do not contain input or
computed values usually contain text strings that give auxiliary information on
the cells that do; we call these cells collectively the legend of the spreadsheet,
since they serve the same purpose as the legend of a map.

Fig. 1. A Simple Spreadsheet after [Win06]

Observe that row 17 dis-
plays the central values of the
spreadsheet: the profit/loss sit-
uation over time (i.e., in the
years 1984-1988 as indicated by
the values in row 4). Moreover
note that the meaning of the
values in row 17 is that they
represent profits and losses as a
function π of time: recall that
a function is a right-unique re-
lation — i.e., a set of pairs of
input values and output values.
In our example the pair 〈1984, 1.662〉 of values of the cells [B4] and [B17] is one
of the pairs of π. We will call such a grid region a functional block, and the
function it corresponds to its intended function. Empirically, all non-legend,
semantically relevant cells of a spreadsheet can be assigned to a functional block,
so we will speak of the functional block and the intended function of a cell.

Often a functional block consists of multiple rows and columns and represents
a binary function whose values depend on two (main) parameters which are
usually in the cells of the column on the left and the row on top of the block.
In our example the block with cells [B9:D13] represents a binary function that
ranges over expense categories (given in [A9:A13]) and years (given in [B4:D4]).
In the general case, the intended function of a functional block can have any
arity; its arguments again correspond to functional blocks, which we call input
blocks.

Our notion of a functional block is related to, but different from Abraham
and Erwig’s of a “table” [AE04,AE06], which also contains row and column
header and footer blocks. Our functional blocks roughly correspond to their
“table core”, whereas we would consider their header blocks as input blocks or



legend cells (but there may be non-header input blocks in our model) and their
footer blocks which contain aggregation cells as separate functional blocks.

2.3 The Formula Layer

A spreadsheet cell c may not only be associated with a simple data item (or
value) [[c]], it may also be connected with a formula [[[c]]], which evaluates to
the cell value. A formula is an expression built up from constants, an extended
set of numeric and logic operators, and references to other cells.

In our example, the value of π can be computed from the yearly revenues in
R: = [B6:F6] and the total expenses in E : = [B15:F15] by a simple subtraction,
the total expenses can in turn be computed by summing up the various particular
expense categories listed in cells [A9:A13].

Note that the formulae of cells in a functional block have to be “cp-similar”
[BSRR02], i.e., they can be transformed/copied into each other by adjusting the
respective rows and columns. We call a functional block computed if all of its
formulae are cp-similar. In our example, the functional block P: = [B17:F17] is
computed: let γ range over the columns B to F in P. Note that the formulae
[[[γ17]]] = γ6− γ15 in cells [γ17] are indeed cp-similar. Together, they make up
the function

F(P): = {〈[[γ6]], [[γ15]], [[γ17]]〉|γ ∈ {B, . . . ,F}}

We call F(P) the function induced by the (formulae in) block P. But we also
observe that not all functional blocks in a spreadsheet are computed, for instance
the formulae in the block [B9:D13] are all different constants representing the
measured values, so they cannot be cp-similar. We call such blocks data blocks
and note that the property of being a functional block only depends on a func-
tional correspondence (a conceptual aspect of the data) and not on the existence
of formulae (a property of the spreadsheet).

With spreadsheet formulae, users can express data dependencies on a generic
level, so that the spreadsheet program can do much computational work in the
background. By this virtualization of the traditional ledger sheet (see above),
the user’s role is lifted to a layman programmer and offers according potential.
But Abraham and Erwig report an error rate of up to 90% (!) in spread-
sheets [AE06], which shows that this potential comes with a substantial risk.
They analyze the source of many of these errors to be in a mismatch between
what the spreadsheet author wants to express and the formulae he writes. They
try to address this situation by static analysis techniques (type checking) of the
formulae and supplying the author with “spreadsheet templates”. To understand
this mismatch better, let us now turn to the model the author intends to convey.

2.4 The Intention Layer

Note that even though F(P) and π compute the same values, they are completely
different functions. π is defined via the actual or projected profits or losses of
an organization, while F(P) is a finite, partial binary arithmetic function. Even



when we compose F(P) with F(R) and F(E) and restrict them to the years
1984-86 yielding F : = F(P) ◦ 〈F(R),F(E)〉

∣∣
[[B4:D4]]

, the functions F and π are
only extensionally equal (they are equal as input/output relations) and still differ
intensionally .

Surprisingly, only F is explicitly represented in the spreadsheet of Figure 1,
moreover, this explicit representation is invisible to the user if she doesn’t look
at the formula boxes — thus, leaving the user to figure out the ‘intention’ (the
function π) from the implicit information given in the white part by herself. This
is why we speak of a computational bias of spreadsheet programs, as some
layers of the semantics are explicated but others are not.

Generally, we can assume that spreadsheet program authors use spreadsheets
to express and compute (measurable) properties of situations; if we look a little
closer then we see that these are not properties of the world as such, but of a
high-level, abstract, or mental model of the world, which we subsume under the
term intention of the spreadsheet. In our example, the function π could be
seen as a concept from the intention, whereas the function F can be seen as its
implementation. In our simple example the intention is easy to deduce from the
text in the legend and basic financial accounting knowledge.

But even here, some parts of the spreadsheet’s intention remain unclear:
e.g. for what company or department are the profits and losses computed or
what are the methods of projection for the years 1987/8. Let us now take stock
of what the cells in the spreadsheet mean and what information we need to
infer from this. As we already remarked above, the values of cells [B17:D17]
are (the scalar parts of) the actual profits/losses in the years 1984-1986. We
need information from cell [A3] for the unit of measurement, from cells [B3:D3]
that they are actual, and from [A17] for the interpretation as a ‘profit/loss’. To
understand the full meaning of these cells, we also need to know about profits
and losses of companies — e.g. that high profits of a company I am employed
by or that I own stock in are good for me, the fact that the company is based
in the Europe and therefore calculates finances in e, and that values that are
actual are computed from measured values. Finally, we need to know that the
profit/loss of an organization over a time interval is defined as the difference
between its revenues and expenses over this interval. This knowledge allows to
compute the values of cells in P with the respective formulae from the values
of cells in R ∪ E (i.e., using the function F). The values of the cells in E can
be similarly computed from the values of the cells [B9:D13]. Note that while
the definition of profits and losses above is general accounting knowledge, this
definition is particular to the respective company, as the applicable expenses
vary with the organization.

A similar account can be given for the projected profits/losses in cells [E17:F17],
only that the interpretation of the cells wrt. the intention is even more diffi-
cult — even though the situation is simple if taken at face value. Cell [[E17]]
is the projected profit in the year 1987, which is computed from the revenue
and expenses in column E. But in contrast to the values in the actual block
[B6:D6] ∪ [B9:D13], the values in the projected block [E6:F6] ∪ [E9:F13] are not



measured, but projected from the actual values by some financial forecasting
method that is reflected in the respective formulae. Note that the correspon-
dence of the formula need not be as direct as in the case of the total expenses
above. It might be that the forecasting method is defined abstractly, and the
concrete formula is derived from it making some simplifying assumptions. Fur-
thermore, to fully understand the values we need to know what assumptions the
forecasting method makes, what parameter values are employed and why, how
reliable it is, etc. All of these concerns are not addressed at all in the spreadsheet
as an active document. Abraham and Erwig describe this situation as follows:

There is a high level of ambiguity associated with spreadsheet template
inference since spreadsheets are the result of a mapping of higher-level ab-
stract models in the user’s mind to a simple two-dimensional grid struc-
ture. Moreover, spreadsheets do not impose any restrictions on how the
users map their mental models to the two-dimensional grid (flexibility
is one of the main reasons for the popularity of spreadsheets). There-
fore the relationship between the model and the spreadsheet is essentially
many-to-many [...]. [AE06, p. 5]

3 Compensating the Computational Bias

Our analysis of the example above has shown us that large parts of the intention
of a spreadsheet is left implicit, even though it is crucial for a user’s comprehen-
sion. In particular, a user needs to know the following for a spreadsheet:

– The ontology, i.e., background information about relations between con-
cepts and objects of the intention. The objects in the intention include the
functions represented in the spreadsheets e.g. π, their properties, e.g. the
units of their arguments and values, and thus of the values in the cells.

– The provenance of data in a cell, i.e., how the value of this data point was
obtained, e.g. by direct measurement, by computation from other values via
a spreadsheet formula, or by import from another source; see [MGM+08] for
a general discussion of provenance.

– The interpretation, i.e., a correspondence between functional blocks and
concepts or objects of the intention. We distinguish three parts here
• The functional interpretation, that specifies the intended function of

the functional block.
• The value interpretation, i.e. a bijective function that specifies how

to interpret the values of the block cells as ontology objects.
• The formula interpretation that links the formulae of a block to an

object in the ontology. This mapping must be a refinement in the sense
that the interpretations of proper formulae compute the same value as
the formulae itself and the pseudo-formulae input is mapped to a prove-
nance object.



In some spreadsheets that are the digital equivalent to “back-of-the-envelope
calculations”, the interpretation, provenance, and ontology information is simple
to infer, so that the un-documented situation is quite tolerable. Indeed this shows
the cognitive strength of the table metaphor, in our example it is no problem for
the human reader to interpret the legend item “(in Millions)” as a specification of
the value interpretation of the cells [B6:F17] (but not of the years Y: = [B4:D4]).

In many cases spreadsheets have developed into mission-critical tools that
are shared amongst whole departments, because they encapsulate important,
non-trivial, institutional knowledge. The intention of such spreadsheets is much
harder to infer, a fact that is witnessed by the fact that companies spend con-
siderable energy to train employees in the usage (and intention) of such spread-
sheets.

In this situation, it would be natural to make spreadsheets even more ac-
tive to support the user’s comprehension of the spreadsheet intention. Thus, in
light of the discussion of Section 2.1, we suggest to compensate for the computa-
tional bias diagnosed above by extending the underlying semantic document of
a spreadsheet. Concretely, we propose to represent the intention (as the prove-
nance and ontology) and to tie the cells in the spreadsheets to concepts in the
intention (via an interpretation function).

3.1 Fixing the Ontology

We have (at least) two possibilities to extend spreadsheets with an ontology
and provenance component: we can either extend spreadsheets by ontology and
provenance facilities or we can extend them by interpretation facilities that ref-
erence external representations of the intention. As we have seen above, the
intention contains quite a lot of information, and making it explicit in a software
framework means a large investment. Therefore we contend that an external
representation of the intention is more sensible, since it can leverage pre-existing
tools and profit from interoperability.

We use the OMDoc format (Open Mathematical Documents, see [Koh06]) to
represent the intention model. OMDoc is an XML-based format for representing
semi-formal, semantically structured document collections. It allows to factor-
ize knowledge into “content dictionaries” that serve as constitutive contexts for
knowledge elements. OMDoc provides a mathematically inspired infrastructure
for knowledge representation: document fragments are classified by their epis-
temic role as e.g. axioms, definitions, assertions, and proofs and mathematical
formulae are represented in the OpenMath [BCC+04] or MathML [ABC+03]
formats. Furthermore, OMDoc provides a strong, logically sound module system
based on structured “theories” (content dictionaries (CD) extended by concept
inheritance and views) [RK09]. Finally, the language has been extended to deal
with units and measurable quantities [HKS06] as a prerequisite for interacting
with the physical world. We make use of all of these features for modeling the
intentions of spreadsheets. In contrast to other ontology modeling languages like
OWL [MvH04], the OMDoc format does not commit to a formal logical lan-
guage, and therefore lacks a native concept of inference but also does not force



the author to fully formalize the spreadsheet intention and to work around the
expressivity limitations of the underlying logical system. Instead, OMDoc allows
to locally formalize elements — and thus provide partial inference — with what-
ever formal system is most suitable; in our application, we mainly use an formal
system for arithmetics as a counterpart for spreadsheet formulae.

For the intention model in our example we divide the background knowledge
into theories that inherit functionalities from each other via the imports relation.
At the very basis we would have a CD Revenues that defines the concept of the
revenue of an organization over a time interval. This theory defines the concept
of a binary revenue function ρ, such that given an organization o and a natural
number n the value ρ(o, n) is the revenue (as a monetary quantity) of o over
the span of the year n (AD) in the Gregorian calendar. Note that we use this
very naive notion of revenues for didactic purposes only. For instance ρ was
chosen as a binary function to highlight that there is no automatic agreement
between functional correspondences in the table and objects of the intention.
We would be perfectly free to analyze the concepts more thoroughly, embarking
into representing monetary systems, theories of time, etc. For the purposes of
this paper, we assume that we can either appeal to the intuition of the user or
inherit these representations from a suitable foundational ontology.

In the same way we proceed with a CD Expenses, which imports from a CD
Salaries. Finally, we build a CD Profits that imports from both. In the OMDoc
document pictured in Figure 2 we have summarized some of the relevant CDs
and the concepts they introduce.

3.2 Fixing the Provenance

We enrich our ontology with provenance information: As we have required the
formula interpretation to be a refinement, we need to represent an abstract
notion of spreadsheet computation in the ontology. This can be readily done
making use of e.g. the CASL libraries [CoF04]. For modeling the provenance of
user inputs in spreadsheets, we can be extremely minimalistic, just establishing
a stub content dictionary that lifts the concept of “user input” to the ontology
level. But in our example we can already see what a more elaborate provenance
model could give us: We could specify that the salary values in [B9:F9] are not
only user inputs, but really manually copied over from another spreadsheet — the
top spreadsheet “Salaries” in Figure 2. To take advantage of this (see details in
the next section) we have to develop CDs for provenance, adapting and extending
first formalizations reported on in [MGM+08]. As this goes beyond the scope of
this paper, we leave this to future work.

3.3 Fixing the Interpretation

To interpret the cells in P for example, we need to

– fix the functional interpretation: Identify that P and R form functional
blocks with input row Y.



In Section 2.2 we have already discussed the functional interpretation of P:
it is just the intended function π. Similarly, we link the revenues block R
with a unary function ρ(c, ·), where c is the representation of our example
company. Then we have to express the semantic counterpart of the spread-
sheet formulae. In our OMDoc format we can simply represent this function
as λy.ρ(c, y) in OpenMath or MathML.

– fix the value interpretation: In our example we observe that the values
in P are actually only the scalar parts of measurable quantities, in this
case measured “in millions” (of e presumably) according to the spread-
sheet legend. Similarly, the (string) values Salaries, Utilities, . . . in [A9:A13]
have to be interpreted as objects in the ontology. Thus in our example,
we choose i: = {y 7→ y(AD)} as the value interpretation of block Y and
j: = {x 7→ 106xe} for block P; obviously both are bijective.

– fix the formula interpretation: our example the formulae γ6− γ15 in the
functional block P would be linked to the formula π(year) = ρ(year) −
ε(year) in the Profit/Year definition. Furthermore, we would link R to a
semantic provenance object “imported from Salaries.xsl”.

In Figure 2 we show the functional interpretation mappings as red, dotted arrows
and the formula interpretation as purple, dot-dash-arrows. The totality of cell
interpretations in a spreadsheet induces an associated set of CDs we call the
intention model. Note that this is indeed a representation of the intention of
this spreadsheet.

We can think of the value interpretations as parser/generator pairs that me-
diate between the scalar function represented by the formulae in the spreadsheet
and the intended function in the intention — which is usually a function between
measurable

intention

spreadsheet

year profit

Y P

π

F

i j−1

quantities. In particular the functions F
and π are related via the commutative
diagram on the right , where the function
F is induced by the spreadsheet formu-
lae as discussed in Section 2.4 above. We
see that the three components of the in-
terpretation fully specify the correspondence between functional blocks in the
spreadsheet and objects induced by the intention model. To see the strength of
this construction let us return to our example and look at the import of salaries
from Salaries.xsl. There we have a different value interpretation for the func-
tional block [F6:F6]: this spreadsheet does not calculate in millions, so we chose
k: = {x 7→ x} and get the import functions k ◦ j−1 = {xe 7→ 10−6xe} in the
intention and j−1 ◦ k = {x 7→ 10−6x} in the spreadsheet.

In conclusion we observe that setting the ontology, provenance, and the inter-
pretation of a functional block gives us a full and explicit account of its intention,
and we can relegate all further semantic services to the intention model. For in-
stance we can verify (using inference in the intention model) this part of the
spreadsheet by establishing the equality of j−1 ◦ F ◦ j and ρ(c).



Fig. 2. The SACHS Information Architecture and Control/Search Panel

4 A Semantic Help System for Spreadsheets with
Intentions

The SACHS system is a work-in-progress add-in for MS Excel (written in Vi-
sual Basic for Applications) that aims at providing semantic help facilities for
spreadsheets. Though it has been developed for the DFKI controlling system, it
works for any spreadsheet whose intention has been encoded as an OMDoc doc-
ument, e.g. our running example, and mash-up information has been provided1.
We have designed SACHS as invasive technology that extends well-used (and
therefore well-known) software systems from within to overcome usage hurdles —
see [Koh05b] for a discussion. We designed the semantic services in SACHS to al-
low the user to explore the intention of a spreadsheet from her micro-perspective,
i.e., from her here-and-now. In particular, all semantic help facilities start from
the cell level. Moreover, we tried to implement a process-based interaction de-
sign, i.e., a design where the semantic help evolves in a user-steered process.

For services that visualize the intention, the cells in the spreadsheet must
be interpreted, i.e., linked to elements of the accompanying OMDoc document
as e.g. shown in Figure 2. Generally, all cells in a functional block are linked to
an OMDoc definition — the definition of its intended function, while OMDoc
assertions justify their formulae. This assignment is internally represented by

1 We will spare the reader the technical details of this mash-up for lack of space.



an extra worksheet within the spreadsheet we call the “SACHS interpretation”.
This is manually maintained by the spreadsheet author. Once the interpretation
is established we can directly make use of the various elements of the OM-
Doc information for the respective objects (see the dashed arrows in Figure 2).
Concretely, for instance, the Dublin Core metadata element dc:subject of an
OMDoc definition can be used as a SACHS label for the cell it interprets. MS
Excel’s comment functionality is hijacked to create SACHS comments that draw
on the respective dc:description element, which contains a concise description
of the object in question. In contrast, the CMP element of the OMDoc definition
contains a detailed explanation using semantically marked up representations
of objects from the intention model. These can be mathematical formulae en-
coded as OpenMath objects like the revenue function ρ or technical terms like
“difference” which we have decorated in angle brackets in Figure 2. The added
value of semantic annotation here is that the meaning of both can be further
explored: The front end item “SACHS explanations” allows this by providing
“jump points” from within the text to those cells that are assigned to the defi-
nitions of those symbols via the SACHS interpretation sheet. Once jumped the
user can look up the available semantic information of that particular cell and
so on.

A formula underlying a cell is mirrored in the formula element FMP of the
respective definition in the semantic document (see Figure 2) in the OpenMath

format, this allows us to present it to the user in math notation:
∑5

i=1 εi(1985)
is more readable than “=SUM(C9:C13)”.

Fig. 3. Navigating the Spreadsheet Intention

In Figure 2 we have already shown the main control panel of the SACHS
system in the right bottom hand corner. This allows the user to enable var-
ious semantic enhancements in the spreadsheet and also search the intention
semantically. From a semantic point of view, contextual views of the spread-
sheet intention as the one in Figure 3 are probably most interesting and helpful.
Such views allow a user to understand the connections between spreadsheet cells
and background information. This view aggregates information about



– the intention of a cell in terms of the intended function of its functional
block, and the intended arguments.

– how the cell value is computed from the values of its arguments.
– and the intentions of the arguments.

All information points in the pop-up are hyperlinked to their respective sources
in the OMDoc document or in the spreadsheet so that the graph view can also
serve as a meaning-driven navigation tool. In a future version of SACHS, these
hyperlinks could pre-instantiate the intention model with the argument values
and allow an exploration from the view of the current cell — in our example in
Figure 3 the intention specialized to the year 1985. Note that our example here
only shows the situation for a formula-computed cell. For other provenances,
the pop-up would visualize the provenance object given by the formula inter-
pretation. For instance, for cell [B9] the provenance object is “imported from
Salaries.xls[B5]”, so we can visualize the data from that cell using the exist-
ing SACHS pop-up.

As OMDoc is organized by theories, the provision of multi-level theory graphs
as in the CPoint system [Koh05a] are nice-to-have services one can think of.

4.1 Evaluation: Estimating the Semantic Overhead in SACHS

As always the interesting question at the end of the implementation of exciting
new ideas is whether it was worth the effort. Even though we can’t answer that
yet objectively, we can at least give an estimate for the costs of the semantic
overhead and its reuse.

At the moment, our approach presupposes that the spreadsheet author doc-
uments the spreadsheet intention as an OMDoc document and also annotates
the spreadsheet with interpretation information. Both tasks place a heavy bur-
den on the author and currently restrict our approach to mission-critical or very
complex spreadsheets.

quantities

money

time

timeintervallegalentities

omdoc-format

xml-formatpolynomial

characteristic-polynomial employment accounting-base

revenues

salarycosts admincostsmaterialcosts utilitycosts financingcostsspecialcosts

expenses

profits

prognosis

crystalballaverage-prognosis lagrangeinterpolation

cubic-lagrange quadratic-lagrange linear-lagrange SemAnteX

sax-salarycosts sax-admincostssax-materialcosts sax-utilitycosts

sax-expensessax-revenues

sax-profits

sax-prognosis

sax-admincosts-actual

sax-profits-actual

sax-expenses-actualsax-revenues-actual

sax-salarycosts-actual sax-materialcosts-actual sax-utilitycosts-actualsax-admincosts-projected

sax-profits-projected

sax-expenses-projectedsax-revenues-projected

sax-salarycosts-projected sax-materialcosts-projected sax-utilitycosts-projected

Fig. 4. The Theory Graph of Background Knowledge for our Example Spreadsheet

For our example we have semi-formalized the background knowledge in a
collection of 47 theories (see Figure 4), which serve as the source of the new
SACHS services reported here. Of these, 27 theories contain general knowledge
about quantities, units, basic cost accounting, and prognosis. Only 20 were de-
veloped specially for our example: a theory about the SemAnteX Corp. itself and



union theories specializing accounting and prognosis to the SemAnteX Corp. pe-
culiarities. A dozen general theories about real arithmetic were not taken into
account here, since they were available externally.

By size, the specific theories only amounted to ca. 25% of the semi-formalization.
We are currently developing a background knowledge corpus for a central part
of the DFKI controlling system, which has three orders of magnitude more cells
than the expository example in this paper. But the semi-formalization of this is
only double in size, conceivably since the controlling system is relatively regular,
for instance it is organized in about 20 analogous sheets for the respective DFKI
departments.

In general, we expect the burden of specifying the ontology to decrease as
more and more OMDoc content dictionaries for common models (e.g. standard
accounting techniques) appear. Our case study has shown that for an efficient
development of background ontologies we need to integrate editing facilities into
the graph view in Figure 3. For the interpretations, we plan to adapt techniques
of header, unit, and template inference [AE04,AE06] to partially automate the
annotation process via suggestions.

For evaluating the usefulness of the SACHS system we are currently under-
taking a formal user study on the DFKI controlling system — our expository
example in Figure 2 is too simple to require a help system really. First informal
feedback was encouraging, for instance, users highly appreciated being made
aware of the differing reference periods data that were implicit in the concrete
spreadsheet layout.

5 Conclusion and Outlook

We have analyzed the reasons for users’ difficulties in understanding and ap-
propriating complex spreadsheets, as they are found e.g. in financial controlling
systems. We claim that the ultimate cause is that spreadsheets are weak as active
documents, because their underlying semantic documents are biased to compu-
tational aspects and fail to model the provenance, interpretation, and ontological
relations of the objects and concepts operationalized by the system. To remedy
the situation we propose to explicitly model the intention of a spreadsheet as
an intention model in a collection of OMDoc content dictionaries which serve
as an explicit knowledge base for the spreadsheet. Finally, we present the work-
in-progress SACHS system that draws on such intention models to offer various
semantic services that aid the user in understanding and interacting with the
spreadsheets.

In essence, our approach makes double use of the following duality identified
by Fensel in [Fen08]

– Ontologies define formal semantics for information, consequently al-
lowing information processing by a computer.

– Ontologies define real-world semantics, which makes it possible to
link machine processable content with meaning for humans based on
consensual terminologies.



In the analysis we look at the formal semantics of spreadsheets and find a compu-
tational bias that hampers understanding since it fails to model consensual ter-
minologies and therefore leads to real-world usability problems. In our proposed
solution we extend the formal semantics of spreadsheets to draw on explicitly
represented consensual terminologies.

While a semantic help system for a spreadsheet-based controlling system was
the original motivation for our analysis, we feel that an explicit representation
of the intention model of a spreadsheet has many more applications: it can be
used for verification of the formulae, for change management along the lines
of [MW07], and automated generation of user-adapted spreadsheets.

Our approach seems to be related to “Class Sheets” [EE05] introduced by
Engels and Erwig. Their class descriptions can also be counted as an external,
structured intention model, which is referenced by an interpretation mapping.
We will have to study the relation to our work more closely, but it seems that
their work suffers the same computational bias as the spreadsheets themselves.
But classes with extensive documentation or UML diagrams might go some ways
towards generating a help system like SACHS.

In the future we plan to extend the repertoire of semantic services of the
SACHS system. For instance, we envision a dual service to the one in Figure 3
which could visualize where the value of a cell is used to get an intuition for the
relevance of a cell value.

As a theoretical extension, we can see the interpretation mappings as logic
morphisms [RK09], and logic morphisms in the domain knowledge as mathemat-
ical framings (ways to view mathematical objects in terms of well-understood
ones). This allow us to re-use much of the higher-level MKM techniques and
OMDoc functionalities based on theory graphs: we have already extended the
user interaction of the SACHS to be framing-aware [KK09], which allows the
user to customize the interaction to her subjective background and goals.

But future extensions are not limited to spreadsheets. Note that the seman-
tic analysis in Section 2 is largely independent of the computational information
that is at the heart of spreadsheets. The semantic information we are after only
pertains to the use of data grids as a user interface to complex functions. In
the future we plan to generalize the intention model architecture presented in
Section 3 to the case of data grids — e.g. tables of experimental results or raster
data from satellite images. Moreover, we want to develop a native infrastructure
for representing “data grids” as a user interaction feature in OMDoc: In accor-
dance with the format, the provenance and interpretation functionality would
allow to link grid presentations to their intention without leaving the language.
OMDoc-based systems could then pick up the semantics and offer complex inter-
actions based on them. This would lead to much more general active documents.
We could even turn the approach presented in this paper around and generate
SACHS spreadsheets from OMDoc documents as active documents.
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SACHS project which aims to extend semantic document modeling to spread-
sheets. Bernd Krieg-Brückner has been proposing for years to do this. He always



maintained that spreadsheets would be ideal targets for semantic preloading.
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