
Unifying Math Ontologies: A tale of two
standards

James H. Davenport1 and Michael Kohlhase2

1 Department of Computer Science
University of Bath, Bath BA2 7AY, United Kingdom

J.H.Davenport@bath.ac.uk
2 School of Engineering & Science, Jacobs University Bremen

Campus Ring 12, D-28759 Bremen, Germany
m.kohlhase@jacobs-university.de

Abstract. One of the fundamental and seemingly simple aims of math-
ematical knowledge management (MKM) is to develop and standardize
formats that allow to “represent the meaning of the objects of mathemat-
ics”. The open formats OpenMath and MathML address this, but differ
subtly in syntax, rigor, and structural viewpoints (notably over calculus).
To avoid fragmentation and smooth out interoperability obstacles, effort
is under way to align them into a joint format OpenMath/MathML 3.
We illustrate the issues that come up in such an alignment by looking at
three main areas: bound variables and conditions, calculus (which relates
to the previous) and “lifted” n-ary operators.

Whenever anyone says “you know what I mean”, you can be pretty
sure that he does not know what he means, for if he did, he would tell
you. — H. Davenport (1907–1969)

1 Introduction

One of the fundamental and seemingly simple aims of mathematical knowledge
management (MKM) is to develop and standardize representation formats that
allow one to specify the meaning of the objects and documents of mathematics.
The open formats OpenMath and MathML address the key sub-problem of repre-
senting mathematical objects from a content markup perspective: mathematical
objects are represented as expression trees. As the formats were developed by dif-
ferent communities, they differ subtly in syntax, rigor, and structural viewpoints
(notably over calculus). The efforts to mitigate the interoperability problem by
establishing translations between the formats have done more to unearth subtle
problems than to completely solve them in the past.

Both efforts shared the goal of representing mathematics “as it is”, rather
than “as it ought to be”. A relevant example of the difference is given by [12],
where the original text is

The function
√
|x| is not differentiable at 0 (1)

while its formalised equivalent is

¬(λx:R(
√
|x|) is differentiable at 0). (2)

The key features are the typing of x as being in R, and the conversion of
√
|x|

from an expression to a function. Both OpenMath and MathML, the latter
explicitly as one of its design goals

“Encode mathematical material suitable for teaching and scientific com-
munication at all levels” [5, 1.2.4],

wish to encode both styles, or levels of formality, of mathematics. This is a
particular problem for calculus. MathML and OpenMath have rather different
views of calculus, which goes back to a fundamental duality in mathematics.
These views can, simplistically, be regarded as:

– what one learned in calculus/analysis about functions, which we will write
as Dεδ: the “differentiation of ε–δ analysis” (similarly d

dεδx
, and its inverse

εδ

∫
);

– what is taught in differential algebra about (expressions in) differential fields,
which we will write as DDA: the “differentiation of differential algebra” (sim-
ilarly d

dDAx
, and its inverse DA

∫
).

(2) is unashamedly the former, while (1) talks about a function, but actually
gives an expression. This duality shows up whenever one talks about variables:
while

2x 6= 2y, (3)

(λx.2x) =, or at least ≡α, (λy.2y). (4)

So does
dx2

dx
=

dy2

dy
? (5)

The variables are clearly free in (3) and bound in (4). Any system which at-
tempted to force either interpretation on (5) would not meet the goal stated
above.

In this paper we report on an ongoing effort of the W3C MathML Working
group and members of the OpenMath Society to merge the ontologies3 on which
the OpenMath and MathML formats are based and thus align the formats, so
that they only differ in their concrete XML encodings. This task proves to be
harder than might initially be expected. We explain why, motivated by a study
of four areas (which in fact turn out to be inter-related):
3 Here we use the word “ontology” in its general, philosophical meaning as the study

of the existence of objects, their categories and relations amongst each other, and not
in the Semantic Web usage, where it is restricted to formal systems with tractable
inference properties (description logics). Note furthermore that we are speaking as
much about a “meta-ontology” of mathematical representation concepts as about
“domain ontologies” that describe the mathematical concepts themselves. Having
made this distinction, we will conveniently gloss over it in the rest of the paper.

2

1. constructions with bound variables;
2. the <condition> element of MathML;
3. the different handling of calculus-related operations in the two;
4. the “lifting” of n-ary operators, such as + to

∑
.

This paper is a short version of [10], which contains the details of the con-
structions. OpenMath-specific details of the proposals are in [9, 8].

2 OpenMath and MathML

We will now recap the two formats focusing on their provenance and repre-
sentational assumptions and then sketch the measures taken for aligning the
languages. Sections 3, 4, 6, and 7 will detail the problem areas identified above.
The first two leading to an extension proposal for OpenMath Objects and strict
content MathML in Section 5, which is evaluated in the latter two. Section 7
concludes the paper.

2.1 MathML

MathML is an XML-based language for capturing mathematical the presenta-
tion, structure and content of mathematical formulae, so that they can be served,
received, and processed on the World Wide Web. Thus the goal of MathML is
to provide a similar functionality that HTML has for text. The present rec-
ommended version of MathML format is MathML 2 (second edition) of Octo-
ber 2003 [5]. MathML 1 had been recommended in April 1998 and revised as
MathML 1.01 in July 1999.

MathML, starting from version 1.0, had a split into presentation MathML,
describing what mathematics “looked like”4, and content MathML, describing
what it “meant”. In this paper we will concentrate on content MathML, since
the role of presentation MathML as a high-level presentation format for Math
on the Web is (largely) uncontested. MathML’s Content markup has ambitious
goals:

The intent of the content markup in the Mathematical Markup Language
is to provide an explicit encoding of the underlying mathematical struc-
ture of an expression, rather than any particular rendering for the ex-
pression. [5, section 4.1.1]

This mandate is met in MathML 1/2 by representing mathematical formulae
as XML expression trees that follow the applicative structure of operators and
their arguments: function application is represented by the apply elements where
the first child is interpreted as the operator and the remaining children as their
arguments. MathML 2 supplies about 90 built-in elements for mathematical
4 Which could include “sounded like” (for aural rendering) or “felt like” (e.g. for

Braille), and MathML included a range of symbols such as ⁢ to
help with this task.

3

operators, and the csymbol extension mechanism described later. The language
has a fairly limited vision of what might be in “content”:

The base set of content elements are chosen to be adequate for simple
coding of most of the formulas used from kindergarten to the end of high
school in the United States, and probably beyond through the first two
years of college, that is up to A-Level or Baccalaureate level in Europe.
[5, 4.1.2]

This is often referred to as the K-14 fragment of mathematics, by analogy with
some countries use of “K–12” for the range of school mathematics. Since Version
2, MathML does have an extension mechanism via the csymbol elements and
their definitionURL attributes, but this was rarely used except to achieve some
form of OpenMath interoperability, or for proprietary extensions (e.g. Maple).

MathML tries to cater to the prevalent representational practices of mathe-
maticians, and provides a good dozen structural XML elements for special con-
structions, e.g. set, interval and matrix constructors, and allows to “lift” various
associative operators to “big operators” acting on sets and sequences simply by
associating them by bound variables and possibly qualifier elements to specify
the domain of application.

The MathML approach to specifying the “meaning” of expression trees largely
follows a “you know what I mean” approach that alludes to a perceived consen-
sus among mathematical practitioners on the K-14 fragment. The meaning of a
construction is alluded to via examples rather than defined rigorously, intending
to be “formal enough” to cover “a large number of applications” [5, 4.1.2], while
remaining flexible enough not to preclude too many.

2.2 OpenMath

OpenMath [4] is a standard for the representation and communication of mathe-
matical objects. It has similar goals to content MathML and focuses on encoding
the meaning of objects rather than visual representations to allow the free ex-
change of mathematical objects between software systems and human beings.
OpenMath has been developed in a long series of workshops and (mostly Euro-
pean) research projects that began in 1993 and continues through today. The
OpenMath 1.0 and 2.0 Standards were released by the OpenMath Society in
February 2000 and June 2004. OpenMath 1 fixed the basic language architec-
ture, while OpenMath2 brought better XML integration, structure sharing and
separated the notion of OpenMath Content Dictionaries from their encoding.

Like content MathML, OpenMath represents mathematical formulae as ex-
pression trees, but concentrates on an extensible framework built on a mini-
mal structural core language with a well-defined extension mechanism. Where
MathML supplies more than a dozen elements for special constructions, Open-
Math only supplies concepts for function application (OMA), binding construc-
tions (OMBIND; MathML 2 lacks an analogous element and simply uses apply
with bound variables, hence the (inferred) Rule 1 below). Where MathML pro-
vides close to 100 elements for the K-14 fragment, OpenMath gets by with only

4

an OMS element that identifies symbols by pointing to declarations in an open-
ended set of Content Dictionaries (see below).

An OpenMath Content Dictionary (CD) is a document that declares names
(OpenMath “symbols”) for basic mathematical concepts and objects. CDs act
as the unique points of reference for OpenMath symbols (and their encodings
the OMS elements) and thus supply a notion of context that situates and disam-
biguates OpenMath expression trees. To maximize modularity and reuse, a CD
typically contains a relatively small collection of definitions for closely related
concepts. The OpenMath Society maintains a large set of public CDs, including
CDs for all pre-defined symbols in MathML 2. There is a process for contributing
privately developed CDs to the OpenMath Society repository to facilitate discov-
ery and reuse. OpenMath does not require CDs be publicly available, though in
most situations the goals of semantic markup will be best served by referencing
public CDs available to all user agents.

The fundamental difference to MathML is in terms of establishing mean-
ing for mathematical objects. Rather than appealing to mathematical intuition,
OpenMath defines a free algebra O of “OpenMath Objects” which acts as (ini-
tial) model for encodings of mathematical formulae. OpenMath Objects are es-
sentially labeled trees, with α-conversion for binding structures and Currying for
nested semantic annotations. Note that since O is initial it is essentially unique
and identifies (in the sense of “declares to be the same”) fewer objects than
any other model. As a consequence two mathematical objects must be identical,
if their OpenMath representations are, but may coincide, even if their repre-
sentations are different. The OpenMath standard therefore considers OpenMath
objects as primary citizens and views the “OpenMath XML encoding” as just an
incidental design choice for an XML-based markup language. In fact OpenMath
specifies another encoding: the “binary encoding” designed to be more space
efficient at the cost of being less human-readable. “OpenMath XML encoding”
as just an incidental design choice for an XML-based5 markup language.

The initial algebra semantics of OpenMath objects is intentionally weak to
make the OpenMath format ontologically unconstrained and thus universally
applicable. It basically represents the accepted design choice of representing ob-
jects as formulae. Any further (meaning-giving) properties of an object o are
relegated to the content dictionaries referenced in o, where they can be specified
formally (“Formal Mathematical Properties” as FMP elements which are them-
selves OpenMath objects) or informally (“Commented Mathematical Proper-
ties” as CMP elements containing text). Thus the precision of OpenMath as a
representation language can be adapted by allowing CDs to range from fully for-
mal (by providing CDs based on some logical system) to fully informal (where
CDs are essentially empty). While this can be seen as a failure of OpenMath to
supply semantics (“OpenMath is only syntax”), we see it as being as flexible as
mathematical vernacular that gives the same freedom.

5 OpenMath also has a more space-efficient binary encoding.

5

The question “does this OpenMath object o have formal semantics?” does
not have an unambiguous answer. Rather, o has a meaning for the system S if
each OpenMath symbol in o either:

1. is built into the OpenMath ↔ S phrasebook or
2. has enough semantics deducible in S from the FMPs (which may be a recursive

process).

Here S might be either a software system, or a logical system such as ZF.

2.3 The OpenMath/MathML 3 Alignment Process

Most of these differences between MathML and OpenMath can be traced to
the different communities who developed these representation formats. MathML
came out of the “HTML Math Module”, an attempt to develop LATEX-quality
presentation of mathematical on the Web, something sorely missing from the
otherwise very successful HTML. The guiding goal for OpenMath on the other
hand was to develop an open interchange format among computer algebra sys-
tems, which resulted in a much stronger emphasis on the meaning of objects to
make the exchange of sub-problems safe.

Even though interoperability between OpenMath and and MathML was al-
ways a strong desideratum for both communities, the two representation formats
evolved independently and in line with the fundamental assumptions outlined
in the two previous sections. Interoperability was attempted from the MathML
side by integrating the csymbol element in MathML 2 and specifying parallel
markup, i.e. allowing OpenMath representations to be embedded into MathML
with fine-grained cross-referencing. The OpenMath Society developed CDs with
analogues for “all predefined operators” and specified the correspondence be-
tween expression trees in [3]. Although 30 pages long, the fact that this document
is still incomplete may serve as an indication that the problem is not trivial. As
we will see below, mapping the MathML operators is not enough in the presence
of different structural elements in the formats.

In June 2006 the W3C rechartered the MathML Working Group to produce
a MathML 3 Recommendation, and the group identified the lack of regularity
and specified meaning as a problem to be remedied in the charter period. The
group decided to establish meaning for content MathML expressions based on
OpenMath objects without losing backwards compatibility to content MathML
2. In the end, content MathML was extended to incorporate concepts like bind-
ing structures and full semantic annotations from OpenMath and a structurally
regular subset of the extended content MathML was identified that is isomor-
phic to OpenMath objects. This subset is called strict content MathML to
contrast it to full content MathML that was seen to strike a more pragmatic
balance between regularity and human readability. Full content MathML bor-
rows the semantics from strict MathML by a mapping specified in the MathML
3 specification that defines the meaning of non-strict (pragmatic) MathML
expressions in terms of strict MathML equivalents. The division into two sub-
languages serves a very important goal in standardization: to clarify and codify

6

best (engineering) practices without breaking legitimate uses in legacy docu-
ments. In the current third version of MathML, the latter is a primary concern.

In June 2007, the OpenMath society chartered a group of members which
includes the authors of this paper to work on version 3 of the OpenMath standard
which would recognize content MathML 3 as a legitimate OpenMath encoding,
to help define the pragmatic to strict mapping MathML, and to provide the
necessary CDs, which would be endorsed by the W3C Math Group and the
OpenMath Society. The discussions and the resulting CDs are online in the
SWiM Wiki [16] [15]

Subsequent sections describe the problem areas that came up during the work
and needed to be circumnavigated.

3 Set Constructors in MathML

With the K-14 scope discussed above, MathML found that it needed more so-
phisticated concepts, such as bound variables, to express the concepts that are
manipulated informally at that level. One conspicuous example from K-14 is
that of sets constructed by rules [5, 4.2.1.8].

A typical use of a qualifier is to identify a bound variable through use
of the bvar element [. . .] The condition element is used to place con-
ditions on bound variables in other expressions. This allows MathML to
define sets by rule, rather than enumeration, for example. The following
markup, for instance, encodes the set {x | x < 1}:

1 <set>
<bvar><ci>x</ci></bvar>
<condition>
<apply><lt/><ci>x</ci><cn>1</cn></apply>

</condition>
6 </set>

Here (with the benefit of a great deal of hindsight, it should be pointed out) we
can see the start of the problem. What would we have meant if we had changed
the second6 x to y? We would, of course, have written the MathML equivalent
of {x | y < 1}, and the MathML would be as eccentric as that set of symbols.
We therefore deduce the following (undocumented) rule, which corresponds to
OpenMath’s formal rules for OMBIND.

Rule 1 (MathML) Variables in bvar constructions ‘bind’ the corresponding
variable occurrences in the scope of the parent of the bvar. However, the variable
may (e.g. ∀) or may not (e.g. d

dx) be bound in the sense of α-convertibility.

Here the first problem of interpreting pragmatic MathML elements raises
its ugly head. In OpenMath, we can represent the set7 {x ∈ R|x < 1} by the
representation
6 Changing both of them would have been an α-conversion.
7 Note that the OpenMath CDs require a larger set to be specified (to avoid Russell’s

paradox). It would not be a problem to provide a CD for what is often called “näıve

7

<OMOBJ version=”2.0”>
<OMA>
<OMS cd=”set1” name=”suchthat”/>

4 <OMS cd=”setname1” name=”R”/>
<OMBIND>
<OMS cd=”fns1” name=”lambda”/>
<OMBVAR><OMV name=”x”/></OMBVAR>
<OMA>

9 <OMS cd=”relation1” name=”lt”/>
<OMV name=”x”/>
<OMI> 1 </OMI>

</OMA>
</OMBIND>

14 </OMA>
</OMOBJ>

This makes use of a binding construction (OMBIND) with a λ operator that con-
structs functions8 from an expression with a bound variable. This kind of con-
struction is standard in logical systems and λ-calculus, for which is is motivated
as follows in a standard introductory textbook (our emphasis):

To motivate the λ-notation, consider the everyday mathematical expres-
sion ‘x− y’. This can be thought of as defining either a function f of x
or g of y . . . And there is need for a notation that gives f and g different
names in some systematic way. In practice mathematicians usually avoid
this need by various ‘ad hoc’ special notations, but these can get very
clumsy when higher-order functions are involved. [11, p. 1]

To achieve interoperability with OpenMath objects, MathML 3 introduces the
bind element in analogy to the OpenMath OMBIND. It could be argued that the
“K–14” brief of MathML rules out higher-order functions, but in the example
above we can see here the need, in a purely first-order case, to resort to “well, you
know what I mean” without it. Extending MathML 3 with a bind element that
encodes an OpenMath binding object takes the guessing of Rule 1 out of MathML
and makes the meaning unambiguous. The MathML 3 specification does however
need to specify the strict content MathML equivalent for the MathML 2 example
above in order to give it an OpenMath Object semantics.

4 Calculus Issues

MathML and OpenMath have rather different views of calculus, which goes back
to the fundamental duality in mathematics mentioned earlier.

Roughly speaking , the MathML encoding corresponds more closely to Dεδ

and the OpenMath one to DDA. If we were to look at the derivative of x2 as
in Figure 1, we might be tempted to see only trivial syntactic differences: in

set theory” that leaves out this safety device. However, such a system would have
the same difficulties that the MathML above has: do we mean (−∞, 1) or [0, 1), and
is this a subset of Z or R?

8 Here we also make use of the duality between sets and Boolean-valued functions that
are their characteristic functions

8

<apply>
<diff/>

<bvar><ci>x</ci></bvar>
<apply>
<power/>
<ci>x</ci>
<cn>2</cn>

</apply>

</apply>

<OMA>
<OMS cd=”calculus1” ”name=”diff”/>
<OMBIND>
<OMS cd=”fns1” name=”lambda”/>
<OMBVAR><OMV name=”x”/></OMBVAR>
<OMA>
<OMS cd=”arith1” name=”power”/>
<OMV name=”x”/>
<OMI>2</OMI>

</OMA>
</OMBIND>

</OMA>

Fig. 1. MathML 2 and OpenMath2 differentiation compared

the MathML encoding we see a differential operator that constructs a function
from an expression with a bound variable9 declared by a bvar element. The
OpenMath encoding sees the differential operator as a functional that transforms
one function (the square function) into another (its derivative). It is possible
to do this without any variables, as in sin′ = cos. Given the history of the
two standards, this difference of encoding is not surprising, since DDA is what
computer algebra systems do (and what humans do, most of the time, even while
interpreting the symbols as Dεδ), whereas human beings generally think they are
doing Dεδ and communicate mathematics that way.

For partial differentiation we see the same general picture, but the concrete
representations drift further apart: For dm+n

dxmdyn f(x, y), MathML would use

<apply>
<partialdiff/>

3 <bvar><ci>x</ci><degree><ci>m</ci></degree></bvar>
<bvar><ci>y</ci><degree><ci>n</ci></degree></bvar>
<degree><apply><plus/><ci>m</ci><ci>n</ci></apply></degree>
<apply><ci type=”function”>f</ci><ci>x</ci><ci>y</ci></apply>

</apply>

using degree qualifiers inside the bvar elements for the orders of partial dif-
ferentiations and a degree qualifier outside for the total degree. The following
representation is proposed in [3]:

<OMA>
<OMS cd=”calculus1” name=”partialdiff”/>

3 <OMA>
<OMS cd=”list1” name=”list”>
<OMV name=”m”/>
<OMV name=”n”/>

</OMA>
8 <OMBIND>

<OMS cd=”fns1” name=”lambda”/>
<OMBVAR><OMV name=”x”/><OMV name=”y”/></OMBVAR>
<OMA><OMV name=”f”><OMV name=”x”/><OMV name=”y”/></OMA>

</OMBIND>
13 </OMA>

9 With the insights from the last section, MathML 3 would probably use a bind ele-
ment, emphasizing the role of the differentiation operator as a function constructor.

9

For the problems caused by wishing to represent dk

dxmdyn f(x, y), see [13] and the
proposed solution in [8].

Integration is even more problematic than differentiation. MathML interprets
integration as an operator on expressions in one bound variable and presents as
paradigmatic examples the three expressions below, which differ in which ways
the bound variables are handled.

a:
∫ a

0
f(x)dx b:

∫
x∈D f(x)dx c:

∫
D
f(x)dx

<apply>
<int/>
<bvar>
<ci>x</ci>

</bvar>
<lowlimit>
<cn>0</cn>

</lowlimit>
<uplimit>
<ci>a</ci>

</uplimit>
<apply><ci>f</ci>
<ci>x</ci>

</apply>
</apply>

<apply>
<int/>
<bvar>
<ci>x</ci>

</bvar>
<condition>
<apply><in/>
<ci>x</ci>
<ci>D</ci>

</apply>
</condition>
<apply><ci>f</ci>
<ci>x</ci>

</apply>
</apply>

<apply>
<int/>
<bvar>
<ci>x</ci>

</bvar>
<domainofapplication>
<ci>D</ci>

</domainofapplication>
<apply><ci>f</ci>
<ci>x</ci>

</apply>
</apply>

OpenMath can model usages (a) and (c) easily enough, via its defint operator:
in fact usage (a) is modeled on the lines of (c), as

∫
[0,a]

f(x)dx, which means
that we need to give an eccentric10 meaning to ‘backwards’ intervals in order to
encode the traditional mathematical statement∫ b

a

f(x)dx = −
∫ a

b

f(x)dx. (6)

A more logical view is to regard the two notations as different, and define εδ
∫

[a,b]

(via limits of Riemann sums, or whatever other definition is appropriate), and
then

εδ

∫ b

a

f =

{
εδ

∫
[a,b]

f a ≤ b
−εδ

∫
[b,a]

f a > b
, (7)

whereas

DA

∫ b

a

f =
(

DA

∫
f

)
(b)−

(
DA

∫
f

)
(a) (8)

by definition.
Usage (b) might not worry us too much at first, since it is apparently only a

variant of (c). The challenge comes when we move to multidimensional integra-
tion (in the εδ

∫
sense). [2, p. 189] has a real integral over a curve in the complex

plane,
1

2π

∫
|t|=R

∣∣∣∣ f(t)
tn+1

∣∣∣∣ |dt| (9)

10 Along the lines of “the set [b, a] is the same as [a, b] except that, where it appears as
a range of integration, we should negate the value of the integral”! [13]. It is possible
to regard ‘backwards integration’ as an “idiom” and (6) as the explanation of that
idiom, but this seems circular.

10

whereas [1, p. 413, exercise 4, slightly recast] has an integral where we clearly
want to connect the variables in the integrand to the variables defining the set:∫ ∫ ∫

{
x2

a2
+ y2

b2
+ z2

c2
≤1
}
(
x2

a2
+
y2

b2
+
z2

c2

)
dxdydz (10)

5 A Radical Proposal: Enhanced Binding Operators

The multiple points of view in the εδ vs. DA discussion can be seen in other
situations, as witnessed by the difference between the OpenMath and MathML
representations of the set {x|x < 1} above. There seem to be two styles of think-
ing about mathematical objects. The first one — we will call it the first-order
style — manifests itself as the εδ-style in calculus. This style avoids passing
around functions and sets as arguments to operators and uses expressions with
bound variables instead. The second style — which we will call the higher-
order style — allows functions and sets as arguments and relies heavily on
this feature for conceptual clarity. It can be argued that the higher-order style is
more modern11, but arguably the first-order style still permeates much of math-
ematical practice. And if we take the use of mathematics in the Sciences and
Engineering into account probably accounts for the vast majority of mathemat-
ical communication. Therefore we argue that both representational styles must
be supported by MathML and OpenMath (and strict content MathML)

Examples like (9) and (10) show that the binding objects in OpenMath are
too weak representationally to accomodate the first-order style of representation
faithfully, and so force the reader into a higher-order style: we want the triple
integration operator in (10) to range over a restricted domain of integration, and
we want to give this domain as an expression over the integration variables12, at
least in εδ variant of integration. Moreover, given the discussion in Section 3 we
need these variables to participate in α-conversion. How might we encode this
in OpenMath? Figure 2 shows 4 alternatives13:

1. In the binder We can interpret ∫ ∫ ∫ {
x2

a2
+ y

2

b2
+ z

2

c2
≤1
} as a complex binding

operator, as in forallin and try to use that in a binding object. But this

11 It has gained traction in the second half of the 20th century with the advent of
category theory in Math and type theories in Logic

12 The original formulation in [1], which was “
∫ ∫ ∫

S
. . . where S = {· · ·}”, transcends

the scope of both MathML and OpenMath, which restrict themselves to mathemat-
ical formulae. In fact MathML 2 had limited support for inter-formula effects with
the declare element, but deprecates this element in MathML 3 since it cannot be
defined on an intra-formula level. Thus the (important) issue of connecting bindings
between different formula must be relegated to representation formats that transcend
individual formulae, such as the OMDoc format [14].

13 We use boxed formulae as placeholders for their (straightforward but lengthy) Open-
Math2 encodings.

11

runs foul of the OpenMath2 dictum that the binding operator is not subject
to α-conversion by its own variables; so this avenue is closed.

2. In the body On the other hand we can interpret the domain restriction as
part of the binding object, and represent (10) as (2) in Figure 2. But this is
impossible in OpenMath2, since only one OpenMath object after the OMBVAR
element is allowed.

3. In the body (2) We can solve this problem by inventing a mathematically
meaningless “gluing” operator

4. separately It is possible to represent an integration formula in OpenMath2
that is supposedly equivalent mathematically to (10) using the Differential
Algebra approach: but this is, from the εδ point of view, totally unnatural,
since it is α-equivalent to the expression in Figure 3 which is unreadable for
a human, and also destroys commonality of formulae.

1. <OMBIND>
<OMA>
<OMS cd=”calculus new”

name=”tripleintcond”/>

x2

a2
+ y2

b2
+ z2

c2
≤ 1

</OMA>

<OMBVAR> x, y, z </OMBVAR>

x2

a2
+ y2

b2
+ z2

c2

</OMBIND>

2. <OMBIND>
<OMS cd=”calculus new”

name=”tripleintcond”/>

<OMBVAR> x, y, z </OMBVAR>

x2

a2
+ y2

b2
+ z2

c2
≤ 1

x2

a2
+ y2

b2
+ z2

c2

</OMBIND>

3. <OMBIND>
<OMS cd=”calculus new”

name=”tripleintcond”/>

<OMBVAR> x, y, z </OMBVAR>

<OMA>
<OMS cd=”calculus new”

name=”tripleint inner”/>

x2

a2
+ y2

b2
+ z2

c2
≤ 1

x2

a2
+ y2

b2
+ z2

c2

</OMA>
</OMBIND>

4. <OMA>
<OMS cd=”calculus new”

name=”tripleintcond”/>

λx, y, z. x
2

a2
+ y2

b2
+ z2

c2
≤ 1

λr, s, t. r
2

a2
+ s2

b2
+ t2

c2

</OMA>

Fig. 2. The Alternatives

<OMA>
<OMS cd=”calculus new”

name=”tripleintcond”/>

λx, y, z. x
2

a2
+ y2

b2
+ z2

c2
≤ 1

λz, y, x. z
2

a2
+ y2

b2
+ x2

c2

</OMA>

Fig. 3. α-equivalent of 4 above

Solution 1 makes bound variables
have an unusual, to say the least, scope,
and solution 4 is higher-order style, so
we are left with the other two. They
have quite a lot in common, since they
both achieve the fundamental goal of
making both the region and the inte-
grand subject to the same binding op-
eration. We can summarise the points
as follows.

12

2: pro: Mathematically elegant; fits
into both the XML and binary en-
codings of OpenMath.

2: con: Requires a change to the ab-
stract description of the OpenMath
standard.

3: pro: No change to the OpenMath stan-
dard.

3: con: Needs a new, mathematically
meaningless, symbol such as tripleint_
inner for each symbol such as tripleintcond.

Option 2 is our preferred route, and the rest of this paper assumes that, but
the changes to adopt option 3 should be obvious. The changes to the OpenMath
standard to adopt option 2 are in the Appendix of the full paper [10].

6 Conditions in MathML

Our proposal above still leaves us with the problem to figure out the meaning
of the condition from the examples and to specify their meaning in terms of
OpenMath3 objects. MathML 2 introduces 23 examples of its usage, described
in Table 1 of [10], and a further 31 in Appendix C, described in Table 2 of [10].
These can be roughly categorised as follows (where a + b means “a in Chapter
4 and b in Appendix C”).

5+14 are used to encode ∃n ∈ N or ∀n ∈ N (or equivalents). Strictly speaking,
these usages are not necessary, because of the equivalences below.

∃v ∈ S p(v) ⇔ ∃v (v ∈ S) ∧ p(v) (11)
∀v ∈ S p(v)⇔ ∀v (v ∈ S)⇒ p(v) (12)

However, in practice, it would be better to have a convenient shorthand
for these, hence the proposal in [9] for OpenMath symbols existsin and
forallin, which are constructors for complex binding operators that include
restricting the domain of quantification.

6+4 can be replaced by the OpenMath suchthat construct [10, 10.1].
2+2 are solved by the use of map in OpenMath.

Pragmatic MathML Strict MathML
<apply> W
<bvar>X</bvar>
<condition>Y</condition>
Z

<apply>

<bind> W ′

<bvar>X</bvar>
Z
Y

<bind>

Fig. 4. Translating MathML with condition

So we see that for
all concrete operators,
we have a natural strict
content MathML/Open-
Math equivalent. In the
other cases we use the
translation in Figure 4
afforded by OpenMath-
/strict MathML extended according to our proposal. Here W is a binding opera-
tor and X stands for any number of variables in the bvar construct and Y , Z are

13

arbitrary MathML expressions. Since we have treated all concrete operators, W
must be either a ci, cn, a complex MathML expression, or a csymbol element.
We believe the first two cases have not been used, since there is no plausible way
to give them meaning; we propose to deprecate such usages in MathML 3. In
contrast to that, the csymbol case is an eminently legitimate use, and therefore
have to provide a W ′ in the rule above. But in MathML 2, a csymbol element
only has a discernible meaning, if it carries a definitionURL attribute that
points to a description D of the symbols’ meaning, which will specify the mean-
ing of the expression in terms of X, Y and Z. This description can be counted
as (or turned into) a CD D′ that declares a binary binding operator that can be
referenced by a csymbol element W ′ which points to this declaration. Note that
if D described a usage of the operator W without a condition qualifier, then D′

must also declare the unary binding operator W ; this must be different from W ′,
since OpenMath operators have fixed arities. Finally, note that the case where
W is a complex expression is analogous to the previous cases depending on the
head symbol of W .

7 Lifting Associative Operators

Binary associative operators have notational peculiarities of their own. While
we tend to write then as binary, as “a + b + c”, we recognise that this is “re-
ally” one addition of three numbers, and both MathML-Content and OpenMath
would represent this as a plus with three arguments. Mathematica distinguishes
such operators as Flat and OpenMath’s Simple Type System [6] as nassoc. It
therefore makes sense to think of applying them to collections of arguments, and
mathematical notation does this all the time (see table 5).

“small” a1 + a2 + a3 a1a2a3 a1 ∩ a2 ∩ a3 a1 ∪ a2 ∪ a3 a1 ⊗ a2 ⊗ a3 a1 ∨ a2 ∨ a3

small Unicode 225C 225B 220A 225F

“big”
∑3

i=1 ai

∏3
i=1 ai

⋂3
i=1 ai

⋃3
i=1 ai

⊗3
i=1 ai

∨3
i=1 ai

big Unicode 1350 1351 1354 1353 134E 1357

Fig. 5. “Big” operators

With the exception of
∑

and
∏

, which [7] regarded as being among the
“irregular verbs” of mathematical notation, we can see a familiar pattern: the
operator that applies to a collection of argument is “bigger” than its infix binary
equivalent. The designers of Unicode have done as well as might be hoped for
in mapping these symbols to ‘related’ code points in Unicode space for the
corresponding glyphs.

How are these “big” operators going to be represented? For those it “knows”
about [5, 4.2.3.2] (the list is, with our decorations. given in Figure 6: the ones
marked P are no longer n-ary in strict MathML 3), MathML can use bound

plus, times, max∗, min∗, gcd∗, lcm∗, mean‡, sdev‡, variance‡, median‡, mode‡,
and∗, or∗, xor†, union∗, intersect∗, cartesianproduct†, compose†, eqP,
leqP, ltP, geqP, gtP

Fig. 6. MathML 2’s n-ary operators

14

variables and conditions, so the last item from Figure 5 would be shown on the
left in Figure 7. It is not clear from [5] whether the same construct can be applied
to a user-defined operator, but it would be reasonable. OpenMath, on the other
hand, has an explicit lifting operator apply to list, see Figure 7 right.

<apply>
<or/>
<bvar><ci>i</ci></bvar>
<lowlimit><cn>1</cn></lowlimit>
<uplimit><cn>3</cn></uplimit>

ai

</apply>

<OMA>
<OMS name=”apply to list” cd=”fns2”/>
<OMS name=”or” cd=”logic1”/>
<OMA>
<OMS cd=”list1” name=”make list”/>

1 3 λi.ai

</OMA>
</OMA>

Fig. 7.
∨

in OpenMath and MathML

Many of the operators ⊕ listed in Figure 6, those we have marked ∗, have
two additional properties:

idempotence ∀f f ⊕ f = f ;
monotonicity There is some discrete order � such that ∀f, g f ⊕ g � g.

The first means that it make sense to apply ⊕ to a set , i.e.
⊕
S. The second

means that it makes sense to talk about
⊕∞

i=1 si, as being the point where the
construct stabilises under �, or some kind of infinite object otherwise. Open-
Math’s construction has no problem with, say,

∨
F , but MathML has to write

this as
∨
p∈F p and use condition to represent the p ∈ F .

The statistical operators (marked ‡), when applied to discrete sets, and those
marked †, only make sense over finite collections, but

∑
and

∏
, as well as being

lexically irregular in not being the infix operators writ large, are different in that
they can have a calculus connotation. Here neither OpenMath nor MathML 3
make any clear distinctions, nor, in their defence, do the vast majority of mathe-
matics texts. Is that sum meant to be absolutely convergent or only conditionally
convergent? Only a careful analysis of the surrounding text will show, if then.

To help those authors who wish to make such distinctions, OpenMath prob-
ably ought to have a CD of symbols with finer distinctions, just as it should for
the various kinds of integrals such as Cauchy Principal Value.

8 Conclusion

We have listed four areas where MathML (1–2) and OpenMath have taken differ-
ent routes to the expressivity of mathematical meaning. In the case of MathML’s
condition, we have seen one very general concept that does not have a single
formalisation, and this led to the pragmatic/strict distinction in MathML 3.
We have seen the utility of “restricted” quantifiers, even though they are not
logically necessary, and [9] proposes their addition to OpenMath.

In the case of the calculus operations, this reflected a genuine split in the
approaches to the calculus operations, whether one viewed them as algebraic

15

or analytic operations. Since neither is ‘wrong’, but the two are different (for
example the “Fundamental Theorem of Calculus” is a theorem from the ana-
lytic point of view, but a definition in the algebraic view), a converged view at
MathML/OpenMath 3 should incorporate both.

Acknowledgements

The unification effort described here has benefited from the input of many peo-
ple, notably Olga Caprotti, David Carlisle, Sam Dooley, Christoph Lange, Paul
Libbrecht, Bruce Miller, Robert Miner, Florian Rabe, Chris Rowley. The authors
are indebted to David Carlisle for comments on an earlier version of the paper.

References

1. T.M. Apostol. Calculus, Volume II, 2nd edition. Blaisdell, 1967.
2. P. Borwein and T. Erdélyi. Polynomials and Polynomial Inequalities. Springer

Graduate Texts in Mathematics 161, 1995.
3. David Carlisle, James Davenport, Mike Dewar, N. Hur, and William Naylor. Con-

version between MathML and OpenMath. Technical report, The OpenMath Soci-
ety, 2001.

4. The OpenMath Consortium. OpenMath Standard 2.0. http://www.openmath.

org/standard/om20-2004-06-30/omstd20.pdf, 2004.
5. World-Wide Web Consortium. Mathematical Markup Language (MathML) Ver-

sion 2.0 (Second Edition): W3C Recommendation 21 October 2003. http://www.

w3.org/TR/MathML2/, 2003.
6. J.H. Davenport. A Small OpenMath Type System. ACM SIGSAM Bulletin 2,

34:16–21, 2000.
7. J.H. Davenport. OpenMath in a (Semantic) Web. http://www.jem-thematic.

net/file_private/Barcelona.pdf, 2008.
8. J.H. Davenport and M. Kohlhase. Calculus in OpenMath. Submitted to 22nd

OpenMath Workshop, 2009.
9. J.H. Davenport and M. Kohlhase. Quantifiers in OpenMath. Submitted to 22nd

OpenMath Workshop, 2009.
10. J.H. Davenport and M. Kohlhase. Unifying Math Ontologies: A tale of two stan-

dards (full paper). http://opus.bath.ac.uk/13079, 2009.
11. J.R. Hindley and J.P. Seldin. Lambda-Calculus and Combinators. Cambridge

University Press, 2008.
12. F. Kamareddine and R. Nederpelt. A Refinement of de Bruijn’s Formal Language

of Mathematics. J. Logic, Language & Information, 13:287–340, 2004.
13. M. Kohlhase. OpenMath3 without conditions: A Proposal for a MathML3/OM3

Calculus Content Dictionary. https://svn.openmath.org/OpenMath3/doc/blue/

noconds/note.pdf, 2008.
14. Michael Kohlhase. OMDoc – An open markup format for mathematical documents

[Version 1.2]. Number 4180 in LNAI. Springer Verlag, 2006.
15. Christoph Lange. OpenMath wiki. http://wiki.openmath.org, 2009.
16. Christoph Lange and Alberto González Palomo. Easily editing and browsing com-

plex OpenMath markup with SWiM. In Paul Libbrecht, editor, Mathematical User
Interfaces Workshop 2008, 2008.

16

