
CPoint: Dissolving the Author’s Dilemma

Andrea Kohlhase1, Michael Kohlhase2

1School of Computer Science, Carnegie Mellon University ako@cs.cmu.edu
2School of Engineering and Science, International University Bremen

m.kohlhase@iu-bremen.de

Abstract. Automated knowledge management techniques critically de-
pend on the availability of semantically enhanced documents which are
hard to come by in practice. Starting from a detailed look at the moti-
vations of users to produce semantic data, we argue that the authoring
problem experienced by MKM is actually an author’s dilemma. An anal-
ysis of the content authoring process suggests that the dilemma can
partially be overcome by providing authoring tools like invasive edi-
tors aimed specifically at supporting the content creator. We present
the CPoint application, a semantic, invasive editor for Microsoft Pow-
erPoint, geared towards the OMDoc MKM format.

1 Introduction

Knowledge management technologies are concerned with recovering the content
and semantics from documents and exploiting it for automation with an emphasis
on web-based and distributed access to the knowledge. The interest in applying
knowledge management tools to mathematics (Mathematical Knowledge Man-
agement, MKM) is based on the fact that mathematics is a very well-structured
and well-conceptualized subject, which makes the knowledge management task
simpler and more effective.

Currently, the field of MKM focuses on representation formats for mathemat-
ical knowledge (MathML [ABC+03], OpenMath [Cap03], or OMDoc [Koh00],
etc.), mathematical content management systems [FK00,ABC+02,APCS01], as
well as publication and education systems for mathematics [CNXa,MBG+03].

While the system prototypes showcase the potential added value of explicitly
representing the content and semantics of mathematical knowledge, they have
failed to take off in terms of actual deployments. The main bottleneck seems
to be the lack of large-scale, high-quality corpora of mathematical knowledge
marked up in the respective MKM formats and the effort involved in creating
these. Conventional wisdom (aka. “hope”) in MKM is that the added-value ap-
plications based on semantic annotations will create a stimulus that will entice
common users to invest time and effort into this exciting new technology. But the
community experiences at the moment, that it is not yet sufficiently tempting.
We will call this the MKM authoring problem.

In this paper, we will take a detailed look at the motivations of users to
create MKM content and show that the MKM authoring problem is actually



an author’s dilemma. We will then develop the concept of an invasive editor as
a (partial) solution to the MKM authoring problem and present the CPoint
application, a semantic, invasive editor for Microsoft PowerPoint.

2 The Author’s Dilemma

For a user of MKM material, the motivation for preferring semantically rich data
is simple: explicit document structure supports enhanced navigation and search,
semantic markup yields context and search by content. Furthermore, the higher
the degree of semantic structure, the more added-value services can feed on the
material, the higher the benefit for the user.

2.1 What is the Author’s Dilemma?

For a document author, the cost of creating a document is a priori proportional
to the depth of the markup involved (assuming that the markup quality is cost-
independent in an ideal world). However, once the markup quality passes a
certain threshold which supports flexible reuse of fragments, document creation
costs may actually go down as they are dominated by the cost of finding suitable
(already existent) knowledge elements. Thus, the author is interested in a high
reuse ratio, provided that retrieval costs are not prohibitive. The benefits are
obvious for the author who has the opportunity to reuse her own content modules
frequently, but the real payoff comes when she is part of a group of individuals
that share content objects and knowledge structures freely. But why should an
author share her content modules with others, who could make use of them
without contributing to the common share of materials?

Cooperation is often analyzed by means of a non-zero-sum game called the
Prisoner’s Dilemma (see [Axe84]). The two players in the game can choose
between two moves, either ”cooperate” or ”defect”. The idea is that each player
gains when both cooperate, but if only one of them cooperates, the other one,
who defects, will gain more. If both defect both lose, but not as much as the
‘cheated’ cooperator whose cooperation is not returned. The prisoner’s dilemma
is meant to study short term decision-making where the actors do not have any
specific expectations about future interactions or collaborations.

The analogy to the document author’s situation is apparent: if the author
decides to invest his time and effort and others contribute as well, everyone
profits tremendously from this synergy of cooperation. On the other hand, if
just the author works on semantic markup, then he will gain nothing in the
short run (but some in the long run). So, we can rightfully call it the author’s
dilemma.

In the prisoner’s dilemma, if the decision-makers were purely rational, they
would never cooperate as they should make the decision which is best for them
individually. Suppose the other one would defect, then it is rational to defect
yourself: you won’t gain much, but if you do not defect you will have all the work.
Suppose the other one would cooperate, then you will gain (especially in the long



run) whatever you decide, but you will gain more if you do not cooperate (as
you don’t have to invest your time and effort), so here too the rational choice
is to defect. The problem is that if all actors are rational, all will decide to
defect, and none of them will gain anything. If we assume MKM authors to be
rational, then we anticipate their non-cooperation. The MKM authoring problem
is a consequence of the author’s dilemma.

In order to tackle the author’s dilemma we investigate the central assumption
of the prisoner’s dilemma that the actors do not have “specific expectations about
future interactions or collaborations”.

One way to get around the author’s dilemma is to build or strengthen these
expectations, for example by establishing targeted, cooperating research groups,
open source and open content licensing, or citation indexes. Such measures1 may
well tip the scale towards cooperation and would therefore be a very worthwhile
contribution to the MKM authoring problem.

In this paper, we will single out the ’real payoff’ benefit, show why this
argument doesn’t constitute a specific expectation in the dilemma scenario, and
finally dissolve the author’s dilemma by changing its input parameters (costs and
benefits). In particular, we will concentrate on a single author and the content
authoring process.

2.2 The Content Authoring Process

The key intuition in MKM formats is to make semantic structures that are
implicit in conventional forms of communication so explicit that they can be
manipulated by machines. This explication can happen on several levels: for-
mats like MathML [ABC+03] or OpenMath [Cap03] allow to mark up the
structure of mathematical formulae, formats like CNXML [CNXb] mark up the
document structure and allow to classify text fragments in terms of mathematical
forms like “Definition”, “Theorem”, “Proof”, etc. Formats like the logic-based
Casl [CoF98] or the development graph format [Hut00] allow to structure math-
ematical knowledge into graphs of so-called “Theories”, which make semantic
relations (like reuse of content, semantic (in)dependence, and interpretability)
explicit and available for computer-supported management. Finally, formats like
OMDoc [Koh00] attempt to combine all of these aspects of MKM into one inte-
grated representation format for mathematical knowledge.

The explication of structure allows for a new authoring process, the con-
tent authoring process. In conventional document formats like LATEX, the
document- and knowledge structure is inseparable from the atomic content (para-
graphs of text, mathematical statements, . . . ). Therefore they have to be au-
thored at the same time, with the exception of copy-and-paste techniques that
have become available by electronic document formats. With the advent of se-
mantic markup techniques, hypertext, and the distribution medium of the Inter-
net, users are enabled to aggregate knowledge fragments (self-authored or from
other sources) without losing the semantic context, or having to adapt notations:

1 See the Connexions project for community-building efforts in this direction [HBK03].



the more structured the knowledge fragments, the simpler their aggregation and
reuse.

In fact, approaches like “Learning Objects” [Hod03] postulate that knowledge
should be represented in small units like atomic content and that all documents
that can be formed using these should be represented as aggregates that mark
up the structure and only reference the content. Such aggregates are lightweight,
ephemeral structures that can be created on the fly and for special situations,
while the learning objects form the heavyweight base of knowledge, that is ex-
pensive to create but can be reused in multiple aggregates.

Basically the same idea was realized with the semantic data format OMDoc
where a document is considered to consist of a narrative document with links
to a content base that is another OMDoc document (see [Koh04c]). Here, the
‘learning object’ is extended to a ‘content object’ by taking the context into
consideration, enhancing it’s semantic value and making it more reusable in the
process.

2.3 Dissolving the Author’s Dilemma: Creator Support

In the framework of the (new) content authoring process, we can see that the
role of a document author, which used to intimately link the activities of content
creation, content aggregation, and content presentation can be split up into two
roles: creator and aggregator. The aggregator collects and presents atomic
content, whereas the creator builds atomic content so that we might use the term
content author as well. In fact, we expect that over time the classic academic
roles of teacher, survey paper author, or science journalist will be concerned
mainly with content aggregation, adding only descriptive text to existing content
objects. Currently, the value of semantic markup shows itself only later in added-
value services — not at the time of the actual content creation. Not surprisingly,
the added-value applications have concentrated on the consumers of the semantic
data and not on its producers.

If we reformulate the author’s dilemma as a cost-benefit equation in these
terms, it reads “The creator’s loss is the aggregator’s profit.”. In other words,
the allegedly specific ‘real payoff’ expectation in the author’s dilemma scenario
really isn’t one for the creator of the semantic data. The obvious conclusion
consists in separating the single cost-benefit equation into one for the content
author and one for the aggregating author. The author’s dilemma dissolves if we
can give the creator his own motivation for creating semantic data. In particular,
equipping the creator not only with specific content authoring support
but also with added-value services will help solve the MKM authoring
problem.

Our approach to promote the creator starts with the concept of an inva-
sive editor. Generally, authors select document creation systems (editors) with
a particular purpose in mind — for instance in the face of presentational tasks.
They frequently opt for editors optimized for the intended output media like
data projectors (e.g. PowerPoint as presentation editor) or journals (e.g. emacs



as a LATEX-editor). As these editors optimize their output facilities to the pre-
sentational task at hand, they usually don’t contain infrastructure for content
markup. If an author wishes to annotate his knowledge, then he often has to
leave his accustomed editor to use other tools, which is perceived as painful
by experienced users. This is clearly a hurdle for an author’s willingness to do
semantic markup and can be alleviated by providing semantic editing facilities
within the chosen editor. We call an editing facility an invasive editor, if it
is build into an existing application and performs neglected functionalities like
content markup. Such an add-on is nurtured by the existing editor in the sense
that it adopts its feel, look, and location.

The apparent plus for a content author consists in the fact that she can write
and markup documents in her usual work environment at the same time. But
the real benefit is the following: she can improve the quality of her document by
executing content checks and by visualizing the properties (e.g. stringency) of
its content. In short, an invasive editor provides the potential point of entry for
creator support and creator-specific added-value services in her chosen editor.

The concept of an invasive editor is latent in many modern document- or
program development environments, and in fact a desired phenomenon. ‘Host
systems’ provide scripting facilities that can be used to create interfaces to other
dimensions of information in the documents. For instance, the various office
suites offer some variant of VBA (Visual Basic for Applications), formatting sys-
tems like LATEX have a built-in macro processor, and computer algebra systems
have embedded programming facilities. A crucial prerequisite for the suitability
of a host system consists in the extensibility of the document storage format. We
do not consider simple extensions like emacs modes for programming languages
or semantic data formats as invasive editors, since they only provide editing
facilities for dedicated file formats, and lack the added dimension.

In the Course Capsules Project (CCaps [CCa,KSJ+02]) at Carnegie Mellon
University we have experimented with two invasive editors with complementary
characteristics: nb2omdoc [Sut04], an editor plug-in for Mathematica as a
computer-algebra-oriented and therefore mathematically interactive system, and
the CPoint system for MS PowerPoint (PPT) as a purely presentation-oriented
editor. We will present the latter in the next section.

3 CPoint – an Invasive Editor for Content in PowerPoint

Before we present the CPoint application let us consider the discrepancy be-
tween existing knowledge and its presentation in PPT. Based on this analysis,
we will take a look at CPoint’s forms for semantic data input, its support
for content authoring, and finally demonstrate the PPT author’s added-value
utilities implemented by CPoint.

3.1 Presentation vs. Knowledge

CPoint’s goal is to provide an author with an interface to explicitly store seman-
tic information (knowledge) in the PPT slide show itself without destroying the



presentational aspects of the PPT document. Critical to the task is the apparent
gap between the content in a PPT document and the intended communication
of knowledge in a PPT talk.

Knowledge is the psychological result of perception
and learning and reasoning

http://www.cogsci.princeton.edu/cgi-bin/webwn

A Priori Content MS PowerPoint is a visual editor and player for slides
in a presentation. Thus, it exclusively addresses presentational issues — the
placement of text, symbols, and images on the screen, carefully sequenced and
possibly animated or even embellished by sound. Obviously, the text and the
pictures carry content, and so does the structural, textual, and presentational
pattern; we will call it the a priori content. In order to assess the quality
of a priori content, we list a few typical examples: grouping information in a
numbered list implies ranking information, the act of grouping text bubbles in
one slide expresses a correlation, or marking text as title with presentational
means classifies it accordingly. The superficial and somewhat blurred nature of
the a priori PPT content is obvious, as a consequence, the knowledge that is
implicit in a PPT presentation cannot be exploited for added-value services.

Fig. 1. A Priori Content and Implicit Knowledge in a PPT Presentation

Implicit Knowledge The audience in a PPT talk perceives the a priori con-
tent in the PPT document together with what the lecturer says. This is followed
by the user’s learning and reasoning process: content becomes knowledge by cat-
egorizing the perceived information and combining it with what a user already



knows. The author on the other hand already has this knowledge and while he
is creating the PPT document he is using it implicitly. So the ‘real’ content
is hidden beneath the presentation form and has to be captured and stored to
make it available to MKM techniques. Figure 1 shows the interplay of a-priori
content and implicit knowledge. The global context, e.g. the placement of one
lecture in an entire course, is another part of the implicit knowledge. Following
OMDoc, CPoint captures this via the notion of a collection, encompassing a
group of inter-related PPT presentations.

Explicit Knowledge CPoint provides functionality to make the implicit
knowledge in a PPT presentation explicit. The PPT content author is supported
in

– marking up the ontological role of a PPT object
– annotating its relation to the local and global context, i.e. to the just-learned,

about-to-be-learned, and assumed knowledge elements, and
– adding background knowledge that is presupposed in the course but not

presented in the slides.

We will call the resulting, explicitly annotated knowledge PPT content in the
following. The two-stage annotation process will be described in detail in Sec-
tion 3.2. For the transition from implicit to explicit knowledge see Figure 2.

Fig. 2. Explicit Knowledge in a PPT Presentation

3.2 The CPoint Application

CPoint [Koh04a] is a PPT add-in that is written in VBA. To store the semantic
information in the PPT files, it makes use of the fact that PPT objects can be



persistently ‘tagged’ with arbitrary strings. CPoint is distributed under the
Gnu Lesser General Public License (LGPL [FSF99]), the newest version can be
downloaded from http://cs.cmu.edu/~ccaps.

Fig. 3. The CPoint Menu Bar

The CPoint add-in makes its functionality available through a toolbar in the
PPT menu (see Figure 3) where it is at an author’s disposal whenever the PPT
editor is running. The top-level structure of a PowerPoint presentation is given
by slides. Each slide contains PPT objects, e.g. text boxes, shapes, images, or
tables. By using CPoint the author can attach additional information to each
PPT object so that it becomes a semantic object.

As CPoint wants to model the implicit knowledge in a PPT presentation
and aims at facilitating the annotation process, it is geared towards the under-
standing process. Therefore we will continue with the application’s illustration
along the process’ characteristics: categorizing and combining.

Categorizing: The CPoint Categorize Form The very first step in the
categorizing process of an object is a naming act (title assignment) which lifts
its content from e.g. mere text to a knowledge object (see Figure 4).

Fig. 4. The CPoint Categorize Form

Classification is neither simple nor unique. First, individual styles vary a lot.
Secondly, objects like texts or images may be used in different ways: An image



of a tree in full bloom for instance is used narratively in a lecture about trees in
computer science whereas a textual definition of a tree in the same lecture clearly
contains knowledge. On the other hand the tree’s picture may be definitional in
a lecture about blossoms in biological science. Furthermore, objects can be pure
repetitions and even though they might contain content, not all appearances are
used as content objects. Analogously, a knowledge element might be described
more than once in a presentation, so that the object and its reformulations are
equivalent. Therefore CPoint distinguishes an object’s didactic role in a PPT
presentation to be narrative, content, or that of a repetition or reformulation for
another object.

The didactic role restricts the subsequent category selection — available as a
drop-down menu by a right mouse click — as it is only compatible with a subset
of pre-defined categories. Categories range from formal mathematical categories
like “Theory”, “Definition”, or “Assertion” to didactic elements.

Sometimes, components of what should be categorized as a single knowledge
element are spread over several slides for presentational reasons, possibly in-
terrupted by excursions here and there. In such cases, the original assumption
that (groups of) PPT objects directly correspond to knowledge objects is no
longer valid. For such situations, CPoint provides sequel objects that tie a
component to the respective previous knowledge element part. These are not in-
dividually categorized, the first in line contains the semantic data for the sequel
list.

Fig. 5. The CPoint Content Form for an Example

It is not always clear what an object’s content is (e.g. look at ’the’ object
in Figure 5 and think of it as ungrouped set). In particular, the presentational
information might contain more (category-independent) knowledge than is ex-
plicit. Therefore CPoint allows to differentiate an object’s content type to
influence the conversion process. The value “text” (the default) results in a di-



rect incorporation of the text value into the external representation. The content
type “graphics” triggers the creation of a picture of the object itself and/or all
underlying objects at conversion time. This is useful if only the combination of
objects describe a knowledge element like a set of circles with single letters and
lines between them may illustrate a tree. The content of each object is not note-
worthy (e.g. a letter), but their placement in the entity is. Finally, the content
type “code” is a specialization for the original application to Computer Science
content in the CCaps project. We anticipate that future applications of CPoint
will extend the repertoire of content types.

Combining: The CPoint Content Forms After a PPT object has been
classified, we must make its relation to the knowledge context explicit via the
respective detailed content form.

In Figure 5 we see the content form for a PPT object. Here, a specific tree
(consisting of nodes and edges) is an example for the concept of a (formal) tree.
In this case, the example is the PPT object itself (witnessed by the selection
in the Object field of the form). If the PPT object were e.g. a text box with
“Example: a directed graph unrolled” this would serve the purpose of an example
(and thus would have been categorized as “example” in the previous step), but
the text object itself only serves as description of another object (the directed
graph) which is the real example and should be referenced in the Object field of
the form.

3.3 CPoint’s Support for the Content Author

The following CPoint services equip the PPT author with
creator-specific tools for content authoring. Many of them di-
rectly allow the author to connect her content to a wider
knowledge context of MKM materials. The CPointAuthor
panel provides a tool palette for displaying and editing cen-
tral CPoint annotations of the currently selected object.
While the facilities described in the last section concentrated
more on the semantic annotation process for pre-existing text
objects, CPointAuthor focuses on the creation of semantic
objects in the content authoring process The presentational
properties of these are preset by the authors personal pref-
erences, which can be individually configured in a CSS file
(Cascading Style Sheets [Bos98]) associated with CPointAuthor.

Visualize Mode As the semantic markup must not disrupt the presentational
aspects of a PPT document, CPoint provides a so-called visualize mode at
design time. By activating it, annotation labels for semantic objects are created
that contain the category information as well as the title and content type of an
object. At the same time invisible objects like symbols and abstract objects are
visualized. An associated hide mode clears the labels.



The Navigator Button Generally, the purpose of a content form is to enter
referential information that elucidates an object’s contribution to and depen-
dence on the knowledge context. Since such references can be local (inside the
current slide show), in the current collection, or even in some external knowledge
source (e.g. the MBase mathematical knowledge base), finding and specifying
reference targets is one of the major difficulties of semantic markup in general.

For each of the scopes, CPoint deter-
mines the possible target elements (silently
loading the necessary documents or connect-
ing to external knowledge sources) and dis-
plays them in the adjoining selection box.
Since this will normally be too many for a
drop-down menu, the user can restrict the
search space by various filters (e.g. category) available on right-click. In the
figure on the right we can see the Navigator Button and the list of target objects
in the Local presentation.

Navigation As additional
navigational help CPoint
offers the GoTo interface.
The author may search for
objects with certain criteria,
restrict the found set by fil-
ters, determine in what pre-
sentation to look for objects,
and if he selects one object,
he can go to that object di-
rectly. On the right we can
see that the user searched in
the active PPT presentation
for all objects which have the word “tree” in their title and are categorized as
example. The PPT show contains two yielding objects which are collected in
the selection box on the upper right hand of the form.

Export to OMDoc The convert functionality allows a user to convert a
fully (CPoint-)edited PPT presentation into a valid OMDoc document from
within the PPT editor. Other OMDoc sublanguages are also supported. In par-
ticular, it can generate a document in presOMDoc, which is common OMDoc
extended by presentational elements, and amOMDoc which can be read by the
ActiveMath application.

Note, that the conversion utility recognizes TEXPoint [Nec] inlays, the un-
derlying LATEX code is conserved (as code) in the output OMDoc file.

Import from OMDoc As a PPT document contains a lot of presentational
information, CPoint’s import is based on presOMDoc documents. These can
be imported from within the PPT editor. The presOMDoc file is first read in,
then a new PPT presentation is generated from these parsed OMDoc elements



yielding the presentational information present in the document. The generaliza-
tion to an import feature of OMDoc documents with the usage of an individual
CSS file is at planning stage.

Connection to the Outside World CPoint exports files, which then can
be accessed by the author directly. Furthermore, the documents are opened
with an editor according to their file type and the user’s personal preferences.
Therefore, the author could read for instance generated OMDoc files with an
emacs editor with OMDoc mode.

Editor Notes An editor notes module CPointNotes is available. The author
can create (groups of) notes, searching in one or all groups for his notes and
jumping from one to another. If an author for instance does want to supply
background information, but wishes to finish creating the lecture first, he tags a
missing reference by setting an editor note in the group “background” to remind
him of inserting the missing references later on. At the same time he finds the
phrasing of the text still wanting, so he creates another note for this object in
the notes group “polish”.

3.4 Added-Value for the Content Author

In the CPointGraphs module [Koh04b] the user is enabled to view the an-
notated structure in a graph format, i.e. the dependency tree of the knowledge
elements is visualized. It offers several distinctive views from a general survey
of theories in a collection or presentation to a single detailed theory graph. In
Figure 6 we get an idea how extensive the knowledge in a course really is. Note
for example, that nodes without dependencies might be considered superfluous.

Fig. 6. CPointGraphs: The Theory Graph for a Course

The CPointAM module contains an integrated development environment
for ActiveMath content. It allows a user to start and stop the ActiveMath



application, to check for errors and to set parameters. Furthermore, it includes
a utility for converting an entire PPT collection into an ActiveMath course.
Additionally, it implements an ActiveMath guided tour button in the context
menu of each object. This button causes ActiveMath to create an individual-
ized, self-contained document that leads up to the knowledge embodied in this
object [MBG+03].

3.5 System Evaluation and Case Study

The CPoint system has co-evolved with a large case study, the course “15-
211 Fundamental Data Structures and Algorithms”. 15-211 is an undergraduate
course at Carnegie Mellon University (taught twice annually over a period of 10
years by a group of 10 faculty members). The current base of course materials
contains about 2500 PPT slides, of which about half have been annotated in
CPoint, the rest being duplicates, variants or obsoleted versions. Our intuitions
of the MKM authoring problem and many of CPoint’s auxiliary features have
been shaped by this case study. Annotation time per slide (for a talented student)
was about 10 minutes, which leads to a 60% MKM overhead, if we assume an
average slide creation time of 15 min.

The case study revealed, that without adding background material (that is
conveyed orally by the teacher during the lecture) the annotated slide show is too
thin as the only resource of content for an MKM system like ActiveMath. The
perhaps most surprising result in the case study was that the mental model the
authors had of their course materials was changed by the semantic annotation
process, resulting in more structured slides, more emphasis on prerequisites, and
less presentational gimmicks.

4 Conclusion and Future Work

In this paper, we address one of the central questions for the success of MKM
techniques “Why is it so hard to motivate people to annotate their documents
semantically when they agree at the same time to its usefulness and even to
its exciting potential?”. We characterize the underlying problem as an author’s
dilemma and argue, that the alleged pay-off for semantic annotation is not a
specific expectation for a content author. This predictably leads to the MKM
authoring problem. We propose the adoption of invasive editors with creator
support and creator-specific added-value services to dissolve the content au-
thor’s dilemma. We present the CPoint system, an invasive, semantic editor in
Microsoft PowerPoint and illustrate its content author support. We expect that
invasive editors will lower barrier for authors, help them manage their extensive
collections of presentations more effectively, even without assuming cooperation
benefits by sharing materials.

However, the surprising result of research on the prisoner’s dilemma is that
cooperation spontaneously emerges even in such a hostile situation, if the exper-
iment is iterated and a subset of players experiment with altruism (see [BW02]



for details). Qualitatively, it is safe to say that cooperation emerges earlier,
converges sooner, and tolerates more freeloaders, if the cooperation benefit is
strengthened and the cost of unreturned cooperation is mitigated. This suggests
that invasive editors will also play a role in fostering cooperation.

In the future, we envision a new PPT add-in module CPointPresenter
supplementing the existing module CPointAuthor for the different roles a
user can play. A presentation author (a presenter) will be supported during the
composition of a presentation. He will search, find, and build new presentations
based on existing knowledge elements. Here, we want to stress and facilitate
the aggregator function of e.g. a lecturer. For a content author we can conceive
further support by the application of information retrieval techniques to suggest
categories and references for content objects. This will be particularly helpful for
the migration of legacy materials to semantically enhanced formats like OMDoc.
As knowledge is present in other document formats as well (probably even more
so), another goal is the implementation of a CPoint clone in MS Word. Finally,
we plan to connect CPoint to the MBase system [KF01], so that all knowledge
captured in OMDoc documents and stored in an MBase can get directly used.

Acknowledgments The development of the CPoint system has been funded
by the National Science Foundation under grant CCF-0113919 and a grant from
Carnegie Mellon’s Office for Technology in Education. The authors would like
to thank Frederick Eberhardt for his markup of 15-211 and fruitful discussions
on the CPoint system.

References

[ABC+02] Stuart Allen, Mark Bickford, Robert Constable, Richard Eaton, Christoph
Kreitz, and Lori Lorigo. FDL: A prototype formal digital library – de-
scription and draft reference manual. Technical report, Computer Science,
Cornell, 2002. http://www.cs.cornell.edu/Info/Projects/NuPrl/html/

FDLProject/02cucs-fdl.pdf.

[ABC+03] Ron Ausbrooks, Stephen Buswell, David Carlisle, Stéphane Dalmas, Stan
Devitt, Angel Diaz, Max Froumentin, Roger Hunter, Patrick Ion, Michael
Kohlhase, Robert Miner, Nico Poppelier, Bruce Smith, Neil Soiffer, Robert
Sutor, and Stephen Watt. Mathematical Markup Language (MathML) ver-
sion 2.0 (second edition). W3c recommendation, World Wide Web Consor-
tium, 2003. Available at http://www.w3.org/TR/MathML2.

[APCS01] Andrea Asperti, Luca Padovani, Claudio Sacerdoti Coen, and Irene Schena.
HELM and the semantic math-web. In Richard. J. Boulton and Paul B.
Jackson, editors, Theorem Proving in Higher Order Logics: TPHOLs’01,
volume 2152 of LNCS, pages 59–74. Springer, 2001.

[Axe84] Robert Axelrod. The Evolution of Cooperation. Basic Books, New York,
1984.

[Bos98] Cascading style sheets, level 2; CSS2 specification. W3c recommendation,
World Wide Web Consortium (W3C), 1998. available as http://www.w3.

org/TR/1998/REC-CSS2-19980512.



[BW02] Andreas Birk and Julie Wiernik. An n-players prisoner’s dilemma in a
robotic ecosystem. International Journal of Robotics and Autonomous Sys-
tems, 39:223–233, 2002.

[Cap03] The OpenMath standard, version 2.0. Technical report, 2003. The Open-
Math Society, http://www.openmath.org/standard/om20.

[CCa] The course capsules project. http://aiki.ccaps.cs.cmu.edu.
[CNXa] Connexions. http://cnx.rice.edu/.
[CNXb] Basic CNXML. http://cnx.rice.edu/content/m9000/latest/.
[CoF98] Language Design Task Group CoFI. Casl — the CoFI algebraic

specification language — summary, version 1.0. Technical report,
http://www.brics.dk/Projects/CoFI, 1998.

[FK00] Andreas Franke and Michael Kohlhase. System description: MBase, an
open mathematical knowledge base. In David McAllester, editor, Automated
Deduction – CADE-17, number 1831 in LNAI, pages 455–459. Springer
Verlag, 2000.

[FSF99] Free Software Foundation FSF. GNU lesser general public license. Software
License available at http://www.gnu.org/copyleft/lesser.html, 1999.

[HBK03] Geneva Henry, Richard G. Baraniuk, and Christopher Kelty. The Con-
nexions project: Promoting open sharing of knowledge for education. In
Syllabus, Technology for Higher Education, 2003.

[Hod03] H. Wayne Hodgins. The future of learning objects, 2003.
[Hut00] Dieter Hutter. Management of change in verification systems. In Proceedings

Automated Software Engineering (ASE-2000), pages 23–34. IEEE Press,
2000.

[KF01] Michael Kohlhase and Andreas Franke. MBase: Representing knowledge
and context for the integration of mathematical software systems. Journal of
Symbolic Computation; Special Issue on the Integration of Computer algebra
and Deduction Systems, 32(4):365–402, 2001.

[Koh00] Michael Kohlhase. OMDoc: An open markup format for mathematical
documents. Seki Report SR-00-02, Fachbereich Informatik, Universität des
Saarlandes, 2000. http://www.mathweb.org/omdoc.

[Koh04a] Andrea Kohlhase. CPoint Documentation. Carnegie Mellon University,
2004. Technical Manual http://www.faculty.iu-bremen.de/mkohlhase/
kwarc/software/CPoint.html.

[Koh04b] Andrea Kohlhase. CPointGraphs Documentation. Carnegie Mellon Uni-
versity, 2004. Technical Manual http://www.faculty.iu-bremen.de/

mkohlhase/kwarc/software/CPointGraphs.html.
[Koh04c] Michael Kohlhase. OMDoc An open markup format for mathematical doc-

uments (Version 1.2). 2004. Manuscript, http://www.mathweb.org/omdoc/
omdoc1.2.ps.

[KSJ+02] Michael Kohlhase, Klaus Sutner, Peter Jansen, Andrea Kohlhase, Peter
Lee, Dana Scott, and Matthew Szudzik. Acquisition of math content in
an academic setting. In Second International Conference on MathML and
Technologies for Math on the Web, Chicago, USA, 2002.

[MBG+03] Erica Melis, Jochen Büdenbender, George Goguadze, Paul Libbrecht, and
Carsten Ullrich. Knowledge representation and management in ActiveMath.
Annals of Mathematics and Artificial Intelligence, 38:47–64, 2003.

[Nec] George Necula. TeXPoint. Program Home Page at http://raw.cs.

berkeley.edu/texpoint/index.htm.
[Sut04] Klaus Sutner. Converting Mathematica notebooks to OMDoc. to appear

in [Koh04c], 2004.


