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Abstract. Even though OpenMath has been around for more than 10 years,
there is still confusion about the “semantics of OpenMath”. As the recent
MathML3 recommendation semantically bases Content MathML on Open-
Math Objects, this question becomes more pressing.

One source of confusions about OpenMath semantics is that it is given
on two levels: a very weak algebraic semantics for expression trees, which
is extended by considering mathematical properties in content dictionaries
that interpret the meaning of (constant) symbols. While this two-leveled way
to interpret objects is well-understood in logic, it has not been spelt out
rigorously for OpenMath.

We present two denotational semantics for OpenMath: a construction-
oriented semantics that achieves full coverage of all legal OpenMath expres-
sions at the cost of great conceptual complexity, and a symbol-oriented one
for a subset of OpenMath expressions. This subset is given by a variant
of the OpenMath 2 role system, which – we claim – does not exclude any
representations of meaningful mathematical objects.

1. Introduction

MathML [ABC+03] and OpenMath [BCC+04] are standards for the represen-
tation and communication of mathematical objects. Even though they have been
around for more than 10 years, there is still confusion about the “semantics of
OpenMath”. As the recent MathML3 recommendation [ABC+10] semantically
bases Content MathML on OpenMath Objects, this question becomes more
pressing.

1.1. OpenMath and MathML

MathML comes in two parts: presentation MathML, which provides XML-based
layout primitives for the traditional two-dimensional notation of mathematical for-
mulae and content MathML, which focuses on encoding the meaning of objects



rather than visual representations to allow the free exchange of mathematical ob-
jects between software systems and human beings. OpenMath has the same goals
as content MathML, but was developed by a different community with slightly
different intuitions. Both representation formats represent mathematical objects
as expression trees. Content MathML tries to cover all of school and engineer-
ing mathematics (the “K-14” fragment) in a representation format intuitive to
mathematicians, and OpenMath concentrates on an extensible framework built
on a minimal structural core language with a well-defined extension mechanism.
Where MathML supplies more than a dozen elements for special constructions,
OpenMath only supplies concepts for function application (OMA), binding con-
structions (OMBIND), and attributions (OMATTR). Where MathML provides close
to 100 elements for the K-14 fragment, OpenMath gets by with only an OMS el-
ement that identifies symbols by pointing to declarations in an open-ended set of
Content Dictionaries.

An OpenMath Content Dictionary (CD) is a document that declares names
(OpenMath “symbols”) for basic mathematical concepts and objects. CDs act as
the unique points of reference for OpenMath symbols (via OMS elements) and thus
supply a notion of context that situates and disambiguates OpenMath expression
trees. To maximize modularity and reuse, a CD typically contains a relatively
small collection of definitions for closely related concepts. The OpenMath Society
maintains a large set of public CDs [OMC], including CDs for all pre-defined
symbols in MathML2. There is a process for contributing privately developed CDs
to the OpenMath Society repository to facilitate discovery and reuse. OpenMath
does not require CDs be publicly available, though in most situations the goals
of semantic markup will be best served by referencing public CDs available to all
user agents.

To avoid fragmentation and to smooth out interoperability obstacles, an ef-
fort has been made to align OpenMath and MathML semantically. To remedy
the lack of regularity and specified meaning in MathML, content MathML was
extended by concepts like binding structures and full semantic annotations from
OpenMath and a structurally regular subset of the extended content MathML
was identified that is isomorphic to OpenMath objects. This subset is called strict
content MathML to contrast it to full content MathML that is seen to strike a
more pragmatic balance between regularity and human readability. Full content
MathML borrows the semantics from strict MathML by a mapping specified
in the MathML3 specification [ABC+10] that defines the meaning of non-strict
(pragmatic) MathML expressions in terms of strict MathML equivalents. Strict
Content MathML in turn obtains its meaning by being an encoding of Open-
Math Objects.

In this situation, the “meaning of OpenMath (Objects)” obtains a com-
pletely new significance. The aim of this paper is to clarify the status of seman-
tics in OpenMath (and thus content MathML3). We observe a presentational
gap between how mathematical objects and theories are conventionally given a
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meaning and the way OpenMath answers the question. This leads to misunder-
standings about the meaning of OpenMath objects and its role in representing
mathematical knowledge.

1.2. The Meaning of OpenMath

The OpenMath standard actually gives two answers to the question about the
meaning of OpenMath expressions. The first one comes from the fact that Open-
Math is intended as a communication standard between mathematical software
systems: OpenMath envisions communication via phrasebooks ([AvLS98] or see [BCC+04,
chapter 1]): Each mathematical software system S is equipped with an OpenMath
phrasebook that converts OpenMath expressions from and to the internal rep-
resentations of the system S. In this “system communication view”, the meaning
of OpenMath expressions is built into the phrasebooks that (purport to) un-
derstand the expression, and the meaning is whatever S (after conversion by the
phrasebook) makes it to be. Clearly, this view of meaning is not very helpful,
and taken in the radical simplicity we have formulated it here is not an adequate
account. After all, the purpose of the OpenMath standard is to synchronize the
system-specific representations of objects, so that communication between systems
is meaning-preserving. To attain this goal, OpenMath does two things:

1. It defines the class of “OpenMath objects” which acts as the model for en-
codings of mathematical formulae. OpenMath objects are essentially labeled
trees modulo α-conversion for binding structures and flattening for nested se-
mantic annotations. The OpenMath standard considers OpenMath objects
as primary citizens and views the “OpenMath XML encoding” as just an
incidental design choice for an XML-based markup language. In fact Open-
Math specifies another encoding: the “binary encoding” designed to be more
space efficient at the cost of being less human-readable.

2. Rather than appealing to mathematical intuition, OpenMath stipulates that
phrasebooks should be informed by (mathematical properties in) content
dictionaries.

It is the OpenMath Content Dictionaries which actually hold the
meanings of the objects being transmitted. For example if applica-
tion A is talking to application B, and sends, say, an equation
involving multiplication of matrices, then A and B must agree
on what a matrix is, and on what matrix multiplication is, and
even on what constitutes an equation. All this information is held
within some Content Dictionaries which both applications agree
upon. [. . . ] The primary use of Content Dictionaries is thought
to be for designers of Phrasebooks, the programs which translate
between the OpenMath mathematical object and the corresponding
(often internal) structure of the particular application in question.
[BCC+04, section 4.1]
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Even if this is not spelt out in the OpenMath2 standard the algebra O
of OpenMath objects can be interpreted as an (initial) model for encodings of
mathematical formulae.

To the best of our knowledge, this “act of interpretation” has never been
backed by a formal mathematical study; which is what prompted the work reported
in this paper. As a consequence the “compliance chapter” in the OpenMath
standard does not mention mathematical properties in CDs at all. While this
can be seen as a failure of OpenMath to supply semantics (“OpenMath is only
syntax”), we see it as an expression of the OpenMath representational philosophy
expressed in

OpenMath objects do not specify any computational behavior, they merely
represent mathematical expressions. Part of the OpenMath philosophy
is to leave it to the application to decide what it does with an object once
it has received it. OpenMath is not a query or programming language.
Because of this, OpenMath does not prescribe a way of forcing “evalua-
tion” or “simplification” of objects like 2 + 3 or sin(π). Thus, the same
object 2 + 3 could be transformed to 5 by a computer algebra system, or
displayed as 2 + 3 by a typesetting tool. [BCC+04, section 1.5]

Note that since O is initial, it is essentially unique and identifies (in the sense
of “declares to be the same”) fewer objects than any other model. As a consequence
two mathematical objects must be identical if their OpenMath representations
are, but not the other way around. In this sense the initial algebra semantics of
OpenMath objects is intentionally weak to make the OpenMath format onto-
logically unconstrained and thus universally applicable. It basically represents the
accepted design choice of representing objects as formulae. Any further (meaning-
giving) properties of an object o are relegated to the content dictionaries referenced
in o, where they can be specified formally (as “Formal Mathematical Properties”
in FMP elements containing XML-encoded OpenMath objects) or informally (as
“Commented Mathematical Properties” in CMP elements containing text). Thus
the precision of OpenMath as a representation language can be adapted by sup-
plying CDs to range from fully formal (by providing CDs based on some logical
system) to fully informal (where CDs are essentially empty except for declaring
symbols).

1.3. Overview of the Paper

When designing a formal language, we have to make a trade-off between expressiv-
ity and interpretability. The more flexible we make the language, the more content
can be expressed in it; but also, the harder it gets to interpret the language. Open-
Math systematically and intentionally errs on the side of expressivity imposing
only minimal well-formedness constraints on syntactic objects in the form of a
context-free grammar. Consequently, almost all well-formed OpenMath objects
do not denote a mathematical object and must be interpreted using special values
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denoting undefinedness. This is very common in logic and not a problem in itself,
but it precludes full-coverage, symbol-oriented semantics.

In this paper, we will develop both
1. a full-coverage, construction-oriented for OpenMath objects, which solves

the problem of specifying denotations for OpenMath’s feature of arbitrary
binders and attributions, and

2. a symbol-oriented semantics for a restricted subset of OpenMath expressions
that can serve as a compromise between the spirit of OpenMath and the
elegance of a model-theoretical semantics.

The price for giving denotations for all OpenMath objects (under 1.) is that giv-
ing individual algebras is ludicrously complicated since they must, e.g., provide an
interpretation for any object used as a binder, binding any number of bound vari-
ables, in which each variable carries any list of attribution keys, each attributing
any value. This convoluted semantics is unavoidable and enforced by the gener-
ality of the OpenMath standard. But the question arises whether the benefit of
arbitrary binders is worth the effort of such a semantics.

The price for semantic elegance (under 2.) is that we need to find a way to
restrict the flexibility of OpenMath expressions without sacrificing (important)
mathematical examples.

We will develop the full-coverage semantics for OpenMath in two steps.
In Section 3, we present an initial algebra semantics of OpenMath objects, and
then in Section 4 extend it to take mathematical properties in CDs into account.
In Section 5, we discuss how role/type systems can be used to single out subsets
that afford symbol-oriented semantics. We show the feasibility of such an approach
by providing a role system that strengthens the one specified in the OpenMath 2
standard and exhibit a symbol-oriented semantics. Section 6 concludes the paper.

2. Preliminaries and Related Work

2.1. Model Theoretical Semantics

Model theoretical semantics of logical languages go back to [TV56, Rob50], an
overview is given in [BF85]. They are often based on a universe, a set that con-
tains the objects the language is designed to talk about (its domain of discourse).
The denotation of an object of a formal language is usually defined via an inter-
pretation function J−K, an inductive, compositional function on the syntax. An
algebra or (especially if propositions and truth values are involved) model is a
universe together with an interpretation function.

Usually, almost all syntactic objects of the language are interpreted as intra-
universal entities, i.e., as elements of the universe. Generally, extra-universal en-
tities are not desirable because they complicate the semantics. Moreover, they
can always be avoided by simply enlarging the universe to encompass them. Yet,
there are two conditions under which they are useful. Firstly, there should only be
few objects with extra-universal semantics. Usually, these objects are atomic, i.e.,
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certain symbols; if they are composed objects, they should be subject to a compar-
atively simple language. Secondly, adding them to the universe would substantially
complicate the universe. This usually means extending all operations that must
be defined for all elements of the universe, which can be very inconvenient.

For instance, in first-order logic, the function and predicate symbols are in-
terpreted extra-universally as functions and relations on the universe. Similarly,
the truth values, i.e., the denotations of propositions are extra-universal. This
is tolerated because there are only finitely many and only atomic objects with
extra-universal semantics. Moreover, keeping them out of the universe is desirable
because it permits universes without functions.

A contrasting example is the semantics of higher-order logic (a logic based
on the simply typed λ-calculus) [Chu40]. There the universe contains truth val-
ues and (arbitrary orders) of functions, so that functions and predicates can be
treated intra-universally (at the cost of having a much more complicated uni-
verse). Moreover, by using higher-order abstract syntax, even the quantifiers can
be treated intra-universally as predicates on predicates, and the only remaining
language-level constructions with an extra-universal interpretation are application
and λ-abstraction.

The interpretation function is defined by induction on the syntax. Thus,
at the very least, an algebra must provide one (intra- or extra-)universal entity
for each symbol declared in the signature. If the interpretation of complex ob-
jects is defined generically in terms of the interpretations of their components
(i.e., ultimately in terms of the interpretations of the symbols), we speak of a
symbol-oriented semantics. The above semantics for first- and higher-order logic
are examples, the former using extra-universal interpretations of the symbols.

Alternatively, algebras may additionally provide extra-universal operations
that determine how the interpretation of complex objects is obtained from the in-
terpretation of their components. In that case, we speak of a construction-oriented
semantics. In this case, the universe is usually so rich that these operations are
the only extra-universal entities needed. Consequently, the universe of the alge-
bras is more complex, but once given, all symbols of the signature can easily be
interpreted intra-universally.

For example, a construction-oriented semantics for higher-order logic can be
given based on applicative structures, which consist of a universe together with
an application operator. Thus, the semantics of application can vary with the
particular algebra. In categorical logic, this is taken to the extreme by searching
for classes of categories that provide just enough structure to interpret all the
constructions. For example, for higher-order logic, this leads to algebras based on
arbitrary cartesian closed categories [LS86].

2.2. Role and Type Systems

In a classified language, the syntactic objects are grouped into classes, algebras
provide one universe for each syntactic class, and objects are interpreted as ele-
ments of the universe associated with their class. Often some objects belong to
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no class (usually called ill-formed), which are not interpreted at all. We call the
opposite case of a semantics with a single universe monolithic.

Classified languages are most common in type theory [WR13, Chu40], where
the objects are classified by their type and algebras provide a different universe
for every type.

A classified syntax can be achieved using role systems or type systems. Both
assume a syntactic class assigned to each symbol (the symbol’s role or type) and
then extend this assignment to all objects. Moreover, objects in certain syntactic
positions are constrained according to their role or type so that many objects
become ill-formed. We speak of a role system if the syntactic classes are extraneous
to the formal language and of a type system if they are themselves syntactic
objects.

In order to discuss role and type system for OpenMath, we distinguish
positive and negative systems. A negative system defines some objects to be ill-
formed, e.g., objects with a certain role/type may be forbidden in certain positions.
A positive system, on the other hand, defines some objects to be well-formed, e.g.,
only objects with a certain role/type may be allowed in a certain position. A
positive system is a necessary requirement for a symbol-oriented semantics: For
example, if the possible binders are positively known, the algebra can derive their
semantics from the symbols occurring in the binder.

Furthermore, we distinguish universal and limited system. A universal system
can be applied to all OpenMath objects without loss of usability. A limited system
applies to a subset of OpenMath objects or to a certain field of applications. In
particular, any decidable type system limits attention to the decidable fragment
of mathematics. For example, we might limit attention to the case where there
is only one key (for type attributions) and only two objects permitted as binders
(two symbols for λ and Π).

These distinctions lead to a trade-off between the desirable properties of
being positive and universal. Usually, role systems are relatively simple, making
this trade-off easier. Type systems are usually much more fine-grained than role
systems, and a positive and universal type system for OpenMath is virtually
impossible.

Role and Type Systems for OpenMath. In some languages, role/type systems can
be strict enough to single out exactly the meaningful objects so that no undefined
values are necessary in algebras. This is of course not possible for mathematics in
general where meaningfulness is undecidable. Moreover, the design of OpenMath
intentionally avoids a commitment to any particular type system. Still, both role
and type systems have been given for OpenMath.
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The OpenMath standard [BCC+04] already provides a role system. The
possible roles are constant, application, binder, key. 1 The role system is neg-
ative: OM objects are ill-formed if their head does not have the respective role. In
particular, no restriction is imposed for symbols without role or for composed ob-
jects. (Thus, the effect is marginal because the role restriction can be circumvented
altogether by wrapping a symbol in a non-semantic attribution which the standard
guarantees does not change the semantics.) Therefore, the system is universal: If
no roles are assigned, all objects are well-formed.

In [RK09], we give a more fine-grained role system that uses arities for func-
tions. The system is positive while being as universal as possible. For example,
the default arity is that of a function with unlimited arity. Moreover, the binding
objects are positively limited: The only permitted binders are symbols with that
role and applications of such symbols to arguments.

Neither role system limits the bound variables of binding objects, which would
be crucial for a symbol-oriented semantics.

In [Dav99], a simple type system is given. It is positive and intentionally
limited to basic cases. It is essentially an extension of simple type theory with
n-ary and associative-binary function arguments.

In [?], a stronger type system is given based on the calculus of constructions.
It is also positive and limited – in particular, type checking is decidable – but
much less limited than the above. It features all possible Π-types of the λ-cube
as well as dependent product types. Attributions are limited to a single key for
type attributions. Other binders than Π, λ, and Σ are permitted, but these are
considered abbreviations of the corresponding functions defined in terms of higher-
order abstract syntax.

A similar type system based on categorial types is sketched in [Str04]. It
uses a special key for type attributions and represents binding using higher-order
abstract syntax. Keys are treated like binary functions.

3. A Construction-Oriented Semantics for OpenMath

We will now define a an algebraic semantic semantics for OpenMath objects
building on ideas from [BBK04]. The difference to the situation there (giving a
semantics for the simply typed λ calculus with a type of Booleans) is that Open-
Math allows n-ary function application (rather than binary) arbitrary binding
symbols (rather than just λ-abstraction), and arbitrary attributions (rather than
just simple types), but only assumes α-conversion (rather than αβη conversion).

1We do not cover the roles attribution and error here, which go beyond the fragment

of OpenMath we consider; their treatment is analogous. Moreover, we write key instead of
semantic− attribution for brevity.
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3.1. Syntax

We start out by fixing an abstract syntax of “OM objects”, which we will relate
to OpenMath objects in Section 3.3. We will call the objects specified in Defi-
nition 9 “abstract OM Objects” when we want to distinguish from the “standard
OpenMath objects” defined in the OpenMath2 standard [BCC+04, section 2].

Definition 1 (Symbols and Variables). In all of the following, we will assume the
existence of two disjoint, countably infinite sets: a set Symbols of symbols and a
set Variables of variables. Furthermore, we assume a set Keys ⊆ Symbols of keys.2

As usual in formal languages we are a little more careful about the sym-
bols and variables we use in the construction of complex objects. The notions of
vocabularies and contexts help us do this:

Definition 2 (OM Vocabulary). An OM vocabulary is a set of symbols. For every
OM vocabulary T , we denote by Symbols(T ) := Symbols ∩T the set of symbols of
T and by Keys(T ) := Keys ∩ T the set of keys of T .

Definition 3 (OM Context). An OM context C is an n-tuple of variables which we
will write as 〈x1, . . . , xn〉. We will use + for tuple concatenation and ∈ for tuple
membership.

Definition 4 (OM Objects). Let T be an OM vocabulary. The set O(T,C) of OM
objects over T in context C is the smallest set closed under the following operations

1. if s ∈ Symbols(T ) \Keys(T ), then S(s) ∈ O(T,C),
2. if x ∈ C, then V(x) ∈ O(T,C),
3. if f, o1, . . . , on ∈ O(T,C) for n > 0, then A(f, o1, . . . , on) ∈ O(T,C),
4. if b ∈ O(T,C), X1, . . . , Xn ∈ AttVar(T,C) for n ≥ 0, and o ∈ O(T,C ′) where
C ′ = C + 〈varname(X1), . . . , varname(Xn)〉, then B(b, [X1, . . . , Xn], o) ∈
O(T,C),

5. if o ∈ O(T,C), k ∈ Keys(T ), and v ∈ O(T,C), then K(o|k := v) ∈ O(T,C).

Here attributed variables are defined by: o ∈ AttVar(T,C), iff o = V(x) for some
x ∈ C or o = K(o′|k := v) ∈ O(T,C) for some o′ ∈ AttVar(T,C). We call OM
objects in the empty context ground. The name of an attributed variable is defined
by varname(K(o′|k := v)) = varname(o′) and varname(V(x)) = x.

Note that in contrast to the OpenMath2 standard we only consider “unary”
attributions that associate an object with a single key/value pair. This allows
us to build the “flattening of attributions” into the abstract representation of
OM Objects. We can regain the syntactic structure of OpenMath2 objects by
introducing n-ary attributions as an abbreviation for nested attributions: K(o|k1 :=
v1, . . . ,kn := vn) = K(K(o|k1 := v1)|k2 := v2, . . . ,kn := vn) for n ≥ 2. With this

2This is assumption strictly for convenience in theory development; actually the determination

of a symbol being a key is made by ascribing the role “semantic-attribution” in an OpenMath

content dictionary. When we align content dictionaries with vocabularies in Definition 14, we
make sure that the CD roles are respected.
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trick3 we have fully covered the requirement of “attribution flattening equivalence”
required in the OpenMath standard.

Case 4 of Def. 9 reveals an underspecification in the OpenMath standard:
The standard does not specify whether a bound variable may occur in the attri-
butions of itself or of other variables bound by the same binder. Our definition
requires Xi ∈ AttVar(T,C), i.e., no variable may occur in any variable’s attribu-
tion. While this a perfectly reasonable choice, others are possible. For example,
Xi ∈ AttVar(T,C + 〈varname(X1), . . . , varname(Xi−1)〉) permits every variable
to occur in attributions of later variables. That can be useful to merge nested
binding objects all binding with the Π-binder of dependent type theory into a sin-
gle binding object. Xi ∈ AttVar(T,C ′) permits variables to occur in each other’s
attributions, which permits to represent mutually recursive let bindings.

In Case 4, one should also note that OpenMath permits bindings with 0
bound variables. These degenerate to unary functions.

Let us fortify our intuition with an example which will use throughout the
paper; we focus on binding objects, since they are the most problematic case:

Example 1. The untyped universal quantification ∀x.x = x is represented as U =
B(S(∀), [V(x)], x = x )4, where ∀ is a symbol. To show the interaction of attribu-
tion and binding, we use a typed identity function represented as a λ-abstraction:
λx : ι → ι.x is represented as L = B(S(λ), [K(V(x)|τ := ι→ ι )],V(x)). We have
U ∈ O({∀,=}, 〈〉) and L ∈ O(T, 〈〉), where T = {λ, τ, ι,→} and Keys(T ) = {τ}.

The use of attributed variables in binders can lead to a somewhat awkward
notations when accessing the keys and attributions present in abstract binding
objects. Therefore, we use the auxiliary definition of binding signatures in the
technical developments below. Intuitively, an OM binding object has binding sig-
nature σ if it binds l(σ) variables where the i-th variable has di(σ) attributions.

Definition 5 (Binding Signature). A binding signature σ consists of

• a natural number l(σ) (the length of σ),
• natural numbers d1(σ), . . . , dn(σ) (the depth of σ at i).

We denote by σ the set of pairs 〈i, j〉 ∈ N×N where 1 ≤ i ≤ l(σ) and 1 ≤ j ≤ di(σ).

Definition 6 (Abbreviated Binding Notation). If σ is a binding signature with
length n, b ∈ O(T,C), and K : σ → Keys(T ) and V : σ → O(T,C), as well as
o ∈ O(T,C + 〈x1, . . . , xn〉), then we write

B(b [x1, . . . , xn|K := V ].o) for B(b, [X1, . . . , Xn], o) ∈ O(T,C)

where Xi = K(V(xi)|K(i, 1) := V (i, 1), . . . ,K(i, di(σ)) := V (i, di(σ))).

3In fact we propose to follow this path in the next version of the OpenMath standard as it sim-

plifies the presentation. Note that we are only talking about (standard) OpenMath objects, not
their XML or binary encodings, where n-ary attributions make sense for notational convenience.
4Here and throughout the paper we will use boxed mathematical formulae to gloss OpenMath
objects (encoded, abstract, or standard); we assume that this distinction is either meaningless
or clear from the context. Here, x = x stands for A(S(=),V(x),V(x)).
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Example 2 (Continuing Example 1). In the abbreviated syntax ∀x.x = x is repre-
sented as U := B(S(∀) [x|∅ :=∅]. x = x ) and λx : ι→ ι.x as L := B(S(λ) [x|K :=
V ].V(x)), where in the latter case

• l(σ) = 1 and d1(σ) = 1, and therefore σ = {〈1, 1〉}
• K = {〈1, 1〉 7→ τ} and V = {〈1, 1〉 7→ ι→ ι }

Clearly, every OM object of the form B(b, [X1, . . . , Xn], o) can be written
uniquely as an expression of the form B(b [x1, . . . , xn|K := V ].o), and we will use
the latter notation in the future and abbreviate B(b [x1, . . . , xn|∅ := ∅].o) with
B(b [x1, . . . , xn].o).

Definition 7 (Substitution). For o ∈ O(T, 〈x1, . . . , xn〉), we denote by Subs(o) the
function that maps 〈o1, . . . , on〉 to the object arising from o by substituting all free
occurrences of xi with oi.

Because the definition of substitution application is straightforward and well-
known, we omit it, and only mention one technical detail regarding the shadowing
of bound variables: In the degenerate case of a binding B(b [x1, . . . , xn|K := V ].o)
with xi = xj for some i < j, the OpenMath standard defines that xi is shadowed
by xj , i.e., free occurrences of xi = xj in o refer to xj .

Definition 8 (α-Equality). Two objects are said to be α-equal iff they arise from
one another by renaming bound variables. ≡α denotes the induced equivalence
relation, and [o]α denotes the equivalence class of o.

Finally, we define the head of an OM object as follows:

Definition 9 (OM Objects). The head of an OM object o is

• o if o is a symbol or variable,
• f if o = A(f, o1, . . . , on),
• b if o = B(b, [X1, . . . , Xn], o′),
• k if o = K(o′|k := v).

3.2. Semantics

In the following, we will use use the notation Λx ∈ A.f(x) for the set-theoretical
function defined by {〈x, f(x)〉 : x ∈ A}. A may be omitted if it is clear from the
context. We also write BA for the set of functions from A to B.

Definition 10 (OM Algebra). Let T be an OM vocabulary. An OM algebra A over
T consists of

1. a set U := UA called the universe of discourse
2. a family of sets RAn ⊆ U (Un) for n ≥ 1; we also define RA0 = U ,
3. an element sA ∈ U for every s ∈ Symbols(T ) \Keys(T ),
4. a family of mappings @A

n : U × Un → U for n ≥ 1,
5. a family of mappings βAK : U × Uσ × RAl(σ) → U for every binding signature

σ and mapping K : σ → Keys(T ),
6. a family of mappings αAk : U × U → U for every k ∈ Keys(T ).
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sA interprets the symbols intra-universally, and @A, βA, and αA are extra-
universal operations that yield a construction-oriented interpretation function. The
sets RAn are special. Because OpenMath permits arbitrary expressions as binders,
it is not possible to define the interpretation of every binder separately as is com-
mon in both first-order and higher-order settings. Instead, we need to model vari-
able binding explicitly in the semantics. Syntactically, binders are operators that
take terms with free variables as arguments. It is well-understood in higher-order
logic and type theory that terms with n free variables can be modeled as n-ary
functions on the universe. Thus, we interpret binders as operators taking functions
as arguments. These come from the RAl(σ) in the third argument of β operator (note

that l(σ) = n here). The functions from σ to UA in the second argument are used
for dealing with the keys of the attributed variables.

Since we can always write a binder like B(b [x].V(x)), the set RA1 should
at least contain the identity function. However, putting Rn = U (Un) would be
too big in general because only some of these functions actually arise from the
interpretation of terms with free variables. Since the interpretation of these terms
depends on A itself, we permit an arbitrary set RAn here and leave it to Def. 12 to
sort out when an OM algebra is well-defined.

Definition 11 (Assignment). Let A be an OM Algebra over T , and let C be an
OM context with n variables. An A-assignment ϕ for C is a tuple in (UA)n. We
denote the assignment 〈ϕ1, . . . , ϕn, u〉 for C + 〈x〉 by ϕ, u.

Definition 12 (Interpretation). Let A be an OM Algebra over T , and let ϕ be an
A-assignment for a context C. The interpretation JoKAϕ of o ∈ O(T,C) in A under
ϕ is defined as follows:

1. JS(s)KAϕ = sA,

2. JV(xi)KAϕ = ϕi,

3. JA(f, o1, . . . , on)KAϕ = @A
n (JfKAϕ , 〈Jo1KAϕ , . . . , JonKAϕ 〉),

4. JB(b [x1, . . . , xn|K := V ].o)KAϕ = βAK(JbKAϕ ,V,F) where
(a) σ is the binding signature of the binding (which must have length n),
(b) V = Λp ∈ σ.JV (p)KAϕ ,

(c) F = Λu ∈ (UA)n.JoKAϕ,u1,...,un

5. JK(o|k := v)KAϕ = αAk (JoKAϕ , JvKAϕ ).

Whether the case for bindings is well-defined, depends on the sets RAn . We call A
well-defined if Λu ∈ (UA)n.JoKAϕ,u1,...,un ∈ R

A
n for all C, n, o ∈ O(T,C), and all

assignments ϕ for C.

Example 3 (Continuing Example 2). To interpret U we use an OM Algebra A
with

1. UA := N ∪ {q, e, t, f,⊥}
2. RAn = U (Un),
3. ∀A := q and =A:= e,
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4. @A
2 (e, u, v) = t if u = v; @A

2 (e, u, v) = f if u 6= v; and @A
n (u, 〈u1, . . . , un〉) = ⊥

otherwise.
5. βA∅(q,∅,F) = t if F(u) = t for all u ∈ N; βA∅(q,∅,F) = f if F(u) = f for

some u ∈ N; and βAK(u, 〈x1, . . . , xn〉,F) = ⊥ otherwise.

Note that we only specify the parts of the algebra we actually need for our example,

all others can be picked arbitrarily. If we want to evaluate ∀x.x = x in A, recall

that σ = ∅ and thus V = Λp ∈ σ.J∅(p)KA∅ = ∅, so we have

JUKA∅ = JB(S(∀) [x]. x = x )KA∅ = βA∅(q,∅,F)

where F = Λu ∈ UA.J x = x KA(u). So JUKA∅ = t, iff F(u) = t for all u ∈ N.

But observe that we have F(u) = JA(=,V(x),V(x))KA(u) = @A
2 (e, 〈u, u〉) = t by

definition, and thus JUKA∅ = t as expected.

Extending A to an interpretation of the λ-binder is more complicated because
we have to commit to a type theory.

Example 4 (Continuing Example 2). We extend UA so that it contains all function

sets that can be formed from the natural numbers, i.e., NN N(NN), (NN)N and so on,
as well as the functions they contain. We call this set N∗∗. For this to be useful,
we should also extend our vocabulary with symbols ι and →. We put

1. U := N∗∗ ∪ {l, p,⊥}
2. RAn = U (Un),
3. λA = l, ιA = N, and →A= p, and
4. interpret @A

2 (p, 〈u, v〉) as the set of functions from v to u if u and v are
sets and as ⊥ otherwise. Furthermore, we put @A

1 (f, 〈u〉) = f(u) whenever
function application is defined. We put @A(f, 〈u1, . . . , un〉) = ⊥ otherwise.

5. Then for σ = {〈1, 1〉}, K = {〈1, 1〉 7→ τ}, we can put βAK(l,V,F) to be the
function Λu ∈ V(〈1, 1〉).F(u). We put βAL (u,V,F) = ⊥ in all other cases.

6. αAτ (u, v) = u.

Then we can interpret λx : ι→ ι.x as follows. We have JLKA∅ = JB(S(λ) [x|K :=

V ].V(x))KA∅ = βAK(l,V,F) where

• V = Λp ∈ {〈1, 1〉}.JV (p)KA∅ = Λp ∈ {〈1, 1〉}.J ι→ ι KA∅ = {〈1, 1〉 7→ NN},
• F = Λu ∈ U.JV(x)KA(u) = Λu ∈ U.u

And thus, we evaluate βAK(l,V,F) as the identity function on NN as expected.

A simple induction over the construction of OpenMath objects in Defini-
tion 9 using the respective clauses in Definition 12 gives us an OpenMath version
of the well-known

Lemma 1 (Substitution Value Lemma). If o ∈ O(T,C + 〈x〉) and o′ ∈ O(T,C),
then J[x/o′]oKAϕ = JoKAϕ,Jo′KAϕ

This in turn can be specialized in the usual way to obtain:

Corollary 1 (Soundness of α-Equality). If o ≡α o′ then JoKAϕ = Jo′KAϕ .
13



So we have shown that OM algebras form a model class for OpenMath
objects. We will now show that they characterize them up to isomorphism. For that
we need to consider initial models, which will function as canonical representatives
in this model class.

Definition 13 (Free OM Algebra). Let T be an OM vocabulary. Then the free OM
algebra I := I(T ) over T is defined as follows.

1. U I = O(T,∅)/≡α , i.e. the quotient set of the ground OpenMath objects
modulo α-conversion.

2. RIn is the set of functions Subs(o) for o ∈ O(T, 〈x1, . . . , xn〉), which are defined

as follows: Subs(o)(〈[o1]α, . . . , [on]α〉) = [Subs(o)〈o1, . . . , on〉]α.
3. sI = [S(s)]α,
4. @I

n([f ]α, 〈[o1]α, . . . , [on]α〉) = [A(f, o1, . . . , on)]α,
5. for a binding signature σ: βIK([b]α,V,F) = [B(b [x1, . . . , xn|K := V ].o)]α where

• V = Λp ∈ σ.vp for some vp ∈ V(p),

• o ∈ O(T, 〈x1, . . . , xn〉) is some object such that Subs(o) = F .
6. αIk([o]α, [v]α) = [K(o|k := v)]α.

Lemma 2. I(T ) is well-defined.

Proof. We need to show several well-definedness conditions.

RAn : Subs(o) is well-defined because substituting ground α-equivalent objects for
the free variables of o yields α-equivalent objects.

@I
n: If f ≡α f ′, o1 ≡α o′1, . . . , on ≡α o′n, then A(f, o1, . . . , on) ≡α A(f ′, o′1, . . . , o

′
n).

This follows directly from the definition of α-equivalence.
βIK : If b ≡α b′, vp ≡α v′p for all p ∈ σ, then there exists an o ∈ O(T, 〈x1, . . . , xn〉)

such that Subs(o) = F , and for two such o, o′ we have that

B(b [x1, . . . , xn|K := Λp.vp].o) ≡α B(b′ [x1, . . . , xn|K := Λp.v′p].o
′).

The existence follows from the definition of RIn. The α-equivalence holds
because non-α-equivalent objects induce non-α-equivalent substitution func-
tions.

αIk: If o ≡α o′ and v ≡α v′, then K(o|k := v) ≡α K(o′|k := v′). This follows
directly from the definition of α-equivalence.

�

Lemma 3. Let T be an OM algebra. Then JoKI(T ) = [o]α for every o ∈ O(T, 〈〉).

Proof. This is proved by a straightforward induction on the structure of o. �

Lemma 4 (I(T ) is initial). Let A be an OM algebra over T , and let I := I(T ).
Then there is a unique mapping h : U I → UA satisfying h(JoKI) = JoKA for all
o ∈ O(T, 〈〉).

Proof. h maps [o]α ∈ U I to JoKA. The needed property follows directly from Cor. 1
and Lem. 3. �
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Corollary 2 (Completeness of α-Equality). If o, o′ ∈ O(T, 〈〉) and JoKA = Jo′KA for
all OM algebras A, then o ≡α o′ .

Proof. This follows from Lem. 3 by putting A := I(T ). �

In the classification of denotational semantics from Section 2.1 our semantics
from Def. 10 is construction-oriented using the four functions sA, @A

n , βAK , and
αAk for the four constructions: all of them come with the OM algebra, not the
model class. As we have predicted in Section 2.1 the semantics is rather involved.
In particular, giving individual OM algebras is ludicrously complicated due to
the functions βAK : These must provide an interpretation for any object used as
a binder, binding any number of bound variables, in which each variable carries
any list of attribution keys, each attributing any value. This convoluted semantics
is unavoidable and enforced by the generality of the OpenMath standard; for a
more elegant semantics of a slightly restricted subset of OpenMath objects, see
Section 5.

3.3. OpenMath Objects with Uninterpreted Symbols

The semantics discussed so far was based on the abstract notion of OM Vocabu-
laries. To arrive at a semantics of OpenMath objects we need to relate this to
OpenMath CDs.

The OpenMath2 standard introduces “abstract content dictionaries” to ab-
stract from the concrete XML encoding of content dictionaries. According to [BCC+04,
section 4.2], (abstract) CDs have a CD name, a CD base URI, and contain symbol
definitions, which in turn consist (among others) of a symbol name, an optional
symbol role (one of “binder”, “attribution”, “semantic-attribution”, “application”,
“constant”, and “error”), and a set of mathematical properties.

Definition 14 (OpenMath Symbols). We say that a CD C declares an OpenMath
symbol 〈n, c, u, r〉, iff the CD base of C is u, the CD name of C is c, and C has a
symbol definition with symbol name n and symbol role r (note that the role can
be undefined as it is optional). We define the set Symbols to be the set of symbols
declared by some OpenMath CD and the set Keys to be those with symbol role
“semantic-attribution”.

There are three differences between abstract OM Objects and standard Open-
Math objects; all three are related to symbols and keys:

1. We do not take keys to be abstract OM objects by themselves (see clause 1
in Definition 9). We claim that that there are no mathematically meaningful
situations where keys can appear except in attributions. This design decision
should not be perceived as a serious impediment for our semantics, since keys
can be added analogously to the treatment below at the cost of adding an
additional case everywhere.

2. The OpenMath2 [BCC+04] “role system”, poses some additional restrictions
on where symbols can occur, but not enough to simplify our construction
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of binding signatures. Therefore, we disregard it here and refer the reader
to [RK09] for details and an extended role system proposal that would.

3. We do not consider attributions with symbols that are not in Keys, in partic-
ular symbols with roles “attribution” which are intended by the OpenMath2
standard for just this purpose. However the standard states

This form of attribution may be ignored by an application, so should
be used for information which does not change the meaning of the
attributed OpenMath object. [BCC+04, clause 2.1.4.ii]

and therefore it is necessary to disregard these attributions in the construction
of a semantics for OpenMath. In the mapping from standard OpenMath
objects to abstract ones, we strip attributions with non-Keys symbols.

This allows us to define the meaning of an OpenMath object. As we are
not taking mathematical properties in CDs into account, we will think of these
symbols as uninterpreted, therefore we will call it the “algebraic meaning”.

Definition 15 (Algebraic Meaning). Let o be an OpenMath object, then we call
the set of symbols such that S(s) occurs in o the OM vocabulary induced by o.

If o is a ground OM Object, T its induced vocabulary, and A an OM algebra
over T , then the algebraic meaning of o in A is JoKA and the algebraic meaning of
o is JoKI(T ).

Note that the algebraic meaning of an abstract OpenMath object is just an
α-equivalence class of (standard) OpenMath objects.

As discussed in the introduction, the algebraic semantics only gives us a
rather weak and syntactic concept of meaning of the OpenMath language. To
understand the full meaning of OpenMath objects we need to take CDs into
account, which we do in the next section.

4. OpenMath Models

If we want to understand mathematical properties in OpenMath content dictio-
naries, we need to have a notion of “truth” — after all, the properties are assumed
to hold true. Furthermore, we need to take into account the mathematical prop-
erties themselves. In OpenMath there are two kinds of mathematical properties:
“commented mathematical properties” (encoded as CMP elements which contain
mathematical vernacular) and “formal mathematical properties” (encoded as FMP
elements that contain XML encodings of OpenMath objects). We are going to
concentrate on the latter in this paper since they provide more structure. This
is no loss of generality, given the assumption in mathematical practice that any
rigorously stated property can be fully formalized given enough resources. For
the purposes of this paper we will just assume that we have access to an oracle
that translates all commented mathematical properties into formal ones, which we
handle with the methods presented in this section.
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4.1. Theories and Satisfaction

As formal mathematical properties are expressed as OpenMath objects, we will
need to build the required notions of “truth” and equality into an OM vocabulary.
This is rather simple.

Definition 16 (OM Logic). An OM vocabulary L with distinguished symbols >
and = is called an OM logic.

In OpenMath CDs, (formal) mathematical properties are expressed as state-
ments in some foundational logical system, thus the OM Objects representing them
will in general contain symbols from the foundation and the CD itself. For instance,

the arith1 CD [CDa04] contains an FMP with the object ∀a, b.a+ b = b+ a to ex-

press commutativity of addition. The symbols ∀ and = are from the vocabulary

of the foundational system and the symbol + is from the CD itself.
We will treat OpenMath content dictionaries as logical theories, which are

determined by their vocabularies and axioms, and model them using institutions
(see [Rab08] for an introduction to both).

Definition 17 (Theory). Let L be an OM logic and T an OM vocabulary. An OM
theory Θ for L is a pair 〈T,Ax〉 where Ax ⊆ O(L ∪ T, 〈〉).5 We will denote Ax
with Axioms(Θ) and use O(Θ, C) := O(L∪ T,C) and take an OM algebra over Θ
to be an OM algebra over L ∪ T .

Note that 〈∅,∅〉 is a theory for any OM logic L, we call 〈∅,∅〉 the empty
theory over L.

In this setting we can define OM models as those algebras that respect equal-
ity and in which the axioms hold.

Definition 18 (Model). Let L be an OM logic and Θ be an OM theory for L. An
OM algebra M over Θ is a model of Θ if

• for all C, o, o′ ∈ O(T,C), and ϕ, we have that JA(=, o, o′)KMϕ = J>KM iff

JoKMϕ = Jo′KMϕ ,

• for all A ∈ Axioms(Θ), we have that JAKM = J>KM .

The Model Class M(C) of Θ is the set of OM Models of Θ.

This gives us the OM versions of the standard notions of satisfaction and
semantic entailment.

Definition 19 (Satisfaction). Let L be an OM logic, Θ be an OM theory for L,
o ∈ O(Θ, C), M an OM model of Θ, and ϕ an assignment for C into M . Then we
say that M satisfies o under ϕ (which we denote as M,ϕ |= o), iff JoKMϕ = J>KMϕ .
We write M |= o if M,ϕ |= o holds for all assignments ϕ and say that o is valid in
M .

5There are content dictionaries with formal mathematical properties that are not ground. We
follow common mathematical practice and assume they are implicitly closed universally.
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Definition 20 (Entailment). Let Θ be an OM theory and o a ground object. Then
we say that Θ entails o (Θ |= o), iff M |= o for all M ∈M(Θ).

Example 5 (Continuing Example 3). We can extend the vocabulary {∀,=} into an
OM logic Q = {∀,=,>}. Then the OM algebra A from 3 becomes a model for the
empty theory over Q by putting >A := t. Note that U is entailed by the empty
theory over Q.

We will now turn to the initial semantics again, this time to build initial OM
models.

Definition 21 (Congruence Relation). Let T be a OM vocabulary and A an OM
algebra over T . A congruence relation on A is a family of equivalence relations on
UA and RAn all denoted by ≡ such that (whenever applicable)6

1. if u ≡ u′ and ui ≡ u′i for i = 1, . . . , n, then

@A
n (u, 〈u1, . . . , un〉) ≡ @A

n (u′, 〈u′1, . . . , u′n〉),
2. for l(σ) = n, if u ≡ u′, V(p) ≡ V ′(p) for all p ∈ σ, and F ≡ F ′, then

βAK(u,V,F) ≡ βAK(u′,V ′,F ′),
3. if u ≡ u′ and v ≡ v′, then αk(u, v) ≡ αk(u′, v′),
4. if F ≡ F ′ and ui ≡ u′i for i = 1, . . . , n, then

F(〈u1, . . . , un〉) ≡ F ′(〈u′1, . . . , u′n〉).

Definition 22 (Quotient Algebra). Let T be an OM vocabulary, A an OM algebra
over T , and ≡ a congruence relation on A. Then the OM algebra Q := A/ ≡ over
T is defined by:

1. UQ = UA/ ≡,
2. RQn is the set of all functions of the form

f : (UQ)n → UQ, f([u1]≡, . . . , [un]≡) = [F (u1, . . . , un)]≡

for some F ∈ RAn ,

3. @Q
n , βQK , and αQk are induced by their analogues in A.

Lemma 5. In the situation of Def. 22,

• Q is a well-defined OM algebra if A is,
• for all o ∈ O(T,C) and all A-assignments ϕ = (ϕ1, . . . , ϕn), it holds that[

JoKAϕ
]
≡ = JoKQϕ′ where ϕ′ is the Q-assignment given by ϕ′i = [ϕi]≡ for i =

1, . . . , n.

Proof. We prove the lemma by induction on o and its context C. The first part of
the lemma is proved in the induction step for binders.

• S(s): Trivial.
• V(x): Immediately from the relation between ϕ and ϕ′.

6Note that we do not have to consider a congruence on keys because equations between keys are
not well-formed objects.
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• A(f, o1, . . . , on): Immediately from the definition of congruence.
• K(o|k := o′): Immediately from the definition of congruence.
• B(b [x1, . . . , xn|K := V ].o): If Q is well-defined, this follows immediately from

the definition of congruence. To show well-definedness, we have to show that

f = Λ〈v1, . . . , vn〉 ∈ (UQ)n.JoKQϕ′,v1,...,vn
∈ RQn . Due to the well-definedness of

A, we know that F = Λ〈u1, . . . , un〉 ∈ (UA)n.JoKAϕ,u1,...,un ∈ R
A
n . Thus, due to

the definition ofRQn , we know that f ′ : 〈[u1]≡, . . . , [un]≡〉 7→ [F (u1, . . . , un)]≡ ∈
RQn . The induction hypothesis for o shows that f = f ′.

�

Definition 23 (Induced Congruence). Let Θ = 〈T,Ax〉 be an L-theory, then we
define a congruence relation ≡Θ on I(L ∪ T ) as follows:

[o]α ≡Θ [o′]α iff Θ |= A(=, o, o′) for o, o′ ∈ O(L ∪ T, 〈〉)
and

Subs(o) ≡Θ Subs(o′) iff Θ |= A(=, o, o′) for o, o′ ∈ O(L ∪ T,C).

We call ≡Θ the congruence induced by Θ.

Lemma 6. Let Θ = 〈T,Ax〉 be an L-theory, then ≡Θ is indeed a congruence rela-
tion.

Proof. We need to show the properties of a congruence relation. All cases are
straightforward. We prove the case of application as an example.

Assume [oi]α ≡Θ [o′i]α for i = 0, . . . , n. Then Θ |= A(=, oi, o
′
i), and thus

JoiKA = Jo′iKA in every Θ-model A. In that case, it follows that

@A
n (Jo0KA, 〈Jo1KA, . . . , JonKA〉) = @A

n (Jo′0K
A, 〈Jo′1KA, . . . , Jo′nKA〉);

and therefore, Θ |= A(=,A(o0, o1, . . . , on),A(o′0, o
′
1, . . . , o

′
n)); and therefore,

[A(o0, o1, . . . , on)]α ≡Θ [A(o0, o1, . . . , on)]α.

Finally using Lem. 3 yields

@I(L∪T )
n ([o]α, 〈[o1]α, . . . , [on]α〉) ≡Θ @I(L∪T )

n ([o]α, 〈[o1]α, . . . , [on]α〉)
as needed. �

As a consequence, the following construction is well-defined.

Definition 24 (Initial Model). Let Θ = 〈T,Ax〉 be an L-theory, then I(Θ) :=
I(L ∪ T )/ ≡Θ is called the initial model for Θ.

And that finally yields

Theorem 1 (Completeness). For all o ∈ O(Θ, 〈〉) we have I(Θ) |= o iff Θ |= o. In
particular, I(Θ) is a Θ-model.

Proof. We know I(Θ) |= o iff JoKI(Θ) = J>KI(Θ). Using Lem. 5, this is equivalent to
[JoKI(T )]≡Θ

= [J>KI(T )]≡Θ
where T is the vocabulary of Θ. The latter is equivalent

to Θ |= A(=, o,>) by Lem. 3 and Def. 23. And that is equivalent to Θ |= o. �
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From this result we directly obtain the main theorem of this section as a
corollary:

Theorem 2 (Herbrand Theorem). Every OM theory has a model that arises as a
quotient of the free OM algebra.

Note that our setup is a bit unusual in that we do not distinguish between
consistent and inconsistent theories and obtain a model for every theory. This is
because we only assume truth and equality in Def. 16 but not falsity and inequality.
A more refined definition of logic could assume an additional symbol ⊥ and require
a model M to satisfy J>KM 6= J⊥KM . Then there will be theories without models,
and those theories are just the ones we intuitively think of as being inconsistent.
The free OM-algebra over an inconsistent theory still exists, but its universe is
a singleton. Thus, the above results would have to be restricted to consistent
theories.

4.2. The Meaning of OpenMath CDs and Objects

Note that the definitions above are still abstract in the sense that they refer to
OM vocabularies, and OM theories, and not OpenMath CDs. So as in section 3.3
we have to relate abstract OM objects to standard ones and in particular to an-
swer the question: what is the theory of an OpenMath content dictionary? The
OpenMath2 standard leaves this information under-defined, so we propose an
interpretation that allows us to define an adequate notion of mathematical seman-
tics7.

Note that OpenMath CDs need not be self-contained, i.e. their FMPs can
contain symbols that are neither introduced in the CD nor from the foundational
system. Of course, these symbols (and thus the mathematical properties in CDs
that introduce them) should have an effect on the meaning of the symbols described
by the FMP, so they need to be taken into account; naturally this process must be
iterated until fixed point has been reached.

Definition 25 (CD Import). Let C be an OpenMath content dictionary, then we
say that C imports D, iff C 6= D and some FMP element in C contains a symbol
with CD D. We call a CD basic, iff it does not import other CDs.

In contrast to other module systems for mathematics (see [RK08, RK11] for
an overview) OpenMath does not make make the “imports relation” explicit and
in particular does not make any assumptions about the absence of cycles.

Definition 26 (Signature and Property set of a CD). The signature of a CD C is
the set of symbols it declares in union with the signatures of all CDs imported by
C. Similarly, the property set of a CD C is the set of OpenMath objects in FMP

elements in C (these are called the local properties of C) in union with all the
property sets of all CDs imported by C.

7Arguably the OpenMath standard cannot fix this fully, since it intends to support all math-

ematical software systems including such that are “semantics-independent” like mathematical
editing systems.
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With this, we can directly define the OM theory induced by a CD.

Definition 27 (Theory of a CD). We call the pair 〈S, P 〉, where S is the signature
of C and P is the property set of C the OM theory of C.

In essence, the OM theory of a content dictionary is the union of all symbol
declarations and mathematical properties from all theories from which a symbol
is used in the CD. There is no problem with the (implicit) imports being cyclic,
since their morphisms (in the terminology of [RK11]) are the identity and we
are constructing the (iterated) union. Note furthermore that OpenMath only
supports literal CD names, and we can assume the set of CDs to be finite, therefore,
the signature and axiom set of a CD are finite.

Note that in contrast to our definitions from section 4.1, the signature of a
CD will already contain the OM logic, as OpenMath does not distinguish OM
logics from other CDs. Following accepted mathematical practice we assume the
logic to be first-order logic (with a choice operator) and a version of axiomatic set
theory as a theory of first-order logic — we choose Zermelo-Fraenkel set theory
with choice [Zer08, Fra22] since this is the best-known one. Note that any other
foundation of mathematics would serve equally well for our purposes. For simplic-
ity of presentation, we will assume the existence of two basic CDs for first-order
logic (declaring connectives, quantifiers, equalities, and choice) and ZFC (declaring
membership and axioms).

In OpenMath practice, commented mathematical properties seem to assume
ZFC as a foundational system, whereas FMPs make due with less: they usually only
use symbols from the CDS

• logic1 [CDl04] supplies the symbol true — which we take as the distin-
guished symbol > — and the usual propositional connectives,

• and the symbol eq from CD relation1 [CDr04] — which we take as =,
together these two form a logic in the sense of Definition 16,

• quant1 [CDq04] that supplies the first-order quantifiers.

Definition 27 allows us to define the meaning of a CD as a class of OM models.

Definition 28 (Model Class and Entailment for CDs). Let C be an OpenMath
CD and Θ the OM theory of C, then the Model Class of C is M(Θ) and C |= o,
iff Θ |= o.

Finally, Thm. 2 is exactly the bridging result between the OpenMath ob-
jects semantics postulated in the OpenMath2 standard (see Section 1.2) and the
traditional foundations of mathematics (see section ??). And with that we can
finally define the meaning of OpenMath objects.

Definition 29 (The Meaning of an OpenMath Object). Let o be an OpenMath
object, then we call the union of the theories of the CDs referenced in o the Theory
of o. If o ∈ O(T, 〈〉) is a ground OM Object, Θ its theory, and M an OM Model
of Θ, then the meaning of o in M is JoKM .
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5. A Symbol-Oriented Semantics for OpenMath

In this section, we will present a symbol-oriented semantics for a subset of Open-
Math expressions defined by a novel role/type system that strengthens the one
specified in the OpenMath 2 standard. We use a well-chosen trade-off in order to
simplify the definition of algebras significantly while preserving the simplicity and
flexibility of OpenMath.

Considering our construction-oriented semantics, we observe that from the
four constructions of OpenMath (symbols, application, binding, and attribution)
two (symbols and attributions) can be easily rephrased as a symbol-oriented se-
mantics: Then sA and αAk become the semantic entities assigned to a symbol
s ∈ Symbols(T ) \ Keys(T ) or k ∈ Keys(T ), respectively. Note that in the case of
attributions, this is only possible because the OpenMath standard requires the
head of an attribution to be a symbol.

For the heads of applications and bindings, on the other hand, OpenMath
permits arbitrary complex objects. Consequently, the semantics must account for
any object of the universe acting as a function or binder. Therefore, a separation
between extra-universal functions/binders and intra-universal arguments/scopes
is not possible.

For OpenMath applications, this cannot be remedied. Type systems have
been used successfully for languages with function application, but these ap-
proaches only work because the syntactic form of functions is very restricted, in
the easiest case all functions can be effectively normalized to a λ-abstraction. For
a general purpose mathematical language like OpenMath, this is not the case:
Functions can be obtained in a large variety of ways, and it is generally undecidable
whether an object denotes a function.

The binding construction is an intermediate case. On the one hand, Open-
Math permits arbitrary bindings. On the other hand, this freedom is rarely ex-
ploited: almost all binders used in practice are symbols, and each such symbol
expects a specific list of attributions to the bound variables.

Therefore, our role system focuses on restricting the permitted binding ob-
jects. This leads to a symbol-oriented semantics with a single extra-universal ap-
plication operator at a comparatively small price.

5.1. A Role System

We will now define a positive role system that provides a reasonable trade-off be-
tween being universal and being strict to prepare for a symbol-oriented semantics.
Most characteristically, our role system generalizes the concept of functions with
arities to binders.

The basic definitions are as follows:

Definition 30 (Arities). Consider a vocabulary T . An application-arity is a finite
sequence of either or +, the latter occurring at most once. A binding-arity is a
finite sequence of either K or K+ for K ⊆ Keys(T ), the latter occurring at most
once.
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We will write sequences using the notation [e1, . . . , en] and E@e for the se-
quence E extended with the element e.

Definition 31 (Roles). A role is either obj, key, or a pair (a, b) of an application-
arity a and a binding-arity b. A roled vocabulary (T, r) is vocabulary T together
with a function r assigning a role to each symbol.

Intuitively, objects with role obj are the “usual” objects, i.e., values (includ-
ing all functions) in the universe of discourse. These exclude the keys, which have
role key, and the binders, which have the complex roles (a, b). In the latter roles,

stands for an argument, and + for a finite non-empty sequence of arguments.
Similarly, K stands for an attributed variable whose attribution keys are exactly
the ones in K, and K+ stands for a finite non-empty sequence of such attributed
variables. We use the following auxiliary definition to avoid occurrences of + and
K+ sequences when possible:

Definition 32. Given an application or a binding-arity s of length m, and a natural
number n ≥ m, we define sn as follows:

• if s does not contain + or K+, then sn = s,
• if s contains + or K+, respectively, then sn arises from s by replacing + or
K+ with n−m+ 1 repetitions of or K, respectively.

Then we can make the meaning of binding arities more precise by:

Definition 33. An attributed variable X matches the set of keys {k1, . . . , kn} if it
is of the form

X = K(x|k1 := v1, . . . ,kn := vn)

for some ordering k1, . . . , kn. In that case, we define

X(ki) = vi.

A sequence X1, . . . , Xm of attributed variables matches the binding-arity b if
bm = [b1, . . . , bm] and each Xi matches bi.

Example 6. Binders binding a single variable with a type attribution can be
declared with the role ([], [{type}]). More complex binders arise by combining
application-arity and binding-arity such as in ([ , ], [∅]) for the definite integral∫ b
a

, which takes two arguments and then binds one variable without attributions.

Then we can define the well-roled objects:

Definition 34. Assume a roled OM vocabulary (T, r). An object o ∈ O(T,C) for
some context C. We define the well-roled objects o and their roles R(o). o is
well-roled if one of the following holds:

1. o = S(s). In that case, R(o) = r(s).
2. o = V(x) for o ∈ C. In that case, R(o) = obj.
3. o = A(f, o1, . . . , on), R(o1) = . . . = R(on) = obj, and

(a) R(f) = obj, in which case R(o) = obj, or
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(b) R(f) = (a, b) and the length of a is n or a contains +, in which case
R(o) = ([], b).

4. o = B(o1, [X1, . . . , Xn], o2), R(o1) = ([], b), X1, . . . , Xn matches b, all attri-
bution values in all Xi have role obj, and R(o2) = obj.
In that case, R(o) = obj.

5. o = K(o′|k := v) and R(k) = key, and R(o′) = R(v) = obj.
In that case R(o) = obj.

Limitations. As expected, our role system is not quite universal. In the following,
we discuss the limitations that our implicit or explicit assumptions impose when
we restrict attention to well-roled objects. We assume that all unroled symbols are
assigned the role obj.

Firstly, since our role system is positive, symbols with a role key or (a, b) may
not occur in general OpenMath objects. The former may only occur as the head
of an attribution. The latter may only occur as the head of a binding (if a = []) or
as the head of an application that itself occurs as the head of a binding (if a 6= []).
Conversely, only such objects may occur as the heads of attributions and bindings.

Secondly, since the keys of an attributed variable in a binding form a set,
bound variables may not have two attributions with the same key, and the order
of attributions does not matter. Moreover, the attributions on a bound variable
must match the role of the binder.

For practical purposes, this means that all symbols intended to be used as
binders or keys must be assigned a role and may then not be used for anything else.
Moreover, for each binder, an a priori commitment is needed what attributions its
bound variables will carry.

The latter limitation is the only one that may cause concern: It is conceivable
that the same binder should be used with different binding-arities in different
situations. For such purposes, a reasonable extension of our role system would be
to permit optional keys, e.g., a binding-arity {type?}+ for arbitrarily many bound
variables, which may carry a type attribution. Another possible generalization is
to permit and then ignore attributions to a bound variable that are not required
by the binder.

5.2. A Roled Semantics

For roled vocabularies, we can simplify the definition of OM algebras significantly.
In particular, we can make it symbol-oriented. We will still use a monolithic uni-
verse, but we will interpret both binders and keys extra-universally.

First, we need some auxiliary definitions:

Definition 35. Given a set U , we define

• For a set K = {k1, . . . , kn} of keys, we call the elements of the set UK K-
records over U .
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• For an application-arity a, the set Ua is given by

U [ ,..., ] = U × . . .× U

U [ ,..., , +, ,..., ] = U × . . .× U ×
∞⋃
i=1

U i × U × . . .× U

• For a binding-arity b, the set U b is given by

U [K1,...,Kn] = UK1 × . . .× UKn

U [K1,...,Km,K
+,L1,...,Ln] = UK1 × . . .× UKm ×

∞⋃
i=1

UK × UL1 × . . .× ULn

• Given an element r ∈ U b, then |r| is the number of records in r.

These definitions are used to capture the semantics of binders with binding-
arity b. If b = [K1, . . . ,Kn] does not contain an occurrence of K+, the binder
expects n bound variables. Then the set U b contains tuples r = 〈r1, . . . , rn〉 such
that ri is a Ki-record providing an attributed value ri(k) for each key k ∈ Ki.
In these cases, we always have |r| = n. If b contains K+, then U b contains tu-
ples of arbitrary length corresponding to an arbitrary number of bound variables.
Therefore, we use |r| to obtain the actual number of records in a tuple r. Finally,
pairs (r, u) where r ∈ U b and f : U |r| → U provide a record of attributions and a
function f on U in as many arguments as there are attributed variables.

Definition 36 (Applicative Structure). An applicative structure is a pair (U,@)
where U is a set and @ is a family of mappings @n : U × Un → U for n ≥ 1.

We still have to use the general application operator @ from Def. 10. This is
necessary because we have to permit arbitrary objects with functional behavior.
But apart from that, we can finally give a symbol-oriented semantics.

Given a universe U , the general structure of the semantics is as follows:

Syntactic role Semantic domain
obj U
key U × U → U
(a, b) Ua → ({(r, u) | r ∈ U b, f : U |r| → U} → U)

In particular, binders and keys are interpreted in certain extra-universal do-
mains.

Definition 37 (Roled Algebra). Let (T, r) be a roled OM vocabulary. A roled OM
algebra A over (T, r) consists of

• an applicative structure (U,@),
• for every s ∈ T an element sA of the domain corresponding to r(s).

Definition 38 (Interpretation). Let A be a roled OM Algebra over (T, r), and let
ϕ be an A-assignment for a context C. The interpretation JoKAϕ of a well-roled
o ∈ O(T,C) in A under ϕ is an element of the domain corresponding to R(o). It
is defined by induction on o according to Def. 34:

1. JS(s)KAϕ = sA (for any role r(s)),
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2. JV(xi)KAϕ = ϕi,

3. (a) if R(f) = obj, then JA(f, o1, . . . , on)KAϕ = @A
n (JfKAϕ , 〈Jo1KAϕ , . . . , JonKAϕ 〉),

(b) if R(f) = (a, b), then JA(f, o1, . . . , on)KAϕ = fA(〈Jo1KAϕ , . . . , JonKAϕ 〉),
4. if R(o1) = ([], b) and bn = [K1, . . . ,Kn], then JB(o1, [X1, . . . , Xn], o2)KAϕ =

Jo1KAϕ (〈V1, . . . , Vn〉, F ) where

• Vi ∈ UKi with Vi(k) = JXi(k)KAϕ for i = 1, . . . , n and k ∈ Ki,

• F = Λu ∈ Un.Jo2KAϕ,u1,...,un

5. JK(o|k := v)KAϕ = kA(JoKAϕ , JvKAϕ ).

Finally, we have to show that roled algebras are indeed a special case of
Def. 10:

Theorem 3. Given a roled vocabulary (T, r), every roled algebra A over (T, r)
induces an algebra B over T such that for all objects o ∈ O(T,C) with R(o) = obj

and all assignments ϕ for C and A, we have JoKAϕ = JoKBϕ .

Proof. Let U be the universe of A. The universe V of B is given by the closure
of U ∪ P(Keys(T )) under the formation of n-ary tuples and functions. We put
RBn = U (V n).

Then we define the necessary construction-oriented interpretation in B in the
straightforward way:

• sB is given by sA for s ∈ Symbols(T ),
• @B

n (f, u) is given
– by @A

n (f, u) if f ∈ U , u ∈ Un,
– otherwise, by f(u) if f ∈ V \ U and f(u) ∈ V is defined,
– otherwise, by ⊥,

• βBK(u, v, w) is given
– by u(r, w) if u(r, w) ∈ V is defined and where r = (r1, . . . , rn) is obtained

from v : σ → U and K : σ → Keys(T ) by ri(K(i, j)) = v(i, j),
– otherwise, by ⊥,

• αBk (u, v) is given by kA(u, v) for k ∈ Keys(T ).

It is straightforward to show the two interpretation functions agree for well-
roled arguments. �

Here the construction of the universe V shows once again how much simpler
algebras becomes if a role system is used.

6. Conclusion

In this paper we have tried to rectify common misunderstandings about the mean-
ing of OpenMath (and thus MathML3) expressions. We have shown that the
free algebra of OpenMath objects forms an initial algebra for “formulae with un-
interpreted symbols” which is syntactic in nature as all initial algebras are. Indeed
for OpenMath and content MathML expressions that do not contain symbols
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— and are thus unrestricted by content dictionaries — this is the best meaning
we can hope for: OpenMath cannot impose more restrictions than α-equivalence
and flattening of attributions without losing coverage. This is captured by the the
algebraic semantics of OpenMath expressions in Section 3.

But the meaning of an OpenMath object comes mainly from the mathemat-
ical properties in the content dictionaries of its symbols. In section 4 we have been
able to show that this can be grafted onto the algebraic semantics by interpret-
ing OpenMath CDs as logical theories over a foundational system like first-order
logic with ZFC as an axiomatic set theory.

Note that our semantic analysis has only taken into account symbol names,
roles, and mathematical properties. The former two are relevant for the OM vo-
cabularies and the latter for the OM theories that give OpenMath symbols their
meaning. In particular, we did not look at descriptions (for symbols or whole CDs)
or examples. The status of these CD parts is left unspecified by the OpenMath2
standard, and usage in actual CDs is non-uniform. Symbol descriptions reach
from appealing to the folklore — e.g. “This symbol represents the Boolean value
true.” [CDl04] to specific literature references e.g. “See CRC Standard Mathemat-
ical Tables and Formulae, editor: Dan Zwillinger, CRC Press Inc., 1996, (7.7.11)
section 7.7.1.” [CDs04]. Arguably both forms “mean” something to the human
reader, and especially the latter should surely contribute to the theory. The case
of examples in CDs is similarly unclear: if they were uninformative to the human
reader, nobody would put them in. But again practice in published CDs is no help:
examples are often statements — and thus in principle mathematical properties
— about (mathematical objects constructed by) the symbols they illustrate, and
— if they are — they tend to be valid, but it would be incautious to assume this
to be generally the case or even a normative part of the CD. The next version
of the OpenMath standard could of course clarify these issues at the cost of
making it more heavyweight and thus arguably less useful. We propose to use the
OMDoc format [Koh06] that already addresses these issues for specifying content
dictionaries instead if the additional functionality is desired.

A final objection often brought up against the “semantics of OpenMath”
is that the standard CDs maintained by the OpenMath society are very weak,
and (even with the methods presented here) do not give a clear and unambiguous
meaning for K-14 mathematics. Indeed this criticism is formally justified, but
misses the main point of the OpenMath philosophy, namely that the set of CDs
is open-ended, and that we can build CDs to suit all our communication and
representation needs. In particular it is possible (and in fact rather simple) to build
a CD NatArith for natural numbers and arithmetic by encoding the Peano Axioms
and recursive equations for the arithmetical operators in OpenMath objects so
that that its theory Θ = Θ(NatArith) determines the class of Θ-models up to
isomorphism (and all are isomorphic to N). To see this just use the standard proof
with our notion of OM models from section 4.

The OpenMath society (and the W3C Math Working Group for that mat-
ter) view the weakness of the standard OpenMath/MathML CD group as a
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feature and not a bug. These CDs contain fewer mathematical properties to al-
low them to describe larger model classes. For instance the CD arith1 [CDa04]
(somewhat) corresponds to the class of (Abelian) semigroups. And that is a good
thing, since it is intended to capture the informal usage in K-14: in many situ-
ations we need the flexibility offered by the OpenMath/MathML CDs so that
we do not over-specify the meaning. We would probably not want to scare el-
ementary school children who are struggling with long division with the Peano
Axioms or teenagers in high school with the subtle differences between Riemann
and Lebesque integration.

We end this treatise on the “meaning of OpenMath and MathML” with the
observation that it is possible to specify the meaning of mathematical objects and
formulae at many levels of flexibility and rigorousness and extend the invitation
to our readers to do just that: to contribute content dictionaries to the community
of mathematicians (by way of the OpenMath society CD site [OMC]).
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