
paper.tex 1441 2009-07-27 18:46:33Z kohlhase

Transforming large collections of scientific pub-
lications to XML

H. Stamerjohanns, M. Kohlhase, D. Ginev, C. David and B. R. Miller

Abstract. We describe an experiment transforming large collections of LATEX
documents to more machine-understandable representations. Concretely, we
are translating the collection of scientific publications of the Cornell e-Print
Archive (arχiv) using LaTeXML, a LATEX to XML converter currently under
development.

While the long-term goal is a large body of scientific documents available
for semantic analysis, search indexing and other experimentation, the imme-
diate goals are tools for creating such corpora. The first task of our arXMLiv
project is to develop LaTeXML bindings for the (thousands of) LATEX classes
and packages used in the arχiv collection, as well as methods for coping with
the eccentricities that TEX encourages. We have created a distributed build
system that runs LaTeXML over the collection, in part or entirely, while col-
lecting statistics about missing bindings and macros, and other errors. This
guides debugging and development efforts, leading to iterative improvements
in both the tools and the quality of the converted corpus. The build system
thus serves as both a production conversion engine and software test harness.

We have now processed the complete arχiv collection through 2006 con-
sisting of more than 400,000 documents (a complete run is a processor-year-
size undertaking), continuously improving our success rate. We are now able
to convert more than 90% of these documents to XHTML+MathML. We con-
sider over 60% to be successes, converted with no or minor warnings. While
the remaining 30% can also be converted, their quality is doubtful, due to
unsupported macros or conversion errors.

1. Introduction

The last few years have seen the emergence of various XML-based, content-oriented
markup languages for mathematics and natural sciences on the web, e.g. Open-
Math [BCC+04], Content MathML [ABC+09], or our own OMDoc [Koh06].
The promise of these content-oriented approaches is that various tasks involved

paper.tex 1441 2009-07-27 18:46:33Z kohlhase

2 H. Stamerjohanns, M. Kohlhase, D. Ginev, C. David and B. R. Miller

in “doing mathematics” (e.g. search, navigation, cross-referencing, quality control,
user-adaptive presentation, proving, simulation) can be machine-supported, and
thus the working mathematician can concentrate in doing what humans can still
do infinitely better than machines.

On the other hand, LATEX is and has been the preferred document source
format for thousands of scientists who publish results that include mathematical
formulas. Millions of scientific articles have been written and published using this
document format. Unfortunately, the LATEX language mixes content and presenta-
tion and is extensible through macro definitions — a mixed blessing in this context.
Therefore machines have great difficulties processing LATEX documents to extract
enough information to represent the written formulas in a XML representation.

In this paper, we will present an experiment translating a large corpus of
mathematical knowledge to a form more suitable for machine processing. The
sheer size of the arχiv [ArX07] poses a totally new set of problems for Mathe-
matical Knowledge Management (MKM) technologies, if we want to handle (and
in the future manage) corpora of this size. In the next section we will review the
translation technology we build on; the following sections present the corpus-level
build system which is the main contribution of this paper.

2. TeX/LaTeX to XML Conversion

The need for translating LATEX documents into other formats has been long realized
and there are various tools that attempt this at different levels of sophistication;
see [SGD+09]. We will disregard simple approaches like the venerable latex2html
translator that can deal only with simple user macros, and produces only html
with minimal semantic structure. The remaining ones fall into two categories that
differ in the approach towards processing the TEX/LATEX documents.

Romeo Anghelache’s Hermes [Ang07] and Eitan Gurari’s TeX4HT [TeX]
systems leverage the TEX engine for dealing with the intricacies of the TEX macro
language. They use special TEX macros to seed the dvi file generated by TEX with
semantic information. This dvi file is then parsed by a custom parser to recover
the text and semantic traces which are then combined to form the output XML
document. An advantage of these TEX-based systems is that they can directly
use the standard (ie. TEX) implementations of any macro packages used by the
documents, usually without errors. Any semantic intent of macros defined in those
packages is lost, however, unless the macros are modified to add the seeding; this
can be a tricky proposition potentially requiring modification to both the TEX
macros and the dvi parsing. While Hermes attempts to recover as much of the
mathematical formulae as Content-MathML, it has to revert to Presentation-
MathML where it does not have semantic information. TeX4HT directly aims
for Presentation-MathML.

In contrast, the LaTeXML [Mil07] system and the SGLR/Elan4 sys-
tem [vdBS03] re-implement the TEX engine for a large fragment of the TEX

paper.tex 1441 2009-07-27 18:46:33Z kohlhase

Transforming large collections of scientific publications to XML 3

language. This has the distinct advantage of bringing the power of more con-
ventional programming languages to bear on both the parsing process and XML
generation. In particular, we want to expand abbreviative macros (i.e. convenience
macros that just abbreviate token sequences) and recursively work on the resulting
token sequence, while we want to directly translate semantic macros (i.e. macros
that stand for higher-level concepts or objects), since they directly correspond to
the content representations we want to obtain. See [Koh08] for a discussion of se-
mantic and abbreviative macros; for instance C∞(R) could be marked up with the
macros in Listing 1. The first two are semantic, whereas the last is abbreviative.

Listing 1. Semantic and Abbreviative Macros
\def\Reals{\mathbb{R}}

\def\SmoothFunctionsOn#1{\mathcal{C}^\infty(#1)}

\def\SmoothFunctionsOnReals{\SmoothFunctionsOn\Reals}

A disadvantage in this approach, however, is that these systems tend to
require their own implementations of LATEX packages (see Section 4). Even if they
can successfully process the low-level TEX coding of packages, this usually generate
constructs that pass below the semantic layer of markup.

For both categories, however, a challenge is dealing with the types of markup
and usage patterns found ‘in the wild’. TEX is, among other things, a complex
macro processing engine; LATEX itself is, in fact, implemented as a macro package
on top of TEX. Moreover, all of TEX’s capabilities are available to authors, allowing
them to develop non-standard usages and to exploit quirks in the processing model
— authors are notorious for finding peculiar ways to get a specific desired effect in
print that completely obscures the semantic intent of the document. Even when
the the processing engine is able to cope with the computations, the semantic
intent can easily be lost, unless care is taken in the conversion.

In our conversion experiment we have chosen the LaTeXML system, whose
LATEX parser seems to have largest coverage in the second “semantics-aware” cate-
gory. The LaTeXML system consists of a two programs: the TEX emulator latexml;
and the post-processor latexmlpost. latexml processes the TEX document, emu-
lating TEX’s processing, loading the LaTeXML bindings for any LATEX packages re-
ferred to, and generates an intermediate XML output in the LTXML format. The
LTXML is based on the implicit document model used by LATEX, intended to lose
as little semantics and document structure as possible. For instance LTXML sup-
plies <theorem> and <proof> elements as XML counterparts to the theorem and
proof environments in LATEX. Any mathematics within the document is parsed, to
the extent possible, preserving any semantics or structure implied by the markup.

In the post-processing phase, this LATEX-near representation is transformed
into the target format by the latexmlpost program. This program applies a
pipeline of intelligent filters to its input, performing a variety of tasks such as
storing and filling-in information for cross-references and bibliographies, genera-
tion of images for mathematics (if needed) along with included graphics or picture

paper.tex 1441 2009-07-27 18:46:33Z kohlhase

4 H. Stamerjohanns, M. Kohlhase, D. Ginev, C. David and B. R. Miller

environments. Finally, the filters perform the necessary conversions to various for-
mats including the main one of interest here: XHTML +Presentation-MathML.

Other filters such as transformations to OpenMath and Content-MathML
are under development, although they rely on inferring more of the mathematical
semantics than is currently done. The parsing of mathematics mentioned above
uncovers the structure of the expressions, but not necessarily the meaning. It is ob-
viously essential, but not sufficient, for the eventual generation of content-oriented
mathematical formats, such as Content-MathMLand OpenMath. However, the
mathematical structure is also essential to the generation of quality Presentation-
MathML; for this reason failure to recognize the mathematical structure yields
warnings and such documents are not considered fully successful conversions (see
the categories in Figure 2). Further projects are underway to develop semantic
filters to enhance the content, disambiguate notations, and carry out type and
part-of-speech analysis [GJA+09].

3. The Build System

The main contribution of this article is the arXMLiv build system. In the exper-
iment we report on we transform the articles in the arχiv collection from LATEX
to XHTML+MathML.

The huge number of more than 400,000 documents in this collection made
simple manual handling of conversion runs impossible. In a first attempt, we
tried to mechanize the conversion process itself (invocation of latexml and
latexmlpost) by a set of script-generated Makefiles. But even using distributed
extensions of make (e.g. dmake) or other grid tools that support distributed builds
to run distributed jobs on several hosts — a feature that is essential to be able to
massively convert thousands of documents in one day — proved infeasible as they
did not give us the necessary control over the build process. It turned out that for
determining the improvements on the LaTeXML system and the package bindings
necessary for increasing translation coverate we need a automated analysis of the
conversion results. In particular, we need to cluster specific error patterns and
gather statistics of failure causes.

The arXMLiv build system (see figure 1) distributes make jobs among sev-
eral hosts and also extracts and analyzes the conversion process of each document
and stores results in its own SQL database. The usage of a database allows us to
cluster documents which include a specific macro that is only partially supported
or to gather statistics about specific errors in the document processing.

The arXMLiv build system consists of a shared file system, a queue man-
ager, a build manager, and a relational database, which stores a work queue and
results statistics about each single converted file. The file system contains all the
documents (≈ 150 Gigabytes), classified by topic and each one located in its own
sub-directory. The file system is exported via NFS to all hosts which take part in
the build process.

paper.tex 1441 2009-07-27 18:46:33Z kohlhase

Transforming large collections of scientific publications to XML 5

Queue Manager
- adds and removes documents
 to/from workqueue
- manages document files
- priority handling

SQL database
- workqueue
- statistics

Document files
(each article

in subdirectory)

Makefiles

- handle conversion
- call latexml and latexmlpost

clean:
remove result files

Build Manager
- operates on workqueue
- schedules make jobs
 on distributed host

- analyzes log files

manages entries
 in workqueue
 - state and priority

reads
workqueue

invokes make
stores analyzed

log data

 default:
 create result files

 and log files

reads log files

Figure 1. Schematic overview of the arXMLiv build system

The build manager is implemented in PHP, where SQL databases as well
as process control functions can be easily used. It keeps an internal list of avail-
able ‘worker’ hosts, reads the files to be converted next from the workqueue and
distributes jobs to remote hosts. For each document to be converted, the build
manager forks a new child process on the local machine. The child sets a timer
to enable a limiting timeout of 180 seconds for the conversion process and then
forks a (grand-)child process to call make on a one of the worker hosts via remote
ssh execution. The make process will then invoke latexml and latexmlpost to
convert a TEX file to XML and then to XHTML, respectively.

After the completion of the conversion process, or if the time limit was ex-
ceeded, the build manager is notified via regular Unix signal handling. The build
manager then parses and analyzes LaTeXML’s log files, extracts information about
the resulting state of conversion and collects the names of package files not found
and missing macros not yet supported. If the conversion has failed, the error mes-
sages given by LaTeXML are also extracted. For each processed document, the an-
alyzed result data is then stored into the database for later use. With such stored
result data it is possible to instruct the queue manager to rerun selected subsets of
documents, such as those using a certain macro or to those which resulted in a fatal
error in the conversion. A command like php workqueue.php default cond-mat
will add all documents inside the cond-mat subdirectory — arχiv’s condensed
matter classification — to the current work queue. This has been especially useful
when changes to the binding files have been applied or when an improved version
of latexml becomes available.

Developers can retrieve the results via a web-interface available at http://
arxmliv.kwarc.info. The main page gives an overview of the conversion process:
it describes the number of documents, the number of converted files in the last

http://arxmliv.kwarc.info
http://arxmliv.kwarc.info

paper.tex 1441 2009-07-27 18:46:33Z kohlhase

6 H. Stamerjohanns, M. Kohlhase, D. Ginev, C. David and B. R. Miller

24 hours, the current state of the build system, version metadata and the hosts
involved in the conversion. For our experiment we have used 24 processors on 13
different hosts.

Figure 2. Conversion status

A further table (see figure 2) gives de-
tailed information about the results of the con-
version process. The most important states are
success (warning and no_problems) where la-
texml has only issued some minor warnings,
missing macros, where the conversion has been
successfully completed, but some macro defini-
tions could not be resolved. In this case the ren-
dered layout may contain unexpected elements
or not properly displayed elements.

All these states are hyperlinks leading to a
list of recently converted files with the specified
status. In these lists, the file name is also a
hyperlink leading to the source subdirectory for
the document where all the document-related
files can be investigated, such as the TEX source, the intermediate XML file that
LaTeXML produces or the final XHTML+MathML form. Also the full log file
containing detailed error messages can be easily be retrieved via the web browser.

Figure 3. Top fatal errors

The back end behind the
web interface is also able to an-
alyze the database content and
create detailed summaries on-the-
fly, such as lists of Top Fatal Er-
rors (see Figure 3) and Top Miss-
ing Macros (see Figure 5). These
lists have proven to be particu-
larly useful to the developer of
the LaTeXML system and the im-
plementers of the needed binding
files to deal with some of the is-
sues discussed in sections 2 and 4.

One can easily determine the most severe bugs in the still evolving conversion
tool, as well as isolate specific documents ‘abusing’ markup, or using peculiar TEX
idioms.

Again, each entry in these tables is a hyperlink leading to a list of relevant doc-
uments. For example, Figure 6 shows the documents causing a specific error condi-
tion. Discovering and analyzing these usage patterns has led to the elimination of a
large number of bugs and mistaken assumptions in LaTeXML (see Figure 4 for a time
line).

paper.tex 1441 2009-07-27 18:46:33Z kohlhase

Transforming large collections of scientific publications to XML 7

Figure 4. The history of return values in our conversion experiment

Figure 5. Top missing macros

The summaries also provides sta-
tistics on which macros and style
files are heavily used so that
development can focus on those
which are not yet implemented
but will have the most impact.
Again, this has led to implemen-
tation of a number of interesting
style and class files that are widely
used, but were initially unfamil-
iar to the developers. The main
remaining task in the arXMLiv
project is now to enhance the cov-

erage of package implementations. We describe the tools and workflows to imple-
ment these in the next section.

4. Creating LaTeXML binding files

As discussed above, we need to supply LaTeXML bindings, that is, a LaTeXML-
specific implementation, of the various LATEX style files used in the documents in
the corpus to enhance coverage of the translation process. LATEX packages tend to
fall into one of two groups: those that merely adjust the formatting to fit, say, a
particular journal style; and those that define additional macros, often with implied
semantics. Moreover, in a collection as diverse as the arχiv, many authors have
created personal ‘variants’ of more common packages, which they have adjusted
for their own preferences.

paper.tex 1441 2009-07-27 18:46:33Z kohlhase

8 H. Stamerjohanns, M. Kohlhase, D. Ginev, C. David and B. R. Miller

Figure 6. Documents with a specific fatal error

The arXMLiv trans-
lation is supported by a
working group of under-
graduate students at Ja-
cobs University who create
LaTeXML bindings for the
LATEX packages used in the
arχiv. To be able to sup-
port thousands of different
style files the group has
developed a set special of
tools and workflows which
we now describe.

The build system al-
ready gives us information
about which packages are
used most extensively. To
cope with package variants
we have developed a pack-
age analyzer that creates a
similarity matrix of all the
packages files that are be-
ing used in the arχiv (see http://arxmliv.kwarc.info/sty_sim.php for the re-
sult). This allows the variant packages to be treated by simply loading the common
base package:

RequirePackage("BaseStyleFileName");

The purely style oriented packages can be effectively ignored; we can formalize this
simply by creating an empty binding file.

The remaining packages define additional macros and thus require additional
attention. The binding files can define abbreviative macros using the DefMacro
form supplied for this purpose by LaTeXML. For semantic macros we need to asso-
ciate associate an XML fragment with the TEX markup using the DefConstructor
form. For instance the macros from Listing 1 would have the following bindings:

DefConstructor(’\Reals’,"<ltx:XMTok name=’Reals’/>");

DefConstructor(’\SmoothFunctionsOn{}’,

"<ltx:XMApp><ltx:XMTok name=’SmoothFunctionsOn’/>#1</ltx:XMApp>");

DefMacro(’\SmoothFunctionsOnReals’,"\SmoothFunctionsOn\Reals");

Note that the semantics of \Reals is preserved by encoding it as a XMTok element
that is the LTXML version of a symbol (aka. logical symbol), while the semantics
of SmoothFunctionsOn is marked up as the application of a function to its argu-
ment. LaTeXML offers a rich declarative infrastructure for implementing LaTeXML
bindings; for more sophisticated constructs, the binding author can fall back to

http://arxmliv.kwarc.info/sty_sim.php

paper.tex 1441 2009-07-27 18:46:33Z kohlhase

Transforming large collections of scientific publications to XML 9

the LaTeXML API in Perl. For example, the Babel package required a deep under-
standing of how characters are composed in the Unicode standard and to get to
know most of the names for the different types of diacritical marks; the RevTeX
package required understanding of what the original LATEX macros did and trying
to mimic that specific behavior.

The arXMLiv working group has created more than two thousand binding
files to support packages that are being used by authors of the arχiv. Some sophis-
ticated packages are not completely handled yet; for example usage of pstricks
suite would ideally generate Scalable Vector Graphics (SVG), this is implemented
only in-part; a fall-back to image generation is supported, however.

5. Conclusion and Outlook

Our arXMLiv build system has allowed us to apply the LaTeXML conversion tool
across a large collection of scientific documents; we have been able to successfully
convert more than half of the more than 400,000 LATEX articles of the arχiv to a
semantically enriched XHTML+MathML representation. The build system has
enabled us to cope with the conversion process of this huge collection of documents
while providing statistics and reports to guide improvement of the binding files
needed to support various LATEX style files, and also to improve the LaTeXML tool,
itself.

We have been able to improve the success rate to close to 61% of the corpus
being converted with significant fidelity. Another 30% have also been converted
and are available as XHTML+MathML, although they suffer from unrecognized
macros and other inaccuracies; we do not currently count them as full successes
since the representation and layout may not be correct and the rendering in a web
browser might not be fully appropriate.

This has expanded our collection of scientific MathML documents which
we need for further studies in semantic analysis, search indexing and other exper-
imentation by more than 240,000 (real-world) documents. Having access to the
documents in XML, with all TEX-specific processing already handled, but with
minimal loss of semantics, opens the door to many additional applications. We are
currently working on linguistic/semantic analysis of the corpus [GJA+09] with the
goal of enabling MKM services like our semantic search engine [KŞ06, Mat08]. But
the XHTML +MathML conversion already has shown completely unexpected
benefits: the MathML formulae in the transformed corpus can be read out e.g.
by Design Science’s MathPlayer system [Mat], thus opening it up to sight-impaired
“readers”.

With the high success rate — and with diminishing returns on further binding
development — we turn our focus in two new directions: applying this experience
to additional corpora, and enhancing the mathematical semantics of the document
conversion. For the first, we are currently working to acquire additional corpora,
e.g. Zentralblatt Math [ZBM07]. Preliminary tests show that due to the careful

paper.tex 1441 2009-07-27 18:46:33Z kohlhase

10 H. Stamerjohanns, M. Kohlhase, D. Ginev, C. David and B. R. Miller

editorial structure of this collection and the limited set of macros that need to be
supported, our system can reach nearly perfect translation rates.

The next steps in the analysis of the arχiv corpus will be to improve the
LaTeXML post-processing, and in particular the OpenMath/MathML generation.
A much wider variety of mathematical notations is encountered in the arχivcorpus
than was used in the original development of LaTeXML; data-mining and additional
support from the build system should help expose these notations and will help
drive improvements to the core mathematical grammar used by LaTeXML. Beyond
that, further work in disambiguation is necessary to select which of several in-
terpretations should be applied. Some of these improvements will be integrated
directly into LaTeXML. Other improvements will require more involved approaches
based on heuristics or linguistic and semantic analysis. Rather than relying on a
single tool like the latexmlpost processor for this task we plan to open up the
build system and compute farm to competing analysis tools.

The build system described here is open source software and can be ob-
tained from the authors upon request. The conversion tool, LaTeXML, is also open
source and available from [Mil07]. Additionally, we allow access to the build sys-
tem through a web interface (available at http://tex2xml.kwarc.info); LATEX
files can be manually uploaded and converted, making use of the many additional
binding files created to support the arXMLiv work (because of limited resources,
this system only supports a few concurrent users).

References

[ABC+09] Ron Ausbrooks, Bert Bos, Olga Caprotti, David Carlisle, Giorgi
Chavchanidze, Ananth Coorg, Stéphane Dalmas, Stan Devitt, Sam Dooley,
Margaret Hinchcliffe, Patrick Ion, Michael Kohlhase, Azzeddine Lazrek, Den-
nis Leas, Paul Libbrecht, Manolis Mavrikis, Bruce Miller, Robert Miner, Mur-
ray Sargent, Kyle Siegrist, Neil Soiffer, Stephen Watt, and Mohamed Zergaoui.
Mathematical Markup Language (MathML) version 3.0. W3C Working Draft
of 4. June 2009, World Wide Web Consortium, 2009.

[Ang07] Romeo Anghelache. Hermes - a semantic xml+mathml+unicode e-
publishing/self-archiving tool for latex authored scientific articles. web page
at http://hermes.roua.org/, 2007.

[ArX07] arXiv.org e-Print archive, seen December2007. web page at http://www.

arxiv.org.

[BCC+04] Stephen Buswell, Olga Caprotti, David P. Carlisle, Michael C. Dewar, Marc
Gaetano, and Michael Kohlhase. The Open Math standard, version 2.0. Tech-
nical report, The Open Math Society, 2004.

[GJA+09] Deyan Ginev, Constantin Jucovschi, Stefan Anca, Mihai Grigore, Catalin
David, and Michael Kohlhase. An architecture for linguistic and semantic
analysis on the arXMLiv corpus. In Applications of Semantic Technologies
(AST) Workshop at Informatik 2009, 2009. in press.

http://tex2xml.kwarc.info
http://hermes.roua.org/
http://www.arxiv.org
http://www.arxiv.org

paper.tex 1441 2009-07-27 18:46:33Z kohlhase

Transforming large collections of scientific publications to XML 11

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathematical doc-
uments [Version 1.2]. Number 4180 in LNAI. Springer Verlag, 2006.

[Koh08] Michael Kohlhase. Using LATEX as a semantic markup format. Mathematics
in Computer Science, 2008.

[KŞ06] Michael Kohlhase and Ioan Şucan. A search engine for mathematical formulae.
In Tetsuo Ida, Jacques Calmet, and Dongming Wang, editors, Proceedings of
Artificial Intelligence and Symbolic Computation, AISC’2006, number 4120 in
LNAI, pages 241–253. Springer Verlag, 2006.

[Mat] Mathplayer: Speech instructions and examples. web page at http://www.

dessci.com/en/products/mathplayer/tech/accessibility.htm.

[Mat08] Math Web Search. http://kwarc.info/projects/mws/, seen Dec. 2008.

[Mil07] Bruce Miller. LaTeXML: A LATEX to xml converter. Web Manual at http://

dlmf.nist.gov/LaTeXML/, seen September2007.

[SGD+09] Heinrich Stamerjohanns, Deyan Ginev, Catalin David, Dimitar Misev,
Vladimir Zamdzhiev, and Michael Kohlhase. Mathml-aware article conver-
sion from LATEX, a comparison study. In Petr Sojka, editor, Towards Digital
Mathematics Library, DML 2009 workshop. Masaryk University, Brno, 2009.

[TeX] TeX4ht: LaTeX and TeX for hypertext. web page at http://www.tug.org/

applications/tex4ht/mn.html.

[vdBS03] Mark van den Brand and Jürgen Stuber. Extracting mathematical semantics
from latex documents. In Proc. Intl. Workshop on Principles and Practice
of Semantic Web Reasoning (PPSWR 2003), number 2901 in LNCS, pages
160–173, Mumbai, India, 2003. Springer.

[ZBM07] Zentralblatt MATH, seen December2007. web page at http://www.

zentralblatt-math.org.

H. Stamerjohanns
Computer Science, Jacobs University Bremen
e-mail: h.stamerjohanns@jacobs-university.de

M. Kohlhase
Computer Science, Jacobs University Bremen
e-mail: m.kohlhase@jacobs-university.de

D. Ginev
Computer Science, Jacobs University Bremen
e-mail: d.ginev@jacobs-university.de

C. David
Computer Science, Jacobs University Bremen
e-mail: c.david@jacobs-university.de

B. R. Miller
National Institute of Standards and Technology
e-mail: bruce.miller@nist.gov

http://www.dessci.com/en/products/mathplayer/tech/accessibility.htm
http://www.dessci.com/en/products/mathplayer/tech/accessibility.htm
http://kwarc.info/projects/mws/
http://dlmf.nist.gov/LaTeXML/
http://dlmf.nist.gov/LaTeXML/
http://www.tug.org/applications/tex4ht/mn.html
http://www.tug.org/applications/tex4ht/mn.html
http://www.zentralblatt-math.org
http://www.zentralblatt-math.org

	1. Introduction
	2. TeX/LaTeX to XML Conversion
	3. The Build System
	4. Creating LaTeXML binding files
	5. Conclusion and Outlook
	References

