
A Flexible, Interactive Theory-Graph Viewer

Marcel Rupprecht Michael Kohlhase Dennis Müller

Computer Science, FAU Erlangen-Nürnberg

Abstract

Many mathematical software systems are based on the ex-
plicit representation of mathematical knowledge and orga-
nize that modularly. Surprisingly, most of these systems do
not give the user a direct way to interact with the represented
knowledge via its structure.

In this paper we present TGView, a flexible, adaptable the-
ory graph viewer for the OMDoc/MMT ecosystem. Graph
layout and interaction are browser-based given theory graph
data provided by the MMT API. As OMDoc/MMT is a gen-
eral integration format for mathematical knowledge, TGView
can serve as an interface for any system that has an OM-
Doc/MMT interface.

1 Introduction
Many mathematical software systems are based on the explicit representation of mathemat-
ical knowledge and organize that modularly. Computer algebra systems like GAP [GAP] or
Sagemath [Sage] organize mathematical objects in a class hierarchy and dispatch computational
methods along that. Axiom [OA] even adds axiomatizations to the object classes to encode
system knowledge. Theorem prover system often organizes axioms, definitions, theorems, and
proofs into theories, which are connected by inclusions and other theory morphisms (theory
graphs). IMPS [FGT93] has pioneered the “little theories paradigm”, and the dominant provers
like Coq [Coq], Isabelle [Pau94], and PVS [ORS92] follow its intuitions; even the Mizar [Miz]
system has a system of articles that can be understood as a lightweight theory graph.

But the use of modular theory-graph like knowledge organization principles is not restricted
to computational and formal systems: OMDoc-based active documents [Koh+11] are generated
from a theory graph of document fragments, and the SMGloM terminology [Koh14] uses the-
ory graphs to model both domain concept dependencies as well as multilinguality. Linguistic
relations like hypernymy or antonymy between technical terms can be derived from the theory
graph structure.

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.



Even at the very informal end graphs abound, for instance Wikipedia is often seen as a large
“citation graph” of knowledge and books sometimes end the preface with a graph-like diagram
of chapter dependencies to allow readers multiple paths through the book.

Surprisingly, most of the systems discussed above do not give the user a direct way to interact
with the represented knowledge via its graph structure. Many of the systems do allow to generate
a static graph via the Graphviz system [GV]. Even though one can add limited interactions by
adding links to SVG versions of the graph, any change leads to server-side re-layouting, which
cannot take display requirements of the client into account. An exception to this rule is the
Protégé system for ontology development, which sports numerous graph display plugins [PV]
for interaction with the ontologies.

For theory-graph-based systems, understanding the modular structure of theories and their
connections is crucial for accessing the knowledge in the system and understanding its behavior,
and visualizing them as graphs is the most natural way of conveying this knowledge. However,
most such graphs are much too large for normal screens, if presented in their full glory. Therefore,
the user needs to interact pan, tilt, and zoom, the graph, colorize, hide, and cluster nodes, and
drill down on the information of the theories and morphisms. It is this important interaction
aspect that is not supported in the current state of the art.

In this paper we present TGView, a flexible, adaptable theory graph viewer for the OM-
Doc/MMT ecosystem. Graph layout and interaction are browser-based given theory graph data
provided by the MMT API. As OMDoc/MMT is a general integration format for mathemat-
ical knowledge, TGView can serve as an interface for any system that has an OMDoc/MMT
interface. In the next section we introduce the OMDoc/MMT ecosystem before we discuss the
TGView system in Section 3. Section 4 concludes the paper.

2 The OMDoc/MMT Ecosystem
OMDoc/MMT is a knowledge representation system building on OMDoc, a wide-coverage repre-
sentation language for mathematical knowledge (formal) and documents (informal/narrative).
The format is designed to be foundation-independent and introduces several concepts to max-
imize modularity and to abstract from and mediate between different foundations, to reuse
concepts, tools, and formalizations.

OMDoc/MMT offers very few primitives, which have turned out to be sufficient for most
practical settings. These are
1. constants with optional types and definitions; these are objects, which are syntax trees with

binding, using previously defined constants as leaves,
2. theories, which are lists of constant declarations and
3. theory morphisms, that map declarations in a domain theory to expressions built up from

declarations in a target theory.
Using these primitives, logical frameworks, logics and theories within some logic are all uni-

formly represented as OMDoc/MMT theories, rendering all of those equally accessible, reusable
and extendable. Constants, functions, symbols, theorems, axioms, proof rules etc. are all rep-
resented as constant declarations, and all terms which are built up from those are represented
as objects.

Theory morphisms represent truth-preserving maps between theories. Examples in-
clude theory inclusions, translations/isomorphisms between (sub)theories and mod-
els/instantiations (by mapping axioms to theorems that hold within a model), as well as



meta-theory relations, that include logical symbols to talk about the domain. All of this
naturally give us the notion of a theory graph, which relates theories (represented as nodes)
via edges representing theory morphisms, being right at the design core of the OMDoc/MMT
language.

There is already a large body of mathematical knowledge encoded in OMDoc/MMT, ranging
from the LATIN logic atlas, a meta-level theory graph with over 1000 nodes and edges, over
the libraries of more than a dozen theory libraries exported to OMDoc/MMT (about 200,000
definitions, theorems, and proofs; theory graph structure varies), to informal, but theory-graph
annotated teaching documents (ca. 4000 theories). All of these are organized in math archives,
a special file system layout that facilitates mathematical knowledge management services on
OMDoc/MMT collections.

OMDoc/MMT is implemented in the MMT system [Rab13; MMT], an application that can
read OMDoc/MMT archives and perform knowledge management operations on them. For
TGView, it is important that MMT gives acces to the specifics of the theory graphs loaded
from the respective archives via a RESTful web interface, which can be extended flexibly by
specialized MMT plugins.

The math archives are collected, managed, and made accessible to the community on the Math-
Hub portal [Ian+14; MH]. It provides versioned storage, build management & error-reporting
facilities, knowledge based services (via the MMT system), and interactive browsing facilities for
collections of math archives.

The TGView system, which is the main contribution we report on in this paper evolved as
the theory graph interface of MathHub, mostly on request by users who use MathHub for devel-
oping modular formalizations of mathematical models – see [Koh+17]. In these developments,
the understanding and interacting with the graph structure induced by the formalization is of
essential importance.

3 The Graph-Viewer System
The central design decision in the TGView system is to build a browser-based graph viewer
with client-side layouting. Existing systems use libraries like GraphViz to layout the graph
in backend and send an image or vector-graphic to the frontend. Such a system needs to
recalculate the whole graph server-side for most user interactions. Given web-based technologies,
simple interactions like node highlighting might be performed client-side, but any more intrusive
interaction – e.g. hiding/showing nodes, clustering/unclustering subgraphs, or changing layout
styles – will trigger a page refresh from the server, reduce the speed and usability of interactions
with graphs dramatically. Moreover, server-side layouting faces scalability issues and does not
support responsive UI design very well.

We overcome these limitations by implementing TGView completely client-side in the browser.
This allows TGView to scale nearly infinitely and to enable responsive graph interaction. An
Ajax-based implementation in JavaScript allows users to interact with theory graphs over a wide
range of devices, since nowadays almost every device supplies modern browsers, which natively
support the JS platform. A Java-based solution, which would give access to a wide range of
graph layout libraries would necessitate browser plugins, which are available only for a limited
range of devices.

TGView has a graphical user interface, which allows all actions to be carried out via mouse
point, click and drag operations without any server requests except the first one to receive graph



data. As heart of TGView we use the network library from vis.js [VJS], a graph drawing library,
which offers plenty of native interactions like node clustering, different layouts (hierarchical vs.
force-driven), good user experience and efficient rendering of big graphs.

To give the user access to the math archives on MathHub, we use a tree-structured menu
where we can select single or even multiple theories to plot. We chose to use the JavaScript
library jsTree with its rich tree API. For the UI we use jQuery-UI, one of the state-of-the-art
libraries for UI-Design. A screen shot of the TGView system in action can be seen in Figure 1.

Figure 1: Left: Math Archives; Top: Header bar for editing/selection; Center: Graph area

Figure 2: Architectural view

Figure 2 shows the architecture behind
TGView. The server, in our case MathHub–
it could be any kind of server – sends the
requested graph data to browser. This data
is processed by TGView, which then updates
the HTML-DOM and canvas via vis.js. From
this time on, TGView only needs to com-
municate with the server, when the user
switches or extends graphs. To keep our
system modular we divide functionality be-
tween client – which is responsible for graph
layout and user interaction – and the server, which only needs to supply generic graph data
in JSON. This approach is also visible in the invocation pattern of our system. TGView
is a JavaScript library that can be included in any web page – in MathHub it is at http:
//mathhub.info/mh/mmt/tgview.html; it adds the graphdata query parameter for the web
service that supplies the graph data. Thus the invocation pattern for a concrete graph is http:
//mathhub.info/mh/mmt/tgview.html?graphdata=mathhub.info/graph/pvs.json. This is
also the invocation used when a user requests a new graph from the math archives sidebar.

As different graph layout styles give different insights, TGView gives the user the choice of
layout formalisms from the header bar. Currently the system supports the three most suit-
able general layout schemes from vis.js: forces driven layout, semi-hierarchical layout – used
to structure weakly hierarchical graphs – and strictly hierarchical layout – see Figure for 3.



Figure 3: Left: Architectural layout; Right: Forces driven layout

Furthermore, TGView provides a custom layout for model pathway diagrams (MPDs) – the-
ory graphs with additional role metadata for theories; see [Koh+17] for details and Figure 4
shows the MPD view of a theory graph about drift-diffusion models for electrons and holes in
one-dimensional semiconductors.

Figure 4: MPD View of the van Roosbroeck Drift/Diffusion Model

As nodes and edges in the displayed graph represent theories and morphisms, which are
complex objects of themselves. Fortunately, the MMT web interface already supplies methods
for browsing and interacting with them – see [Rab14] –, so we just dispatch the UI to that using
a right-click context menu, see Figure 1 for the current context menu.



4 Conclusions, Availability, Evaluation, and Future Work
We have present TGView, a flexible, adaptable theory graph viewer for the OMDoc/MMT ecosys-
tem. Graph layout and interaction are browser-based given theory graph data provided by the
MMT API. The system is licensed under the Gnu Public License and is available from GitHub
at https://github.com/uniformal/TGView.

TGView is able to handle even huge graphs with ten of thousands of edges and nodes efficiently
on current hardware, which is way beyond what humans can usefully process visually on normal
screens. Unfortunately, browsers limit the canvas to about 3000x3000 pixels. This is enough for
showing the image on most modern displays but makes printing big graphs on posters or using
extremely big displays like the one at LRI Paris [LRI] impossible.

In spite of its relative youth, users report better comprehension of the theory graphs at a global
level. Important features for this are the ability to hand-tweak computed layouts – e.g. pulling
nodes apart where they are too dense – and highlighting nodes together with their incoming
and outgoing edges. In particular our design decision of using a client-side layout approach has
been fully validated.

We have shown the adaptability of the TGView architecture by providing a MPD viewer,
which interprets (suitably enriched) theory graphs as model path diagrams, which highlight
salient features of model-oriented theory graphs to computational scientists [Koh+17]. Note
that this viewer uses MathML for formula display even though this is not (natively) supported
by all browsers. We feel that this is not a grave limitation since this viewer ist used mostly in
a desktop setting, where FireFox that has native MathML support is available.

Other special viewers that would be desirable would be a TGView mode for the mul-
tilingual theory graph structures underlying SMGloM terminology [Koh14] collapsing the
signature/language-binding graphs into single nodes.

Figure 5: Clustered nodes

It is very important to have a nicely structured lay-
out for big graphs, otherwise the amount of manual
work is infeasible high. Some automatic clustering be-
side the possibility to manual clustering would another
nice-to-have algorithm (see Figure 5 for a manual clus-
ter example).

As OMDoc/MMT is a general integration format for
mathematical knowledge, TGView can serve as an in-
terface for any system that has an OMDoc/MMT inter-
face. Indeed, we are currently integrating TGView into
the MathHub portal, which contains OMDoc/MMT ex-
ports of many theorem prover libraries, computer alge-
bra systems, and semi-formal collections ranging from
flexiformal course materials to mathematical vocabu-
laries.

In the future, we want to extend TGView by a facility for editing theory graphs, combining
“drag-and-drop” like editing features for the theory structure with MMT surface syntax editing
facilities for the declaration level. Another useful extension would be a MPD editor, where we
can select subgraphs into MPDs, together with the TGView editor this would give a graphical
modeling tool for shared model libraries. In this vein, we would like to have a facility for
saving/sharing layout tweaks to generated theory graphs – possibly for subgraphs – to take



advantage of human improvements.
Acknowledgements: We gratefully acknowledge EU funding for the OpenDreamKit project
in the Horizon 2020 framework under grant 676541. Our discussions have particularly profited
from contributions by Andrea Kohlhase, Thomas Koprucki, Florian Rabe, and Karsten Tabelow.

References
[Coq] The Coq Proof Assistant. url: http://coq.inria.fr/ (visited on 07/31/2010).

[FGT93] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. “IMPS: An Inter-
active Mathematical Proof System”. In: Journal of Automated Reasoning 11.2 (Oct.
1993), pp. 213–248.

[GAP] The GAP Group. GAP – Groups, Algorithms, and Programming. url: http://
www.gap-system.org (visited on 08/30/2016).

[GV] Graphviz – Graph Visualization Software. url: http://www.graphviz.org/ (visited
on 05/22/2017).

[Ian+14] Mihnea Iancu, Constantin Jucovschi, Michael Kohlhase, and Tom Wiesing. “System
Description: MathHub.info”. In: Intelligent Computer Mathematics 2014. Confer-
ences on Intelligent Computer Mathematics. (Coimbra, Portugal, July 7–11, 2014).
Ed. by Stephan Watt, James Davenport, Alan Sexton, Petr Sojka, and Josef Ur-
ban. LNCS 8543. Springer, 2014, pp. 431–434. isbn: 978-3-319-08433-6. url: http:
//kwarc.info/kohlhase/papers/cicm14-mathhub.pdf.

[Koh+11] Michael Kohlhase et al. “The Planetary System: Web 3.0 & Active Documents for
STEM”. In: Procedia Computer Science 4 (2011): Special issue: Proceedings of the
International Conference on Computational Science (ICCS). Ed. by Mitsuhisa Sato,
Satoshi Matsuoka, Peter M. Sloot, G. Dick van Albada, and Jack Dongarra. Finalist
at the Executable Paper Grand Challenge, pp. 598–607. doi: 10.1016/j.procs.
2011.04.063. url: http://kwarc.info/kohlhase/papers/epc11.pdf.

[Koh+17] Michael Kohlhase, Thomas Koprucki, Dennis Müller, and Karsten Tabelow. “Math-
ematical models as research data via flexiformal theory graphs”. In: Intelligent Com-
puter Mathematics (CICM) 2017. Conferences on Intelligent Computer Mathemat-
ics. (July 17–21, 2017). LNAI. in press. Springer, 2017. url: http://kwarc.info/
kohlhase/papers/cicm17-models.pdf.

[Koh14] Michael Kohlhase. “A Data Model and Encoding for a Semantic, Multilingual Ter-
minology of Mathematics”. In: Intelligent Computer Mathematics 2014. Conferences
on Intelligent Computer Mathematics. (Coimbra, Portugal, July 7–11, 2014). Ed. by
Stephan Watt, James Davenport, Alan Sexton, Petr Sojka, and Josef Urban. LNCS
8543. Springer, 2014, pp. 169–183. isbn: 978-3-319-08433-6. url: http://kwarc.
info/kohlhase/papers/cicm14-smglom.pdf.

[LRI] The LATIN Theory Graph on an Extremely Large Touchscreen. url: https://
kwarc.info/people/frabe/Research/florian_rabe_latin_graph_at_lri.jpg.

[MH] MathHub.info: Active Mathematics. url: http : / / mathhub . info (visited on
01/28/2014).



[Miz] Mizar. url: http://www.mizar.org (visited on 02/27/2013).

[MMT] MMT – Language and System for the Uniform Representation of Knowledge. project
web site. url: https://uniformal.github.io/ (visited on 08/30/2016).

[OA] OpenAxiom: The Open Scientific Computation Platform. url: http://www.open-
axiom.org (visited on 05/22/2017).

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. “PVS: A Prototype Verification System”.
In: Proceedings of the 11th Conference on Automated Deduction. Ed. by D. Kapur.
LNCS 607. Saratoga Springs, NY, USA: Springer Verlag, 1992, pp. 748–752.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. LNCS 828. Springer
Verlag, 1994.

[PV] Visualization - Protege Wiki. url: hTtps://protegewiki.stanford.edu/wiki/
Visualization (visited on 05/22/2017).

[Rab13] Florian Rabe. “The MMT API: A Generic MKM System”. In: Intelligent Computer
Mathematics. Conferences on Intelligent Computer Mathematics. (Bath, UK, July 8–
12, 2013). Ed. by Jacques Carette, David Aspinall, Christoph Lange, Petr Sojka, and
Wolfgang Windsteiger. Lecture Notes in Computer Science 7961. Springer, 2013,
pp. 339–343. isbn: 978-3-642-39319-8. doi: 10.1007/978-3-642-39320-4.

[Rab14] Florian Rabe. “A Logic-Independent IDE”. In:Workshop on User Interfaces for The-
orem Provers. Ed. by Cristoph Benzmüller and Bruno Woltzenlogel Paleo. Elsevier,
2014, pp. 48–60. doi: 10.4204/EPTCS.167.7.

[Sage] The Sage Developers. SageMath, the Sage Mathematics Software System. url: http:
//www.sagemath.org (visited on 09/30/2016).

[VJS] vis.js - A dynamic, browser based visualization library. url: http://visjs.org
(visited on 06/04/2017).

[Wat+14] Stephan Watt, James Davenport, Alan Sexton, Petr Sojka, and Josef Urban, eds. In-
telligent Computer Mathematics. Conferences on Intelligent Computer Mathematics.
(Coimbra, Portugal, July 7–11, 2014). LNCS 8543. Springer, 2014. isbn: 978-3-319-
08433-6.


