
Faceted Search for Mathematics

Radu Hambasan Michael Kohlhase

Computer Science, Jacobs University Bremen

Abstract. Faceted search is one of the most practical ways to browse
a large corpus of information. Information is categorized automatically
for a given query and the user is given the opportunity to further refine
his/her query. Many search engines offer a powerful faceted search engine,
but only on the textual level. Faceted Search in the context of Math
Search is still unexplored territory.

In this paper, we describe one way of solving the faceted search problem
in mathematics: by extracting recognizable formula schemata from a
given set of formulae and using these schemata to divide the initial set
into formula classes. Also, we provide a direct application by integrating
this solution with existing services.

1 Introduction

Search engines have become the prevalent tool for exploring the ever growing
trove of digital data on the Internet. Although text search engines (e.g. Google
or DuckDuckGo) are sufficient for most uses, they are limited when it comes to
finding scientific content. STEM documents (Science, Technology, Engineering
and Mathematics) contain mathematical formulae which cannot be properly
indexed by a text search engine as they are structured expressions of operators
(fractions, square-roots, subscripts and superscripts) and tokens.

A good math search engine is needed by several user groups. One user group
would be an airline manufacturer, searching for formulae in their engineering
whitepapers. In the case of research centers, like CERN, valuable time would be
saved if scientists would have a fast, reliable and powerful math search engine to
analyse previous related work. Still another user group is represented by univer-
sity students who would be empowered by search engines, when their textbooks
are not limited to text, but also include formulae. For all these applications, we
first need a strong math search engine and second, a large corpus of math to
index. Correspondingly, Math Information Retrieval is a small but vibrant re-
search topic, we refer the reader to the recent Math-2 Task [1] at the NTCIR-11
IR Evaluation Campaign for an overview.

The Cornell e-Print Archive arXiv [3], is an example of such a corpus, con-
taining over a million STEM documents from various scientific fields (Physics,
Mathematics, Computer Science, Quantitative Biology, Quantitative Finance
and Statistics). Zentralblatt Math (ZBMath) [17] has abstracts/reviews of all

published papers (currently 3 .5 million) since 1859. A search engine for these
must provide an expressive query language and query-refining options to be able
to retrieve useful information.

Fig. 1: Faceted Search in ZBMath

Zentralblatt Math also provides a powerful search engine called “structured
search”. This engine is also capable of faceted search1. Figure 1 shows a typ-
ical situation: a user searched for a keyword (here an author name) and the
faceted search generated links for search refinements (the facets) on the right.
Currently, facets for the primary search dimensions are generated – authors,
journals, MSC (Mathematics Subject Classification) [13]. This allows the user
to further explore the result space, even without knowing in advance the specifics
of what he/she is looking for. Unfortunately these facets are all metadata-driven
and not specific to mathematics – the MSC facet is an exception, but it is rather
vague because it will only provide information about the field of mathematics to
which an article belongs. If the authors use formulae from another field in their
paper, the results will suffer a drop in relevance.

1 Faceted search originates from image search [16] and the results showed that users
prefer a category-based approach to searching, even if the interface is initially unfa-
miliar.

∫
?M

?Φ(dp?f)dvol

λ?X.h(H1?X) · · ·Hn?X

?Γ`?A�?α
?D

Fig. 2: Formula Facets

With the work reported in this paper we try to lift
this limitation by computing “formula facets” con-
sisting of a set of formula schemata generated to fur-
ther disambiguate the query by refining it in a new
dimension. For instance, for the query in figure 1,
we could have the facets in Figure 2, which allows
the user to drill in on i) variation theory and minimal surfaces, ii) higher-order
unification, and iii) type theory. The red identifiers (prefixed with a question
mark), stand for query variables, their presence making the results formula
schemata.

The formula schemata in figure 2 were manually created to judge the feasibility
of using schemata as recognizable user interface entities, but for an application
we need to generate them automatically from the query. Moreover, each schema
should further expand to show the formula class it represents. Formula classes
would consist of all formulae sharing the same schema. This is the algorithmic
problem we explore in this paper.

After reviewing the preliminaries in Section 2, we present the schematization
algorithm in Section 3 and discuss its implementation in Section 4. Section 5
addresses first results in finding cutoff heuristics, the main cognitively relevant
parameter in the schematization algorithm. Section 6 discusses applications be-
yond the faceted math search problem addressed in this paper and sketches
future work. Section 7 concludes the paper.

2 Preliminaries

We will now present the systems on which our work is based:

– MathWebSearch provides the necessary index structure for schema search.
– Elasticsearch provides hits in response to text queries, as well as run ag-

gregations on the hits. These hits represent formulae to be schematized.
– arXiv provides a large corpus of mathematical documents that we can index

and run our system on.
– LATEXML converts LATEX expressions to MathML.

As discussed in Section 1, the goal of this project is to develop a scalable for-
mula schematization engine, capable of dividing a set of query hits into classes,
according to the generated formula schemata.

We have set the following end-user requirements for our system:

R1. it should be able to generate formula schemata from a given set of formulae
and the resulting schemata should be easily recognizable by the user.

R2. it should be able to classify the given set of formulae according to the
generated schemata.

R3. the system should be massively scalable, i.e. capable of answering queries
with hundreds of thousands of formulae in a matter of seconds.

At its core, the MathWebSearch [8] system (MWS) is a content-based search
engine for mathematical formulae. It indexes MathML [12] formulae, using a
technique derived from automated theorem proving: Substitution Tree Index-
ing [7]. Recently, it was augmented with full-text search capabilities, combining
keyword queries with unification-based formula search. The engine serving text
queries is Elasticsearch (below). From now on, in order to avoid confusion, we
will refer to the core system (providing just formula query capability) as MWS
and to the complete service (MWS + Elasticsearch) as TeMaSearch (Text + Math
Search).

Internal to MWS, each mathematical expression is encoded as a set of substitu-
tions based on a depth-first traversal of its Content MathML tree. Furthermore,
each tag from the Content MathML tree is encoded as a TokenID, to lower the
size of the resulting index. The (bijective) mapping is also stored together with
the index and is needed to reconstruct the original formula. The index itself is
an in-memory trie of substitution paths.

To facilitate fast retrieval, MWS stores FormulaIDs in the leaves of the substi-
tution tree. These are integers uniquely associated with formulae, and they are
used to store the context in which the respective expressions occurred. These
identifiers are stored in a separate LevelDB [11] database.

MathWebSearch exposes a RESTful HTTP API which accepts XML queries. A
valid query must obey the Content MathML format, potentially augmented with
qvar variables which match any subterms. A qvar is a wildcard in a query, with
the restriction that if two qvars have the same name, they must be substituted
in the same way.

Elasticsearch [5] is a powerful and efficient full text search and analytics engine,
built on top of Lucene [2]. It can scale massively, because it partitions data in
shards and is also fault tolerant, because it replicates data. It indexes schema-
free JSON documents and the search engine exposes a RESTful web interface.
The query is also structured as JSON and supports a multitude of features via
its domain specific language: nested queries, filters, ranking, scoring, searching
using wildcards/ranges and faceted search.

arXiv is a repository of over one million publicly accessible scientific papers in
STEM fields. For the NTCIR-11 challenge [8], MWS indexed over 8.3 million
paragraphs (totaling 176 GB) from arXiv. We will base our queries on this large
index, because it provides a rich database of highly relevant formulae. Moreover,
Elasticsearch will have more formulae on which it can run aggregations, also
leading to more relevant results.

An overwhelming majority of the digital scientific content is written using LATEX
or TEX [10], due to its usability and popularity among STEM researchers. How-
ever, formulae in these formats are not good candidates for searching because
they do not display the mathematical structure of the underlying idea. For this
purpose, conversion engines have been developed to convert LATEX expressions
to more organized formats such as MathML.

An open source example of such a conversion engine is LATEXML [14]. The Math-
WebSearch project relies heavily on it, to convert arXiv documents from LATEX
to XHTML which is later indexed by MWS. It exposes a powerful API, accept-
ing custom definition files which relate TEX elements to corresponding XML
fragments that should be generated. For the scope of this project, we are more
interested in another feature of LATEXML: cross-referencing between Presenta-
tion MathML and Content MathML. While converting TEX entities to Presenta-
tion MathML trees, LATEXML assigns each PMML element a unique identifier
which is later referenced from the corresponding Content MathML element. In
this manner, we can modify the Content MathML tree and reflect the changes in
the Presentation MathML tree which can be displayed to the user.

Figure 3 illustrates the parallel markup for 2
x+3 . On the left side we have Pre-

sentation MathML and on the right side, Content MathML. As we can see, every
Content element has a Presentation correspondent, except the divide operator,
whose meaning is reflected in the structure of the displayed formula.

Fig. 3: The CMML/PMML Parallel Markup

3 Schematization of Formula Sets

In this section, we provide a theoretical approach to the problem of generat-
ing formula schemata, by formalizing the problem and describing an efficient
algorithm to solve it. First we formulate the problem at hand more carefully.

Definition 1. Given a set D of documents (fragments) – e.g. generated by a
search query, a coverage 0 < r ≤ 1, and a width n, the Formula Schemata
Generation (FSG) problem requires generating a set F of at most n formula
schemata (content MathML expressions with qvar elements for query variables),
such that F covers D with coverage r.

Definition 2. We say that a set F of formula schemata covers a set D of
document fragments, with coverage r, iff at least r · |D| formulae from D are
an instance σ(f) of some f ∈ F for a substitution σ.

The algorithm that we present requires a MWS index of a corpus. Given such
an index, and a set D of formulae (as CMML expressions), we can find the set
F in the following way:

1. Parse the given CMML expressions similarly to MWS queries, to obtain their
encoded DFS representations.

2. Choose a reasonable cutoff heuristic, see below.
3. Unify each expression with the index, up to a given threshold (given by the

above heuristic).
4. Keep a counter for every index path associated with the unifications. Since

we only match up to a threshold, some formulae will be associated with the
same path (excluding the leaves). We increase the counter each time we find
a path already associated with a counter.

5. Sort these path-counter pairs by counter in descending order and take the
first n (n being the width required by the FSG).

6. If the threshold depth was smaller than a formula’s expression depth, the
path associated with it will have missing components. We replace the missing
components with qvars to generate the schema and return the result set.

(a) Index simplified at depth 1 (b) FS Engine Architecture

Fig. 4: Aspects of the Formula Search System

Figure 4a shows a MWS index with encoded expressions which were simplified
at depth 1. This means that the Content MathML representation of the formulae
was truncated at depth 1 and then encoded in the index, resulting in a “simplified
index”.

The formulae’s paths represent their depth-first traversal. Every formula can
be reconstructed given its path in the index. The circles represent index nodes
and the number inside represents the token’s ID. When we reach a leaf node, we
completely described a formula. This is encoded in the leaf node by an ID, which
can be used to retrieve the formula from the database. The length of the arrows
symbolizes the depth of the omitted subterms (for higher depths, we have longer
arrows). Notice how both formula with ID 1 and formula with ID 3 show the
same “path” when ignoring subterms below a cutoff depth (the simplification
depth), which in this case is 1.

4 Implementation

In this section, we explain the key details of the formula classifier’s implemen-
tation, the overall system architecture, as well as the challenges and trade-offs
associated with the taken design decisions.

Design Overview The full faceted search system comprises of the following com-
ponents: the Formula Schematizer 4, Elasticsearch, a proxy to mediate commu-
nication between the Schematizer and Elasticsearch and a Web front-end. The
architecture of the system is shown in Figure 4b.

Once the user enters a query (which consists of keywords and a depth), the
front-end forwards the request to a back-end proxy. The proxy sends the text
component of the query to Elasticsearch and receives back math contained in
matching documents. Afterwards, it sends the retrieved math and the depth
parameter (from the original query) to the Schematizer. The Schematizer will
respond with a classification of the math in formula classes, as well as the cor-
responding schema for each class. Finally, the proxy forwards the result to the
front-end which displays it to the user.

In the following sections, we will explain the core components of the system in
detail and describe the challenges faced during implementation.

The Formula Schematizer The Schematizer is the central part of our system.
It receives a set of formulae in their Content MathML representation, generates
corresponding formula schemata and classifies the formulae according to the gen-
erated schemata. It provides an HTTP endpoint and is therefore self-contained,
i.e. it can be queried independently, not only as part of the faceted search sys-
tem. As a consequence, the Schematizer displays a high degree of versatility, and
can be integrated seamlessly with other applications.

Although our algorithm works well in theory, we needed to adapt it consider-
ing various MathWebSearch implementation details, e.g. the index is read-only
(therefore we cannot store extra data into the index nodes). Therefore, the over-
all idea/theory is the same, but now we take the following shortcut: instead

of unifying every formula with the index, we just pretend we do and instead
generate a “signature” for each formula. This signature is the path shown in
Figure 4a. We use the MathWebSearch encoding for MathML nodes, where each
node is assigned an integer ID based on its tag and text content. If the node
is not a leaf, then only the tag is considered. The signature will be a vector
of integer IDs, corresponding to the pre-order traversal of the Content MathML
tree.

Naturally, the signature depends on the depth chosen for the cutoff heuristic. At
depth 0, the signature consists only of the root token of the Content MathML
expression. At full depth (the maximum depth of the expression), the signature
is the same as the depth-first traversal of the Content MathML tree.

Based on these computed signatures, we divide the input set of formulae into
formula classes, i.e. all formulae with the same signature belong to the same class.
For this operation we keep an in-memory hash table, where the keys are given
by the signatures and the values are sets of formulae which have the signature
key. After filling the hash table, we sort it according to the number of formulae
in a given class, since the signatures which cover the most formulae should come
at the beginning of the reported result.

The Schematizer caller can place an optional limit on the maximum number of
schemata to be returned. If such a limit was specified, we apply it to our sorted
list of signatures and take only the top ones.

As a last step, we need to construct Content MathML trees from the signatures,
to be able to show the schemata as formulae to the user. We are able to do
this because we know the arity of each token and the depth used for cutoff. The
tree obtained after the reconstruction might be incomplete, so we insert query
variables in place of missing subtrees. We finally return these Content MathML
trees with query variables (the formula schemata), together with the formulae
which they cover.

Presentation by Replacement After obtaining the schemata and formula classes,
we need to be able to display the result to the user. One possibility would be
to have the Schematizer return Content MathML expressions for the schemata
and use an XSL stylesheet [15] to convert them to Presentation MathML. This
approach would unfortunately generate unrecognizable schemata due to the in-
herent ambiguity of CMML. For instance, a csymbol element can be represented
in several different ways depending on the notation being used. Additionally,
we cannot reliably foresee all possible rules that should be implemented in the
stylesheet and as a consequence some formulae will be wrongly converted.

Since the XSL conversion is unreliable, we will make use of the cross-reference
system provided by LATEXML, as discussed before. Instead of returning Content
MathML expressions, the Schematizer will use the first formula in each class as
a template and “punch holes into it”, effectively returning the ID of the nodes

that are to be substituted with query variables. We will use this IDs to replace
the referenced PMML nodes with <mi> nodes representing the qvars.

Fig. 5: Presentation by Replacement

Figure 5 shows the presentation
by replacement technique for a
given schema. The Schematizer
returned a schema which was
checked against the first formula
in its class (2

x+3) to generate
two substitutions, marked with
red on the left side. Due to the
cross-reference system provided
by LATEXML, we are able to find
the corresponding PMML ele-
ments and substitute them with

<mi> tokens. The result will be displayed to the user as ?x
?y .

Performance We designed the Schematizer to be a very lightweight daemon,
both as memory requirements and as CPU usage. To test if we achieved this
goal, we benchmarked it on a server running Linux 3.2.0, with 10 cores (Intel
Xeon CPU E5-2650 2.00GHz) and 80 GB of RAM.

We obtained the 1123 expressions to be schematized by querying Elasticsearch
with the keyword “Fermat”. While the overall time taken by the faceted search
engine was around 5 seconds, less than a second was spent in the Schematizer.
Also, the CPU utilized by the Schematizer never rose higher than 15% (as in-
dicated by the top utility). Asymptotically, the algorithm would run in O(N)
time, where N is the number of input formulae. We are able to reach linear time
performance, because each formula is processed exactly once and the signature
is stored in a hash table, as discussed in Section 4.

Due to its design principles, the Schematizer is almost indefinitely scalable, be-
cause it does not require shared state between formulae and can therefore be
implemented as a MapReduce [4] job, where mappers compute the signature of
assigned formulae and reducers assemble the signature hash table. However, the
unification algorithm currently used by MathWebSearch is linear is in the num-
ber of nodes of the Content MathML expression that is being unified. Therefore,
the current search engine implementation would pose challenges for scalability,
although the Schematizer itself will be able to extend easily.

The Front-End We have integrated the Schematizer into a Math Search Engine
which is capable of mathematical faceted search.

The TemaV2 front-end extends TeMaSearch to be able to perform mathematical
faceted search. It is intended for users who want to filter query results based
on a given facet (formula schema in this case). The look and feel is similar to
the previous version of TeMaSearch, as shown in Figure 6, where the first input

field is used to specify keywords and the second one is used to specify LATEX-
style formulae for the query. When returning results, a “Math Facets” menu will
be presented to the user. Figure 6 shows the results of a query for “Fermat”
and ?a?n + ?b?n = ?c?n. Besides the regular TeMaSearch results, the user is also
presented with a “Math Facets” section.

Fig. 6: TeMa v2 Query Results

When the “Math Facets” section is expanded the user can see the top 10
schemata (ranked with respect to their coverage), as shown in Figure 7. We have
also implemented a “search-on-click” functionality that allows the user to do a
fresh search using the clicked schema and the initial keyword, which effectively
filters the current results.

5 Finding a Cutoff Heuristic

To generate formula schemata, we must define a “cutoff heuristic”, which tells
the program when two formulae belong to the same schema class. If there is

Fig. 7: Math Facets in TeMa v2

no heuristic, two formulae would belong to the same class, only if they were
identical. However, we want formulae that have something in common to be
grouped together, even if they are not perfectly identical. The cutoff heuristic is
the parameter in the schematization algorithm that determines the suitability of
schemata for the various information access tasks at hand. As this is essentially
a user-driven, cognitive task it is not a priori clear what cutoff heuristics will
perform best.

To explore the space of heuristics, we have implemented a special front-end
and used that to evaluate heuristics for the math search task discussed above.
As a proper user-level evaluation was beyond the scope of this paper, we have
implemented various heuristics and discussed them with the ZBMath group in
the context of the ZBMath corpus, this led to the development of the dynamic
cutoff heuristic presented at the end of this section.

A Schema Evaluation Front-End The SchemaSearch front-end provides just a
textual search input field. It is intended for users who want an overview of the
formulae contained in a corpus. As shown in figure 8a, the user can enter a
set of keywords for the query, as well as a schema depth, which defaults to 3.
The maximum result size is not accessible to the user, to prevent abuses and
reduce server load. There is also an “R” checkbox which specifies if the cutoff
depth should be absolute or relative. If relative, the depth should be given in
percentages.

Figure 8a shows the formula schemata at depth 3, over the arXiv corpus, for a
query containing the keyword “Kohlhase”. By default, the top 40 schemata are
shown, but the results are truncated for brevity. The bold number on the left
side of each result item indicates how many formulae are present in each formula
class. For instance, the third schema represents a formula class containing 10
formulae. The entities marked in blue are query variables (qvars).

(a) Faceted Results at depth 3 (b) Expansion of a Formula Class
1

(c) Expansion of a Formula Class 2

Fig. 8: Generated Schemata

Figure 8b shows the expansion of a formula class. There are 22 formulae in the
class given by this particular math schema, as indicated by the count on the
left upper side, out of which only ten are shown. We can see 2 unnamed query
variables marked with blue as ?a and ?b. By seeing the schema, the user can
form an impression about the general structure of the formulae from that class.
After expanding the class, the listing of concrete formulae appears. If the user
clicks on one of them, he is redirected to the source document from which that
expression was extracted.

Another class expansion which showcases the schematization can be seen in
Figure 8c. By seeing this schema, the user can abstract away the complexity
of the formulae and obtain a “summary” of the meaning behind it. Also, by
expanding the class he can explore several related formulae easily, because they
are grouped together.

Dynamic Cutoff We have experimented with several possibilities for the heuristic
and found out that a dynamic cutoff which preserves the operators leads to more
intuitive results. We can identify the operators by looking at the first child of

the apply token in the CMML tree. The user is given the option to have an
absolute (fixed) or relative (depending on the depth of the CMML tree) cutoff
for the operands.

Figure 9 illustrates this heuristic at depth 1. The divide element was kept, because
it was the first child of apply, while the other children were removed. If we were
to use a depth of 2, the plus element would also be included in the schema.

This heuristic is not simply keeping another tree node uncut. If the current node
is an operator, it can also have multiple levels of children and therefore we need
to keep that entire subtree from being cut. What this means, is that the cutoff
depth can vary significantly, depending on how deep the operator’s subtree is.

Fig. 9: Dynamic Cutoff

6 Applications and Future Work

One improvement angle that can be worked on is the ranking of the schemata. We
have used a simple method, ranking them in decreasing order of coverage, thus
having the schema with most formulae in its class on the first place. However,
this is not always a good approach. When users look at the facets, it is usually
because they were not able to find what they were looking for (because the
result set is too large). The first schemata cover most of the formulae users
have already looked at, so they are not of interest. However, the last schemata
are not of interest either, because they typically only cover very rare formulae
(1-2 occurrences). An alternative ranking approach might place the medium-
coverage schemata first, then the top-coverage and then the low-coverage. In
order to define precisely what is the range for medium-coverage, further research
is required.

One other application of the faceted search engine can be providing mathematical
definitions with the help of NNexus [6]. NNexus is an auto-linker for mathemati-
cal concepts from several encyclopedias, e.g. PlanetMath, Wikipedia. Assuming
we are able to generate relevant schemata in response to keyword queries, we
can target the faceted search engine with all the concepts stored by NNexus
and store a schema for each such concept. Afterwards, for a given query, we can
obtain the schema and check it against our stored set of schemata. If we find it,

we can link the given expression to its mathematical definition. Given a large
number of stored concepts and a high schemata relevance, the user should be
able to see the definition of any encountered formulae on the Web. For example,
hovering over a2 + b2 = c2 will show the definition of the Pythagorean theorem.

Another, more direct, application of the Schematizer would be Similarity Search.
One could create a MathWebSearch based search engine, which accepts an input
formula and a similarity degree (between 0% and 100%). The engine would then
create a formula schema at a relative depth corresponding to the similarity degree
and use this schema to search the corpus. This approach defines the similarity
between two formulae as the percentage of the CMML tree depth that they
share.

Last, but not least, we will need to invest in a full user-level evaluation of the
utility of formula facets, and the influence of various cutoff heuristics on that.

7 Conclusion

We have presented the design and implementation of a system capable of math-
ematical faceted search. Moreover, we have described a general-purpose scalable
Schematizer which can generate intuitive and recognizable formula schemata and
divide expressions into formula classes according to said schemata. Consequently,
we have successfully addressed all challenges outlined in Section 2.

Although the Schematizer provides recognizable formulae, some queries to Sche-
maSearch (e.g. using an author as keyword) provide hits with a very low rele-
vance. This is because we cannot distinguish between the work of the author and
work where the author is cited at the textual level. As a consequence, searching
for “Fermat” would also show formulae from papers where Fermat was cited
and if these papers are numerous, as it happens with known authors, would
provide the user with misleading results. This suggests that a better source of
mathematical expressions might be required for the SchemaSearch demo.

The implementation of the Schematizer presented here is licensed under GPL
v3.0 and code is available at http://github.com/KWARC/mws/.

Acknowledgements This work has been supported by the Leibniz Association
under grant SAW-2012-FIZ KA-2 (Project MathSearch). The authors gratefully
acknowledge fruitful discussions with Fabian Müller, Wolfram Sperber, and Olaf
Teschke in the MathSearch Project, which led to this research (the ZBMath
information service uses faceted search on the non-formula dimensions very suc-
cessfully) and clarified the requirements from an application point of view.

References

[1] Akiko Aizawa et al. “NTCIR-11 Math-2 Task Overview”. In: NTCIR
Workshop 11 Meeting. Ed. by Noriko Kando, Hideo Joho, and Kazuaki
Kishida. Tokyo, Japan: NII, Tokyo, 2014, pp. 88–98. url: http://research.
nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/OVERVIEW/

01-NTCIR11-OV-MATH-AizawaA.pdf.
[2] Apache Lucene. Oct. 4, 2015. url: https://lucene.apache.org/ (visited

on 10/04/2015).
[3] arxiv.org e-Print archive. url: http://www.arxiv.org (visited on

06/12/2012).
[4] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Process-

ing on Large Clusters. 2004.
[5] Elastic Search. Dec. 7, 2014. url: http://www.elasticsearch.org/

(visited on 12/07/2014).
[6] Deyan Ginev and Joseph Corneli. “NNexus Reloaded”. In: Intelligent Com-

puter Mathematics. Conferences on Intelligent Computer Mathematics (Coim-
bra, Portugal, July 7–11, 2014). Ed. by Stephan Watt et al. LNCS 8543.
Springer, 2014, pp. 423–426. isbn: 978-3-319-08433-6. url: http://arxiv.
org/abs/1404.6548.

[7] Peter Graf. Substitution Tree Indexing. 1994.
[8] Radu Hambasan, Michael Kohlhase, and Corneliu Prodescu. “MathWeb-

Search at NTCIR-11”. In: NTCIR Workshop 11 Meeting. Ed. by Noriko
Kando, Hideo Joho, and Kazuaki Kishida. Tokyo, Japan: NII, Tokyo, 2014,
pp. 114–119. url: http://research.nii.ac.jp/ntcir/workshop/

OnlineProceedings11/pdf/NTCIR/Math-2/05-NTCIR11-MATH-HambasanR.

pdf.
[9] Noriko Kando, Hideo Joho, and Kazuaki Kishida, eds. NTCIR Workshop

11 Meeting. Tokyo, Japan: NII, Tokyo, 2014.
[10] LaTeX - A document preparation system. Oct. 4, 2015. url: https://

www.latex-project.org/ (visited on 10/04/2015).
[11] LevelDB. Dec. 21, 2014. url: http://leveldb.org/ (visited on 12/21/2014).
[12] Mathematical Markup Language. url: http://www.w3.org/TR/MathML3/.
[13] Mathematics Subject Classification (MSC) SKOS. 2012. url: http://

msc2010.org/resources/MSC/2010/info/ (visited on 08/31/2012).
[14] Bruce Miller. LaTeXML: A LATEX to XML Converter. url: http://dlmf.

nist.gov/LaTeXML/ (visited on 03/12/2013).
[15] XSLT for Presentation MathML in a Browser. Dec. 20, 2000. url: http://

dpcarlisle.blogspot.de/2009/12/xslt-for-presentation-mathml-

in-browser.html#uds-search-results (visited on 04/04/2015).
[16] Ka-Ping Yee et al. “Faceted Metadata for Image Search and Browsing”. In:

Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM Press, 2003, pp. 401–408. url: http://dl.acm.org/

citation.cfm?id=642681.
[17] Zentralblatt Math Website. Dec. 7, 2014. url: http://zbmath.org/ (vis-

ited on 12/07/2014).

