
A Tableau Calculus for Partial Functions?

Manfred Kerber Michael Kohlhase

Fachbereich Informatik, Universität des Saarlandes
66041 Saarbrücken, Germany

+49-681-302-{4628|4627}
{kerber|kohlhase}@cs.uni-sb.de

Abstract. Even though it is not very often admitted, partial functions
do play a significant role in many practical applications of deduction sys-
tems. Kleene has already given a semantic account of partial functions
using a three-valued logic decades ago, but there has not been a satisfac-
tory mechanization. Recent years have seen a thorough investigation of
the framework of many-valued truth-functional logics. However, strong
Kleene logic, where quantification is restricted and therefore not truth-
functional, does not fit the framework directly. We solve this problem
by applying recent methods from sorted logics. This paper presents a
tableau calculus that combines the proper treatment of partial functions
with the efficiency of sorted calculi.

Keywords: Partial functions, many-valued logic, sorted logic, tableau.

1 Introduction

Many practical applications of deduction systems in mathematics and computer
science rely on the correct and efficient treatment of partial functions. For this
purpose different approaches—reaching from workarounds for concrete situations
to a proper general treatment—have been developed. In the following we will in-
troduce the main approaches and exemplify their advantages and disadvantages
by some trivial examples from arithmetic. For a more detailed discussion of the
different approaches compare [Far90].

There are essentially four approaches of treating partiality. First, these ex-
pressions can syntactically be excluded. Second, it is possible to disregard or
bypass partiality. Third, partiality is taken serious and this is reflected in the
semantics and the calculus. Fourth, there is some mixture between options two
and three.

In the first approach terms like x
0 are treated as syntactically ill-formed,

for instance, by using a sorted logic, in which the domain of the x
y function is

defined to be IR× IR∗ (where IR∗ denotes the real numbers without 0). Thereby
the whole problem of partiality has been bypassed. In the cases, where such a
procedure is possible, this approach is quite adequate and reflects the usual way
? This work was supported by the Deutsche Forschungsgemeinschaft (SFB 314, D2)

of handling undefined expressions in mathematics: to assure that all expressions
are defined before beginning to reason about them. It is, however, not always
possible to exclude such expressions from the consideration a priori. For instance,
if you consider terms like 1

f(x) , it would be necessary to exclude this expression
for those x where f(x) = 0; depending on the definition of f , this might be
not computable at all. In consequence, this approach remedies the problem of
partiality in certain cases only and does not provide a full solution.

In the second approach a value is assigned to 1
0 , either a fixed value (e.g.

0) or an undetermined one. In both cases it is necessary to tolerate undesired
theorems, in the first case, for instance, 1

0 = 0, or in the second case from
0 · x = 0 the instance 0 · 10 = 0. This approach is not satisfying, if such theorems
are unwanted, which is normally the case in mathematics.

In the third approach, terms like 1
0 are not defined and semantically ei-

ther uninterpreted or interpreted by some error element. In the same manner,
atomic formulae, containing such an undefined term, like 1

0 = 0 are not in-
terpreted by a truth value (true or false) at all or are interpreted by a third
truth value (undefined). As in the first approach, partiality is taken serious, but
it is no longer necessary to single out the undefined expressions a priori. The
main drawback of this approach is that classical two-valued logic is not adequate
for its mechanization. A possible formalization can be done by a three-valued
logic, however. Kleene makes this approach formal, by introducing an individ-
ual ⊥ denoting meaningless individuals and a third truth value u, standing for
the “undefined” truth value. However, in contrast to the general framework for
many-valued truth-functional logics, Kleene’s quantifiers only range over defined
values, that is, not over ⊥, making a direct utilization of the methods developed
by Carnielli [Car87,Car91], Hähnle [Häh92], Baaz and Fermüller [BF92] impos-
sible. Kleene’s approach has been used by Tichy [Tic82], Lucio-Carrasco and
Gavilanes-Franco [LCGF89] to give logical systems for partial functions. Both
approaches offer unsorted operationalizations of the systems in sequent calculi.

The fourth approach is less radical insofar as terms are treated as in the
third approach, but the problems that accompany treating a third truth value
are avoided (cf. [Bee85,Far90,Sch68,Wei89]): All atomic expressions containing
a meaningless term are considered as false. This has the advantage that partial
functions can be handled within the classical two-valued framework. However,
the serious drawback is that the results of these logic systems can be unintu-
itive to the working mathematician. For instance in elementary arithmetic the
following sentence

∀x, y, z z =
x

y
⇒ x = y ∗ z

is a theorem of such systems since the scope is true for the case y 6= 0 and for the
case y = 0, the formula z = x

0 obtains the truth value f which in turn makes the
implication true, too. However, it is mathematical consensus that the equation
should only hold provided that y is not 0. It will turn out (cf. example 211)
that the formula is not a theorem in our formalization, since the case y = 0 is a
counterexample.

22

This paper formalizes Kleene’s ideas for partial functions (the third approach)
in a sorted three-valued logic, called SKL, that uses Kleene’s strong interpreta-
tion of connectives and quantifiers and adapts techniques from Weidenbach’s
sorted logic [Wei89] to handle definedness information. We furthermore present
a tableau calculus TPF for partial functions that carries over the methods devel-
oped in the context of resolution theorem proving for partial functions [KK94]
to the tableau framework. Standard first-order tableaux were introduced by
Beth [Bet55] and Hintikka [Hin55] and later unified by Smullyan [Smu68]. The
free variable tableau method has its origin in the work of Prawitz [Pra60] and
has further been elaborated by Reeves [Ree87] and Fitting [Fit90]. Both cal-
culi reported here are strongly influenced by Weidenbach’s tableau calculus with
sorts [Wei94], which introduces reasoning with dynamic sorts to tableau calculi.

We would like to thank Christian Fermüller, Reiner Hähnle, and Christoph
Weidenbach for comments and clarifying discussions.

2 Strong Sorted Kleene Logic (SKL)

In [Kle52] Kleene presents a logic, which he calls strong three-valued logic for
reasoning about partial recursive predicates on the set of natural numbers. He
argues that the intuitive meaning of the third truth value should be “undefined”
or “unknown” and introduces the truth tables shown in definition 26. Similarly
Kleene enlarges the universe of discourse by an element ⊥ denoting the undefined
number. In his exposition the quantifiers only range over natural numbers, in
particular he does not quantify over the undefined individual (number).

The approach of this paper is to make Kleene’s meta-level discussion of de-
fined and undefined individuals explicit by structuring the universe of discourse
with the sort D for all defined individuals. Furthermore all functions and predi-
cates are strict, that is, if one of the arguments of a compound term or an atom
evaluates to ⊥, then the term evaluates to ⊥ or the truth value of the atom is u.
Just as in Kleene’s system, our quantifiers only range over individuals in D, that
is, individuals that are not undefined. This is in contrast to the well-understood
framework for truth-functional many-valued logics, where the concept of defined-
ness and defined quantification cannot be easily introduced, since quantification
is truth-functional and depends on the truth values for all (even the undefined)
instantiations of the scope. Kleene’s concept of bounded quantification is essen-
tial for our program of representing partial functions, since in a truth-functional
approach no proper universally quantified expression can evaluate to the truth
value t (dually for the existential quantifier), since all functions and predicates
are assumed strict.

In the following we present the logic system SKL, which is a sorted version
of what we believe to be a faithful formalization of Kleene’s ideas from [Kle52].
We treat the sorted version here, since we need the machinery for dynamic
sorts in the calculus to be able to treat the sort D (sort techniques as that
from [Wei89,Wei91] give us the bounded quantification). We will call formula-
tions of SKL where D is the only sort in the signature strong unsorted Kleene

23

logic, since the sort D is indispensable. The further use of sorts gives the well-
known advantages of sorted logics for the conciseness of the representation and
the reduction of search spaces.

2.1 Syntax and Semantics

Definition 21 (Signature) A signature Σ: = (S,V,F ,P) consists of the fol-
lowing disjoint sets

– S is a finite set of sorts including the sort D. We define S∗ := S \ {D}.
– V is a set of variable symbols. Each variable x is associated with a unique

sort S, which we write in the index, i.e. xS . We assume that for each sort
S ∈ S there is a countably infinite supply of variables of sort S in V.

– F is a set of function symbols.
– P is the set of predicate symbols.

The sets F and P are subdivided into the sets Fk of function symbols of arity k
and Pk of predicate symbols of arity k. Note that individual constants are just
nullary functions. We call a signature unsorted if S∗ is empty, that is, if D is the
only sort.

Definition 22 (Terms and Formulae) We define the set of terms to be the
set of variables together with compound terms f(t1, . . . , tk) for terms t1, . . . , tk

and f ∈ Fk.
If P ∈ Pk, then P (t1, . . . , tk) is a proper atom. If t is a term and S a sort then

t<−S is a sort atom. The set of formulae contains all atoms and with formulae A
and B the formulae A ∧ B, A ∨ B, A ⇒ B, ¬A, !A, ∀xS A, and ∃xS A.1 Here
the intended meaning of !A is that A is defined.

We will now define the three-valued semantics for SKL by postulating an
“undefined individual” ⊥ in the universe of discourse. Note that this is similar
to the classical flat CPO construction [Sco70], but Kleene’s interpretation of
truth values does not make u minimal. Since we are not interested in least fix-
points, monotonicity does not play a role in this paper.

Definition 23 (Strict Σ-Algebra) Let Σ be a signature, then a pair (A, I) is
called a strict Σ-algebra, iff

1. the carrier set A is an arbitrary set that contains ⊥,
2. the interpretation function I obeys the following restrictions:

(a) For all function symbols f , the function I(f):Ak −→ A is strict for ⊥,
that is, I(f)(a1, . . . , ak) = ⊥, if ai = ⊥ for (at least) one i.

(b) If P is a predicate symbol, then the relation I(P) ⊆ Ak is strict for ⊥,
that is, I(P)(a1, . . . , ak) = u, if ai = ⊥ for (at least) one i.

1 We do not consider degenerate quantifications of the form ∀xS A, where x does not
occur free in A, they would require a special treatment in the calculus.

24

(c) If S 6= D is a sort, then I(S) is a total and strict unary relation, that is,
I(S)(a) ∈ {f, t}, if a 6= ⊥ and I(S)(⊥) = u.

(d) I(D)(⊥) = f and I(D)(a) = t, if a 6= ⊥. Note that in contrast to all
other sorts and predicates, the denotation of D is not a strict relation.

We define the carrier AS of sort S as AS := {a ∈ A
∣∣ I(S)(a) = t}. Note that

in contrast to other sorted logics, it is not assumed that the AS are non-empty,
in fact we do not even assume the existence of defined elements in the carrier.
Furthermore ⊥ /∈ AS for any S ∈ S.

By systematically deleting ⊥ and u from the carrier and the truth values we
can canonically transform strict Σ-algebras into algebras of partial functions.
These are an algebraic account of the standard interpretation in mathemat-
ics, where partiality of functions is directly modeled by right-unique relations.
Obviously these notions of algebras have a one-to-one correspondence, so both
approaches are equivalent.

Definition 24 (Σ-Assignment) Let (A, I) be a strict Σ-algebra, then we call
a total mapping ϕ:V −→ A a Σ-assignment, iff ϕ(xS) ∈ AS , provided AS is non-
empty and ϕ(xS) = ⊥ if AS = ∅. We denote the Σ-assignment that coincides
with ϕ away from x and maps x to a with ϕ, [a/x].

Definition 25 Let ϕ be a Σ-assignment into a strict Σ-algebra (A, I) then we
define the value function Iϕ from formulae to A inductively to be

1. Iϕ(f) := I(f), if f is a function or a predicate.
2. Iϕ(x) := ϕ(x), if x is a variable.
3. Iϕ(f(t1, . . . , tk)) := I(f)(Iϕ(t1), . . . , Iϕ(tk)), if f is a function or predicate.
4. Iϕ(t<−S) := I(S)(Iϕ(t)).

Since this definition applies to P and F alike, we have given the semantics of all
atomic formulae. The semantic status of sorts is that of total unary predicates;
in particular we have Iϕ(t<−S) = u, iff Iϕ(t) = ⊥ for S 6= D.

Definition 26 The value of a formula dominated by a connective is obtained
from the value(s) of the subformula(e) in a truth-functional way. Therefore it
suffices to define the truth tables for the connectives:

∧ f u t

f f f f
u f u u
t f u t

∨ f u t

f f u t
u u u t
t t t t

⇒ f u t

f t t t
u u u t
t f u t

¬
f t
u u
t f

!

f t
u f
t t

The semantics of the quantifiers is defined with the help of function ∀̃ and ∃̃
from the non-empty subsets of the truth values in the truth values. We define

Iϕ(QxS A) := Q̃({Iϕ,[a/x](A)
∣∣ a ∈ AS})

25

where Q ∈ {∀,∃} and furthermore

∀̃(T) :=

 t for T = {t} or T = ∅
u for T = {t, u} or {u}
f for f ∈ T

∃̃(T) :=

 t for t ∈ T
u for T = {f, u} or {u}
f for T = {f} or T = ∅

Note that with this definition quantification is separated into a truth-functional
part ∀̃ and an instantiation part that only considers members of AS . Since ⊥ is
not a member of any AS , quantification never considers it and therefore cannot
be truth-functional even for the unsorted case.

For lack of space we will in the following often only treat the (sufficient)
subset {∧,¬, !,∀} of logical symbols, since all others can be defined from these
just as in the classical two-valued logic.

Kleene does not use the ! operator as a connective but treats it on the meta-
level. While it is useful it is not necessary for the treatment. Furthermore, even
this connective does not render SKL truth-functionally complete, since, just like
the other connectives and the quantifiers, ! is normal, that is, when restricted to
{f, t} yields values in {f, t}.

Definition 27 (Σ-Model) Let A be a formula, then we call a strict Σ-algebra
M := (A, I) a Σ-model for A (written M |= A), iff Iϕ(A) = t for all Σ-
assignments ϕ. With this notion we can define the notions of validity, (un)-
satisfiability, and entailment (i.e. Φ |= A) in the usual way.

Remark 28 The “tertium non datur” principle of classical logic is no longer
valid, since formulae can be undefined, in which case they are neither true nor
false. We do, however, have a “quartum non datur” principle, that is, formulae
are either true, false, or undefined, which allows us to derive the validity of a
formula by refuting that it is false or undefined. We will use this observation in
our tableau calculus.

The classical deduction theorem does not hold for SKL since the semantic
status of a formula in the hypotheses is different from its status in the antecedent
of an implication. A formula in the hypotheses is assumed to evaluate semanti-
cally to t, hence in particular it is defined. This leads to the following modified
deduction theorem.

Theorem 29 (Deduction Theorem) Φ ∪ {A} |= B iff Φ |= A∧!A⇒ B.

Proof: Let us first assume the first property and letM be a model of Φ∪ {A}
then M is also a model of B, hence M |= A∧!A ⇒ B. That means in order
to show the second property we only have to look at interpretations which are
models of Φ but not of A. For these, however, A∧!A evaluates to f, hence they
are models of A∧!A⇒ B too.

If the second property is given andM is a model of Φ thenM is also a model
of A∧!A ⇒ B. In order to prove the first property, only the subclass of those
models has to be considered which are also models of A. These are, however,
also models of !A, hence models of B too.

26

Remark 210 While in classical logic, the consequence relation is directly con-
nected to the implication, here things are a little bit more difficult. In particular,
when proving mathematical theorems, it is quite usual to do this with respect to
some background theory (axioms and definitions), which can no longer simply
be taken in the antecedent of an implication. Hence we will often consider for
mathematical applications so-called consequents, that is, pairs consisting of a
set of formulae Φ and a formula A. We call a consequent Φ |= A valid, if A is
entailed by Φ in all Σ-models.

Example 211 Now we can come back to the example from the exposition. The
assertion is not a theorem of SKL, since the instance 1 = 1

0 ⇒ 1 = 0 · 1 is
not a valid formula (in any reasonable axiomatization of elementary arithmetic).
While the antecedent of the implication evaluates to u, the succedent evaluates
to f, hence the whole expression to u. Thus, this theorem cannot be derived in
our sound tableau calculus to be presented in section 3.

Example 212 (Extended Example) We will formalize an extended example
from elementary algebra that shows the basic features of SKL. Here the sort IR∗

denotes the real numbers without zero. Note that we use the sort information to
encode definedness information for inversion: 1

x is defined for all x ∈ IR∗, since IR∗

is subsort of D by definition. Naturally, we give only a reduced formalization of
real number arithmetic that is sufficient for our example. (For instance, we could
add expressions like 1

0 6<−D.) Consider the consequent {A1,A2,A3,A4,A5} |= T
with

A1 ∀xIR x 6= 0⇒ x<−IR∗

A2 ∀xIR∗
1
x<−IR∗

A3 ∀xIR∗ x
2 > 0

A4 ∀xIR ∀yIR x− y<−IR
A5 ∀xIR ∀yIR x− y = 0⇒ x = y

T ∀xIR ∀yIR x 6= y ⇒
(

1
x−y

)2

> 0

An informal mathematical argumentation why T is entailed by {A1, . . . ,A5}
can be as follows: In the consequent above, the Ai are assumed to be true, that is,
neither false nor undefined. Let x and y be arbitrary elements of IR. If x = y, the
premise of T is false, hence the whole expression true (in this case the conclusion
evaluates to u). If x 6= y, then the premise is true and the truth value of the

whole expression is equal to that of the conclusion
(

1
x−y

)2

> 0. Since x 6= y we
get by A5 that x− y 6= 0 and by A4 that x− y<−IR, hence by A1 x− y<−IR∗ and

by A2 1
x−y<−IR∗, which finally gives

(
1

x−y

)2

> 0 together with A3.
Note that this reasoning is not justified for the implication A := A1 ∧ A2 ∧

A3∧A4∧A5⇒ T, since there are hidden assumptions, for instance, the totality
of the binary predicate > on IR×IR. In fact the formula A is not a tautology, since
it is possible to interpret the > predicate as undefined for the second argument
being zero, so that A3 as well as T evaluate to u, while the other Ai evaluate to
t, hence the whole expression evaluates to u.

27

2.2 Relativization into Truth-Functional Logic

In this section we show that we can always systematically transform SKL for-
mulae to formulae in an unsorted truth-functional three-valued logic K3 in a
way that respects the semantics. However, we will see that this formulation will
lose much of the conciseness of the presentation and enlarge the search spaces
involved with automatic theorem proving.

At first glance it may seem that SKL is only a sorted variant of a three-valued
instance of the truth functional many-valued logics that were very thoroughly in-
vestigated by Carnielli, Hähnle, Baaz and Fermüller [BF92,Car87,Car91,Häh92].
However, since all instances of this framework are truth-functional, that is, the
denotations of the connectives and quantifiers only depend on the truth values
of (certain instances of) their arguments, even unsorted Kleene logic does not
fit into this paradigm, since quantification excludes the undefined element. In
SKL we solve the problem with the quantification by postulating a sort D of all
defined individuals, which is a supersort of all other sorts. Therefore the relativ-
ization mapping not only considers sort information, it also has to care about
definedness aspects in quantification.

Informally K3-formulae are just first-order formulae (with the additional
unary connective !). While the three-valued semantics of the connectives is just
that given in definition 26, the semantics of the quantifier uses unrestricted
instantiation, that is,

Iϕ(∀x A) := ∀̃({Iϕ,[a/x](A)
∣∣ a ∈ A})

Definition 213 (Relativization) We define transformations <S and <D, that
map SKL-sentences to unsorted SKL-sentences and further into K3-sentences.
<S is the identity on terms and atoms, homomorphic on connectives, and

<S(∀xS Φ) := ∀xD S(x)⇒ <S(Φ)

Note that in order for these sentences to make sense in unsorted SKL we have to
extend the set of predicate symbols by unary predicates S for all sort symbols S ∈
S∗. Furthermore, for any of these new predicates we need the axiom: ∀xD !S(x).
The set of all these axioms is denoted by <S(Σ).

We define <D to be the identity (only dropping the sort references from the
variables) on terms and proper atoms and

– <D(t<−D): = D(t)
– <D(∀xD A): = ∀x D(x)⇒ <D(A)

Just as above we have to extend the set of predicate symbols by a unary predicate
D and need a set <D(Σ) of signature axioms, which contains the axioms

∀x1, . . . , xn Pn(x1, . . . , xn) ∨ ¬Pn(x1, . . . , xn)⇒ (D(x1) ∧ . . . ∧D(xn))
∀x1, . . . , xn D(f(x1, . . . , xn))⇒ (D(x1) ∧ . . . ∧D(xn))

for any predicate symbol P ∈ Pn and for any function symbol f ∈ Fn, together
with the axiom

∀x D(x) ∨ ¬D(x)

28

These axioms axiomatize the SKL notion of definedness in K3. In particular
the last axiom states that the predicate D is two-valued, in contrast to all other
sort predicates which are strict and thus three-valued. The other axioms force
all functions and predicates to be interpreted strictly with respect to the D
predicate.

Theorem 214 (Sort Theorem) Let Φ be a set of sentences, then the following
statements are equivalent

1. Φ has a Σ-model.
2. <S(Φ) has a Σ ∪ S∗-model that satisfies <S(Σ).
3. <D ◦ <S(Φ) has a K3-model that satisfies <D(Σ ∪ S∗) ∪ <D(<S(Σ)).

Proof: We will only show the equivalence of 2. and 3. since the equivalence of
1. and 2. can be proven with the same methods. Therefore we can restrict our
proof to unsorted SKL, where S∗ = ∅

Let M := (A, I) be a Σ-model for Φ, then we construct a K3-model M3 =
(A3, I3) for <D(Φ). Let A3 := A, I3(f) := I(f) and I3(P) := I(P) where f is
a function symbol and P is a predicate symbol or the sort D. Clearly, we have
M3 |=K3 <D(Σ), since M is a Σ-model, where all functions are strict and the
carrier A, defined as the image of I3(D), is nonempty.

Furthermore let ϕ be a Σ-assignment and M |=ϕ Φ, then we show by struc-
tural induction that I3

ϕ(<D(Φ)) = Iϕ(Φ) and therefore M3 |=K3

ϕ <D(Φ). This
claim is immediate for terms and proper atoms. For sort atoms we have

I3
ϕ(<D(t<−D)) = I3

ϕ(D(t)) = I3(D)(I3
ϕ(t)) = I(D)(Iϕ(t)) = Iϕ(t<−D)

thus we have I3
ϕ(<D(A)) = Iϕ(A) for all atoms A. For quantified formulae we

have
I3
ϕ(<D(∀xD Ψ)) = I3

ϕ(∀x D(x)⇒ <D(Ψ)) = ∀̃(Θ3) ,

where Θ3 := {I3
ψ((D(x)) ⇒ <D(Ψ))

∣∣ a ∈ A3} and ψ := ϕ, [a/x]. On the other
hand

Iϕ(∀xD Ψ) = ∀̃{Iψ(Ψ)
∣∣ a ∈ A} = ∀̃(Θ)

Now I3
ϕ(<D(∀xD Ψ)) = I3

ϕ(∀x D(X)⇒ <D(Ψ))
= ∀̃({I3

ϕ,[a/x](D(X)⇒ <D(Ψ))
∣∣ a ∈ A3}),

so we have to consider the following cases for a. If a = ⊥, then I3
ψ(D(x)) = f

and therefore I3
ψ(D(x) ⇒ <D(Ψ)) = t. If a 6= ⊥, then by inductive hypothesis

I3
ϕ(<D(Ψ)) = Iϕ(Ψ) and therefore Θ3 = Θ ∪ {t}.

I3
ϕ(<D(∀xD Ψ)) = t iff Θ3 = Θ = {t} or ∅ iff Iϕ(∀xD Ψ) = t
I3
ϕ(<D(∀xD Ψ)) = u iff Θ3 = Θ = {u, t} or {u} iff Iϕ(∀xD Ψ) = u
I3
ϕ(<D(∀xD Ψ)) = f iff f ∈ Θ3 = Θ ∪ {t} iff Iϕ(∀xD Ψ) = f

Since <D is homomorphic for connectives, we have completed the induction, thus
M3 |=K3 <D(Φ) and we have proven the necessitation direction of the theorem.

29

For the proof of sufficiency let M3 := (A3, I3) be a K3-model, such that
M3 |= <D(Φ) ∪ <D(Σ), note that in our case <D ◦ <S = <D. Let

A := {a ∈ A3
∣∣ I3(D)(a) = t} and A⊥ := {a ∈ A3

∣∣ I3(D)(a) = f}

then A3 = A ∪ A⊥, since ∀x D(x) ∨ ¬D(x) ∈ <D(Σ). If A⊥ = ∅, then it is
easy to construct a strict Σ-algebra from (A3, I3) by extending A3 with ⊥ and
interpreting each function and predicate with the strict extension of its I3 value.
So in the following we will assume that A⊥ is nonempty. Now let π:A3 −→ A⊥
be a function that is the identity on A and π(a) = ⊥ for all a ∈ A⊥. As
M3 |= <D(Σ), we know that I3(f)(a1, . . . , an) ∈ A⊥ if one ai ∈ A⊥, so the
following definition is well-defined.

I(f)(π(a1), . . . , π(an)) := π(I3(f)(a1, . . . , an))

Now we will see that Iπ◦ϕ(t) = π(I3
ϕ(t)) for all well-formed SKL terms t and

assignments ϕ into M3.

1. Iπ◦ϕ(x) = π ◦ ϕ(x) = π(I3
ϕ(x)).

2. Iπ◦ϕ(c) = I(c) = π(I3(c)) = π(I3
ϕ(c)).

3. Iπ◦ϕ(f(t1, . . . , tn)) = I(f)(Iπ◦ϕ(t1), . . . , Iπ◦ϕ(tn))
= I(f)(π(I3

ϕ(t1)), . . . , π(I3
ϕ(tn)))

= π(I3(f)(I3
ϕ(t1), . . . , I3

ϕ(tn)))
= π(I3

ϕ(f(t1, . . . , tn)))

Similarly the definition

I(p)(π(a1), . . . , π(an)) := I3(p)(a1, . . . , an)

is well-defined, because M3 |= <D(Σ) and gives us Iπ◦ϕ(A) = I3(<D(A)) for
all atoms A. From this, we obtain the general result Iπ◦ϕ(Φ) = I3

ϕ(<D(Φ))
by treating quantified formulae by a case analysis just as in the necessitation
direction. In particular we have Iπ◦ϕ(Φ) = t, iff I3

ϕ(Φ) = t and thereforeM |= Φ,
whenever M3 |= <D(Φ).

Corollary 215 Let Φ be a set of sentences and A be a sentence, then the fol-
lowing are equivalent

1. Φ |= A in all Σ-models.
2. <S(Φ) ∪ <S(Σ) |= <S(A) in all unsorted Σ ∪ S∗-models.
3. <D ◦ <S(Φ) ∪ <D(Σ ∪ S∗) ∪ <D(<S(Σ)) |= <D ◦ <S(A) in all K3-models.

As a consequence of the sort theorem, the standard operationalization for
many-valued logics [BF92,Car87,Car91,Häh92] can be utilized to mechanize strong
sorted Kleene logic and in fact the system of Lucio-Carrasco and Gavilanes-
Franco [LCGF89] can be seen as a standard many-valued tableau operational-
ization [Häh92,BFZ93] of the relativization of SKL. However, as the extended
example shows, we can do better by using sorted methods, since relativization ex-
pands the size and number of input formulae and furthermore expands the search

30

spaces involved in automatic theorem proving by building up many meaningless
branches. Note that already the formulation of SKL where we only have the
required sort D is much more concise than the relativized version. Furthermore
we will see that the theory of definedness is treated goal-driven by the TPF cal-
culus (cf. section 3). Thus the TPF calculus is closer to informal practice than
the relativization in this respect.

Example 216 (continuing 212)
The relativization <S◦ <D of the SKL-consequent {A1,A2,A3,A4,A5} |= T is
the K3-consequent

{
R1,R2,R3,R4,R5,RIR,RIR∗,R=,R>,R−,R/,R2,D!

}
|= RT

with the following relativized formulae:

R1 ∀x D(x)⇒ (IR(x)⇒ (x 6= 0⇒ IR∗(x)))
R2 ∀x D(x)⇒ (IR∗(x)⇒ IR∗(1

x))
R3 ∀x D(x)⇒ (IR∗(x)⇒ x2 > 0)
R4 ∀x D(x)⇒ (IR(x)⇒ (∀y D(y)⇒ (IR(y)⇒ IR(x− y))))
R5 ∀x D(x)⇒ (IR(x)⇒ (∀y D(y)⇒ (IR(y)⇒ (x− y = 0⇒ x = y))))

RT ∀x D(x)⇒ (IR(x)⇒ (∀y D(y)⇒ (IR(y)⇒ (x 6= y ⇒
(

1
x−y

)2

> 0))))

The set of signature axioms <D(Σ ∪ S∗) ∪ <D(<S(Σ)) is the following set of
K3-formulae:

RIR ∀x D(x)⇒!IR(x)
RIR∗ ∀x D(x)⇒!IR∗(x)
R= ∀x, y (x = y ∨ x 6= y)⇒ D(x) ∧D(y)
R> ∀x, y (x > y ∨ x 6> y)⇒ D(x) ∧D(y)
R− ∀x, y D(x− y)⇒ D(x) ∧D(y)
R/ ∀x D(1

x)⇒ D(x)
R2 ∀x D(x2)⇒ D(x)
D! ∀x D(x) ∨ ¬D(x)

2.3 Model Existence

In this subsection we introduce an important tool for proving the completeness
of calculi. The importance of model existence theorems lies in the fact that
they abstract over the model theoretic part of various completeness proofs. Such
theorems were first introduced by Smullyan (who calls them unifying principles)
in [Smu63,Smu68] based on work by Hintikka and Beth.

Definition 217 Let ∇ be a class of sets.

1. ∇ is called closed under subsets, iff for all sets S and T the following condition
holds: if S ⊂ T and T ∈ ∇, then S ∈ ∇.

2. ∇ is called compact, iff for every set S the following condition holds:
S ∈ ∇, iff every finite subset of S is a member of ∇.

Lemma 218 If ∇ is compact, then ∇ is closed under subsets.

31

Proof: Suppose S ⊂ T and T ∈ ∇. Every finite subset A of S is a finite subset
of T , and since ∇ is compact, we know that A ∈ ∇. Thus S ∈ ∇.

Definition 219 (Labeled Formula) We will call a pair Aα, where A is an
SKL-formula and α ∈ {f, u, t} a labeled formula. We say that a Σ-assignment
ϕ satisfies a set Φ of labeled formulae in a strict Σ-algebra M = (A, I), if
Iϕ(A) = α for all Aα ∈ Φ.

In the following we will use Φ ∗A as an abbreviation for Φ∪ {A} in order to
increase the legibility.

Definition 220 (Abstract Consistency Class) A class ∇ of sets of labeled
formulae is called an abstract consistency class, iff it is closed under subsets, and
for all sets Φ ∈ ∇ the following conditions hold:

1. If A is atomic, then Aα ∈ Φ for at most one α ∈ {f, u, t}, furthermore for all
terms t the literal (t<−D)u is not in Φ.

2. If (¬A)α ∈ Φ, then Φ ∗ Aβ ∈ ∇, where β = t, if α = f; β = f, if α = t; and
β = u else.

3. If (!A)t ∈ Φ, then Φ ∗ Aγ ∈ ∇ for some γ ∈ {t, f}; if (!A)f ∈ Φ, then
Φ ∗Au ∈ ∇. (!A)u is not in any Φ ∈ ∇.

4. If (A ∨B)α ∈ Φ, then
α = t) Φ ∗At ∈ ∇ or Φ ∗Bt ∈ ∇.
α = u) Φ ∪ {Af, Bu} ∈ ∇, or Φ ∪ {Au, Bf} ∈ ∇, or Φ ∪ {Au, Bu} ∈ ∇.
α = f) Φ ∪ {Af, Bf} ∈ ∇

5. If ∀xS A ∈ Φ, then
α = t) for any term t, Φ ∗ ([t/xS]A)t ∈ ∇ or Φ ∗ (t<−S)α ∈ ∇ for some

α ∈ {f, u}.
α = u) for any term t, and any constant c that does not occur,

Φ∪{([c/xS]A)u, (c<−S)t,A} ∈ ∇, where A is ([t/xS]A)t or ([t/xS]A)u or
(t<−S)f or (t<−S)u.

α = f) Φ∪ {([c/x]A)f, (c<−S)t} ∈ ∇, for each constant c that does not occur
in Φ.

6. If Aγ ∈ Φ with γ ∈ {f, t}, then Φ ∗ (t<−D)t ∈ ∇, for all subterms t of A.
7. If (t<−S)u ∈ Φ, then Φ ∗ (t<−D)f ∈ ∇.

Theorem 221
For each abstract consistency class ∇ there exists an abstract consistency class
∇′ such that ∇ ⊂ ∇′, and ∇′ is compact.

Proof: (following [And86]) Let ∇′ := {Φ
∣∣ every finite subset of Φ is in ∇}. To

see that ∇ ⊂ ∇′, suppose that Φ ∈ ∇. ∇ is closed under subsets, so every finite
subset of Φ is in ∇, and thus Φ ∈ ∇′.

Next let us show that ∇′ is compact. Suppose Φ ∈ ∇′ and Ψ is an arbitrary
finite subset of Φ. By definition of∇′ all finite subsets of Ψ are in∇, and therefore
Ψ ∈ ∇′. Thus all finite subsets of Φ are in ∇′ whenever Ψ is in ∇′. On the other

32

hand, suppose all finite subsets of Ψ are in ∇′. Then by the definition of ∇′ the
finite subsets of Ψ are also in ∇, so Φ ∈ ∇′. Thus ∇′ is compact.

Finally we show that ∇′ is an abstract consistency class. By lemma 218 it
is closed under subsets. Of the conditions for the abstract consistency class we
will only explicitly present the first two cases, since the proofs of the others are
analogous. Let Φ ∈ ∇′ be given arbitrarily.

Suppose there is an atom A, such that
{
Aα, Aβ

}
⊆ Φ for α 6= β. By the

definition of ∇′ we get {Aα, Aβ} ∈ ∇ contradicting 220(1).
Let (¬A)α ∈ Φ, and Ψ be any finite subset of Φ ∗Aβ (where α and β are as

in 220(2)) and let Θ := (Ψ \ {Aβ}) ∗ (¬A)α. Θ is a finite subset of Φ, so Θ ∈ ∇.
Since ∇ is an abstract consistency class and (¬A)α ∈ Θ, we get Θ ∗Aβ ∈ ∇. We
know that Ψ ⊂ Θ ∗ Aβ , and ∇ is closed under subsets, so Ψ ∈ ∇. Thus every
finite subset Ψ of Φ ∗Aβ is in ∇, therefore by definition Φ ∗Aβ ∈ ∇′.

Definition 222 (Σ-Hintikka Set) Let ∇ be an abstract consistency class and
Φ ∈ ∇. Then H ∈ ∇ is called a ∇-extension of Φ, iff Φ ⊂ H. A set H is called
maximal in ∇, iff for each formula D ∈ ∇ such that H∗D ∈ ∇, we already have
D ∈ H. A set H ∈ ∇ is called a Σ-Hintikka set for ∇ and Φ, iff H is maximal in
∇ and Φ ⊆ H.

We now give some technical properties of Σ-Hintikka sets that are useful for
manipulating formulae.

Theorem 223 If ∇ is an abstract consistency class, and H is maximal in ∇,
then the following statements hold:

1. If A is a proposition, then Aα ∈ H for at most one α ∈ {f, u, t}. Furthermore
(t<−D)u /∈ H for all t.

2. If (¬A)α ∈ H, then Aβ ∈ H, where β = t, if α = f; β = f, if α = t; and
β = u else.

3. If (!A)α ∈ H, then either α = t and Aγ ∈ H for γ ∈ {f, t} or α = f and
Au ∈ H. In particular, there is no formula B, such that (!B)u ∈ H.

4. If (A ∨B)α ∈ H, then
α = t) At ∈ H or Bt ∈ H.
α = u) Af, Bu ∈ H, or Au, Bf ∈ H, or Au, Bu ∈ H.
α = f) Af, Bf ∈ H

5. If ∀xS A ∈ H, then
α = t) for any term t, [t/xS]At ∈ H or (t<−S)α ∈ H for some α ∈ {f, u}.
α = u) for any term t, there is a term s, with Φ∪{([s/xS]A)u, (s<−S)t,A} ∈
H, where A ∈ {([t/xS]A)t, ([t/xS]A)u, (t<−S)f}.

α = f) there is a term t, such that ([t/x]A)f, (t<−S)t ∈ H.
6. If Aγ ∈ H with γ ∈ {t, f}, then (t<−D)t ∈ H, for all subterms t of A.
7. If (t<−S)u ∈ H, then (t<−D)f ∈ H.

Proof: We prove the first assertion by induction on the structure of A. If A is
atomic, then the assertion is a simple consequence of 220(1).

33

Let A = ¬B and Af, At be in H. By 220(2) we have Bf, Bt ∈ H contradicting
the induction hypothesis. The remaining cases can be shown analogously, so we
have proven the first assertion.

The rest of the assertions are all of the same form, and have analogous proofs,
therefore we only prove the second. If (¬A)f ∈ H, then H ∗ At ∈ ∇ (∇ is an
abstract consistency class). The maximality of H now gives the assertion.

Lemma 224 (Hintikka Lemma) If ∇ is an abstract consistency class and H
is maximal in ∇, then there is an SKL-model M and a Σ-assignment ϕ, such
that ϕ satisfies H in M.

Proof: We prove the assertion by constructing a model M = (A, I) for H,
which is derived from the ground term algebra.

Let T⊥ be the set of closed well-formed terms together with ⊥. In order to
construct the carrier A, we have to identify all elements in T⊥ that are undefined
((t<−D)f ∈ H) and identify them with ⊥. Traditional proofs of the Hintikka-
Lemma for total-function logics now define I:F −→ A to be the identity map.
However, this definition does not make I(f) strict, since I(f)(⊥) = f(⊥) 6= ⊥.
To repair this defect we take the carrier A to be the quotient of T⊥ with respect
to the equality theory =⊥ induced by the set

E⊥ = {t =⊥ ⊥
∣∣ (t<−D)f ∈ H} ∪ {fk(x1, . . . ,⊥, . . . , xk) = ⊥

∣∣ fk ∈ Σk}

of equations. Thus A is the set of equivalence classes [[t]]⊥ = {s
∣∣ E⊥ |= s =⊥ t}.

The function f⊥: ([[t1]]⊥, . . . , [[t1]]⊥) 7→ [[f(t1, . . . , tn)]]⊥ is a well-defined function,
since =⊥ is a congruence relation. We define I(f) := f⊥ and note that the special
construction of E⊥ entails the strictness of f⊥.

For any finite set W of variables a Σ-assignment ϕ can be restricted to a
substitution ϕW = ϕ

∣∣
W . A simple induction on the structure of a term t can be

used to show that Iϕ(t) = IϕFree(t)
(t).

For P ∈ Pn let I(P):An −→ {f, u, t} with PH([[t1]]⊥, . . . , [[t
n]]⊥) = α, iff

P (t1, . . . , tn)α ∈ H. Clearly PH is a partial function (cf. 223.1), since the defini-
tion only depends on =⊥-equivalence classes. With the help of 223.6 it is easy
to see that PH is a strict function. We can extend PH to a total strict function
I(P) by evaluating all remaining proper atoms with u and all remaining sort
atoms with f. Thus sorts are everywhere defined (the value u is only obtained
on ⊥) and the strictness of the predicates is preserved.

Clearly, this construction entails that for any atom A ∈ H and any Σ-
assignment ϕ we have Iϕ(A) = α, iff IϕFree(A)

(A) ∈ H. Now a simple induction
on the number of connectives and quantifications, using the properties of 223 can
be used to extend this property to arbitrary formulae. Thus we have Iϕ(A) = α
for all Aα ∈ H, if we take ϕ to be the identity.

We now come to the proof of the abstract extension lemma, which nearly
immediately yields the model existence theorem.

34

Theorem 225 (Abstract Extension Lemma) Let ∇ be a compact abstract
consistency class, and let H ∈ ∇ be a set of propositions. Then there exists a
Σ-Hintikka set H for ∇ and H.

Proof: We will construct H by inductively constructing a sequence of sets
Hi and taking H :=

⋃
i∈INHi ∈ ∇. We can arrange all labeled formulae in an

infinite sequence C1, C2, . . . For each n ∈ IN we inductively define a set Hn of
propositions by

1. H0 := Φ.
2. If Hn ∗ Cn /∈ ∇, then Hn+1 := Hn.
3. If Hn ∗ Cn ∈ ∇, and Cn is of the form (∀xS A)α with α ∈ {f, u} then
Hn+1 := Hn ∪ {Cn, [cn/x]Aα, (c<−S)t}.

4. Hn+1 := Hn ∗ Cn else.

Let H :=
⋃
n∈INHn. Clearly each of the Hn ∈ ∇, and therefore H ∈ ∇, since ∇

is compact.
In order to prove the maximality of H, let A be an arbitrary proposition such

that H∗A ∈ ∇. We know that A = Cn for some n ∈ IN, so Hn ∗A ⊂ H∗A ∈ ∇
and Hn ∗ A ∈ ∇, since ∇ is closed under subsets. Hence by definition we know
that A ∈ Hn+1, and therefore A ∈ H.

Corollary 226 (Model Existence) Let Φ ∈ ∇ and ∇ be an abstract consis-
tency class, then there is an SKL-model M and a Σ-assignment ϕ, such that ϕ
satisfies Φ in M.

Proof: Let ∇′ be the compact abstract consistency class of theorem 221 and
let H be the maximal ∇-extension of Φ guaranteed by 225. Furthermore let M
be the SKL-model, and ϕ the Σ-assignment for H guaranteed by 224. Then ϕ
satisfies Φ in M, since Φ ⊆ H.

3 Tableau

Now we turn to the exposition of our tableau calculus. The case of standard
tableaux for partial functions is a simple extension of first-order tableau methods
to SKL. Therefore we will only concern ourselves with free variable tableaux.

While a labeled formula Aα means that A has the truth value α, we also make
use of multi-indices as introduced by Hähnle and write Aαβ as an abbreviation
for Aα ∨Aβ . (Normally, we do not have to consider three different truth values,
since the corresponding formulae are tautological and cannot contribute to refu-
tations.) As has been pointed out by Hähnle [Häh92], the use of multi-indices
does not only offer a concise notation, but can drastically improve a calculus,
when special rules for their treatment are introduced. In the following, we add
corresponding rules for handling multi-indices, where one label is u. Although
not necessary in principle, this treatment results in a significant improvement
of the search complexity of the calculus, which can thereby be reduced to the
complexity in the two-valued case. This relationship will be made formal in the-
orem 39.

35

Definition 31 (Tableau Rules) The tableau rules consist of the traditional
tableau rules for the propositional connectives, augmented by the case of the
label u.

(A ∧B)t

At

Bt

(A ∧B)u

Aut

But

Au
∣∣ Bu

(A ∧B)f

Af
∣∣ Bf

(A ∧B)ut

Aut

But

(A ∧B)fu

Afu
∣∣ Bfu

Since we have special rules for the multi-indices ut and fu, we only need a splitting
rule reflecting the definition of multi-indices as disjunctions for the remaining
multi-index ft. Note that the multi-index fut gives rise to tautologies, which can
never contribute to refutations.

Aft

Af
∣∣ At

The negation rules and those for ! just flip the labels in the intuitive way.

(¬A)t

Af

(¬A)u

Au

(¬A)f

At

(¬A)ut

Afu

(¬A)fu

Aut

The ! rule for the u case closes the branch (we use an explicit symbol ∗ for that),
since (!A)u is unsatisfiable in SKL.

(!A)t

Aft

(!A)u

∗
(!A)f

Au

(!A)ut

Aft

(!A)fu

Au

In order to simplify the presentation of the examples we also (redundantly)
present the rules for disjunction.

(A ∨B)t

At
∣∣ Bt

(A ∨B)u

Afu

Bfu

Au
∣∣ Bu

(A ∨B)f

Af

Bf

(A ∨B)ut

Aut
∣∣ But

(A ∨B)fu

Afu

Bfu

The quantifier rules for the classical truth values and multi-indices are very
similar to the standard rules2 ({xS , y1, . . . , yn} are the free variables of A and
f is a new function symbol of arity n), with the exception that the sort of
the Skolem function has to be specified. The rule for the case u has a mixed
existential and universal character: for yS the value of A is undefined or true
(that is there is no instance, which makes the formula false) and there is at least

2 We employ the liberalized δ-rule of [HS94].

36

one witness for the undefinedness.

(∀xS A)t

[yS/xS]At

(∀xS A)u

[f(y1, . . . , yn)/xS]Au

[yS/xS]Aut

(f(y1, . . . , yn)<−S)t

(∀xS A)f

[f(y1, . . . , yn)/xS]Af

(f(y1, . . . , yn)<−S)t

(∀xS A)ut

[yS/xS]Aut

(∀xS A)fu

[f(y1, . . . , yn)/xS]Afu

(f(y1, . . . , yn)<−S)t

The rules for connectives and quantifiers above can now be used to reduce com-
plex labeled formulae to literals. Some sort literals can further be reduced, due
to the fact that sorts are defined on all defined individuals and the predicate D is
defined everywhere. (These rules have to be slightly generalized for multi-indices.
We only display the interesting case.)

(t<−D)u

∗
(t<−S)u

(t<−D)f

Now we only need tableau closure rules: The cut rule and the strict rule

Aα

Bβ

∗
∣∣ SC(σ)

σ

Cγ

(t<−D)f

∗
∣∣ SC(σ)

σ

where α ∩ β = ∅, γ ⊆ {ft}, and σ = [t1/x1
S1

], . . . , [tn/xnSn
] is the most general

unifier of A and B or the most general unifier of the term t and a subterm s of C,
respectively. In both cases the sort constraint SC(σ) = ((t1<−S1)∧. . .∧(tn<−Sn))fu

insures the correctness (in terms of the sorts) of the instantiations. We have
employed the notation of writing the substitution σ next to the tableau schema,
to indicate that the whole tableau is instantiated by σ during the application of
the rule.

A tableau is built up by constructing a tree with the tableau rules starting
with an initial tree without branchings. We call a tableau closed, iff all of its
branches end in ∗. Note that the disjunct ∗ in the succedent of the rules above
is only needed, if the set of sort constraints is empty. Then this rule closes the
branch without residuating.

Remark 32 We could also have used a generalization of the cut rule of the form

Aα

Bβ

Aα∩β
∣∣ SC(σ)

σ

where we employ the convention that A∅ = ∗, since this corresponds to the
empty disjunction, which is unsatisfiable. However, it is not straightforward to
see in which cases this variant of the cut rule is more efficient.

37

Definition 33 (Tableau Proof) A tableau proof for a formula A is a closed
tableau constructed from the initial tree consisting of the labelled formula Afu.
A tableau proof for a consequent Φ |= A is a closed tableau constructed from
Φt ∪

{
Afu
}

.

Remark 34 The tableau proof of a consequent Φ |= A essentially refutes the
possibility that A can be undefined or false under the assumption of all formulae
in Φ. By the quartum non datur rule, we can then conclude that A is entailed
by Φ.

3.1 Soundness and Completeness

The soundness of the TPF rules can be verified by a tedious recourse to the
semantics of the quantifiers and connectives. Completeness is proven by the
standard argument using the model existence theorem for SKL. For this, we first
have to prove a lifting theorem for TPF

Theorem 35 (Tableau Lifting) Let Φ |= A be a consequent and θ a substitu-
tion, then Φ |= A has a closed TPF-tableau provided θ(Φ) |= θ(A) has one.

Proof: Let Tθ be a closed tableau for θ(Φ) |= θ(A), the claim is proven by an
induction on the construction of Tθ constructing a tableau T for Φ |= A that
is tableau-isomorphic to T . Concretely we have a tree-isomorphism ω: T −→ Tθ
between Tθ and T that respects labels and is compatible with θ, that is, for any
node N in T with labeled formula Aα we have ωN (A) = θ(A).

This induction is straightforward for all TPF rules except for the cut and the
strict rules that residuate a sort constraint. In both cases, we can use a standard
argument which we will only carry out for the cut case: σ is a most general
unifier of θ(A) and θ(B) in Tθ, so σ ◦ θ unifies A and B in T . So there exists
a most general unifier ρ of A and B, and a substitution τ with σ ◦ θ = τ ◦ ρ.
Now we have τ(SC(ρ)) = SC(τ ◦ρ) = SC(σ ◦ θ), so we obtain the assertion by the
inductive hypothesis for ρ(T) and τ ◦ ρ(T) = σ(Tθ).

Theorem 36 (Completeness) TPF is refutation complete, that is, if Φ |= A
is a valid consequent, then there is a closed tableau for Φt ∪Afu.

Proof: Completeness of TPF can be proven using the model existence theo-
rem 226 by verifying that the class ∇ of sets Φ that do not have closed TPF
tableaux is an abstract consistency class. This can be achieved with the usual
techniques of e.g. [Fit90]: It is obvious that the TPF rules for the connectives,
quantifiers and sorts directly correspond the clauses of 220. We have treated
the only case where this correspondence is nontrivial (the quantifier case) in the
tableau lifting theorem above.

Example 37 (continuing 212) Taking the above example we give a proof for

{A1,A2,A3,A4,A5} |= T

38

using the above tableau rules. The proof is shown in figure 1. Applying the
closure rule in the case of non-empty sort constraints, we omit the ∗ branch
for simplicity reasons. Note that the unsorted unifiers [c − d/uIR], [c/xIR], and
[d/yIR] have to be applied to the whole tableau. For display reasons, however, we
only add the relevant formulae to the tableau instead of replacing them, that is,
correctly (F8) has to replace (F3) and (F13) to replace (F9).

The tableau proof can roughly be divided into three different parts, first the
representation of the problem, displayed above the first line, second some initial
simplification by eliminating quantifiers and connectives displayed between the
first and the second line, and third the final refutation, below the second line.

Remark 38 The proof in figure 1 shows an interesting feature, namely it cor-
responds in length and structure exactly to a proof of the theorem in classical
two-valued logic. By replacing all truth-value sets fu by the truth value f you
get the corresponding two-valued proof. This correspondence is due to the cor-
respondence of the tableau rules Rα and Rαu for α ∈ {f, t} and R ∈ {∧,∨,¬,∀}.
In other words using rules for truth-value sets provides proofs as short as in the
two-valued case. If, however, truth-value sets are not used, certain parts of the
proofs must be duplicated. This relationship can only hold for so-called normal
problems of course, that is, problems which do not contain any ! connective, since
formulae containing a ! do not make any sense in classical two-valued logic.

Theorem 39 (Correspondence Theorem) Each tableau proof for a normal
problem Φ |= A in SKL can be isomorphically transformed into a tableau proof
in FOL.

Proof: Let us prove the assumption by a case analysis on the rules applied in
the proof. At a certain formula in the SKL-tableau, its label set either contains
the u value or not. If the formula does not contain u then it is labeled by t,
by f, or by ft and will be treated by the same rule Rα with R ∈ {∧,∨,¬,∀}
and α ∈ {f, t} or the splitting rule. Note the corresponding tableau rules are the
same for FOL and SKL.

In the case that α contains the truth value u, just eliminate u from the set.
Since the initial problem formulation contains only the labels t and fu, for normal
problems it inductively follows that no formula with the label u can occur in a
tableau. The procedure of just eliminating the truth value u is correct, since
for all connectives (with the exception of !, which may not occur in normal
problems), all quantifier and all truth values we can verify that if R is a rule in
SKL with a truth value set containing the truth value u, then a tableau rule of
FOL can be constructed from R by eliminating the truth value u in the rule. For
instance

(A ∧B)ut

Aut

But

(A ∧B)t

At

Bt

For the other cases check this relation in definition 31. This relation holds also
for the tableau closure rule.

39

s(A1) (∀xIR x 6= 0⇒ x<−IR∗)t...s(A5) (∀xIR ∀yIR x− y = 0⇒ x = y)ts(T) (∀xIR ∀yIR x 6= y ⇒
“

1
x−y

”2

> 0)fus(A1′) (uIR 6= 0⇒ uIR<−IR∗)t ∀t(A1)s(A2′) (1
vIR∗

<−IR∗)t ∀t(A2)s(A3′) (w2
IR∗ > 0)t ∀t(A3)s(A4′) (sIR − tIR<−IR)t ∀t(A4) (2 times)s(A5′) (xIR − yIR = 0⇒ xIR = yIR)t ∀t(A5) (2 times)s(T1) (c<−IR)t ∀fu(T) (2 times)s(T2) (d<−IR)t ∀fu(T) (2 times)s(T3) (c = d ∨

“
1

c−d

”2

> 0)fu ∀fu(T) (2 times)s(T3′) (c = d)fu ∨fu(T3)s(T3′′) (
“

1
c−d

”2

> 0)fu ∨fu(T3)s(F1) (1
c−d

<−IR∗)fu ∗(T3′′,A3′)s
@@

@@

(F2) (c− d<−IR∗)fu ∗(F1,A2′)s(F3) (uIR = 0)t s(F4) (uIR<−IR∗)t ∨t(A1′)s������� @
@@

(F5) ((c− d)<−IR)fu ∗(F4,F2)s
s(F6) (c<−IR)fu s

s(F7) (d<−IR)fu ∗(F5,A4′)

∗ ∗ ∗(F6,T1), ∗(F7,T2)s
@@

@@

(F8) (c− d = 0)t σ(F3,[c− d/u])s(F9) (xIR − yIR = 0)f (F10) (xIR = yIR)t ∨t(A5′)s������� @
@@(F11) (c<−IR)fu (F12) (d<−IR)fu ∗(F10,T3′)s

s ∗

s
s ∗ ∗(F11,T1), ∗(F12,T2)s

s(F13) (c− d = 0)f σ(F9,[c/x][d/y])

∗ ∗(F13,F8)

Fig. 1. Tableau proof with unsorted unification, example 37

40

Thus we get a FOL proof from the SKL proof by simply eliminating all truth
values u.

Remarks 310 Unfortunately, the converse of the above theorem does not hold.
Not each FOL proof can be transformed into an SKL proof, even if there is an
SKL proof. Consider for example the relation {A} |= A ∨ (B ∨ ¬B) which holds
in SKL as well as in FOL. An FOL-proof is:

s(A) (A)ts(T) (A ∨ (B ∨ ¬B))fs(F1) (A)f ∨f(T)s(F2) (B ∨ ¬B)f ∨f(T)s(F3) (B)f ∨f(F2)s(F4) (¬B)f ∨f(F2)s(F5) (B)t ¬f(F4)s ∗ ∗(F5,F3)

Fig. 2. Counterexample to the converse correspondence theorem

This proof cannot be transferred since in SKL (T), (F1), (F2), (F3), (F4),
and (F5) are labeled by the truth value u in addition, hence the closure rule
does not apply to (F5) and (F3). This comes from the fact that B ∨¬B is not a
tautology in SKL. However, the other straightforward closure of the tableau by
applying the closure rule to (A) and (F1) can be applied in FOL as well as in
SKL.

Of course it would be nice to have the property that for each classical FOL
proof there exists an SKL proof which is as short as the classical (of course only
if the classical theorem is also an SKL theorem). The example above shows that
this property does not hold in general, for instance, replace the assumption set
{A} by a set from which A can be derived in 20 steps only. On the other hand
this example is rather artificial insofar as the theorem would normally not be
stated in this form in mathematics, because mathematical theorems are normally
not redundant in the way that two true statements are linked by an “∨”, on the
contrary usual mathematical theorems employ preconditions as weak as possible
and consequences as strong as possible. For instance, in a mathematical context
we would expect theorems like A, B ∨ ¬B, A ∧ (B ∨ ¬B). While a proof for the
first (from the assumptions A) can be transferred from FOL to SKL, the latter
two are not theorems in SKL. Hence we expect that for usual mathematical
theorems the proof effort in SKL will not be bigger then in FOL.

41

4 Extensions – Sorted Unification

Even though the TPF calculus defined above represents a significant computa-
tional improvement over a naive tableau calculus for Kleene’s strong logic for
partial functions, it only makes very limited use of the sorts in SKL. This can
be improved by utilizing a rigid sorted unification algorithm that takes into ac-
count all the sort information present in the respective branch and uses it as a
local sort signature. This measure in effect restricts the set of possible unifiers to
those that are well-sorted with respect to this (local) sort signature. This allows
to perform some of the reasoning about well-sortedness (and therefore defined-
ness) in the unification in an algorithmic way. This reasoning would otherwise
be triggered by the sort constraints in SKL and would have to be carried out in
the proof search. The methods presented in this section are heavily influenced
by Weidenbach’s work on sorted tableau methods in [Wei94].

In the tableau framework the extension with sorted unification is simpler (but
perhaps less powerful) than in the resolution framework (see for instance [Wei91,KK93]).
The reason for this is the difference in the treatment of the disjunction in resolu-
tion and tableau. Tableau calculi use the β rule to analyze disjuncts in different
branches, but pay the price with the necessity to instantiate the entire tableau.
Consider, for example, the formula t<−S∨ t<−T stating that the term t has sort S
or sort T . In the tableau method, we can investigate both situations in separate
branches (with different local sets of declarations). In the resolution method, we
have to use one of the disjuncts for sorted unification and residuate the other as
a constraint, which has to be attached to well-sorted terms, well-sorted substi-
tutions and clauses resulting from resolutions, whenever the other literal is used.
On the other hand, the tableau method needs to instantiate all declarations that
are used, since they can contain variables that also appear in other branches.
Consider, for example, the axiom ∀xIR x > 0 ⇒ x<−IR∗, which can be read as a
conditional declaration. This axiom will result in branches containing the literal
(xIR > 0)f and the declaration (xIR<−IR∗)t. If we use the declaration in sorted
unification to justify that 1<−IR∗, then we have to refute that (1 > 0)f in the
other branch. This simple example shows that we have to use (not surprisingly
in a tableau framework) a rigid variant of sorted unification for our extension.

Definition 41 (Rigid Sorted Unification) Let D be a set of declarations,
then we call a substitution σ rigidly well-sorted with respect to D, iff there is a
substitution τ , such that

1. σ ⊆ τ and Dom(τ) ⊆ Free(D) ∪Dom(σ)
2. τ is well-sorted with respect to τ(D).

For instance the substitution σ = [f(f(xS))/zS] is well-sorted, but not rigidly
so, for the set D = {f(yS)<−S}, since the declaration has to be used twice (in
differing instances) to show that f(f(xS)) has sort S. σ is, however, rigidly well-
sorted with respect to D′ = {f(yS)<−S, f(vS)<−S}, and the substitution τ =
[f(f(xS))/zS], f(vs)/ys] is a substitution that instantiates D′ in the appropriate
way.

42

4.1 Rigid Sorted Unification

Sorted unification with term declarations was first considered by Schmidt-Schauß
who also presents a sound and complete algorithm in [SS89]. In SKL, term dec-
larations appear as sort atoms of the form t<−S, declaring all instances of t to
be of sort S. Rigid sorted unification is treated in [Wei94].

Definition 42 (Well-Sorted Terms) Let D be a set of declarations (positive
sort literals of the form (t<−S)t), then the set wsTS(D) of well-sorted terms of
sort S is inductively defined by

1. variables xS ∈ wsTS(D)
2. if t<−T ∈ D then t ∈ wsTT (D)
3. if t ∈ wsTT (D) and s ∈ wsTS(D) then [s/xS]t ∈ wsTT (D).

We call a substitution [t1/x1
S1

], . . . , [t1/xnSn
] a well-sorted substitution, iff ti ∈

wsTSi
(D). Obviously the application of well-sorted substitutions to well-sorted

terms yields well-sorted terms, so wsT(D) is closed under well-sorted substitu-
tions and the set of well-sorted substitutions is a monoid with function compo-
sition.

Remark 43 The definition above is an inductive one, not in the structure of
terms, but in the justification of the well-sortedness. A simple induction on this
justification shows that the consequent D |= t<−S is valid for any term t ∈
wsTS(D). In particular, for any well-sorted term t ∈ wsTS(D) the denotation
Iϕ(t) is in AS and therefore defined.

Furthermore a declaration of the form xS<−T ∈ D entails that wsTS(D) ⊆
wsTT (D) and AS ⊆ AT for any Σ-model A of D. Therefore we call declarations
of the form xS<−T ∈ D subsort declarations.

Since we are working in a tableau framework and our sorted unification algo-
rithm involves nondeterminism, we utilize the tableau search mechanism for the
search for unifiers by representing unification constraints as special dis-equality
literals. This gives us a very uniform presentation of the combined tableau pro-
cedure

Definition 44 (Tableau Rules for Rigid Sorted Unification)
We assume the existence of a binary predicate symbol .=∈ P2 and call a literal
(s .= t)fu a constraint literal and often abbreviate the (s .= t)fu by s 6 .= t, as usual
we do not distinguish between (s .= t) and (t .= s). We model sorted unification
as a tableau-based constraint simplification calculus with the following set of
inference rules: The decomposition rule

f(s1, . . . , sn) 6 .= f(t1, . . . , tn)
∗
∣∣ s1 6 .= t1

∣∣ . . . ∣∣ sn 6 .= tn

43

is just the traditional decomposition transformation, known from unification
theory. Again note that we only need the disjunct ∗, if n = 0. The subsort rule

(zT<−S)t

xS 6
.= yT

∗
[zT /xS], [zT /yT]

allows to eliminate variables, provided that T is a subsort of S, in which case
the instantiation [zT /xS] is well-sorted. The intersect rule

(uV<−S)t

(vV<−T)t

xS 6
.= yT

∗
[uV /xS], [uV /yT], [uV /vV]

allows to eliminate a pair of variables that share a common subsort V . Finally
a pair of variables can be eliminated for a term t, if t has sorts S and T , even if
they do not share a common subsort (we call this situation irregular). Therefore
the following rule non-reg instantiates the variables with the least committed
generalization of t.

(f(s1, . . . , sn)<−S)t

(f(t1, . . . , tn)<−T)t

xS 6
.= yT

∗
∣∣ s1 6 .= t1

∣∣ . . . ∣∣ sn 6 .= tn
[f(s1, . . . , sn)/xS], [f(t1, . . . , tn)/yT]

Finally we need a rule (the imitation rule below) that allows to eliminate a
variable xS for a term t, if it is an instance of a declaration in the branch above.

(f(t1, . . . , tn)<−S)t

xS 6
.= f(s1, . . . , sn)

∗
∣∣ s1 6 .= t1

∣∣ . . . ∣∣ sn 6 .= tn
[f(t1, . . . , tn)/xS]

In contrast to the related set of rules for sorted unification in [Wei91] or [SS89]
we only eliminate solved pairs that are known to be well-sorted from the set D
of declarations. Therefore we do not need the explicit failure rules these authors
need, since they do not test for well-sortedness of the pair before eliminating. In
our system we define failure as irreducibility and non-solvedness, but we could
also add explicit failure rules to detect failure early for a practical implementa-
tion.

We say that a declaration (t<−S)t is used by a unification inference rule, if it
appears in the antecedent of the rule.

Theorem 45 The above set of rules define a sound and complete non-deter-
minist unification algorithm.

44

Proof sketch: It is obvious that all inference rules maintain the property
of well-sortedness for unification problems, since all new pairs added are from
declarations and are therefore well-sorted by definition and the set of well-sorted
terms is closed under well-sorted substitutions. Since the set of inference rules
is a rigid variant of that given in [SS89, p.98], we refer to the proofs given there.
These only have to be modified to account for rigidity. A close inspection of
the differences shows that Schmidt-Schauß’ rules can be obtained from ours by
renaming all declarations that are used by the unification rules before applying
the rules, and thus preventing that the declarations are used up in the process.
For the proof of completeness, we construct a rigid extension τ from a non-rigid
unifier by taking into account the instantiations of the declarations (in the rigid
set of rules) that were circumvented in Schmidt-Schauß’ rules by renaming.

4.2 A Tableau Calculus for SKL using Rigid Sorted Unification

We will now extend TPF with a variant of the rigid sorted unification alogrithm
above. Note that the notion of substitution discussed above is still not appropri-
ate for a refutation calculus, where substitutions need to have ground instances.
Otherwise the tableau cut rule becomes unsound: Let S be a sort that does not
have ground terms, that is, where AS may be empty, then a branch containing
the literals (PxS)t and (PyS)f could be closed using the substitution [yS/xS],
without being unsatisfiable. A well-sorted term may not have ground instances,
if it contains variables of sorts that do not have ground terms. Therefore we are
interested in conditions for sorts to be non-empty.

Lemma 46 Let D be a set of sort declarations, then the problem whether the
set of ground terms of sort S is empty is decidable.

Proof sketch: Let Ax(D) be the set of propositional formulae (S1∧. . .∧Sn)⇒
T , such that t<−T ∈ D and {x1

Si} are the free variables of t. Then the emptiness
problem is equivalent to the problem whether Ax(D) |= S in propositional logic,
which is known to be decidable.

Remark 47 Thus we can modify the sorted unification algorithm above by
allowing tableau closure ∗ (or equivalently the rule to be applicable) only iff
the sorts of the free variables in the substitutions associated with the rules are
non-empty with respect to the set D of declarations in the branch above. This
variant of the sorted unification algorithm only returns sorted unifiers that have
well-sorted ground instances.

Now we will present an extension TPF(Σ) of TPF that allows to restrict
the calculation to formulae that are well-sorted with respect to the declarations
present on the branch above, and thereby prune branches of the proof search
that would not lead to refutations, since they contain meaningless objects.

45

Definition 48 (Tableau with Sorted Unification (TPF(Σ)))
To obtain the tableau calculus TPF(Σ) with sorted unification from TPF , we
modify the tableau closure rules and add the modified (cf. 47) constraint variant
of the constraint simplification rules of sorted unification. The new cut and strict
rules have the form

Aα

Bβ

A 6 .= B

Cγ

(t<−D)f

s 6 .= t

where α ∩ β = ∅, C has a subterm s, and γ ⊆ {f, t}. Thus instead of using
unsorted unification, these rules residuate a unification constraint that can then
be processed by the sorted unification algorithm. All other TPF rules stay un-
changed.

Theorem 49 TPF(Σ) is sound and refutation complete.

Proof sketch: The soundness of TPF(Σ) relies on the soundness of the sorted
unification algorithm, which guarantees only well-sorted instantiations. For the
completeness proof we can again use the model existence theorem 226, where
we only have to reconsider the tableau lifting theorem for TPF(Σ). This can be
proven with the standard argumentation, since the sorted unification algorithm
is complete and we can abstract from the internal structure of the unification
derivation.

As we have seen in remark 43 the well-sorted substitutions and therefore
well-sorted unifications filter out instantiations of the tableau that contain mean-
ingless objects and therefore cannot contribute to a refutation of the initial
consequent. This property yields a significant pruning of the search spaces and
therefore in a gain of computational efficiency. However, the rigidity of the unifi-
cation algorithm makes it necessary to guess in advance the number of instances
of the declarations needed for a proof, since they are used up during the uni-
fication. This is especially bothersome, since in general a great multiplicity of
declarations is needed. In order to arrive at a more practical algorithm it will
be important to find variants of the unification algorithm that are rigid only on
the disjunctive part of the declarations present in a consequent.

Example 410 (continuing 37) Now we revisit the problem of proving

{A1,A2,A3,A4,A5} |= T

using the tableau calculus with sorted unification. While the first two main parts
of the proof in figure 1, namely the problem setting and the initial simplification
remain the same, the proper refutation will be shorter, in particular only three
branches instead of five have to be considered. In figure 3, we display only the
last part.

The unification for closing F2 with T3′ is straightforward because of T1 and
T2, (c<−IR)t and (d<−IR)t, while the sorted unification for closing F3 and F5 makes
use of T1, T2, and the term declaration A4′. For the closure of T3′′ and A3′ the

46

...s
@@

@@s(F1) (xIR − yIR = 0)f s(F2) (xIR = yIR)t ∨t(A5′)s ∗ ∗(F2,T3′)s
@@

@@

(F3) (c− d = 0)f σ(F1,[c/x][d/y])s s(F4) (uIR<−IR∗)t (F5) (uIR = 0)t ∨t(A1′)s ∗ ∗(F3,F5)s
s(F6) (c− d<−IR∗)t σ(F4,[c− d/u])

∗ ∗(T3′′,A3′)

Fig. 3. Tableau proof with sorted unification

unification algorithm must derive that 1
c−d has the sort IR∗, this is done by F6

with the term declaration A2′.

5 Conclusion

We have developed a sorted three-valued logic for the formalization of informal
mathematical reasoning with partial functions. This system generalizes the sys-
tem proposed by Kleene in [Kle52] for the treatment of partial functions over
natural numbers to general first-order logic. In fact we believe that the unsorted
version of our system without the ! operator is a faithful formalization of Kleene’s
ideas.

If we compare SKL to the three other approaches mentioned in the introduc-
tion, we see that the truth conditions coincide on valid mathematical statements,
but that SKL properly excludes statements that a mathematician would reject
as having problems with definedness. While the first approach has not the nec-
essary expressiveness, the second and fourth approaches legitimate unwanted
statements as theorems.

We have presented a sound and complete tableau calculus with dynamic
sorts for our logic SKL, which uses the sort mechanism to capture the fact that
in Kleene’s logic quantification only ranges over defined individuals. Our calculus
can be seen as an extension of classical logic that combines methods from many-
valued logics (cf. [BF92,Häh92]) for a correct treatment of the undefined and
sorted logics (see [Wei89,Wei91]) for an adequate treatment of the defined. It
differs from the sequent calculus in [LCGF89] in that the use of dynamic sort
techniques greatly simplifies the calculus, since most definedness preconditions
can be taken care of in the unification. Thus we believe that our system is not
only more faithful to Kleene’s ideas (definedness inference is handled in the

47

unification at a level below the calculus) but also more efficient for the sort
techniques involved.

In an earlier work [KK93,KK94] we had represented a resolution calculus of
strong sorted Kleene logic. In this work, we not only have transferred the methods
developed there to the tableau framework, but have also shown that normally
proofs that keep track of the definedness conditions are not more complex than
those in the classical two-valued logic. In some sense it is surprising that in
spite of the advantages mentioned above, the complexity of proof search can be
preserved by the treatment of multi-indices.

Of course further extensions of the system described here have to be consid-
ered in order to be feasible for practical mathematics. In particular this calculus
does not address the question of the mechanization of higher-order features for
the formalization of mathematical practice. Higher-order logics are especially
suitable for formalizing partial functions, since functions are first class objects
of the systems, that can even be quantified over. In this direction the work of
Farmer et al. [Far90,FGT93] has shown that partial functions are a very natural
and powerful tool for formalizing mathematics. We expect that our three-valued
approach, which remedies some problems of their simpler two-valued approach
(see the discussion in the introduction and in example 211) can be generalized
in much the same manner and will be a useful tool for formalizing mathematics.

Finally, the authors believe that the merit of the idea of generalizing first-
order logic with respect to both, the number of truth values and the domain of
quantification is not confined to the application to partial functions. In particular
there seem to be no obstacles against the extension of many multi-valued logics
in artificial intelligence (such as Belnap’s four-valued paraconsistent logic) that
have only been investigated for the propositional fragment to the first-order case
using our techniques.

References

[And86] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory:
To Truth through Proof. Academic Press, 1986.

[Bee85] Michael J. Beeson. Foundations of Constructive Mathematics. Springer
Verlag, 1985.

[Bet55] E. W. Beth. Semantic entailment and formal derivability. Medelingen von
de Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Let-
terkunde, 18(13):309–342, 1955.

[BF92] Matthias Baaz and Christian G. Fermüller. Resolution for many-valued
logics. In A. Voronkov, editor, Proceedings of LPAR, pages 107–118, St. Pe-
tersburg, Russia, 1992. Springer Verlag, LNAI 624.

[BFZ93] Matthias Baaz, Christian G. Fermüller, and Richard Zach. Dual systems
of sequents and tableaux for many-valued logics. Technical Report TUW-
E185.2BFZ.2-92, Technische Universität Wien, 1993.

[Car87] Walter A. Carnielli. Systematization of finite many-valued logics through
the method of tableaux. The Journal of Symbolic Logic, 52:473–493, 1987.

[Car91] Walter A. Carnielli. On sequents and tableaux for many-valued logics. Jour-
nal of Non-Classical Logic, 8(1):59–76, 1991.

48

[Far90] William M. Farmer. A partial functions version of Church’s simple theory
of types. The Journal of Symbolic Logic, 55(3):1269–1291, 1990.

[FGT93] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An
Interactive Mathematical Proof System. Journal of Automated Reasoning,
11(2):213–248, October 1993.

[Fit90] Melvin Fitting. First-Order Logic and Automated Theorem Proving. Sprin-
ger Verlag, 1990.

[Häh92] Reiner Hähnle. Automated Theorem Proving in Multiple Valued Logics. PhD
thesis, Fachbereich Informatik, Universität Karlsruhe, Karlsruhe, Germany,
March 1992. revised version: Automated Deduction in Multiple-Valued Log-
ics, Oxford University Press, 1994.

[Hin55] K. J. J. Hintikka. Form and content in quantification theory. Acta Philo-
sophica Fennica, 8:7–55, 1955.

[HS94] Reiner Hähnle and Peter H. Schmitt. The liberalized δ-rule in free variable
tableaux. Journal of Automated Reasoning, 12(2):211–222, 1994.

[KK93] Manfred Kerber and Michael Kohlhase. A mechanization of strong Kleene
logic for partial functions. SEKI Report SR-93-20, Fachbereich Informatik,
Universität des Saarlandes, Im Stadtwald, Saarbrücken, Germany, 1993.

[KK94] Manfred Kerber and Michael Kohlhase. A mechanization of strong Kleene
logic for partial functions. In Alan Bundy, editor, Proceedings of the 12th
CADE, pages 371–385, Nancy, France, 1994. Springer Verlag, LNAI 814.

[Kle52] Stephen C. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.
[LCGF89] Francisca Lucio-Carrrasco and Antonio Gavilanes-Franco. A first order

logic for partial functions. In Proceedings STACS’89, pages 47–58. Springer
Verlag, LNCS 349, 1989.

[Pra60] Dag Prawitz. An improved proof procedure. Theoria, 26:102–139, 1960.
[Ree87] S. Reeves. Semantic tableaux as a framework for automated theorem-

proving. In J. Hallam and C. Mellish, editors, Advances in Artificial In-
telligence, AISB-87, pages 125–139. Wiley, 1987.

[Sch68] R. Schock. Logics without Existence Assumptions. Almquist & Wisell, 1968.
[Sco70] Dana S. Scott. Outline of a mathematical theory of computation. Technical

Monograph PRG-2, Oxford University Computing Laboratory, 1970.
[Smu63] Raymond M. Smullyan. A unifying principle for quantification theory. Proc.

Nat. Acad Sciences, 49:828–832, 1963.
[Smu68] Raymond M. Smullyan. First-Order Logic. Springer Verlag, 1968.
[SS89] Manfred Schmidt-Schauß. Computational Aspects of an Order-Sorted Logic

with Term Declarations, Springer Verlag, LNAI 395, 1989.
[Tic82] Pawel Tichy. Foundations of partial type theory. Reports on Mathematical

Logic, 14:59–72, 1982.
[Wei89] Christoph Weidenbach. A resolution calculus with dynamic sort structures

and partial functions. SEKI Report SR-89-23, Fachbereich Informatik, Uni-
versität Kaiserslautern, Kaiserslautern, Germany, 1989. Short version in
ECAI’90, p. 688–693.

[Wei91] Christoph Weidenbach. A sorted logic using dynamic sorts. Technical
Report MPI-I-91-218, Max-Planck-Institut für Informatik, Im Stadtwald,
Saarbrücken, Germany, 1991. Short version in IJCAI’93, p. 60–65.

[Wei94] Christoph Weidenbach. First-order tableaux with sorts. In Krysia Broda
and Marcello D’Agostino et al., editors, TABLEAUX-’94, 3rd Workshop on
Theorem Proving with Analytic Tableaux and Related Methods, pages 247–
261. Imperial College of Science Technology and Medicine, TR-94/5, April
1994. To appear in the Bulletin of the IGPL.

49

