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t: Real-world appli
ations of automated theorem proving require modernsoftware environments that enable modularisation, networked inter-operability, robust-ness, and s
alability. These requirements are met by the Agent-Oriented Programmingparadigm of Distributed Arti�
ial Intelligen
e. We argue that a reasonable frameworkfor automated theorem proving in the large regards typi
al mathemati
al servi
es asautonomous agents that provide internal fun
tionality to the outside and that, in turn,are able to a

ess a variety of existing external servi
es.This arti
le des
ribes theMathWeb ar
hite
ture that en
apsulates a wide range of tra-ditional mathemati
al systems ea
h into a so
ial agent-shell. A 
ommuni
ation languagebased on the Knowledge Query and Manipulation Language (KQML) is proposed inorder to allow 
onversations between these mathemati
al agents. The individual spee
ha
ts of their 
onversations are about performan
es of the en
apsulated servi
es. Theobje
ts referred by these spee
h a
ts are mathemati
al obje
ts, formulae in various log-i
s, and (partial) proofs in di�erent 
al
uli whose formalisation is done in an extensionto the OpenMath standard. The result is a 
exible framework for automated theoremproving whi
h has already been implemented to a large extent in the 
ontext of the
mega proof development system.



1 Introdu
tionThe work reported in this arti
le originates in the e�ort to develop a pra
ti-
al mathemati
al assistant that integrates external dedu
tive 
omponents. The
mega system [Benzm�uller et al., 1997℄ is an intera
tive, plan-based dedu
-tion system with the ultimate goal of supporting theorem proving in main-stream mathemati
s and mathemati
s edu
ation. To provide the ne
essary rea-soning and symboli
 
omputation fa
ilities it in
orporates the �rst-order theoremprovers bliksem, EQP, Otter, ProTeIn, Spass, WaldMeister (see [Sut-
li�e and Suttner, 1997℄ for referen
es), the two higher-order theorem proversTPS [Andrews et al., 1996℄ and LEO [Benzm�uller and Kohlhase, 1998℄, and the
omputer algebra systems Maple, MagMa, GAP and �CAS (see [Kerber etal., 1998℄ for referen
es).Traditional dedu
tion systems, su
h as the ones integrated into 
mega, aswell as today's ta
ti
al theorem provers, su
h as Isabelle [Paulson, 1994℄ orNqThm [Boyer and Moore, 1979℄, are monolithi
 systems. They either work like
ompilers { reading a problem �le and writing proof and log �les after su

essful
omputation { or like programming environments featuring their own 
ommandinterpreter or graphi
al user interfa
e. Driven by the 
omplexity of real-worldreasoning problems and pra
ti
al 
onsiderations in designing and intera
tingwith the system, we have seen a rapid move towards integrative frameworks
ombining various external reasoners [Denzinger, 1993; Benzm�uller et al., 1997;Dahn, 1997℄ and 
omputation systems [Clarke and Zhao, 1992; Harrison andTh�ery, 1993; Ballarin et al., 1995; Kerber et al., 1998℄.Ideally, the reasoning modules in the 
mega system intera
t with ea
h otherto 
omplete open subgoals during the development of a proof. This 
an be initi-ated and supervised on-line by the user. This 
an be also guided by the 
megasystem itself, for instan
e during proof planning in order to expand a given proofplan to a full proof. Unfortunately, it is not always 
lear in advan
e, whi
h proveris best suited for the problem at hand. Furthermore, the user 
ould be asked tosupport the system with additional knowledge. Thus, 
mega will 
all several`servi
es' in parallel in order to maximise the likelihood of su

ess and minimisethe time the user has to spend waiting for the system. The proprietary proofsfound by these systems are transformed into the internal format of the 
megasystem; again, this transformation pro
ess should run in parallel to the ongoinguser intera
tion.The role of the mathemati
al assistant in parti
ular, but also of generalappli
ations of theorem proving in the large, for instan
e in program veri�
a-tion [Hutter et al., 1996℄, 
all for an open and distributed ar
hite
ture. In su
han ar
hite
ture, the developer of a dedu
tion system or a mathemati
al toolupgrades it to a so-
alled mathemati
al servi
e [Homann and Calmet, 1996℄ byproviding it with an interfa
e to a 
ommon mathemati
al software bus [Calmetand Homann, 1997℄. That is, it provides the mathemati
al servi
e instead of thesoftware itself. In the 
ontext of the 
mega system, we have implemented andexperimented with su
h a network design, where the integrated theorem proversand mathemati
al tools intera
t distributed over the Internet and 
an be dynam-i
ally added to and subtra
ted from the 
oordinated reasoning repertoire of the
omplete system. The possible bene�ts of su
h an approa
h to semi-automatedproof development are:



Modularisation The more external reasoners a system like the 
mega systemintegrates the heavier the burden of installing and maintaining them gets.For instan
e, the kernel of 
mega alone is a rather large system (roughly17 MB of Common Lisp 
ode for the main body in the 
urrent version), itssu

essful installation depends on the presen
e of (proprietary) 
ompilers orinterpreters. This situation is similar for the other reasoning systems inte-grated into the 
mega system, whi
h 
ome from numerous di�erent originalsour
es. For the user it is a burden to install and understand the 
ompletesystem, for the developers it is a tedious task to port the system to 
om-monly available 
ompilers. Thus providing a mathemati
al servi
e insteadof software en
apsulates related fun
tionality into re-usable 
omponents andeases the maintenan
e of the parti
ular modules and environments builtupon them at the 
ost of requiring a 
onstant pool of hardware resour
es.Dedu
tion systems are among the most 
omplex existing AI programs, theyare typi
ally developed by more than one individual and the respe
tive 
om-ponents require spe
ialised know-how that is nowadays impossible to a
quirefor a single person. The equivalent is true for Computer Algebra systems thatexist in a vast variety from multipurpose to very spe
ialised ones. Both userand developer 
an hardly distinguish whi
h system is best suited for a par-ti
ular task, let alone being able to use all di�erent systems. Thus a modularar
hite
ture of mathemati
al servi
es allows the fo
used and independentdevelopment in spe
ialised resear
h groups, for spe
ialised appli
ation areas,and with spe
ialised te
hniques.Inter-Operability Having a means of modularisation, the requirement appearsof being able to easily put together a 
omplete and working system outof heterogeneous 
omponents. Having a 
ommon platform of ex
hangingservi
es a
ross the network makes 
omponents inter-operable: they are ableto provide additional fun
tionality for the system as a whole and, in turn, areprovided with additional servi
es in order to perform their servi
e far moreeÆ
iently. For inter-servi
e ex
hange of data, it is important to even takepossible, but yet not existing 
omponents into a

ount, i.e., the intera
tions
heme should be generi
 and open. This a

elerates the availability of newdevelopments, be
ause it avoids ubiquitous re-engineering.Robustness Fixed software ar
hite
tures pose the problem of failure handling,e.g., a typi
al proof system with a stati
 topology will not work if one of itsintegral mathemati
al modules does not fun
tion or has to undergo mainte-nan
e. A dynami
, de
entralised network ar
hite
ture provides the ability ofbringing together available and partially redundant 
omponents on the 
y.Temporarily shutting o� a parti
ular mathemati
al servi
e for maintenan
epurposes thus should not do any harm.S
alability Finally, the performan
e aspe
t of theorem proving in the largeis addressed by a distributed ar
hite
ture. In lo
al 
omputer networks, thesituation is quite 
ommon that users have relatively low-speed ma
hines ontheir desktop, whereas some high-speed servers operate freely a

essible inthe ba
kground. Running, e.g., the user interfa
e on the lo
al ma
hine usesthe lo
al resour
es that are `
lose to the relevant data' and suÆ
ient for thistask while the more powerful servers 
an be fully exploited for the really
omplex task of a
tually proving theorems. A 
exible, dynami
 topologyis the key to optimally adapt to 
hanging 
omputational resour
es, thusin
reases the s
alability of theorem proving.



Indeed, these desiderata 
omply remarkably well with the aims of the Agent-Oriented Programming paradigm developed in the �eld of Distributed Arti�
ialIntelligen
e: Intelligent agents are self-interested, autonomous servi
e programswhi
h 
exibly intera
t in a shared, also human-inhabited environment by meansof 
ommuni
ation. The agent metaphor has been su

essfully applied to a spe
-trum of sophisti
ated software problems ranging from `hardbots' in roboti
s andtelemati
s to `softbots' in user assistan
e systems.Consequently, the present arti
le proposes this perspe
tive as the basis of theMathWeb ar
hite
ture whi
h generalises the work done in 
mega:MathWeb-agents `in
arnate' parti
ular mathemati
al servi
es and possess a (partial) repre-sentation of the servi
e network.MathWeb-agents share a standardised 
ommu-ni
ation language to talk about mathemati
al obje
ts, formulae, and proofs (ob-je
ts of 
ommuni
ation) and to address the servi
es whi
h they provide (spee
ha
ts of 
ommuni
ation). MathWeb agents are rea
tive in the sense that theyare steadily intera
ting with users and other software agents working on sharedproofs and mathemati
al 
omputations. They are pro-a
tive in that they adoptand autonomously work on parti
ular mathemati
al goals. And they are so
ialin the sense that they request other agents or even the human user to supportthe su

essful exe
ution of their servi
es.Thus theorem proving in MathWeb is the joint e�ort of a so
iety (a multi-agent system) of 
ommuni
ating mathemati
al agents. We propose MathWebas a 
onvenient design stan
e to enable modularisation, networked inter-operabi-lity, robustness and s
alability in theorem proving. In parti
ular MathWebdoes not in itself aim at improving the expressivity of theorem proving perse, as other approa
hes to 
ooperating theorem provers do (see e.g. [Denzingerand Dahn, 1998℄ and the referen
es therein). This may be an ultimate e�e
t ofproviding the distribution layer in MathWeb, but the 
urrent paper does notmake any 
on
rete 
laim in this dire
tion.1.1 Stru
ture of the Arti
leWe start with a motivational example showing how it is pro
essed by the hybrid
mega system in Se
tion 2. From these 
onsiderations, the requirement of �nd-ing a suitable methodology for distributing mathemati
al servi
es immediatelyarises. This software methodology is given by the agent metaphor of DistributedArti�
ial Intelligen
e and 
orresponding e�orts for building domain-independent
ommuni
ation languages, su
h as the Knowledge Query and Manipulation Lan-guage (KQML) (Se
tion 3). TheMathWeb ar
hite
ture for automated theoremproving (Se
tion 4) thus extends 
mega into an open and distributed so
iety ofmathemati
al agents whi
h use KQML performatives (spee
h a
t types) to ad-dress their servi
es.MathWeb agents are equipped with a standardised 
ontentlanguage OpenProof (Se
tion 5) derived from the OpenMath spe
i�
ation totalk about mathemati
al obje
ts, formulae, and proofs. At hand of a 
olle
tion ofexisting (and planned) mathemati
al servi
es, we demonstrate that MathWebis a powerful agent-oriented tool for their integration.1.2 Related WorkIn [Fisher and Ireland, 1998℄, Fisher and Ireland propose an agent-based ap-proa
h to proof planning that is motivated by a �ne-grained parallelisation of



the proof planning pro
ess more than the distribution aspe
t. They propose aso
iety of agents that are organised by a 
ontra
t net ar
hite
ture, building onearlier studies of Fisher [Fisher, 1997℄ on agent-based theorem proving.Calmet and Homann present a framework for establishing the semanti
sof intimately integrated dedu
tion and 
omputation systems [Homann, 1996;Homann and Calmet, 1996℄. In a servi
ing ar
hite
ture like the one des
ribedin this paper, the semanti
s of the proto
ol employed in the 
ommuni
ation isnot a 
orre
tness problem, sin
e our approa
h assumes that proofs are 
ommu-ni
ated, so that the initiator of a reasoning task 
an always 
olle
t the partialproofs and verify the 
orre
tness of the �nal resulting proof if he does not trustthe mathemati
al servi
es.To our knowledge, only three distributed theorem proving systems besides
mega have a
tually been implemented up to now. The modal-logi
 theoremprover from [Pitt, 1996℄ uses a trader model like the one realized in 
mega.The ILF system [Dahn, 1997℄ 
onne
ts to Mathemati
a and some automatedtheorem provers in a simple master-slave model. A group of experimental sys-tems 
entreing around the Dis
ount theorem prover has been presented by[Denzinger et al., 1997; D. Fu
hs, 1997℄. Their experiments explore a tight 
oop-eration between the theorem provers that renders them as a group signi�
antlymore su

essful than any of them 
ould be alone. The underlying Teamworkand Te
hs approa
h to distribution (see [Denzinger and Dahn, 1998℄) is prob-ably the work 
losest to MathWeb, but the emphasis was laid on supportingthe parti
ular 
ooperation model and not so mu
h on standardisation and gen-erality. In parti
ular, MathWeb would provide a drop-in repla
ement for theirimplementation.By introdu
ing a servi
e-independent 
ommuni
ation language based bothon KQML [Finin and Fritzson, 1994℄ and OpenMath [Abbot et al., 1996℄, ourapproa
h is unique so far with respe
t to the 
onsequent appli
ation of Shoham'sAgent-Oriented Programming paradigm [Shoham, 1990℄ to Automated TheoremProving. As su
h, it is the logi
al progression of our work on distributing the
mega system [Hess et al., 1998; Siekmann et al., 1998℄ and opens up the possi-bility for developing parti
ular negotiation proto
ols. In general multi-agent sys-tem design, a similar stan
e has been taken by the MECCA ar
hite
ture [Steiner,1992℄.2 Distributing Mathemati
al Servi
esIn this se
tion we introdu
e a small example to elaborate the prin
iple of thehybrid 
mega ar
hite
ture [Benzm�uller et al., 1997℄ in order to motivate asoftware methodology for distributed mathemati
al servi
es. We use a simpleproblem from Algebra | more pre
isely group theory | that states the equiv-alen
e of two di�erent axiomatisations of a group. Both are rather 
ommon and
an be found in most textbooks of group theory (
f. [Hall, 1959℄):De�nition 2.1 Let G be a non-empty set, then G together with binary operation`�' is a group if the following properties hold:G1) For all a; b 2 G there is a 
 2 G with a � b = 
.G2) For all a; b; 
 2 G holds (a � b) � 
 = a � (b � 
).



G3) There exists an e 2 G su
h that e � a = a and a � e = a for all a 2 G.G4) For all a 2 G exists x 2 G su
h that a � x = e and x � a = e.De�nition 2.2 Let G be a non-empty set, then G together with binary operation`?' is a group if the following properties hold:H1) For all a; b 2 G there is a 
 2 G with a ? b = 
.H2) For all a; b; 
 2 G holds (a ? b) ? 
 = a ? (b ? 
).H3) For all a; b 2 G exist uniquely determined x; y 2 G su
h that a ? x = b andy ? a = b.To prove the equivalen
e of both de�nitions we have to infer the axioms of these
ond de�nition assuming that the �rst de�nition holds and vi
e versa. However,in both 
ases we have to de
ide in advan
e how we express the operation on onegroup de�nition by a suitable term involving the operation given in the otherde�nition. This is generally a non-trivial task, however in the 
ase of our examplewe 
an simply identify both operations with ea
h other. The a
tual veri�
ationof the single axioms is then done by �nding suitable 
ombinations of the givenequations.For instan
e, we verify the �rst part of the existen
e of divisors in de�ni-tion 2.2 by showing the existen
e and uniqueness of the solutions of equationax = b using de�nition 2.1: The existen
e of a suitable x is obvious by settingx = a 1b, where a 1 denotes the inverse element introdu
ed by G4, and verifyingthat ax = a(a 1b) = (aa 1)b = eb = b holds. To show uniqueness we assume nowthat there exist two solutions x; x0 2 G of our original equation, then we havewith b = ax = ax0 and multipli
ation with a 1 the uniqueness of solutions by:a 1b = x = x0.2.1 Formal Proof Development in Hybrid 
megaThe equivalen
e of di�erent axiomatisations of the same mathemati
al entityis a general problem that arises in the hybrid 
mega system (Figure 1 showsonly the 
omponents and the information 
ow whi
h are relevant for our ex-ample) when the same entity is tried to be de�ned alternatively in 
mega'sknowledge base. A similar situation appears when 
mega re
eives de�nitionsfrom two separate knowledge bases, as depi
ted in Figure 1. The 
entral 
ompo-nent of 
mega is the 
ontroller. It supervises the pro
ess of proving a theoremby handling requests to knowledge bases, distributing subproblems to reasoning
omponents and a

epting user input via some user interfa
e. To illustrate thepro
essing of our equivalen
e problem, we assume that both group axiomati-sations in the knowledge bases are given as higher order formulas in a typedChur
h �-
al
ulus [Andrews, 1986℄ with base types fo; �g:group-1 := �G�!o �Op(�;�)!� not-empty(G) ^ 
losed-under(G;Op) ^asso
iative(G;Op) ^ 9e G(e) ^unit(G;Op; e) ^ inverse-exists(G;Op; e) (1)group-2 := �G�!o �Op(�;�)!� not-empty(G) ^ 
losed-under(G;Op) ^asso
iative(G;Op) ^divisors-exist(G;Op): (2)
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Figure 1: Distributed Mathemati
al Servi
es in 
megaBoth terms 
onsist of 
onjun
tions of high level 
on
epts that are in turnde�ned in the respe
tive knowledge bases using other �-terms. All high level
on
epts dire
tly 
orrespond to a single axiom given in the informal de�nitions(this is of 
ourse indi
ated by the 
hoi
e of names). Here we assume for sim-pli
ity that not-empty, 
losed-under, and asso
iative represent the same
on
epts and are equally named in both knowledge bases. In order to 
ompareboth 
on
epts, 
mega tries to prove the equivalen
e of the given formalisations.This goal is spe
i�ed by user intera
tion via the interfa
e. The 
orrespondingtheorem is of the form:8G (9Op1 group-1(G;Op1) � 9Op2 group-2(G;Op2)) (3)
mega sends this theorem together with the retrieved �-terms (1) and (2)to the proof planner. The planner uses a set of domain independent planning-operators (
alled methods) that it 
an employ to simplify the theorem. This set
ontains a parti
ular method (
f. [Cheikhrouhou and Sorge, 1998℄) that appliesto formulae like the one given in (3). It splits the equivalen
e, expands thegroup de�nitions and partitions the proof into single subgoals. Ea
h one of thesesubgoals 
ontains one of the 
onjun
ts given in (1) and (2). This method alsointrodu
es meta-variables for the existentially quanti�ed variables, i.e., the twodi�erent operations de�ned on the group and the identity element.There are other methods whi
h are able to 
lose some of the trivial sub-goals, i.e., subgoals that dire
tly 
orrespond to formulas given as hypotheses.



For example, the properties not-empty, 
losed-under, and asso
iative 
anbe dire
tly inferred for both axiomatisations. Thereby the methods 
omputepossible instantiations for the introdu
ed meta-variables. The planner �nally re-turns a proof plan, 
ontaining the partial proof derived so far, together with theproposed instantiations for the meta-variables. In 
ase of our example the plan-ner would propose to instantiate both meta-variables for the two operations ofthe group with the same 
onstant and the identity element of de�nition 1 withany arbitrary 
onstant. Expanding the planning steps in 
mega results in fourremaining subgoals. H ` g(E) (4)H ` unit(g;Op1; E) (5)H ` inverse-exists(g;Op1; E) (6)G ` divisors-exist(g;Op2) (7)Here g denotes a 
onstant instantiated for the universally quanti�ed variablein (3) and the over-lined letters indi
ate the meta-variables introdu
ed by theplanner. Furthermore, H and G spe
ify sets of hypotheses whi
h 
orrespond tothe axiomatisations of de�nition 2.1 and 2.2 respe
tively.In order to further treat the subgoals (4) through (7) 
mega expands thehigh level 
on
epts given both in the goal and the hypotheses, by fet
hing theappropriate de�nitions from the knowledge bases. These de�nitions are again�-terms that 
an easily be substituted in the formulas whi
h are subsequently�-normalised. For example the existen
e of inverses in a group 
orresponds to�G�!o �OP(�;�)!� �E� 9F�!� 8X� G(X)! OP (X;F (X)) = E (8)With all de�nitions expanded it is now possible to hand the remaining problemsover to an automated theorem prover. In our example it suÆ
es to give a singlesubproblem together with its expanded hypotheses lines to some automated the-orem prover, su
h as Otter [M
Cune and Wos, 1997℄ or Spass [Weidenba
h,1997℄. For this, 
mega translates higher order syntax into �rst order and sub-stitutes the meta-variables with the instantiations proposed by the planner. Ifthe planner has proposed more than one possible instantiations of the meta-variables, the pro
ess of 
alling ATPs is iterated for all the instantiations untilsome proof 
ould be found. If we have dependen
ies between subproblems, i.e.meta-variables need to be substituted with the same term in di�erent subprob-lems, 
mega keeps tra
k of these meta-variables and 
ompares instantiationsgiven by the respe
tive automati
ally generated subproofs. If di�erent instantia-tions are returned, 
mega tries to mat
h or unify these, and if this fails 
megasu

essively uses generated meta-variable substitutions of one subproblem onthe dependent ones and tries to prove those subproblems again by 
alls to au-tomated 
omponents. Eventually, if all this fails, the proof is left to the user. Inour example, however, the proofs returned from the theorem provers are simplytranslated ba
k into 
mega's syntax and 
al
ulus and 
omplete the proof.During the whole pro
ess of proof 
onstru
tion a user 
an always monitorthe progression of the proof and, if ne
essary, interfere and in
uen
e the nextstep. In our example, the expansion of de�nitions and the a
tual a
tivation oftheorem provers has to be 
on�rmed by an 
mega user.



2.2 Desiderata of a Methodology for Distributing Mathemati
alServi
esThe above example illustrates how work on a single problem 
an be shared be-tween di�erent 
omponents of a hybrid system. The system is basi
ally builtaround the 
mega 
ontroller as the 
entral unit that 
annot only deploy othersystems but has dedu
tive 
apabilities by itself, i.e. it 
an expand planning meth-ods and de�nitions, 
ompare meta-variable instantiations by means of uni�
a-tion, or apply single dedu
tion steps indi
ated by the user. The advantages ofsu
h a system are that problems 
an be ta
kled that are beyond the rea
h of a sin-gle automated theorem prover. As displayed in Figure 1, however, the proto
olsthat 
mega mediates are proprietary ones and the ar
hite
ture itself is stati
 ina sense that single 
omponents, e.g., the 
ontroller, 
annot be easily ex
hanged.For instan
e, it is a expendable task to simply substitute one �rst-order theo-rem prover for another sin
e usually the syntax translator of the interfa
e hasto be redesigned. The same problem arises in other approa
hes 
on
erned withthe integration of two or several theorems provers (
f. [Felty and Howe, 1997;Slind et al., 1998; Benzm�uller and Sorge, 1998℄) or theorem provers with de-
ision pro
edures or Computer Algebra systems (
f. [Clarke and Zhao, 1992;Harrison and Th�ery, 1993; Ballarin et al., 1995; Kerber et al., 1998℄) that gener-ally do not follow a 
ommon paradigm, i.e., a similar input-output spe
i�
ation.Their solutions do heavily depend on the integrated systems.The question how di�erent theorem provers 
an be easily 
ombined in a singleenvironment that is 
exible enough to handle both repla
ement and addition ofsystems has led to the 
on
ept of Open Me
hanized Reasoning Systems [Giun-
higlia et al., 1996℄. Within an OMRS, theorem provers 
an be viewed as easilyrepla
eable plug and play 
omponents. The 
on
ept of OMRS has been gener-alised to OpenMathemati
al Environments [Homann and Calmet, 1995℄ whereall kinds of mathemati
al servi
es [Homann and Calmet, 1996℄ 
an be 
ombined.It turned out that in order to handle a mathemati
al servi
e (either a theoremprover or a Computer Algebra system) as a plug and play 
omponent the sys-tems have to be at least separated into distin
t 
omponents for 
ontrol and logi
or 
omputation. Thus, it is pra
ti
ally impossible to integrate any monolithi
system without redesigning major parts. Moreover, 
ommer
ial systems wherethe sour
es are not available 
annot be re-engineered and are therefore lost foran integration.This inspired the extension of the latter ar
hite
ture to 
ope with heteroge-neous mathemati
al servi
es (su
h as theorem provers, Computer Algebra sys-tems, editors, display 
omponents, et
.). On the mathemati
al software bus [Cal-met and Homann, 1997℄, 
onne
ted servi
es 
an ex
hange information by dire
tlysending standardised mathemati
al obje
ts to a spe
i�ed servi
e. Yet, the ap-proa
h still has two major drawba
ks: Firstly, all 
onne
ted systems have to
ommuni
ate in some standardised language. Although there have been somee�orts to establish some standard for ex
hange of mathemati
al obje
t lately(
f. [Caprotti, 1998; Ion, 1998℄) these languages are still far from being generalenough for a variety of possible servi
es. A se
ond drawba
k of the ar
hite
tureis the prin
iple of a software bus itself. Conne
ted servi
es need to know of otherservi
es or at least of a 
entral dire
tory (request broker) available on the soft-ware bus in order to send dire
ted messages. To maintain this knowledge withinea
h servi
e or within a 
entral dire
tory is a diÆ
ult task for a freely expanding



software bus that is for example distributed over the Internet. Furthermore, thisar
hite
ture la
ks robustness in a sense that if a 
onne
ted servi
e, espe
ially the
entral dire
tory, fails there are no means for the requesting servi
e to redire
tits query.These 
onsiderations reveal a methodologi
al 
hallenge: whi
h is the rightsoftware engineering metaphor to integrate a variety of mathemati
al servi
esas parti
ular modules? How is it possible to make these modules inter-operable,preferably over a global network, at the same time staying open for future en-han
ements? How do we support a dynami
 ar
hite
ture whi
h is robust to theex
hange or maintenan
e of embedded servi
es and whi
h is s
alable to eÆ-
iently adapt to 
hanging 
omputational resour
es? As 
an be seen from ourpre
eding 
ritique, the listed desiderata are not fully addressed by DistributedObje
t-Oriented Programming paradigms, su
h as the Common Obje
t RequestBroker Ar
hite
ture (CORBA) approa
h [Siegel, 1996℄.3 Agent-Oriented Programming
Social Model
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Figure 2: A (So
ial) Agent Ar
hite
tureFollowing Russell & Norvig [Russell and Norvig, 1995℄, the term agent de-s
ribes a self-
ontained 
omputational stru
ture, i.e., a state and a 
orrespond-ing 
al
ulation (Figure 2). This stru
ture is en
apsulated by a separate envi-ronment whi
h the agent per
eives through sensors and upon whi
h the agenta
ts through e�e
tors. The de�nition is 
lose to the one of a robot whi
h itgeneralises to software environments (softbots). Both physi
al and virtual envi-ronments share the requirements of lo
al, de
entralised 
ontrol (modularisation),the handling of inherent 
omplexity (s
alability and robustness), and heteroge-neous, open stru
tures (inter-operability). The agent paradigm put forward byresear
h in Distributed Arti�
ial Intelligen
e is a novel 
ombination of fundamen-tal te
hnologies from Distributed Systems, Embedded Systems, Obje
t-orientedProgramming, and Arti�
ial Intelligen
e and seems to be the natural metaphorto manage these requirements.



3.1 Properties of AgentsDespite of the sometimes mentalisti
 terminology of DAI, agent properties aredeeply rooted in purely te
hni
al 
on
epts. Partly due to the broadened perspe
-tive and partly due to new insights into the agent as a situated entity, an enlargedset of key properties of agen
y proposed by Wooldridge & Jennings [Wooldridgeand Jennings, 1995℄ is nowadays 
ommonly agreed on (Other agent featureswhi
h are resear
hed are mobility and vera
ity.):Autonomy: Agents are en
apsulated, i.e., they should be able to perform themajority of their problem solving tasks without the dire
t intervention ofhumans or other agents, and they should have a degree of 
ontrol over theirown a
tions and their own internal state. Autonomy is the fo
us of the agentde�nition given by Russell & Norvig [Russell and Norvig, 1995℄.Responsiveness, Rea
tivity: Agents should respond in a timely fashion to
hanges whi
h o

ur in their environment, i.e., they are rea
tive. Note thatthis does not ne
essarily entail real-time behaviour.Pro-a
tiveness and Deliberation: Agents should not simply a
t in responseto their environment, but also exhibit goal-dire
ted behaviour to take initia-tive where appropriate. We speak of deliberative abilities in this respe
t andpresume rationality , i.e., from its 
urrent belief, the agent de
ides (
hooses)intentions whi
h are a
tions to a
hieve its goals. Furthermore, the agentavoids behaviour whi
h he believes to 
on
i
t with them. Interestingly, re-garding the agent's state as a knowledge base and its 
omputation as a ra-tional inferen
e pro
edure (Figure 2) 
losely mirrors the image of a theoremprover. And in fa
t histori
ally, the �rst agents were modelled as dedu
-tive/abdu
tive inferen
e systems.Adaptivity: Agents should be able to modify their behaviour a

ording to
hanging environmental and 
omputational 
onstraints to their fun
tioning(resour
es, su
h as fuel, spa
e, tools; time, memory). A

ording to the moreand more popular bounded rationality prin
iple [Good, 1976; Simon, 1982℄,they should do that in an approximately optimal manner.So
ial Ability: Agents should be able to intera
t, when they deem appro-priate, with other arti�
ial agents and humans in order to 
omplete theirown problem solving and help others with their a
tivities. This requires thatagents have, as a minimum, a means by whi
h they 
an 
ommuni
ate theirrequirements to others and an internal, rational me
hanism (so
ial model)for de
iding when so
ial intera
tions are appropriate (Figure 2) | both interms of generating appropriate requests and judging in
oming requests.So
ial abilities are the key to design open systems in whi
h heterogeneousinformation entities operate in a 
ommon framework upon di�erent goalsand on behalf of di�erent users.3.2 Agent Communi
ation Languages: KQMLShoham 
oined the term Agent-Oriented Programming [Shoham, 1990℄ as a soft-ware methodology in whi
h softbots, su
h as the one depi
ted in Figure 2, areused to en
apsulate arbitrary, traditional software appli
ations, e.g., lega
y sys-tems. These agent-shells are able to interfa
e and 
ontrol the operation of theembedded servi
es quite similarly to the way a knowledge base would operate.



On top, they introdu
e a so
ial model referring to other servi
e agents with whi
hthey 
omprise a so
iety. The prominent means for the intera
tion between so
ialagents in a fun
tional servi
e network turn out to be 
ommon 
ommuni
ationlanguages whi
h enable the agents to 
oordinate their behaviour, i.e., steer theembedded appli
ations by ex
hanging beliefs, goals, and intentions. As a part ofthe fast-growing resear
h threads in Computer S
ien
e, Shoham's work triggereda gamut of innovative software appli
ations, e.g., in roboti
s, personal assistants,work-
ow management, tele
ommuni
ation, information retrieval, et
.Arti�
ial 
ommuni
ation languages go ba
k to philosophi
al and linguisti
(espe
ially pragmati
s) observations into human language whi
h they transferinto a formal setting. For example, the spee
h a
t theory [Searle, 1969℄ 
learlydistinguishes nested modes of human 
ommuni
ation, i.e., the utteran
e for
e ofprodu
ing some sound, the lo
utionary for
e of saying some senten
e, the illo-
utionary for
e of meaning some obje
t, and the perlo
utionary for
e of 
ausingsome e�e
t in the mind of the re
ipient. Perlo
utionary and illo
utionary for
eare parti
ularly di�erent in 
ases in whi
h the utterer uses an indire
t way ofpersuading the re
ipient to do something, e.g., by lying.
Performative Layer, e.g. KQML

Network Layer, e.g. IP

Link Layer, e.g. X.21

Physical Layer, e.g. Ethernet

Transport Layer, e.g. TCP

Session Layer, e.g. LU6.2

Presentation Layer, e.g. XML (DTD)

Application Layer
= OMDoc

OpenMath + CASL
Content Layer: 

Figure 3: Arti�
ial Communi
ation: KQML and the OSI Referen
e ModelIn a so
iety of benevolent, i.e., truthful, servi
e agents, su
h as the Knowl-edge Query and Manipulation Language (KQML) [Finin and Fritzson, 1994℄ pre-sumes, the perlo
utionary and illo
utionary role of a spee
h a
t 
an be uni�ed.KQML is thus able to identify domain-independent types of spee
h a
ts, su
h as`telling' or `requesting' something, whi
h is 
aptured by so-
alled performatives.Languages whi
h address this level of 
ommuni
ation are also 
alled interlinguae.For example, the Foundation for Intelligent Physi
al Agents (FIPA) [Steiner,1997℄ aims to develop an industrial-strength standard quite similar to KQML.Interlinguae are strongly 
onne
ted to nested ontolinguae or 
ontent languageswhi
h are used to represent the domain-dependent obje
ts of a performative.



Examples of 
ontent languages are ISO-Prolog [ISO, 1995℄ or the KnowledgeInter
hange Format (KIF) [Genesereth and et al., 1992℄.On the lower level of arti�
ial 
ommuni
ation, the human `produ
ing a sound'is substituted by standardising the information ex
hange from physi
al (Ether-net) up to presentational issues (XML, see below). This results in a layered stru
-ture (the Open Systems Inter
onne
tion (OSI) referen
e model [DIN ISO 7498,1982℄) for KQML 
ommuni
ation illustrated by Figure 3. The former OSI appli-
ation layer now hosts the performative and the 
ontent layer. This way, KQMLagents whi
h do not share any 
ontent language are still able to understand theirbasi
 intentions and are thus able to pro
ess at least a subset of the utteran
es.KQML-Content ::= <KQMLCONTENT> (ContentjKQML) </KQMLCONTENT>KQML-Aspe
t ::= <KQMLASPECT> Content </KQMLASPECT>Performative ::= "tell" j "deny" j : : : j"insert" j "delete" j : : : j"error" j "sorry" j "reply" j : : : j"evaluate" j "ask-one" j "stream-all"j : : : j"standby" j "ready" j "next" j "dis
ard" j "eos" j : : : j"register" j "unregister" j "forward" j "broad
ast" j : : : j"advertise" j "broker-one" j : : : jKQML ::= <KQML perf=Performative language=AttValueontology=AttValue reply-with=AttValuein-reply-to=AttValue sender=AttValuere
eiver=AttValue from=AttValueto=AttValue name=AttValue : : : >KQML-Content KQML-Aspe
t</KQML> Figure 4: Expressing KQML in XMLSynta
ti
ally, KQML messages 
an be en
oded using the eXtensible MarkupLanguage (XML [Bray, 1997℄) as the underlying presentation layer (
f. Figure 4).Originally, KQML uses an ASCII-based string representation. Complian
e withtodays su

essful presentation languages, su
h as the Hypertext Markup Lan-guage (HTML) [Raggett, 1998℄, and up
oming standards, like MathML [Ion,1998℄ and OpenMath [Abbot et al., 1996; Caprotti, 1998℄, however, is a keyissue in designing open systems. These languages use the XML framework astheir basis.For expressing KQML in XML we introdu
e a spe
ial <KQML/> tag that isannotated with a parti
ular performative (perf=Performative). The tag fur-thermore 
arries information about the 
ontent language used in the KQMLmessage (language) and the semanti
s of nested primitive symbols (ontology).The reply-with attribute des
ribes whether an answer to the message is ex-pe
ted and with whi
h in-reply-to annotation it should be given. The sender



and re
eiver agents of the message are identi�ed using a unique naming 
on-vention, su
h as Uniform Resour
e Lo
ations (URL's). Sender and re
eiver 
anbe di�erent from the originator (from) and the destination (to) of the message.name 
arries the name of some arbitrary agent for introdu
tion purposes.The a
tual 
ontent of the KQMLMessage is an expression in the 
ontent lan-guage Content 
orresponding with the language attribution. It is en
apsulatedin the <KQMLCONTENT> tag. Sin
e performatives 
ould be nested, the 
ontent
ould also 
ontain a KQML expression itself. The KQML-Aspe
t part of theKQML message spe
i�es whether and with whi
h 
ontent the 
urrent performa-tive is to be answered.It is diÆ
ult to give a semanti
s to 
ommuni
ation languages in the general
ase | think of the di�eren
e between perlo
utionary and illo
utionary for
e.Presuming benevolent agents, however, giving a �xed meaning to ea
h KQMLmessage a

ording to the 
hosen Performative makes sense. Be
ause delibera-tive 
apabilities are a ne
essary pre
ondition for reasonable 
ommuni
ation, theidenti�
ation of an agent with a virtual knowledge base (see Figure 2) is helpfulfor this purpose. Virtual, be
ause not every fa
t or belief must be present in thestate of the knowledge base, but 
ould possibly be dedu
ed from the 
anoni
alrepresentation using a rational inferen
e pro
edure. The semanti
s of "tell",for example, is straightforward to des
ribe, then: The utterer noti�es that theembedded KQML-Content is an element of its virtual knowledge base. "deny"simply means the 
ontrary.Indeed, KQML stems from an attempt to 
ombine heterogeneous knowledgesour
es over the network. The set of performatives and their semanti
s thus
aptures all the reasonable intera
tions between knowledge sour
es. Besides theinformatives like "tell" and "deny", KQML introdu
es database performatives,su
h as "insert" and "delete" with whi
h the utterer suggests the re
ipientto 
hange the 
ontent of its virtual knowledge base. A basi
 response to su
ha suggestion 
ould be "error" (the operation would 
ause in
onsisten
ies) or"sorry" (the re
ipient is not able to pro
ess the operation be
ause of te
hni
alreasons, e.g., it is not able or does not have enough 
omputational resour
es toperform it).A more sophisti
ated "reply" response is ne
essary to pro
ess the queryperformatives "evaluate" and "ask-one". "evaluate" requests the re
ipientjust to 
onvert (simplify) the 
ontent expression into the 
anoni
al representationused by its knowledge base. The simpli�ed expression does not have to be validfor that purpose. By "ask-one", a mat
h of the 
ontent expression with thevirtual knowledge base is invoked, i.e., whether it 
ould be derived from the
anoni
al data. This presupposes the 
ontent language to exhibit some notion ofpartial spe
i�
ation, for example by introdu
ing variables and uni�
ation. Withrespe
t to the traditional input-output spe
i�
ation of servi
es, talking about
onstrained obje
ts is a far more expressive s
heme. The results of mat
hing are,again, expressions in the 
ontent language embedded in a "reply" performative.The desired format of responses 
an be spe
i�ed in advan
e by the requestingagent in the KQML-Aspe
t part of the respe
tive query performative.A

ess of knowledge sour
es must not sti
k with a simple query-responses
heme. By allowing for advan
ed queries with multiple responses (for exam-ple, stream-all: try to mat
h the 
ontent in all possible ways with the virtualknowledge base and send the result in separate "reply" messages) and nestedperformatives, KQML is able to introdu
e on-demand strategies:



<KQML perf="standby"><KQMLCONTENT><KQML perf="stream-all"><KQMLCONTENT> Mat
h </KQMLCONTENT> </KQML></KQMLCONTENT></KQML>This is an exemplary enquiry of a `
lient' to a re
ipient `server' to prepare foran on-demand streaming servi
e whi
h the server a
knowledges with "ready".Now the 
lient is able to utter "next" performatives to trigger subsequentreplies regarding the Mat
h expression. If the servi
e is obsolete, the 
lientsends "dis
ard". If there is no further response, the server sends "eos" (`endof stream').Finally, KQML supports the maintenan
e of agents' so
ial model (Figure 2),i.e., the management of names, 
hara
teristi
s, and 
apabilities of neighbouragents, in order to build a fun
tional `neighbourhood' of knowledge sour
es."register" and "unregister" are simple naming 
apabilities with whi
h agentsintrodu
e themselves and exit the so
iety. Thus, agents 
an maintain a list ofa
tive neighbours to whi
h they 
ould "forward" embedded KQML messages.The "broad
ast" performative also uses this me
hanism to route KQML mes-sages to all 
onne
ted agents in a network. The reply-with attribution 
an beused to avoid 
y
les.Using nested KQML expressions and the mat
hing prin
iple of the en
apsu-lated 
ontent language, the "advertise" performative allows to build up a moredetailed domain-related model of neighbours. The 
ontent of an advertisementare those KQML message patterns whi
h the agent is willing or able to pro-
ess. Thus ea
h agent is able to maintain a lookup table with agent names andtheir 
apabilities in terms of KQML patterns. This table is used, for example,in delegating a parti
ular task to another agent ("broker-one").Our presentation of KQML performatives has of 
ourse neither been exhaus-tive nor detailed. It should however have be
ome 
lear that using an agent-oriented ar
hite
ture and 
ommuni
ation language 
ombines the a
hievementsof, e.g., an obje
t-oriented methodology and distributed programming, and isable to provide an open, 
exibly intera
ting, and robust network of software ser-vi
es, su
h as knowledge bases and mathemati
al servi
es. As su
h, agents arenot a prime 
onstru
t for improving the expressivity of a servi
e domain whi
his not the aim of the present arti
le.4 Agent-Oriented Integration of Mathemati
al Servi
esCoin
idently, the desiderata for distributed automated theorem proving that wehave sket
hed in Se
tion 2 �t exa
tly with the appli
ation pro�le of the Agent-Oriented Programming te
hniques developed in Se
tion 3. Furthermore, a virtualknowledge base agent is very 
lose to a mathemati
al servi
e: it maintains a setof mathemati
al `truths' upon whi
h a rational inferen
e pro
edure (proof pro
e-dure or 
al
ulation) operates. For example, a theorem prover virtually representsa knowledge base for all proofs that it 
ould derive. A 
omputer algebra system
ould be seen as the set of all 
omputations (equations) it 
ould solve. Also theuser interfa
e that is able to ask for the user's help represents the 
ombined



knowledge of its user. Subsequently, we propose the MathWeb ar
hite
ture(Figure 5) as a reasonable, agent-oriented integration of mathemati
al servi
es.
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"broker"(<P>)Figure 5: Agents as Distributed Mathemati
al Servi
es in MathWebFollowing the Agent-Oriented Programming paradigm, MathWeb en
ap-sulates mathemati
al servi
es, su
h as the user interfa
e, the 
mega 
ontrolmodule, the proof planner, knowledge bases, proof mediators, and proof systemslike Spass and Otter, ea
h into an agent-shell. These agents are rea
tive inthat they are steadily intera
ting with users and other software agents workingon shared proofs and mathemati
al 
omputations. They are pro-a
tive in thatthey adopt and autonomously work on parti
ular mathemati
al goals. And theyare so
ial in that they request other agents or even the human user to supportthe su

essful exe
ution of their servi
es by 
ommuni
ating via KQML.MathWeb embeds a parti
ular 
ontent language into KQML. OpenProofwhi
h is explained in detail in Se
tion 5 is derived from the OpenMath [Abbotet al., 1996℄ standard that has been designed as a fundamental (higher-order)language for ex
hanging mathemati
al obje
ts, su
h as symbols, variables, fun
-tional abstra
tions, and appli
ations.OpenProof extends this repertoire to rep-resent formulae in various logi
s, mathemati
al 
omputations upon those, andespe
ially proofs in di�erent 
al
uli. Using OpenMath variables, these stru
-tures 
an be de�ned even left partially unspe
i�ed whi
h introdu
es a sophis-ti
ated notion of mat
hing a virtual (mathemati
al) knowledge base: a partialproof or a partial 
omputation 
an be given in a KQML query. Mat
hing into thevirtual knowledge base amounts to dedu
tive or algebrai
 
omputations whi
hfurther instantiate the proof and whi
h will be �nally returned in a response per-formative. Similarly, OpenProof expressions 
an be transformed by the userinterfa
e forth-and-ba
k into human-oriented visualisations or verbalisations tointera
t with the user. In ea
h 
ase, proof and 
omputation stru
tures whi
h are
onstrained on di�erent levels of representation are fundamentally more power-



ful and 
exible than traditional proto
ols for spe
ifying dedu
tion problems. Forexample, the operation of a proof planner, whi
h takes some (partial) proof andreturns several (partial) subproblems 
an be expressed in OpenProof.It is, however, ne
essary to 
are for an eÆ
ient treatment of the mathemati-
al stru
tures.MathWeb agents espe
ially assume a 
lean separation of (meta-)variables for identifying a parti
ular servi
e invo
ation and (obje
t-)variablesin the problem spe
i�
ation. This way, MathWeb agents 
an pragmati
allyprepro
ess re
eived KQML(OpenProof) messages in order to 
ontrol the en-
apsulated operation of theorem provers and mathemati
al systems. Vi
e versa,it is possible forMathWeb agents to 
onstru
t KQML(OpenProof) messagesif the embedded 
omputations need some support. The generi
 fa
ility of anyMathWeb agent to analyse and generate KQML(OpenProof) is thus 
oupledto a 
on
rete, servi
e-spe
i�
 interfa
e. For ea
h type of mathemati
al servi
es,a suitable interfa
e stru
ture and respe
tive en
odings in KQML(OpenProof)
an be spe
i�ed (see Se
tion 5.3 for an overview).We allow a single agent to manage several, simultaneous instan
es of thesame servi
e, e.g., to elaborate several theorem provers at the same time, butbased on shared 
anoni
al knowledge (the ba
kground theory). This is an im-portant restri
tion, be
ause the fun
tioning of KQML strongly depends on the
onstru
tibility of a 
onsistent virtual knowledge base for ea
h agent. Havingseveral servi
e instan
es operating on di�erent ba
kground theories and allow-ing di�erent servi
es within the same agent is therefore not advisable.MathWeb agents maintain a so
ial model of their environment in the formof a 
apability list, i.e., they keep book about a portion of the overall servi
ear
hite
ture. For example, the user interfa
e agent might only know the proofplanner and the 
mega 
ontrol agent. The Spass and Otter agents might onlyknow ea
h other and be aware the mediator agent whi
h en
apsulates some of theprevious fun
tionality of the 
mega 
ontroller to translate between higher-ordernatural dedu
tion proofs (ND(HOL)) and �rst-order resolution using 
lausalnormal form (RES(CNF(FOL))). The 
mega 
ontrol agent 
ould 
onne
t theproof planner, theorem provers, and the mediator.A MathWeb agent organises information about the 
apabilities of otherMathWeb agents in a lookup table. The table stores the in
oming "advertise"performatives 
arrying KQML messages to whi
h these agents 
ould su

essfullyrespond to (see Se
tion 5.3). Again, the expressiveness of the 
ontent languageOpenProof is useful to spe
ify, e.g., knowledge bases whi
h are able to deliverformula de�nitions of mathemati
al symbols responding to "ask-one"messages,proof systems whi
h are able to pro
ess similar queries regarding proofs, media-tors whi
h 
ould "evaluate" formulae or proofs from/into parti
ular formalisms,and even servi
es, su
h as the proof planner whi
h provide a streaming servi
ein order to transmit multiple partially instantiated (sub-)results on-demand.Besides the usual "reply" performative, answers to servi
e requests inMath-Web will also transport pro
essing errors and te
hni
al errors. KQML's "error"and "sorry" performatives, however, are somehow restri
ted for this purpose,sin
e ignoring their 
ontent. It is thus useful to allow parti
ular error expres-sions in the 
ontent language (Se
tion 5) as ordinary KQML replies. Theoremproving is a 
hallenging domain for 
oping with failures sin
e it is unde
idablein general. How 
ould a servi
e ever return a message saying that a requestedproof is not possible? When does a 
lient know that it has re
eived all possible(useful) answers to the requested 
omputation?



It is ne
essary to take the bounded rationality aspe
t of MathWeb agentsinto a

ount right from design time: Obje
ts of mathemati
al 
omputationsshould be intimately 
oupled with the situative 
ontext in whi
h they are in-voked, i.e., with the resour
es that they are allowed to 
onsume in pro
essing.For this purpose, OpenProof proofs or 
omputations are annotated with de-s
riptions of the time, the memory, the information, and the user intera
tion thathave been ne
essary to derive them. This makes it possible to establish a prioriestimations of the utility of a servi
e whi
h helps to optimise the MathWeb.Now re
onsider the example of Se
tion 2. Figure 5 shows one of the manyextended possibilities using MathWeb: Initially, the user interfa
e starts, su-pervised by a human user, a proof delegation ("broker-one") to the 
mega
ontrol agent. We assume that the initial proof goal has been entered by theuser. The 
ontroller delegates the task of breaking down the proof into propersubproblems to the proof planner agent. All subproblems are requested in theform of a streaming servi
e ("standby"). Not until needed in the proof planner,the group de�nitions referred in the proof spe
i�
ation are looked up by queryingthe two knowledge base agents. Perhaps with the help of the human user whi
hproposes some instantiation of the proof via "tell", the proof planner 
onstru
tsappropriate subproblems and replies them to the 
mega 
ontroller whi
h, inturn, "broad
ast"s the higher-order natural dedu
tion stru
tures to the proveragents to 
on
urrently run for solutions. Be
ause Otter and Spass operate on�rst-order 
lausal normal form and 
onstru
t resolution-type proofs, the Otteragent-shell �rst asks the mediator agent for help in translation ("evaluate") be-fore routing the translated broad
asts to Spass. For this purpose, the mediatoragent looks up the remaining de�nitions, su
h as of inverse-exists, from theknowledge bases. In a simpli�ed version, the sent KQML messages look the fol-lowing way. The a
tual 
ontent tags use the OpenProof syntax of the followingse
tion, of 
ourse.<KQML perf="ask-one"><KQMLCONTENT>F = inverse-exists</KQMLCONTENT><KQMLASPECT>F</KQMLASPECT></KQML> <KQML perf="reply"><KQMLCONTENT>�G: �! o �OP : (�; �)! � �E: �9 F : �! � 8 X: �G(X)! OP (X;F (X)) = E</KQMLCONTENT></KQML>In our example, Spass has found a result �rst; the noti�ed 
ontroller willthen "deny" the original request to shut down the redundant 
omputations inOtter. Finally, when all subproofs are 
olle
ted by the 
ontroller, the mediatoragent is on
e again 
onta
ted to transform the overall result ba
k into naturaldedu
tion form whi
h is used in the user interfa
e for presentation purposes.With respe
t to the 
entral role of the 
mega 
ontroller in the heart of Fig-ure 1,MathWeb now amounts to a dynami
ally rearrangeable de
entralisation.This has been possible due to the ri
hness of agent-based 
ommuni
ation. Es-pe
ially we 
an now un
ouple the syntax translations ne
essary to 
ommuni
atesubproblems and proofs between the 
mega 
ontroller and the theorem prov-ing agents. The uni�ed view onto (mathemati
al) servi
es allows to integratefurther servi
es without ubiquitous re-engineering of proprietary interfa
es. In-



stead, the envisaged appli
ation is wrapped into the generi
 MathWeb shellby 
ustomising a library of suitable interfa
es. A further advantage of su
h anopen approa
h is that several users with di�erent demands 
an use the system
ooperatively or independently at the same time. The parti
ular modules thende
ide based on priority and workload whether to pro
ess parti
ular tasks or not.In short, MathWeb provides the modular, inter-operable, robust, and s
alableframework for automated theorem proving motivated by this arti
le. Of 
ourse,MathWeb owes mu
h to the OpenProof 
ontent language that we outline inthe following se
tion.5 A Content Language for Mathemati
s and Dedu
tionGiven a generi
 interlingua su
h as KQML, it additionally requires a suitableontolingua to express the 
ontent of servi
es to talk about servi
e performan
es aparti
ular appli
ation domain for intera
ting agents. In the 
ase of mathemati
altheorem proving, this 
ontent 
omprises mathemati
al obje
ts, formulae, theo-rems, theories, but also (partial) proofs, and even proof plans. Appropriate 
an-didates for su
h a language are the so-
alled `DFG syntax' [H�ahnle et al., 1996℄or the spe
i�
ation put forward by the OpenMath initiative (see http://www.openmath.org), whi
h strives for a standard ex
hange platform for mathemat-i
al software systems. For MathWeb, we propose a 
ontent language (see 5.1for details) whi
h is an extension of the latter, sin
e it has more support for dis-tribution and also 
overs symboli
 
omputation servi
es. There are even alreadysomeOpenMath-
ompliant systems, su
h asMaple [Redfern, 1998℄, whi
h 
animmediately serve as mathemati
al servi
es.We will now give a brief overview on the emerging OpenMath standard(
f. [Caprotti, 1998℄) and indi
ate where it meets the 
ommuni
ation needsfor MathWeb. In the Se
tion 5.2 we will extend the OpenMath suiting ourneeds to a 
ontent language, whi
h in la
k of a better name we have 
alledOpenProof.5.1 The OpenMath StandardThe OpenMath initiative's aim is to establish a 
ommon information ex
hangeplatform among software tools used in mathemati
s. At the moment, their ef-forts are largely fo
using at representational issues for the 
ommuni
ation be-tween 
omputer algebra systems. We will use the me
hanisms provided by theOpenMath standard to express the logi
al side of mathemati
s (de�nitions,theorems,. . . ), too.The OpenMath language is synta
ti
ally a member of the XML [Bray, 1997℄family of languages to whi
h also HTML [Raggett, 1998℄ or its extension formathemati
s, MathML [Ion, 1998℄, belong. XML derivates 
an be nested, thusOpenMath expressions �t very well into our KQML variant of Se
tion 3. TheOpenMath standard de�nes a 
anoni
al way to represent the stru
ture of math-emati
al obje
ts. It o�ers primitive 
onstru
ts for logi
al 
onstants (
alled `sym-bols' in OpenMath and indi
ated by the <OMS/> tag), variables (<OMV/>), ap-pli
ations (by <OMA/>), and a primitive binding 
onstru
t <OMBIND/> that allowsto formalise quanti�ers or �-abstra
tion (the bound variables are tagged using



<OMBVAR/>). For instan
e the expression sin(x) and the fun
tion f(x) = sin(x)have the following OpenMath representations<OMOBJ><OMBIND><OMS 
d="e

" name="Lambda"/><OMBVAR><OMV name="x"/></OMBVAR><OMOBJ><OMA> <OMA><OMS 
d="trig" name="sin"/> <OMS 
d="trig" name="sin"/><OMV name="x"/> <OMV name="x"/></OMA> </OMOBJ> </OMA></OMBIND></OMOBJ>In order to support a standardised semanti
s, espe
ially when resolving sym-bols in OpenMath syntax, a set of so-
alled 
ontent-di
tionaries , referred bythe 
d attribute of OpenMath symbols is provided. Content di
tionaries areglobally agreed on spe
i�
ations on the meaning of OpenMath symbols. Basedon uniquely named 
ontent di
tionaries, the individual mathemati
al systemsimplement so-
alled phrase-books , i.e., transformation pro
edures that interpretOpenMath representations and transform them into internal representations ofthe systems proper (and vi
e versa). Therefore, su
h phrase books are an integralpart of the interfa
e between a mathemati
al servi
e and the embra
ing Math-Web agent. Note that due to the expli
it annotation of individual symbols, theoriginal ontology attribute in KQML-performatives whi
h is a more rigid wayof �xing the semanti
s of symbols be
omes redundant.There are some spe
ial tags for grounding integers (<OMI>), 
oats (<OMF>,strings (<OMSTR>), and byte arrays (<OMB>) dire
tly in the language. Further-more, the OpenMath proto
ol provides so-
alled `error obje
ts' that allow topass information about ex
eptional 
omputation states in the mathemati
al ser-vi
es themselves. Errors are OpenMath symbols applied to a list of obje
ts.Consider for instan
e the following representation of division by zero:<OMOBJ><OME><OMS 
d="arith" name="DivisionByZero"/><OMA><OMS 
d="arith" name="divide"/><OMV name="x"/><OMI> 0 </OMI></OMA></OME></OMOBJ>KQML usually manages failure handling by its builtin performatives, e.g.,"error" and "sorry", annotated with some 
omment or 
ode of the failure. InMathWeb, this would amount to an extensive list of failure 
odes depending onthe various mathemati
al servi
es. A "reply" 
ontaining an OpenMath errorobje
t is however more informative both on the mathemati
al and the dedu
tiveservi
e level.5.2 OpenProof: Formulae and Proofs in OpenMathOpenMath is simplisti
 in that it does not immediately introdu
e logi
al ex-pressions, e.g., from propositional logi
, equality logi
, 
lause logi
, higher-order



logi
, et
. | let alone proofs in various 
al
uli, su
h as �rst-order natural de-du
tion or higher-order semanti
 tableaux. Similarly, there is no notion of amathemati
al 
omputation in
luding intermediate results.OpenMath's expressive binding 
onstru
tor, however, allows us to buildsu
h stru
tures as mathemati
al obje
ts in
luding `meta'-information, e.g., inwhi
h logi
al language a formula is expressed, and `meta'-variables, e.g., unspe
-i�ed parts of a logi
al formula, using a new OpenProof 
ontent di
tionary andadditional di
tionaries for parti
ular logi
s and proof 
al
uli. We will elaborateon this approa
h in the rest of the se
tion without giving a formal de�nitionof the openproof di
tionary, whi
h is outside the s
ope of this arti
le. To 
on-serve spa
e, we will repla
e some lengthy synta
ti
al forms with 
onventionalmathemati
al notation for presentation purposes.The openproof 
ontent di
tionary introdu
es four new binding symbols:formula and term (for formulae and terms 
ontaining meta-variables), proofand 
omputation (for proofs and 
omputation obje
ts) in OpenMath. Attri-butions of variables allow us to make assertions about the type and synta
ti
alnature of the logi
al obje
ts they represent; this will be
ome essential for de-s
ribing the e�e
t of mathemati
al servi
es. Consider for instan
e the followingOpenMath representation.<OMOBJ><OMBIND><OMS 
d="openproof" name="formula"/><OMBVAR><OMATTR><OMATP><OMS 
d="openproof" name="language"/><OMS 
d="FFOL" name="CNF"/></OMATP><OMV name="F"/></OMATTR></OMBVAR><OMV name="F"/></OMBIND><OMOBJ>It stands for any formula F that is a �rst-order formula in 
onjun
tive nor-mal form. Here we assume the existen
e of a 
ontent di
tionary FFOL `Frag-ments of �rst-order logi
' that de�nes �rst-order logi
 (i.e. the logi
al symbols8; 9;^;_;: : : :) and various sub-languages. Along the same lines, we representthe s
hemati
 term X +X , where the meta-variable X stands for an arithmeti
expression (as de�ned in the 
ontent di
tionary arith):<OMOBJ><OMBIND><OMS 
d="openproof" name="term"/><OMBVAR><OMATTR><OMATP><OMS 
d="arith" name="arith-expression"/></OMATP><OMV name="X"/></OMATTR></OMBVAR><OMA><OMS 
d="arith" name="plus"/><OMV name="X"/><OMV name="X"/></OMA></OMBIND><OMOBJ>OpenProof representations for proofs and 
omputation obje
ts are de�nedin mu
h the same way. Con
eptually, they are �ve-tuples (de
; obj; seq; res; lang),where



1. de
 is a set of de
larations for meta-variables in the proof or 
omputationobje
t.2. obj is the proof obje
t or the 
omputation obje
t itself, i.e. a tree represen-tation of the proof or the 
omputation (see [Homann and Calmet, 1996℄ fordetails).3. For a proof obje
t, seq is a sequent H ` A, where H is the set of hypotheses,and A is the assertion of obj; for a 
omputation obje
t, seq is a 
omputationsequent, A 7! R, where A is a set of argument obje
ts and R is the resultingobje
t of the 
omputation.4. res is a spe
i�
ation of the resour
es used by the proof or 
omputationobje
t. We have already motivated that su
h an annotation is essential forproviding e�e
tive mathemati
al servi
es.5. lang is the logi
al system that is used to represent the meta-formulae.These �ve-tuples are represented as binding obje
ts proof and 
omputation,where de
 is represented as the list of attributed bound variables and seq,res, and lang are represented as attributions to obj. It is straightforward touse OpenMath terms to en
ode formal proofs using ideas from the so-
alled`propositions-as-types' paradigm (or the Curry-Howard isomorphism [Thomp-son, 1991℄). For instan
e, the �-term ) I(�XA^B : ^ I(^ER(X);^EL(X)) isa representation of the following Natural Dedu
tion proof with its atta
hedOpenMath representation. For simplifying un
riti
al parts of the lengthy ex-pression, we use 
onvenient 
onventional notations:[A ^B℄1 ^ERB [A ^B℄1 ^ELA ^IB ^A )I1A ^B ) B ^A
<OMOBJ><OMBIND><OMS 
d="ND(FOL)" name="impliesI"/><OMBVAR><OMATTR><OMATP><OMS 
d="openproof" name="assertion"/>A ^ B</OMATP><OMV name="X"/></OMATTR></OMBVAR><OMA><OMS 
d="ND(FOL)" name="andI" ><OMA><OMA><OMS 
d="ND(FOL)" name="andEr"><OMV name="X"/></OMA><OMA><OMS 
d="ND(FOL)" name="andEl"><OMV name="X"/></OMA></OMA></OMA></OMBIND></OMOBJ>Here, we assume the existen
e of a 
ontent di
tionary ND(FOL), whi
h spe
i-�es a Natural Dedu
tion 
al
ulus for �rst-order logi
 [Gentzen, 1935℄ by de�ningthe inferen
e rules as OpenMath symbols impliesI, impliesE, andI, andE,. . .(of appropriate types). Note that in 
ontrast to the 
lassi
al `propositions-as-types' approa
h, we have made use of the OpenMath binding 
onstru
t againto eliminate the �-abstra
tion in the argument of)I , instead we have made thesymbol impliesI a binding symbol itself. This is unne
essary from a theoreti
alpoint of view, but gives a more dire
t en
oding of the respe
tive proof trees. Now,we 
an express partially spe
i�ed proof obje
ts by introdu
ing meta-variables.



[A ^B℄1... [A ^B℄1 ^ELA ^IB ^A )I1A ^B ) B ^A
<OMOBJ><OMBIND><OMS 
d="openproof" name "proof"/><OMBVAR><OMATTR><OMATP><OMS 
d="openproof" name="sequent"/>A ^ B ` A<OMS 
d="openproof" name="language"/><OMS 
d="ND(FOL)" name="FO-ND"/></OMATP><OMV name="F"/></OMATTR></OMBVAR><OMATTR><OMATP><OMS 
d="openproof" name="sequent"/>; ` A ^ B ) B ^ A<OMS 
d="openproof" name="resour
es"/>3 � R � 5<OMS 
d="openproof" name="language"/><OMS 
d="ND(FOL)" name="FO-ND"/></OMATP>) I(�X: ^ I(^EL(X);F(X))</OMATTR></OMBIND> </OMOBJ>In this partial proof, the meta-variable F stands for a sub-proof in �rst-orderND for the sequent A ^ B ` B; F is bound in the proof environment andthe information about the 
al
ulus and the sequent are added by attribution.The resour
es R used by the overall proof are at least 3 ND proof steps andshould not ex
eed 5 proof steps. The partial proof above 
ould be sent to aMathWeb theorem proving agent using the KQML-performative "ask-one":the sending agent wants to know whether there is a single instan
e of this proof(given the resour
e bounds of 5 steps) in the virtual knowledge base of theprover agent. The answer 
ould be the OpenProof equivalent to)I(�XA^B :^I(^ER(X);^EL(X)) (see above) whi
h has the variable F instantiated by the(fun
tional) symbol ^ER and 
arries the �nal resour
e amount of 4 steps. Wewill 
ome ba
k to the issue of dealing with resour
es in the 
on
lusion (Se
tion 7).Note that the 
exibility of KQML 
ommuni
ation based on meta-variableshas to be paid with the ne
essity of requiring mat
hing the level of agents. Inthis respe
t, the 
ontent-languageOpenProof (and for the same reason alreadyOpenMath) is more problemati
 than traditional agent 
ontent languages. How-ever, sin
e we 
an restri
tOpenProof to se
ond-order expressions, we only needse
ond-order mat
hing, whi
h is known to be de
idable [Huet and Lang, 1978℄.We are 
urrently investigating whether more restri
tive poli
ies for addressingservi
es via OpenProof 
an be 
aptured with 
omparably more lightweightme
hanisms.5.3 A Categorisation of Mathemati
al Servi
esIn this se
tion we brie
y 
ategorise mathemati
al servi
es by their behaviourand 
ommuni
ation needs. A spe
ial emphasis is put on spe
ifying possible in-tera
tions with other agents inMathWeb, thus on the suitability of messages inKQML(OpenProof). We follow 
ategorisations made in [Homann and Calmet,1996; Hess et al., 1998℄ and do not 
laim that our list is 
omplete.5.3.1 Mathemati
al FiltersCertain mathemati
al programs 
an be used in a �lter-like way, that is they
an read a request from an input stream and write some answer to an out-put stream. Mathemati
al �lters 
an be further grouped in 
omputation �ltersand dedu
tion �lters. The �rst perform some numeri
al or algebrai
 
al
ulation



whi
h result they return (maybe 
oupled with some proto
ol information onhow the result was obtained), while the latter attempt to prove a given problemand return, if su

essful, the proof or signal failure. Using partially spe
i�edKQML(OpenProof) proof and 
omputation expressions, mathemati
al �lters
an be genuinely addressed in one-solution, single-shot modes up to all-solutions,streaming modes.Unlike 
omputation �lters whi
h terminate eventually, dedu
tion �lters willnot always return a result. Thus dedu
tion agents need to have additional prop-erties for maintenan
e: On the one hand a requesting 
lient must be able to senda termination signal, e.g., "deny", to a dedu
tion servi
e in order to de
lare anearlier request as obsolete. On the other hand the servi
e itself needs to surveyits own running pro
esses, assign resour
es to in
oming requests and terminatepro
esses that have not produ
ed any results after their allo
ated resour
es havebeen 
onsumed. Two instan
es of �lter agents that we have already integratedinto 
mega are the automati
 theorem prover Spass [Weidenba
h, 1997℄ andthe Computer Algebra system Maple [Redfern, 1998℄. Furthermore, there isa servi
e 
ompetitive-atp that 
alls sets of ATP 
on
urrently as 
ompetingservi
es (this strategy is known to yield even super-linear speedups in pra
ti
e).5.3.2 MediatorsAlthough OpenProof is a generi
 representation devi
e for formulae in variouslogi
s and proofs in di�erent 
al
uli, it would be an overkill to demand from ea
hMathWeb agent to 
ope with arbitrary stru
tures besides the natural format ofits en
apsulated servi
e. This would in
rease the 
omputational burden that theagent shell has to 
arry. Instead, the problems involved in translating betweenthe di�erent formats are rather themselves reasonable mathemati
al servi
es(see the example of Figure 5) to be embedded into agents and to be integratedinto the MathWeb. An example of su
h a mediator agent is a syntax trans-former that 
an 
onvert between di�erent representations of �rst-order logi
, e.g.,negation normal form and 
lausal form. Another servi
e is `relativisation' whi
htransforms formulae of sorted �rst-order logi
 or higher-order logi
 to 
lassi
al�rst-order logi
 [S
hmidt-S
hau�, 1989; Kerber, 1991℄. Finally, there are prooftransformers [Pfenning, 1987; Huang and Fiedler, 1996℄ that 
an transform fromone 
al
ulus into another one (possibly even transforming the base logi
 along theway). Sin
e mediators do not need a virtual knowledge base in the KQMLsensefor that purpose, we rather regard their task to simplify in
oming expressionsinto a 
anoni
al format, thus implement the "evaluate" performative of KQMLwith 
orresponding OpenProof formula or proof 
ontents.5.3.3 Knowledge BasesMathemati
al knowledge bases are used to uniquely store formulae (axiomatisa-tions, de�nitions, et
.) and also proof steps and proofs in order to give 
ommonlyused, 
onvenient symbols a semanti
s. Thus, they are a similar 
on
ept to theOpenMath 
ontent di
tionaries. For MathWeb, a 
lose 
onne
tion of these
on
epts is envisaged: Knowledge bases with a MathWeb shell are automati-
ally able to produ
e properOpenMath 
ode of their knowledge, thus a reason-able 
ontent di
tionary. On the other hand,MathWeb knowledge bases 
an a
-
ess existing 
ontent di
tionaries to provide their information in theMathWeb.



This happens typi
ally over the "ask-one" performative 
arrying a higher-orderequation (see Se
tion 4).Contrary to other mathemati
al servi
es, knowledge bases have the propertythat they 
an be dynami
ally 
hanged by 
lients, i.e., the user edits a de�ni-tion in the user interfa
e and "insert"s it to the knowledge base or requestsa "delete". The knowledge base agents therefore have some additional infor-mation on a

ess rights for parti
ular agents/parti
ular users sending requests.The Mizar Library [Rudni
ki, 1992℄ is a knowledge base that already o�ers itsservi
es via the Internet, but is not yet integrated into MathWeb.MathWeb 
urrently only in
ludes the MBase servi
e, a simple web-basedmathemati
al knowledge base system that stores mathemati
al fa
ts like theo-rems, de�nitions and proofs and 
an perform type 
he
king, de�nition expansionand semanti
 sear
h. It 
ommuni
ates with other mathemati
al servi
es by me-diators and with humans by the intera
tion unit O
tOpus.5.3.4 Display ComponentsThis point 
overs possible intera
tion devi
es that enable a user to view andelaborate pro
essed mathemati
al data in a desired way. To these servi
es belong(graphi
al or non-graphi
al) displays and browsers for formulas and proofs, aswell as systems that 
an transform provided data into a human-oriented format.As an example of the latter, one might 
onsider systems that translate proofsinto natural language. An example for a graphi
al user interfa
e that is alreadyavailable in MathWeb is L
UI [Siekmann et al., 1998℄ the interfa
e for the
mega system. The user interfa
e is a basi
 sour
e of a
tivity, as maintenan
eof knowledge bases, transformations of logi
al expressions, and the initiation ofproofs are triggered from here (see the above servi
es). Note that the user, thushis user interfa
e, 
ould also appear as requestable entity in the MathWeb,for example to propose an instantiation, to solve some lemma, et
. Therefore,the user interfa
e should also pro
ess in
oming "ask-one" 
ommands, but forupholding the 
onvenien
e of the user, it should not a

ept "stream-all" orsimilar requests.5.3.5 Anytime Servi
esAnytime servi
es provide a means to organise the output of 
omputations thatmight have more than one result (possibly in�nitely many results) to a 
lients re-quest. The general fun
tionality of these servi
es is similar to those of mathemat-i
al �lters, but they 
an also store additional information on both the requestedservi
e and the 
lient. The latter itself re
eives a result along with information onhow long the anytime servi
e 
an provide further results and how these results
an be retrieved. Using these spe
i�
ations, subsequent requests of the 
lient
an then be answered by the anytime servi
e using the already 
omputed results(always provided the requests are within the given time limit). A predestined
andidate for an anytime agent is, for instan
e, a uni�
ation engine for higher or-der logi
s. The ne
essary information ex
hange 
an be en
oded in KQML usingstreaming together with the resour
e attribution of OpenProof.



5.3.6 Mathemati
al Control UnitsFinally 
ontrol units form the link between several di�erent other mathemati
alservi
es. They have the ability to permanently store data of ongoing proofs or
omputations, making it available to other agents requests as well as using itto assign other agents to 
ertain tasks. While in
orporating less or no appli-
ation servi
es, 
ontrol units overview a greater portion of the overall servi
ear
hite
ture and fun
tion as brokers to whi
h agents with a smaller `so
ial hori-zon' 
ould turn to. MathWeb should always have a `ba
kbone' of persistent,mutually-aware 
ontrol units in order to bridge dispersed areas of servi
es. Aselaborated in the example in Se
tion 4 the 
mega 
ontrol unit 
ontains all ne
-essary information in order to 
arry out the steps leading to a 
omplete proof ofthe given example. "broad
ast", "forward", and "broker-one" messages aretypi
ally sent to the 
ontrol unit for routing purposes.6 Implementation and Experien
esMathWeb is implemented as an obje
t-oriented toolbox that provides the fun
-tionality for building a so
iety of software agents that render mathemati
alservi
es by either en
apsulating lega
y dedu
tion software or their own fun
-tionality. The system is available at http://www.ags.uni-sb.de/~omega/www/mathweb.html.The 
urrent list of integrated mathemati
al servi
es 
onsist of the theoremprovers and 
omputer algebra systems mentioned in the introdu
tion, the knowl-edge base system MBase, the proof transformation and presentation systemProVerb [Huang and Fiedler, 1996℄ and the L
UI [Siekmann et al., 1998℄ andO
tOpus user interfa
es. Currently, these servi
es are used by the three 
ontrol
omponents InKa [Hutter and Sengler, 1996℄, �Clam [Ri
hardson et al., 1998℄,and the 
mega kernel [Benzm�uller et al., 1997℄. A �rst synergy e�e
t ofMath-Web has been that the �rst two systems 
an now partake in infrastru
ture (su
has L
UI and MBase) developed for the latter, while the 
mega system 
annow turn to InKa or �Clam when it needs support for indu
tive proofs. Further-more,MathWeb approa
h has been a key fa
tor in keeping the 
mega systemmaintainable and the near future will see further modularisation and `agenti�-
ation' of system 
omponents, whi
h will lead to simpler system maintenan
eand a more open development model.In the 
urrent implementation, the software bus fun
tionality of MathWebis realized by a CORBA-like model [Siegel, 1996℄ in whi
h a 
entral broker agentprovides routing and authenti
ation information to the mathemati
al servi
es(see [Hess et al., 1998℄ for details). The agents are realized in a distributed pro-gramming system mOZart (see http://www.mozart-oz.org for details), anintera
tive and distributed implementation of the 
on
urrent 
onstraint pro-gramming language Oz [Smolka, 1995℄. mOZartFurthermore, MathWeb provides the mOZart shell (Mosh), a tool forlaun
hing and administering multiple mOZart appli
ations (the agents) withinonly one mOZart pro
ess. It 
ombines some frequently used shell 
ommands(for �les, pro
esses and environment) with some (thread-related) mOZart 
om-mands. These allow (remotely) administering the mathemati
al servi
es a
rossthe Internet, sin
e the administrator 
an 
onne
t to remote Mosh daemons {



whi
h run 
ontinually at the host providing the servi
es { laun
h and terminateservi
es. This also allows for a limited form of self-organization of mathemati
alservi
es, sin
e these 
an use Mosh s
ripts themselves to laun
h and administerother servi
es.By providing several trading points whi
h are inter
onne
ted using the KQMLinterlingua we are now smoothly migrating into the fully distributedMathWebin whi
h ea
h mathemati
al servi
e agent possesses the 
omplete fun
tionalityof the trading point in
luding the 
apability lookup table. The 
urrent tradingpoints still use a proprietary proto
ol | both at the interlingua and the 
ontentlanguage levels | for 
ommuni
ation with several embedded mathemati
al ser-vi
es that is 
ustomised to the 
urrent needs and fun
tionality of 
mega. Sin
e itresembles KQML performatives, we will 
ome up with a fully KQML-
ompliantsystem in the near future.mOZart's main advantage as a basis for MathWeb 
omes from its net-work transparen
y, i.e., the full support of remote 
omputations in the baselanguage (lexi
al s
oping, logi
al variables, obje
ts, 
onstraints,. . . ), and its net-work awareness, i.e., the full 
ontrol over network operations, su
h as the 
hoi
ebetween stationary and mobile obje
ts, whi
h make it easy to `agentify' arbitraryappli
ations. In
orporating both properties goes well beyond the distribution fa-
ilities of e.g. CORBA. mOZart also provides high-level inferen
e primitiveslike 
onstraint propagation, sear
h, and sear
h 
ontrol whi
h makes it a goodimplementation 
hoi
e for the mathemati
al servi
es proper. mOZart provideslow-level primitives to seamlessly integrate C/C++ 
ode and to 
ontrol arbi-trary external pro
esses via Operating System fun
tionality. An example of amathemati
al servi
e that is fully implemented in mOZart is the generi
 proofvisualisation tool L
UI.For the 
ontent language, MathWeb still uses a mix of languages, 
onsist-ing mainly of the 
mega, InKa, and �Clam internal formats and the variousinput languages of the lega
y systems, turned into mathemati
al servi
es byMathWeb. Work is under way to implement the translation servi
es needed forintegrating the 
ontent languageOpenProof proposed in se
tion 5.2. A uni�ed
ontent language will greatly simplify the administration of mathemati
al ser-vi
es, sin
e with n input languages of lega
y systems, we only need 2n transfor-mation servi
es for pairwise 
ommuni
ation instead of n2 without OpenProof.In fa
t, the need for a development 
ontent language 
ame from this pra
ti
alneed as mu
h as the desire for standardisation.Apart from the appli
ation in mathemati
s and software engineering that hasbeen the primary fo
us, MathWeb has been tested in the Doris1 system, anatural language understanding system that uses �rst-order automated theoremprovers and model builders as external mathemati
al servi
es to solve the 
onsis-ten
y and entailment problems pertaining to various disambiguation problemsin text and dialogue understanding. Doris generates up to 500 dedu
tion prob-lems for ea
h senten
e it pro
esses, distributes them to 
ompeting mathemati
alservi
es (over a network of workstations) and 
olle
ts the results to obtain thedesired result. Using the MathWeb approa
h, the integration of the theoremprovers was very simple: the only new parts were a so
ket 
onne
tion from Pro-1 See http://www.
oli.uni-sb.de/~bos/atp/doris.html for a web-based interfa
ethat a
ts as a MathWeb 
lient.



log on the Doris side and a new servi
e module for the doris servi
e2 on theMathWeb side. Experien
e with this appli
ation shows that distribution usingMathWeb does not 
ome for free: A test with around 1300 Doris dedu
tionqueries yielded the following timings:330{1250 ms pure theorem proving time50-120 ms spent in the servi
e module (opening an inferior shell, 
reating�les,. . . ). This depends strongly on the eÆ
ien
y of the server �le system.5{500 ms Internet laten
y (we have measured inter-departmental (in Saar-br�u
ken) and international (Saarbr�u
ken/Amsterdam) 
onne
tions)However, the large number of dedu
tion problems and the possibility of 
oarse-grained parallelisation by distribution lead to a signi�
ant in
rease in overallsystem performan
e, 
ompared to an earlier 
entralised, sequential ar
hite
ture.In parti
ular, the timings also show that it 
an pay o� for a 
lient in Saarbr�u
kento delegate dedu
tion problems to faster ma
hines in Amsterdam or vi
e versa.7 Con
lusionWe have proposed a distributed network ar
hite
ture for automated and in-tera
tive theorem proving, MathWeb, that extends and generalises earlier ef-forts in the 
mega proof development system to support modularisation, inter-operability, robustness, and s
alability of mathemati
al software systems. Thekey 
on
ept is the identi�
ation of mathemati
al appli
ations with 
ommuni-
ating, autonomous agents, 
alled mathemati
al servi
es. We have des
ribedan agent{ and 
ommuni
ation model for the MathWeb ar
hite
ture based onthe KQML and OpenMath standards whi
h provides the fun
tionality to turnexisting theorem proving systems and tools into mathemati
al servi
es homoge-neously integrated into a networked proof development environment.7.1 Resour
esFuture work will 
on
entrate on the resour
e part of OpenProof, sin
e thenumber of proof steps used in the examples in se
tion 5.2 is 
ertainly not anuniversally meaningful unit of measure throughout the MathWeb. Parti
ularprovers and 
al
uli need less basi
 operations than others for performing parti
u-lar manipulations or inferen
es. Parti
ular ma
hines running MathWeb agentsare faster than others. Thus having 
omparable pro
essing times seems to be abetter approa
h. Additional 
osts, su
h as memory usage, required transforma-tions, the information looked up in knowledge bases, user intera
tions, et
., arealso not yet a

ounted for. Gerber & Jung [Gerber and Jung, 1998℄ propose ab-stra
t resour
es as a reasonable representation devi
e for su
h interdependen
iesbetween autonomous agents. They furthermore des
ribe topologi
al and algo-rithmi
 means for organising a so
iety of agents towards optimality based onabstra
t resour
es.2 I.e. a small (60 line) mOZart program that relays problems, results and statisti
sbetween the Doris program and the 
ompetitive-atp servi
e.3 These times have been measured on a 
olle
tion of SUN Ultra ma
hines runningSolaris 5 in Saarbr�u
ken and Amsterdam (all timings given in total elapsed time;normalised to our fastest ma
hine, a SUN Ultra 4 at 300 MHz).



7.2 NegotiationOne means for load-balan
ing in multi-agent systems with 
entral de
ision mak-ing has been adopted from e
onomi
s: the market metaphor. If (mathemati
al)agents are equipped with a notion of (sel�sh) utility, thus money, and is pro-vided a 
ommuni
ative platform for performing negotiations, the whole systemis able to perform self-regulation, i.e., suboptimalities from ineÆ
ient or dis-abled servi
es will be adapted by reorientation of servi
e requests. The 
ontra
tnet proto
ol [Smith, 1980℄ and its derivates, for example, introdu
e an au
tionme
hanism for the delegation of tasks 
harged with 
ertain 
osts. An agent herein`announ
es' a task, su
h as the proof of a 
ertain theorem, to a number of servi
eagents. Ea
h servi
e now judges its 
ompeten
e and predi
ts the expe
ted 
oststhat his pro
essing will produ
e. It `bids' for the task a

ordingly. The initiativeagent then sele
ts one or several servi
e agents in order to redu
e 
osts and max-imise performan
e. Using the KQML performatives, su
h au
tion me
hanisms
an be easily implemented.A
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