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MBase: Representing Knowledge andContext for the Integration ofMathematial Software SystemsMihael Kohlhase1 and Andreas Franke21Shool of Computer Siene, Carnegie Mellon University, Pittsburgh, USA2Informatik, Saarland University, Saarbr�uken, GermanyAbstratIn this artile we desribe the data model of the MBase system, a web-based, distributed mathematial knowledge base. This system is a mathe-matial servie inMathWeb that o�ers a universal repository of formal-ized mathematis where the formal representation allows semantis-basedretrieval of distributed mathematial fats.We lassify the data neessary to represent mathematial knowledgeand analyze its struture. For the logial formulation of mathematialonepts, we propose a methodology for developing representation for-malisms for mathematial knowledge bases. Conretely we propose toequip knowledge bases with a hierarhy of logial systems that are linkedby logi morphisms. These mappings relativize formulae and proofs andthus support translation of the knowledge to the various formats ur-rently in use in dedution systems. On the other hand they de�ne higherlanguage features from simpler ones and ultimately serve as a means tofound the whole knowledge base in axiomati set theory.The viability of this approah is proven by developing a sorted reord-�-alulus with dependent sorts and labeled abstration that is well-suitedboth for formalizing mathematial pratie and supporting eÆient infer-ene servies. This \mathematial vernaular" is an extension of a sorted�-alulus by reords, dependent reord sorts and seletion sorts.1. IntrodutionThe last �ve years have seen a growing interest in the integration of mathematialsoftware systems, suh as omputer algebra systems and dedution systems.The reason for this is that while the respetive systems have reahed a highdegree of sophistiation and maturity, they have di�ering, often omplementary1



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 2strengths and weaknesses, and no single system is strong enough to takle allproblems. Moreover, sine many of the problems are very omputation-intensive,distributing sub-problems to mathematial servies over the Internet seems apromising approah.Partiular interest is in the ombination of omputer algebra systems (CAS)and dedution systems (DS), either for the purpose of enhaning the ompu-tational power of the DS (30; 39; 7) or in order to strengthen the reasoningapabilities of a CAS (1; 8).We an distinguish four kinds of problems that have to be overome for anintegration of two mathematial software systems:Syntax Though most systems have a term-based interfae language, normallyall systems will have their own partiular variant. This problem an besolved by establishing representation standards, suh as the emergingOpen-Math standard (15), whih uses Xml (13) to de�ne a general term lan-guage. With the imminent wider aeptane of this standard, this problemwill soon be solved.Protool The problems of low-level ommuniation and ommon ontrol pro-tools have been explored e.g. in (14) and have to be deided upon in theonrete appliation. Empirially, all suh protools and arhitetures anbe exibly modeled by agent-oriented programming; we have used this intheMathWeb system (27; 26), an agent-based implementation of a math-ematial software bus that uses the urrent de-fato standard Kqml (24)for interation agent-languages. Even though the Kqml-support inMath-Web is not fully implemented, we an see this problem as solved in priniple(see (5)).Semantis For the integration of systems it is ruial to speify onisely andwithout ambiguity the meaning of the exhanged formulae, i.e. there is theproblem of establishing a semantis for the ommuniated mathematialobjets. Otherwise the results of the integrated system an be arbitrary:Reall the reent inident of the NASA Mars lander, where NASA spei�edroket thrust in metri units but the ontrator used pounds and inhes (asa result the probe rashed on Mars instead of landing). This is well-knownas the so-alled ontology problem in distributed arti�ial intelligene, theaepted solution to this is to either take reourse to a ommon set ofonepts (the ontology, see (39) for a proposal wrt. the integration of om-puter algebra with proof planning) or to negotiate a private ontology forthe ommuniation. The OpenMath standard reognizes this and o�ersthe mehanism of \ontent ditionaries": mahine-readable, but informalde�nitions of the mathematial onepts involved. Note that in ontrast tothe pratie in distributed arti�ial intelligene (agent-oriented program-ming), the ontology is determined loal to the symbols of the terms insteadof globally for the ommuniation, whih seems muh more appropriate forthe appliation in mathematis.



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 3This is at best a partial solution to the semantis problem, sine the Open-Math framework does not o�er any support for ensuring onsisteny, on-iseness, or manipulation of ontologies.Context The ontext problem is a variant of the semantis problem, i.e. in theommuniation of two mathematial software systems (or more generallyagents) it is advantageous to maintain a sense of shared state. For instane,the state an be used to refer bak to (parts of) previous formulae, that arekept in the so-alled ontext. Of ourse it is possible to eliminate state fromthe ommuniation by retransmitting the relevant parts of the ontext, butthis an lead to an exponential inrease in osts. As a onsequene almostall interative mathematial software systems use some form of ontextfor the ommuniation with the user. Current approahes to integration ofmathematial software systems annot deal with ontext, or use it in a veryinexible way, for instane the Clam-Hol interation (12), or the 
mega-Tps (10) integration have to retransmit all the neessary de�nitions andsubgoals on every round of interation.This artile addresses the last two problems. We ontend that a soiety of dis-tributed knowledge base agents in MathWeb (27; 26) an be used to establishboth the semantis of ommuniated formulae as well as provide a exible notionof ontext. To substantiate this laim, we will present and disuss the MBasesystem, a web-based, distributed knowledge base for mathematis that is uni-versally aessible through MathWeb on the Internet.The mathematial knowledge in MBase an be used to establish a en-tralized referene point that establishes the semantis of formulae, sine it isboth mahine-readable and fully-formal. Moreover, the knowledge base agentsinMathWeb an be used as ontology servers for agent ommuniation, in par-tiular, they an manipulate small private knowledge bases as a servie for otherMathWeb servies, e�etively providing a exible notion of ontext. In the restof the artile, we will desribe theMBase server and its underlying data model.In partiular, we address the question of how to divide the task of representingand reasoning with omplex knowledge base entries, suh as logial formulae ina data base appliation. These are typially very omplex (possibly yli) graphstrutures that annot be represented or reasoned about adequately in urrentSQL-based data base systems. On the other hand, high-level programming lan-guages an do this, but the amount of data that an be proessed is basiallylimited to the size of main memory.MBase adopts a hybrid approah that triesto ombine the strengths of both worlds, eliminating their relative limitations.The urrent implementation (see http://www.mathweb.org/mbase) is stilllargely a prototype for testing the design deisions. It onsists of the MBaseserver, whih ats as aMathWeb servie, and an http server that dynamiallygenerates presentations based onHtML orXml forms. Other mathematial ser-vies an aess MBase through a system of mediators that are also integratedinto MBase.



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 4The primary interfae format of MBase is OMDo (43; 42), an Xml-basedrepresentation language for MBase ontent. Sine this is an extension of theemerging OpenMath standard (15) for web-based mathematis, its syntax islogi-independent. So the mediators an �rst do the logi-transformation, thengenerate the OMDo representation, and then reate the onrete input syntax ofthe respetive reasoning system by invoking a standardXml style sheet proessorwith a speialized Xsl style sheet.Currently, onnetions to the 
mega (9), InKa (36), �Clam (51), andTps (4)systems are being atively developed. Semi-automated reasoning systems likethese usually store large amounts of mathematial data in a �le-oriented librarystorage mehanism. For solving a given problem, all knowledge in the librarythat is possibly relevant must be loaded into main memory, obviously a veryineÆient usage of this resoure. In this situation, the MBase servie, whihuses data base tehnology for the storage aspet allows to load the knowledgeinrementally, to perform �ner-grained reasoning as to whih knowledge will berelevant, and to browse the knowledge beforehand, so that the user an determinethe atual desired knowledge elements.1.1. Arhiteture: Division of LaborThe MBase system is realized as a distributed set of MBase servers (seeFig. 1.1). Eah MBase server onsists of a Relational Data Base ManagementSystem (RDBMS), e.g. Orale, whih is onneted to a mOZart (53) pro-ess via a standard data base interfae (in our ase JDBC). Clients an aessMBase servers as MathWeb servies, and for browsing the MBase ontent,any MBase server provides an http server (see http://mbase.mathweb.org:8000 for an example) that dynamially generates presentations based on HtMLor Xml forms.This arhiteture ombines the storage failities of the RDBMS with theexibility of a onurrent, distributed, logi-based programming language (seehttp://www.mozart-oz.org).Most importantly for MBase, mOZart o�ers a mehanism alled pikling,whih allows for a limited form of persistene: mOZart objets an be eÆientlytransformed into a so-alled pikled form, whih is a binary representation of the(possibly yli) data struture. This an be stored in a byte-string and eÆientlyread by the mOZart appliation e�etively restoring the objet. This featuremakes it possible to represent omplex objets (e.g. logial formulae) as Oz datastrutures, manipulate them in the mOZart engine, but at the same time storethem as strings in the RDBMS.The urrent implementation of MBase an be used together with di�erentkinds of data base engines: e.g. InstantDB (see http://www.instantdb.o.uk), a lightweight open-soure java based program for srath-pad databases, andOrale for arhiveMathWeb servers. Thus the use of JDBC as a standardized



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 5interfae allows to ahieve the somewhat oniting funtionalities needed for thedistributed nature of MBase (see setion 3).
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MBASEFigure 1: General System Arhiteture1.2. An ExampleIn this setion we will disuss a simple mathematial example (a version ofCantor's theorem), whih will be used in the following.Theorem 3.1.7 (Cantor): Let S be a set, then S has a smaller ardi-nality than its power set }(S).Proof: We prove the assertion by diagonalization. Assume that thereis a surjetive mapping F :S �! }(S). Now let D be the set fa j a =2F (a)g; we show that D =2 Im(F ): if there were a pre-image b 2 S (i.e.D = F (b)), then assuming b 2 D we an obtain b =2 D, whih is aontradition.The assertion of the theorem is about ardinalities of sets. Usually, the ardi-nality of a set S is de�ned to be smaller than that of T , i� there is no surjetivemapping F :S �! T . Alternatively, smaller ardinality an be de�ned as theabsene of injetive funtions from T into S. A funtion f :S �! T is alledsurjetive, i� for all b 2 T , there is an a 2 S (alled its pre-image), suh thatf(a) = b. The power set }(S) of a set S is the set of all subsets of S. To illustratethese onepts it may be useful to look at a simple example: If S is the singletonset fag, then the power set }(S) is f;; Sg; there are only two mappings from Sto }(S), f;: a 7! ; and fS: a 7! S, whih are not surjetive (S =2 f;(a) = f;g and; =2 fS(a) = fSg). Thus our example supports Cantor's theorem.In a formal reasoning system like 
mega, Isabelle or Pvs, the theoremwould be stated in a suitable logi, e.g. in the simply typed � alulus8S�!o:smaller ard(S; powerset(S))



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 6where the symbols (onstants of the logi) smaller ard and surj are de�ned asthe �-termssmaller ard := �M�!o �N�!o :9F�!� surj(F;M;N)surj := �F�!� �M�!o �N�!o 8X�:NX ) (9Y�MY ^ FY = X)Again, the symbol smaller ard ould have been de�ned in terms of injetivityby a similar �-term.Based on this knowledge, the reasoning systems mentioned above an provethe theorem (fully automatially [Tps (11)℄ or interatively) by eliminating thede�nitions (substitution of the �-term and subsequent �-redution) and solvingthe problem at the level of the underlying alulus.Another way to arrive at the proof is to enode the human problem solvingknowledge for diagonalization proofs expliitly in the proof planning paradigmand use this method- and ontrol knowledge to prove the theorem in muh thesame way as humans would. This results in a di�erent, more strutured proofof the theorem (16). Note that the textbook proof above also has two levels ofdesription of the proof: one with the keyword \by diagonalization" whih issuÆient for the expert to reonstrut a more detailed proof.1.3. A Classi�ation of the Relevant KnowledgeAlready in the small example disussed above, we see that the statement of amathematial theorem an depend on the availability of a (large) set of de�ni-tions of mathematial onepts (that in turn depend on other onepts). Fur-thermore, the proof an use previously proven theorems and lemmata, or evenintrodue new onepts. In addition to this purely mathematial data, a for-mal reasoning system needs aess to other forms of knowledge (e.g. ag set-tings for automated theorem provers or method- and ontrol knowledge in proofplanning). For presentation to human users, other (human-related) presentationknowledge is needed. See e.g. (52), where we use MBase as a basis for theexible presentation of an an interative mathematis book (18).The purpose of the MBase system is to store and manipulate all these kindsof knowledge with an emphasis on the use of struture to support an adequateinformation retrieval and searh restrition. In this setion, we will try to lassifyand struture them (see Fig. 1.3). This lassi�ation will serve to struture thedatabase model presented in the next setion.As we have already seen above, we have to distinguish between purely mathe-matial knowledge (primary objets) and seondary objets that provide human-and mahine-oriented or even administrative information or give additional stru-ture. Conretely, we distinguish the following �ve ategories in Fig. 1.3.Primary objets for purely mathematial knowledge like symbols, their de�-nitions, and theorems, lemmata, et. and their proofs (f. setion 2.1).
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M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 8base objets; before we present the data model, let us further lassify them anddisuss their relations.Symbols for mathematial onepts, suh as 1 for the natural number \one",+ for addition, = for equality, or group for the property of being a group.Furthermore, there are symbols for kinds, types and sorts.De�nitions give meanings to symbols in terms of already de�ned ones. Forexample the number 1 an be de�ned as the suessor of 0 (spei�ed by thePeano axioms). Addition is usually de�ned reursively, et. De�nitions areseparated from the symbols they de�ne inMBase, sine there an be morethan one (equivalent) de�nition for a symbol in a mathematial theory, e.g.the smaller ardinality relation disussed in setion 1.2. This phenomenonis made expliit in the relation def-entails.A seond reason for this division of onepts is that \universal" onstantsan be introdued as symbols without de�nition.Assertions are axioms, theorems, onjetures, lemmata, et. They all have thesame struture: they are basially logial sentenes. Their di�erenes arelargely pragmati (theorems are normally more important in some theorythan lemmata) or proof-theoreti (onjetures beome theorems one thereis a proof in the knowledge base).Proofs are representations of evidene for the truth of assertions. Like in thease of de�nitions, there an in general be more than one proof for a givenassertion. Furthermore, it will be initially infeasible to totally formalize allmathematial proofs needed for the orretness management of the knowl-edge base in one universal proof format, thereforeMBase supports multipleformats for proofs or evidene suh as e.g. a alulus-level proof, variousproof sripts (
mega replay �les, Isabelle proof sripts,. . . ), referenes topublished proofs, resolution proofs, et. Therefore, a proof an have severalProof Objets enapsulate the atual proof objets in the various formats.There an be more than one proof objet for a given proof. Informal proofsan be formalized, formal proofs an be transformed from one format tothe other (e.g. from resolution style to natural dedution style), and aneven be presented in natural language by a proof presentation system likeProverb (34). Even so they represent the same \proof". In our examplein setion 1.2, we have desribed four proof objets for the same proof: thesketh onsisting only of phrase \we prove the assertion by diagonalization",its elaboration in the textbook example, the Tps proof and the proof-planning proof.The universal proof format used in MBase is derived from the Proof planData Struture (PDS) introdued in the 
mega system (9) to failitatehierarhial proof planning and proof presentation at more than one level ofabstration. In a PDS, nodes justi�ed by tati appliations are expanded,but the information about the tati itself is not disarded in the proess



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 9as in tatial theorem provers like Isabelle or NuPrL. Thus proof nodesmay have justi�ations at multiple levels of abstrations in a hierarhialproof data struture.Examples In mathematial pratie, examples play an important role just asproofs, e.g. in onept formation (as witnesses for de�nitions or as ei-ther supporting evidene, or as ounterexamples for onjetures). There-fore, examples are given status as primary objets inMBase, even thoughthey are still very seldom atually used in mehanized reasoning systems.Coneptually, we model an example for a mathematial onept C as atriple (W;A;P), where W = (W1; : : : ;Wn) is an n-tuple of mathemati-al objets, A is an assertion of the form A = 9W1 : : :WnB, and P is aproof that shows A by exhibiting the witnesses Wi for Wi. The example(W; 9W1 : : :Wn :B;P) is a ounter-example to an assertion of the formT := 8W1 : : :WnB, and (W;A;P) a supporting example for T.Consider for instane the struture W: = (A�; Æ) of the set of words over analphabet A together with word onatenation Æ. Then (W; 9W mon(W );P1)is an example for the onept of a monoid (with the empty word as theneutral element), if e.g. P1 usesW to show the existene ofW . The example(W; 9Vmon :group(V);P2 and a proof that uses W as a witness for V , it isa ounterexample to the onjeture C: = 8Vmon group(V), sine Q) :C.All in all, we have the struture given in Fig. 2 for the primary objets. In thefollowing we will briey disuss the onrete realization of the primary objetsin MBase and then go on to disuss the other ategories of database objetsfrom Fig. 1.3. The metadata used in MBase is relatively standard, they in-lude things like bibliographi referene (we use the well-known Dublin Coreshema, f. http://purl.org/d/ or see (43) and things like time stamps anduser referene for reation and modi�ation of objets.2.1. Modeling Primary Database ObjetsTo implement the primary knowledge elements desribed above, MBase ur-rently uses tables for the six primary objets and a variety of relations. Thisrealization of the data model is geared towards an underlying SQL data base,and an be subjet to hange, when suitable objet-oriented DBMS beomeavailable.symbol The type of a symbol must be unique, it is represented as a pikledmOZart objet (indiated in the data type OzPikle). For the data base,this is a string of arbitrary length. MBase uses OzPikles for omplex(logial) data strutures, whih an be read into the mOZart proess forlogial proessing.definition At the moment,MBase supports simple, indutive/reursive, andimpliit de�nitions as primary objets. In the latter ase, the ontent of the



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 10
Proof Objects

Object

contains

n :: n

Sequent

Status

Kind, Type

Symbols

Status

Assertions

depends_on

Examples

Description

Proofs

1 :: n

n :: n

1 :: nn :: n

Definitions

Defn

supports

counters

illustrates

1 :: n

defined_by

proved_by

depends_on

formalizes

1 :: n

1 :: n

ProofAssrt

WitnessFigure 3: The struture of MBasede�nition, whih is a omplex term (and therefore expressed as an OzPikle)an de�ne more than one the symbol.assertion Assertions are logial formulae (represented as OzPikles) that havea status ag that represents the pragmatis of theorem-hood. At the mo-ment MBase supports the values problem, axiom, theorem, lemma for thestatus attribute.proof Proofs are general desriptive objets that represent proof ideas. Theyserve as objets that for the relations proof-depends-on and proved-by.The intuition behind this deision is that if two proof objets depend ondi�erent de�nitions/assertions, then they are di�erent \Platoni" proofs.In partiular, if an informal proof (say from a mathematial textbook) isformalized in some alulus and additional dependenies beome apparent,then these are also (impliit) dependenies of the original, informal proof.proof-objet Sine there are as many proof formats as dedution systems andmathematial traditions, we annot make any assertion about the represen-tation of proof objets at the moment. Instead we assume the least ommondenominator and provide strings of unbounded length for the proof objetsassuming that dedution systems an always write proofs to �les.Certain proof formats, like ND proofs and PDS an be represented as �-terms, whih are supported by theMBase logi, so these an be enoded asOz-pikles. This has the advantage that the depends-on-relations an beautomatially heked or omputed by MBase. It is intended to supportmore and more proof formats diretly in MBase in the future, so thatmahine support an be extended.example As examples are just triples onsisting of an objet, an assertion anda proof, their struture is very simple. The three relations of illustrating a



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 11onept, supporting/ountering a universal theorem mentioned above areondensed in to one, with intended meaning spei�ed by a role attribute.2666664 symbolstatus : definedkind : formulatype : 8��:(�! �)! (�! o): ! (� ! o)! o
3777775264 de�nitionsymbol :ontent : see 1.2 375

26664 desriptionitem :format : nameontent : surjetive 377752666664 presentationsymbol :format : TEXmode : preontent : nwp
3777775 264 assertionstatus : theoremontent : see 1.2 375" prooftheorem : #26664 proof � objetproof :format : skethontent : \Diagonalization00 37775Figure 4: Example Reords for \surjetive" and Cantor's TheoremThe relations in Fig. 2 ontain the data for the list-valued slots in the primaryobjets. When we upgrade the database model to an objet-oriented paradigm,e.g. the emerging standard OQL, the binary many-to-many relations will berepresented as methods.de�nition-entailment A symbol may be primitive (in whih ase its statusmust be primitive) or de�ned. In the latter ase, it an have more thanone de�nition, all of whih must be proven equivalent.MBase stores theseequivalene theorems as the set of entailment theorems for a given symbolgiven by the relation def-entails, where the value of the theorem attributemust be of the form \Item ) Entailed-Item".The DBMS ensures that for any de�ned symbol, the def-entails rela-tion must be onneted on the set of its de�nitions (i.e. any pair (d; d0) ofde�nitions must be in the transitive losure of de�nition-entailment).depends-on/loal-in These relations speify dependeny and loality infor-mation for primary knowledge elements. These are invaluable for de�nitionand proof expansion, e.g. during proof veri�ation and for struturing theknowledge in the repository (see setion 2.4).Atually, this relation is urrently implemented by sub-relations def-de-pends-on, proof-depends-on, and ontains, whih make expliit whihsymbols/lemmata are used in a de�nition or assertion, and a relation theory-depends-on, whih spei�es the inheritane relation among theories.



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 122.2. Human-Oriented InformationIn this setion we will address the database failities that provide the knowledgeneessary for presenting the primary knowledge to humans, whih will serveas input to mediators between the MBase and the presentation servies. Theintention of storing suh knowledge (even the hoie of the mediator itself) ina entralized knowledge base server is that this information serves only as adefault, whih an be overridden by loal personal preferenes. The mediators,whih we envision asOz funtors (Ozlets) are a good tool to implement a exibleand ustomizable presentation omponent.desription This relation annotates primary objets with desriptive strings,the format slot spei�es whether the string is a proper desription, a name(e.g. for a named theorem like Gentzen's \Hauptsatz"), keywords and thelike. They give sets of supplementary (administrative and searh) informa-tion for the objets.presentation These objets represent the presentation information for sym-bols in various natural languages, presentation formalisms (suh as ASCII,MathMl (37), LATEX, HtML (50), . . . ) or fonts. It is a entral onernin MBase to separate ontent information from presentation information,therefore, we have not inluded the presentation information into the sym-bols themselves.As we have mentioned above, the primary interfae language for MBaseis the Xml-based OMDo, whih is geared towards semantial markup. Thepresentation markup in formats as the ones mentioned above is often gen-erated using a so-alled Xsl (20) style sheet (i.e. a set prodution rulesfor presentation markup) by an Xsl transformer (the rule interpreter).The upoming generation of Internet browsers like Mozilla, NetsapeNavigator 6, or MS Internet Explorer 5 ontain integrated Xsltransformers and an thus be used to view the presentation form of theOMDo representations diretly.The information needed for the Xsl style sheets is partly global (mostlypertaining to the grammar of the format and the default appearane ofsymbols; this is spei�ed by the style sheet designers), and partly loal tothe symbols (a speialized prodution rule whose head mathes the Xmlelement for the respetive symbol; and an spei�ed in the presentationobjets). Thus a presentation objet normally ontains an Xsl produtionrule tailored to a partiular format.Thus for eah OMDo doument D generated by the appropriate mediatorfor the interation with a human user, MBase also generates a speializedstyle sheet from the presentation objets of all the symbols used in D.Together these result in a presentation in the desired output format.MBase also supports an abbreviated form of the presentation objets, that onlyontains a string (e.g. the string \subseteq for representing the subset relation



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 13� in TEX) and a mode token whih ontrols whether the string is inserted ina pre�x/in�x/post�x way. The appropriate Xsl-presentation is then omputedfrom these values on the y. Finally, if the mode is def, then the presentationobjet an be an Oz-funtor that produes the presentation objet from theneessary arguments. This possibility for writing presentation objets is moreexible than the one above, but ertainly less delarative and portable.2.3. Mahine-Oriented InformationNext to the presentation of knowledge to human users, the presentation of for-mulae to di�erent mathematial servies is a entral issue in MBase. Di�erenttheorem provers urrently have vastly di�ering ommuniation formalisms, whihmay di�er both in the underlying logi, as well as in the onrete syntatial rep-resentation used. The latter issue is a largely software-tehnologial issue thatan be solved by either standardizing the language (e.g. by our OMDo format),and/or by the mediator approah (implementing a translating mediator for anylanguage pair). The issue of the underlying logi is more serious, sine the na-ture of the logi diretly inuenes the appliability and eÆieny of a givenmathematial servie.In setion 4 we present a system of languages interonneted by relativiza-tions, i.e. logial morphisms that map formulae and proofs from more expressivelanguages to less expressive ones. Sine so far, all ourring logial morphismsould be given in terms of de�nition expansions, MBase provides a groupingonstrut for logial morphisms, and a mediator that does de�nition expansionwrt. to this set of de�nitions. In this arhiteture, MBase keeps a table thatmaps mathematial servies to logi morphisms, and when it outputs formulaeto this system �rst applies the appropriate logi morphism (by the relativizationmediator) and then the appropriate syntax generator for this system. For inputfrom another mathematial servie, it only uses the parser.Furthermore, many of the mathematial servies that will use MBase aslients maintain speialized mathematial knowledge whih they need for the-orem proving. For instane, InKa and �Clam annotate terms with so-alledwave-fronts/holes, or more generally olors. Tatial theorem provers need tokeep store and retrieve their tatis, whose format di�ers from system to sys-tem. Proof planners like 
mega, Clam or �Clam furthermore have speializedmethods and ontrol knowledge. Proof presentation systems like Proverb (34)need to store linguisti knowledge about the mathematial onepts they presentin natural language.All of this \private" supplementary information shares the fat that it is in-timately onneted to the knowledge elements already in MBase. Moreover,most of this knowledge is now stored in speial �les in the respetive systems.Therefore MBase o�ers the possibility to store these �les in speial knowledgeelements that an store long byte strings. Storing this knowledge in MBase asopposed to storing it in the servie has the advantage that the knowledge an



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 14partiipate in the struturing mehanisms provided by MBase, thus enabling\just-in-time" loading of the neessary information. Note that MBase does notmake an eÆient management in the theorem prover unneessary, but only givesthe neessary infrastruture to ope with large sets of information.Over time, the general availability for study of the data for private annotationsmay even lead to ross-system adoption of the underlying intuitions and in thelong run even to standards in representing the involved knowledge.2.4. Struturing the Knowledge baseIn almost all library systems of proof development environments (see e.g. (IMPS;IsabelleKB; ILF; PVS)), the set of knowledge elements is strutured by a so-alled \theory" onept. Theories group sets of knowledge elements into subsetsthat e.g. are to be loaded at the same time. In some systems, like 
mega andImps (23), theories are simple sets of elements, in others, like Isabelle or Pvs,they an be parameterized. In MBase we use tehniques from the �eld of al-gebrai spei�ation (see for instane (45)), where the struture of large-saleformalizations (of the intended meaning of programs) have been studied in de-tail. Conretely, we adopt the onept of a \development graph" put forward byDieter Hutter (35), sine this supplies a simple set of primitives for struturedspei�ations and also supports management of theory hange. Furthermore, itis logially equivalent to a large fragment of the emerging Casl standard (17)for algebrai spei�ation (see (6)).A development graph spei�es the large-sale struture of a set of theories(i.e. sets of symbol delarations, their de�nitions, and axioms). It is a graphwhere the nodes are theories and the ars are given by theory morphisms. Thelatter ome in two ategories: import morphisms and inlusions, both ofwhih an be loal and global. A set of import morphisms de�ne (part of) atheory by speifying what material (symbols, de�nitions, axioms) is importedfrom existing theories. Sine the material an be imported modulo a languagemorphism (i.e. it is translated before it is inluded into the new theory), this is avery powerful de�nition mehanism. We an for instane de�ne a theory of ringsgiven as a tuples (R;+; 0;�; �; 1) by importing from a group (M; Æ; e; i) via themorphism fM 7! R; Æ 7! +; e 7! 0; i 7! �g and from a monoid (M; Æ; e) via thefM 7! R�; Æ 7! �; e 7! 1g, where R� is R without 0 (as de�ned in the theory ofmonoids).Inlusions are of a di�erent nature: instead of de�ning a theory, they statestruture information that an be inferred about a theory hierarhy. Like theimport morphisms, inlusions are theory morphisms (the translations of all the-orems of the soure theory must be theorems of the target theory). Only that inontrast to the former, who have this property by de�nition, the inlusions haveto be veri�ed. One they are established, they an be used to transport resultsand proofs from the soure to the target theory, for instane, many algebrai do-mains like groups have a self-inlusion that is indued by the involution with the



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 15inverse element. In many proofs, this inlusion an be used to transport proofsfor symmetri ases instead of re-proving them. Moreover, the struture of thedevelopment graph an be used to support a \management of hange" (see (35)).For instane it is often neessary during theory exploration and development tohange de�nitions and axioms, invalidating proofs of theorems that use them.The theory struture an be used to speify the dependeny relations and savevaluable theorem proving time, the more (redundant) struture we have in adevelopment graph, the more reusable and less brittle proofs beome. To pin-point the the ontribution of individual axioms and de�nitions, the developmentgraph divides morphisms and inlusions into global and loal variants. The loalversions only onern the axioms and de�nitions diretly de�ned in the souretheory, as a onsequene, the global ones an be seen as transitive ompletionsof the loal ones. The user only spei�es the global morphisms, while the sys-tem mainly works with the loal deompositions that allow a more �ne-grainedanalysis of the theory struture.MBase provides data strutures for the development graph and implementsHutter's \management of hange"Like the library systems of many pratially used dedution systems, MBaseviews abstrat data types as abbreviations for sets of de�nitions, axioms andtheorems. For example, the abstrat data type Nat that is spei�ed by the on-strutor de�nitions for zero and the suessor orresponds to the well-knownPeano Axioms for the natural numbers. If we also speify the seletor funtion\predeessor" for the suessor funtion, then e.g. the orresponding ommuta-tion laws an be automatially generated. Again, we represent this by introduingdata base objets for ADTs and group the orresponding de�nitions and usingthe loal-in for grouping. Other de�nition mehanisms, suh as those for e.g.the various lasses of reursive funtions an be handled in the same way.3. Distributing MBaseIn this setion, we will extend theMBase data model presented above to supporta distributed data model, and we will speify some of the management routinespertaining to distribution.With the distribution MBase supports repositories from the arhive serverlevel, where large parts of formalized mathematis are kept entrally, to the per-sonal level, where a researher has a personalMBase to manage her mathemat-ial theories under development. Inbetween there may be workgroup or instituteservers, that support ollaborative development of mathematial theories.To get a feeling for the requirements of distributingMBase, let us take a lookat a likely researh ommuniation senario: We will �rst desribe the ommu-niation pattern as it ould have happened in the era when mathematis wasdone with pen and paper (around 2001), and then model it using distributedMBases (about 2005).lassial, see Fig. 3 Researher R works on Theory T together with his ol-



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 16league R0 at institute I. The theory T is a body of mathematis laid downin an artile A published in journal J . Now, R extends theory T by a newde�nition D (say for a mathematial objet O), proves a set P of theoremsabout O, and alls the resulting extended theory E. After that, R tells herolleague R0 at I about D and P (say by irulating a memo in I), whogets interested and proves a set P 0 of useful properties of O. Together, Rand R0 put the theory E into �nal form F , and submit it to journal J . Thisaepts F and publishes it.
J I R

R0submit F = E + P 0aept Firulate E = D + Psee Eirulate P 0Figure 5: Classial Researh Cooperationwith MBase, see Fig. 3 In 2005, J and I have joined the MathWeb initia-tive, in partiular, J has established an MBase server MJ for the journalJ and has formalized (with the help of researhers from I) theory T , whihnow resides in the MBase server MJ . Furthermore, the institute has itsown departmentalMBaseMI and the researhers R and R0 have the per-sonalMBasesMR andMR0. Now, R develops the formalization FD of O,stores it in MR and formalizes the set P of theorems by formalizing themand formally proving them (yielding FP in MR). To do so, R may needto revise the initial version of D several times in order to be able to provethe desired theorems (reproving the already obtained results that dependedon a previous version of D every time). This proess will be supported byMBase based on tehniques presented in (35), but this is outside of thesope of this artile. Instead of sending around an internal note about Dand P in I, R moves their formalizations FD and FP into the instituteMBase serverMI, from where R0 an import them into his personal mbaseMR0. Alternatively, R ould leave FD and FP in MR and tell R0 person-ally about them, allowing him to import them fromMR intoMR0; but thisis a matter of institute poliy, whih we will not address in this artile. Onthis basis R0 formally proves FP 0, and adds it to theory FE, yielding FFthe formal version of theory F . Then R and R0 submit F to journal J , whoevaluates it (possibly via his own personal MBase) and �nally aepts F .To publish F on MJ , it requests FF from MI, whih moves it there.We believe that the latter (more ompliated) piture is better than the sim-
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see FE,prove FP 0provide
request Fsubmit F = E + P 0aept F

move FFrequest FF move FE = FD + FPimport FEmove FP 0
Figure 6: Researh Cooperation with distributed MBasesple pen-and paper method for managing, arhiving and ommuniating math-ematial theories, sine the formalization gives more preision to mathematialarguments and the identi�ation of mathematial onepts. In pen and papermathematis intuitively lear and ommonplae onepts like the natural num-bers (IN) are often used without a preise de�nition, whih an even result inmis-quotation or mis-appliation of theorems, sine it is unlear whether zero isinluded in the set IN.Many of the advantages that an be reaped from the MBase senario formathematis ome from the hyperlinking possibility given by distribution andInternet-availability of MBase { most importantly by the unique refereningsheme { developed in this artile.There are other issues to be onsidered for this vision: For instane, mathe-matis ommuniation is very doument-entered (artiles, books, tehnial re-ports), and there should be a way to map MBase ontents to some form ofdouments. In (43) we develop an Xml-based meta-language OMDo (this is anextension for the emerging OpenMath standard (15)) for annotating mathe-matial douments that also serves as a ommuniation interfae to MBase.As a onsequene it will be possible e.g. to generate ustomized OMDo dou-ments from MBase, whih an then be presented in one of the more standardpresentation media (e.g. LATEX, HtML, or MathMl).3.1. The Distributed Data Base ModelFor distributing MBase, we make four assumptions (we will relax the last twobelow):A1 the distributedMBase proesses an be reahed via the Internet (by URL),



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 18A2 they are essentially uniform; e.g. realized by the same program, or at leastommuniate by the same protool (see (5) for one based on Kqml).A3 primary objets are realized only one in the network of MBases. Withthis we mean that there is one \de�ning" instane of eah primary objet.As a onsequene, every primary MBase objet has a unique desription:a pair onsisting of the URL of theMBase and the unique identi�er of theobjet there.A4 primary objets are never hanged. This assumption is useful, sine it makesahing and maintenane muh simpler. It is reasonable, at least for pub-lished mathematis, sine hanging e.g. a de�nition or theorem that othermathematial objets depend on is desasterous for overall onsisteny.Note that we annot make a unique representation assumption similar to A3 forrelations between objets. For instane the de�nition D of the objet O from theexample above will probably ontain symbols that reside inMI orMJ , therefore,the depends-on relation for D annot be loalized to MR. The solution here isto introdue referene objets into MR, that point to objets, say in MI orMJ .Definition 3.1 (Referene Objet): Referene objets are database ob-jets that refer to primary objets loated in remote MBases. Tehnially, theyare pairs (M; I) that onsist of the URL M of the remote MBase and theunique objet identi�er I there.IfM is the urrentMBase and I is the unique identi�er of a referene objet(M0; I 0) in M (i.e. instead of a primary objet itself, M has a referene to anobjet O stored in the remote MBaseM0 under the unique identi�er I 0), andM is queried for I, thenM, an forward the query (e.g. using theKqml forwardperformative; f. (24)) to M0 as a query for I 0, to whih M0 would answer bysending O to the original querying agent. Of ourse there is no guarantee thatI 0 points to a primary objet in M0, so that the proess might be iterated.Therefore, M also tells the querying agent that it only has a referene objet,so that it an { e.g. if it is also an MBase { update referene information.3.2. Managing distributed MBasesLet us now look at the management of distributed MBases. In this artile, wedo not speify poliies for managing MBase ontents, but disuss the infras-truture and proesses neessary to eÆiently manage the distribution aspetsof a distributed mathematial knowledge base.One of the most basi proedures is that of moving data betweenMBases, e.g.of the theory FF fromMI toMJ after the submission desribed in our senario.This is realized by \moving" the primary objets and parts of the relations fromMI to MJ .Conretely, a primary objet O (with unique identi�er I) is moved from M



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 19to M0 by reating a new objet O0 (with identi�er I 0) in M0, and replaing Oin M by a referene objet O0 = (M0; I 0). Now, all tuples in relations that areanhored in O, are moved to M0 by deleting the tuple in M and augmentingthe orresponding relation in M0.Definition 3.2 (Anhored): Every MBase relation de�ned in setion 2 hasan anhor feature. This is the �rst feature in the attribute value-maps (e.g.in Fig. 2.1) of the database reords representing the relations. If f is the anhorfeature of a relation R, then we say that R is anhored in f.With assumption A4, we an use a very simple model for ahing. Sineprimary objets never hange, they an be ahed, and ahe-onsisteny is nevera problem. To allow ahing, we simply relax assumption A3, and permit ahedopies of primary objets to exist in other MBases. We still insist on a variantof A3, i.e. that there is only one de�ning instane of a given primary objet;all others are alled ahed.We implement the ahing sheme by augmenting the primary objets by a agahed that marks a primary objet as a ahe opy objet or as a de�ninginstane, and the referene objets de�ned in 3.1 by a ahe referene featurethat points to (ontains the unique identi�er of) a ahe opy objet. We assumethat the database maintenane algorithm, whenever it deides to make a aheopy of an objet O (opying it fromMBaseM), also opies fromM all relationtuples anhored at O and augments the loal relations with them. Now, theknowledge base algorithms an aess ahe objets just like de�ning instanes:whenever they hit a referene objet, they either aess the ahe opy objetspei�ed in the ahe referene feature or (if that is empty) aess the remoteopy of the objet. Cahed objets an be removed without loss of informationas long as the ahe referene feature of the orresponding objet is reset.Sometimes there are situations where it is neessary to hange a de�nition,e.g. if an error ourred in the formalization. We have assumed in A4 thatprimary objets may not hange, so the only way to repair the error is to reatea new de�nition objet in the knowledge base and only use that subsequently.This is possible and even feasible, sine mathematial onepts in MBase arenot primarily identi�ed by their tehnial names but by their identi�ers (whihwill be di�erent by A3) even if the tehnial names oinide. We ould evengive the old objet the status \obsolete" to warn anyone against using the oldde�nition. Even if this is suessful, it is in priniple impossible to determinewhen it is possible to delete the old de�nition, sine other MBases might stillbe referening it.A similar situation ours when a primary objet is moved from MBase Mto M0, and is not referened in M anymore (this will frequently happen, ifompleted theories are moved to higher-levelMBase servers, suh as the arhiveserver MJ in our senario). Therefore an MBase M keeps a reord of all theMBases referring to it: we all those MBases dependent on M. When anMBaseM0 reates a referene objet pointing to a primary objet inM, and it



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 20is not already dependent on M, then M0 sends M a message introduing itselfas a new dependent. This list of dependent MBases allows two optimizations:1. WheneverM moves an objet O to someMBaseM00, reating a refereneobjet (n;M00; I 00), then it an send the new loation of O to all dependentMBases, asking them to update their referene objets and thus shieldingitself from future requests to O.2. If M itself does not referene an objet O, it an ask all its dependentswhether they do. If not, M an delete O.In partiular if anMBaseM does not have dependents, then we are totally freeto hange, delete, or otherwise manipulate data, as long as internal onsistenyis guaranteed.3.3. Managing Context with MBaseConeptually, there are two kinds of MBases that di�er in their poliy towardsdata hange, we all them arhive and srath-pad MBases.1. An arhive MBase is epitomized by the Journal MBase MJ in our se-nario above, it arhives unhanging mathematial knowledge and is refer-ened by many other MBases.2. A srath-pad MBase is epitomized by the personal MBases MR andMR0, these do not have any dependents and are primarily used for theorydevelopment.Sine they have di�erent purposes, they have will have di�erent strutures. Forexample, the amount of data ontained in an arhive server will in general bemuh larger, making sophistiated database support neessary, while srath-paddatabases will have to support theory revision algorithms like the \managementof hange" (35) alluded to in setion 2.4, but the InstantDB database supporturrently implemented in MBase may be suÆient.The two lasses ofMBases will have radially di�erent poliies towards delet-ing and hanging data, one way to implement these is to disallow dependentMBases in srath-pads.In partiular, the lightweight srath-pad MBases an be used to emulateontext server agents. Whenever a set of mathematial servies needs a notionof shared ontext (as opposed to a private notion of state, e.g. in a onstraintsolver servie), then they an request an MBase to store it, e.g. as a speialtheory. Whenever a partiipating servie needs to aess the ontext, it will justissue a knowledge base query or manipulation ommand.This approah, where the ontext is stored externally to the partiipatingmathematial servies is more exible (e.g. servies an be alled into, or leavethe problem solving at arbitrary times) than a more lassial approah, whereontext is stored and manipulated inside the servies. Furthermore, it reduesontext manipulation to knowledge base aess and thus redues implementation



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 21omplexity. Finally, knowledge base servies ould ultimately o�er added-valueservies, suh as proxying or pro-ative lookup.4. Logis, Morphisms and MBase Languages
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The logial language supported by MBase is a poly-morphially typed, sorted reord �-alulus modeled af-ter the mathematial everyday language (often alled\mathematial vernaular", e.g. (19)). It is a joint gen-eralization of the ML-polymorphi �-alulus with kindsas used in Isabelle and Hashimoto & Ohori's poly-morphi reord alulus (47). Reords allow a lean for-malization of mathematial strutures, suh as groupsor �elds, polymorphism is needed to reuse de�nitionsand theorems in the knowledge base and ensure a mod-ular struture of the theory. Finally the mehanism of\kinds" adds to the pratial expressivity of the poly-morphism and is used in many theorem proving sys-tems (�Clam, Isabelle,. . . ). Finally, the MBase logisupplies the infrastruture for sorted �-aluli (see se-tion 5). Coneptually, sorts are unary prediates (or-responding to often-used sets in mathematis) that aretreated speially in the inferene proedures (sorted mathing and uni�ation).This added struture leads to a more onise representation and a more guidedsearh. For lients that annot manipulate sorts, types, reords, or higher-orderquanti�ation, the mediators built into MBase an relativize these languagefeatures away, retaining the intended meaning.We will use a variant of the theory interpretation approah proposed in (22)for relativizationmappings, that an be used to transport meanings and proofsbetween logial formalisms. In fat, in the rest of the artile, we will desribea whole hierarhy of representation languages (see Fig. 7), where relativizationsan be used to arrive at various representation formalisms for mathematis, downto axiomati (Zermelo-Fraenkel) set theory. Before we formally de�ne the notionof relativization by the onept of logial morphism in the next setion, let usdisuss the onsequenes for the arhiteture of MBase.The de�ning intuition for logi morphisms is thatLogi Morphisms Transport Proofs: Let F :S �! S 0 be a logimorphism and A an S-theorem, then F(A) is an S 0-theorem.This already suggests the logial struture of a mathematial knowledge base:Orthogonal to the usual theory hierarhy (indued by theory interpretation mor-phisms; we will not go into in this artile, see (22)), there is a hierarhy of logialsystem indued by logi morphisms. In Fig. 7, we have spei�ed some of the log-ial systems we will disuss in this artile.



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 22Mathematial knowledge an be spei�ed in any of the logial systems; itan be queried and retrieved in any logial system that is downward aessiblefrom this one. Furthermore, ommuniation of mathematial software systemsis possible by way of the \least ommon denominator logi". This may seem asa severe restrition of appliability of the approah, but it is not sine the set oflogial systems and morphisms in the hierarhy is not neessarily �xed:� A new logial system an be inorporated by speifying a logi morphismto any of the existing systems.� A new logi morphism an be added, if it is onsistent with the informationalready present in the struture, i.e. if it is redundant .Of ourse these hierarhy extensions generate proof obligations (determining thelogi morphism property and redundany), whih will have to be supported ina system like MBase. We leave a disussion of this to another artile.The pratial usefulness of a language hierarhy will depend very muh on theexistene of suh redundant morphisms. In partiular for the \least-ommon-denominator" problem between languages L and L0 we an have two kinds ofsituations:� If there is a good and well-understood way to translate formulae from lan-guage L to L0, then we an implement this as a redundant logi morphismin MBase bypassing the need of an intermediate \ommuniation logi".Moreover, making the logi morphism available in MBase will allow otherusers to use it.� If there is no suh translation, or if it is very domain-spei�, then (ofourse) logi morphisms will not help (only further researh into the se-manti relation between the logis and possible translations will).In the rest of this setion, we will make the relativization approah onrete.We will �rst look at the elimination of sorts from sorted �rst-order logi byrelativization. Based on the this guiding example, we we disuss the logialfoundations and the relation to set-theoreti semantis in setion 4.2. We willonlude this setion by a disussion of the relativization of higher-order logiinto �rst-order logi, in order to omplete the lower half of the diagram in �gure 7,before turning to the upper half in setion 5.4.1. Example: Relativizing Sorted First-Order LogiIn this setion, we will onsider relativization from sorted �rst-order logi tolassial �rst-order logi. We will use the simply typed �-alulus (32) as ameta-logial framework for representing the logial systems, sine it gives ussubstitution, replaement and the treatment of bound variables for free. Thisis only a notational onveniene and of no fundamental importane. In parti-ular, this does not make any prerequisites on the part of the logial systemslike �rst-order logi presented in this hapter. FOL = (LFOL; ND(FOL)) is the



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 23FOL = (LFOL; ND(FOL))Signature � Type Individualso Type Truth Values^ o! o! o Conjuntion: o! o Negation�� (�! o)! o Universal Quanti�ationLFOL = well-typed formulae of type oND(FOL) ... ...`̀�� ��B ��E`̀�� BA `̀�� AX ��I`̀�� ��AFigure 8: First-Order Logilogial system, where the logial part of the signature onsists of the type on-stants o and � (for truth values and individuals) and the term onstants ^;:,and � (see Fig. 4.1, all other onnetives an be de�ned from : and ^, by DeMorgan rules, and quanti�ation an be regained by treating 8XA as an ab-breviation of �(�XA)). The signature of �rst-order logi an ontain furthernon-logial onstants (alled parameters) that model mathematial strutures.In the following, all arguments and onstrutions will be parametri in the hoieof parameters in the signature, and we will use the more preise FOL(�) for theinstane of FOL that ontains the parameters delared in the signature �.C = ND(FOL) is the well-known alulus of natural dedution introdued byGerhard Gentzen in (29). We will use `̀�� to abbreviate `ND(FOL) (in Fig. 4.1, wehave only depited the quanti�er rules, sine they will be the only interestingones for the disussion in this artile).The logial system SFOL (see Fig. 4.1) is an extension of FOL, where thesignature is extended by an order-sorted set S of sorts, a sorted quanti�er �� anda set of onstant- and subsort delarations (again, we will make use of higher-order abstrat syntax here and write the traditional 8XA B as ��A (�X B).).The language LSFOL is the set of well-sorted formulae, i.e. formulae, where forall appliations f(a) the argument a has a sort that is an argument sort ofthe funtion f . We speify this by the sort judgment � s̀� A::A (A has sort Aunder the sort assumptions for the variables in A given in the variable ontext�). The subsort relation and the property of being well-sorted are given by thejudgments s̀� A � B and � s̀� A::A , whih are proven by the subsorting andwell-sortedness sub-aluli of ND(SFOL). We will use `̀s� for the propositionalpart of ND(SFOL).The logial morphismRS from SFOL to FOL interprets the sorts in S as unaryprediates (parameters of type �! o) in FOL. Note that with the de�nitions in



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 24SFOL = (LSFOL; ND(SFOL)) = FOL+Signature � A ; B ; : : : �! o Sorts b= Subsets of individuals[A � B ℄ Subsort delarations[::A ℄ Constant delarations�� (�! o)2 ! o Sorted Universal Quanti�ationLSFOL Well-formed = well-typedSubsorting [A � B ℄ 2 �s̀� A � B s̀� A � A s̀� A � B s̀� B � Cs̀� A � CWell-sorted [::A ℄ 2 �� s̀� ::A �; [X::A ℄ s̀� X::A � s̀� A::B ! C � s̀� B::B� s̀� AB::CND(SFOL) � � � � `̀�� ��AB � `̀�� A::A� `̀�� BA �; [X::A ℄ `̀�� AX� `̀�� ��AAFigure 9: Sorted First-Order LogiFig. 4.1, the universal 8XA A in LSFOL(�) is relativized to the FOL(�)-formula8X A (X) ) A (if A is a base sort). This is just the well-known relativizationmorphism for sorted �rst-order logis. Funtion sorts are relativized into �rst-order assertions about the domains and ranges of funtions. The seond part ofFig. 4.1 de�nes the signature axioms generated by a delaration in a sortedsignature �. We will denote the set of all signature axioms by RS(�). Similarly,we an de�ne the set RS(�) of sort assumptions generated by a sorted on-text � by setting RS([X::A ℄) := RS(A )(X) for a delaration [X::A ℄, we will useRS(�;�) for RS(�) [RS(�).RlS :LSFOL �! LFOLSignature � RS -imagea; f; g; : : : a; f; g; : : : 2 �A ; B ; : : : PA ;PB : : : 2 �A ! B �F�!� (8XRS(A )(X) )RS(B )(FX))�� �S�!o �T�!o 8X� SX ) TXSignature � Signature Axioms RS(�)[A � B ℄ PA � PB[::A ℄ RlS(A )()Figure 10: Formula Relativization from SFOL to FOL: RlS



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 25Their signi�ane is that they enode all the information of the sorted signa-ture in �rst-order logi, so that we have the following theorem:Theorem 4.1 (Sort Relativization Theorem):If � `̀�� A, then RS(�;�) `̀�� RS(A)The proof is a diret onsequene of the de�nition of RlS , de�ned in Fig. 4.1:Let D: � `̀s� A, then DSortsND(SFOL):RS(�;�) `̀�� RS(A), sine RlS is a alulusmorphism from SFOL to FOL.All the disussion so far has been purely syntati, we will ome to semantiquestions in the next setion.[A � B ℄ 2 �s̀� A � B RS(�;�) `̀�� PA � PB sine (PA � PB) 2 T�s̀� A � A PAX `̀�� PAX`̀�� PAX ) PAX`̀�� 8X PAX ) PAXs̀� A � B s̀� B � Cs̀� A � C transitivity of )[::A ℄ 2 �� s̀� ::A RS(�) `̀�� PA sine PA 2 RS(�)�; [X ::A ℄ s̀� X ::A R(�);PA(X) `̀�� PAX� s̀� A::B ! C � s̀� B::B� s̀� AB::C RS(�;�) `̀�� 8X PBX ) PC(RS(AX))RS(�;�) `̀�� PB(RS(B)) ) PC(RS(AB)) RS(�;�) `̀�� PB(RS(B))RS(�;�) `̀�� PC(RS(AB))� `̀s� ��AB � s̀� A::A� `̀s� BA RS(�;�) `̀�� �(�X (AX) ) (BX))RS(�;�) `̀�� AA ) BA RS(�;�) `̀�� AABA�; [X ::A ℄ `̀s� AX� `̀s� ��AA RS(�;�);PAX `̀�� AXRS(�;�) `̀�� AX ) AXRS(�;�) `̀�� �(�X AX ) AX)Figure 11: Proof Relativization from SFOL to FOL: RS .



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 264.2. Logial MorphismsThe fundamental logial notions for relativizations like the ones disussed inthe last setion are logial systems and logi morphisms. For the purposes ofthis artile, we will all a pair S = (L; C) a logial system, if L is a logiallanguage (set of well-formed formulae) and C is a alulus i.e. a set of inferenerules de�ned in usual way as n-ary relations over well-formed formulae; formallyC � L� = Si2IN Li.Given a logial system S = (L; C), we de�ne an S-derivation D of an asser-tion A from a set H of hypothesess (written D:H `S A) as a tree D (or adireted ayli graph), where the leaves of D are labeled with the formulae fromH and the root is labeled with A. Furthermore, all nodes of D are labeled byassertions C and inferene rules R 2 C, suh that the for the labels H1; : : : ;Hnof the daughters of a node we have R(H1; : : : ;Hn;C). Thus a alulus C de�nesa relation `S (of variable arity) on L, whih we will all the derivation relationof S. We will use the terms like S-proof (for a derivation of an assertion A fromthe empty set of hypotheses) and S-theorem (for an assertion for whih thereis a S-proof) in the usual way.We say that a logial system S = (L; C) is a subsystem of S 0 = (L0; C 0), i�L � L0 and `S�`S0 . We all S equivalent to S 0, i� L = L0 and `S=`S0, orequivalently, if they are subsystems of eah other.A alulus omes with a natural notion of omposition of derivations: IfD:H;A `C B, and E :K `C A, then we obtain a C-derivation from D andE (we denote it with D �A E) by attahing E at the leaf A of D; we haveD �A E :H;K `C B. Note that any alulus C an be augmented with ombina-tions of the inferene rules without hanging the derivability relation (the logialsystems are equivalent, whih really interests us for our appliations). We willtherefore assume that aluli are minimal in the following sense: If D; E 2 C,then D �A D =2 C.Let S = (L; C) and S 0 = (L0; C 0) be logial systems and f:L �! L0 a totalfuntion, then we all a total funtion g that maps S-derivations to S 0-derivationsa alulus morphism with respet to f, i� for any S-derivation D:H `S A, wehave g(D): f(H) `S0 f(A). A logi morphism F :S �! S 0, is a pair (F l;F )of mappings, suh that F is a alulus morphism with respet to F l. We all Fa logi homomorphism, i� F (E �A D) = F (E) �F l(A) F (D). Note that alogi homomorphism is determined by its behavior on C.In analogy to the Sort relativization theorem (4.1), we have to following meta-theorem.Theorem 4.2 (General Relativization Theorem): If S = (L; C) and S 0 =(L0; C 0) are logial systems, R:S �! S 0 is a logi morphism, and H `C A, thenR(�);R(H) `C0 R(A).The existene of suh theorems is the guiding intuition behind our setup of thelandsape of representation languages in Fig. 7. Any theorem that is provable in



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 27a higher representation language will be provable (and indeed the proof an beonstruted by relativization) in the basi logis. Let us now investigate how wean build logial morphisms.Let S = (L; C) be a logial system and f:L0 �! L a total funtion, thenf indues a alulus Cf on L0 by setting H `Cf A, i� f(H) `C f(A). We allS f := (L0; Cf) the logial system indued by f. Moreover, f indues a logial ho-momorphism F f =:S f ! S, in the obvious way (F f = (f; g), where g is thehomomorphism on derivations indued by the translation f). Note that a fun-tion F := (F l;F ):S �! S 0 = (L0; C 0) is a logial morphism, i� `S f�`S0 , or inother words, S f is a subsystem of S 0.We will all a set H of logial systems together with a set of logial morphismsa logial hierarhy, if the set of logial morphisms is losed under omposition(note that the omposition of two logial morphisms is again one). The formalnotions introdued so far are suÆient to introdue a methodology of maintaininglogial hierarhies. We an start out with a logial system, (say FOL as in thelast setion), and introdue another logial system by induing it from formulamapping. ND(SFOL) is indued by RlS in the following way: let us onsider thease of universal instantiation we need an ND(SFOL) rule that proves 8XA A,so we look for a ND(FOL) proof of 8X PAX ) A, we identify the smallestsubtree, suh that all of the leaves are in Im(RlS), and arrive at the last but onein Fig. 4.1. If we proeed similarly with the other inferene rules, we arrive atND(SFOL).So we an see that we an introdue a new logial system with a logi morphisminto a hierarhy by speifying the language (morphism) and induing the alulus(this situation is similar to the ase of import morphisms in the theory hierarhyin setion 2.4). If we want to introdue a new logi morphism between existinglogial systems, we have to be more areful, sine the alulus in the souresystem is already �xed. In order to prove that the de�ning pair F = (F l;F )of mappings is really a logi morphism we have to hek that logial systemindued by F is a subsystem of the original target system. Note that we evenhave to hek these onditions for logial endomorphisms (logial morphismsfrom a logial system to itself), sine we always have the identity morphism, towhih a new logial morphism has to be ompatible. Thus the ase of addinga new (redundant) logial morphism to a hierarhy is similar to the ase ofthe theory-inlusions disussed in setion 2.4. We expet that we an develop aalulus for the \management of logial hierarhies" based on the Dieter Hutter'sideas for theory hierarhies, but we leave that to further work.Let us now see how the ideas of linking logis relates to semantis. In thisexample, we take the semantis of �rst-order logi as given. It is just the lassialTarski-style semantis: A model is a pair (D�; I), where D� is an arbitrary set ofindividuals and I is a funtion that maps individual onstants in � to members ofD�, funtions in � to funtions/relations on D� (of appropriate arities). Variablesare evaluated by a variable assignment ', so that the value funtion I' is just thehomomorphism determined by I and '. Note that this semantis is absolutely



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 28onsistent with our hoie to take the simply typed �-alulus as a meta-logi: thehoie of the universe D� determines the standard model D = fD�:� 2 T g if wetake Do := fT; Fg. n-ary funtions are then objets of type �! : : :! �! �, andprediates of type �! : : :! �! o. The semantis of universal quanti�ation isregained by setting I(��) to be the prediate that evaluates to T, i� its argumentis T on all inputs: I'(8XA) = I'(��(�XA)) = I(��)(I'(�XA)) = T, i�I'(�XA)a = T for all a 2 D�. This is the ase, i� I';[a=X℄A = T, by de�nitionof the value of �-terms in the simply typed �-alulus.The semantis of SFOL is similar and well-known from the literature. Letus for the moment forget this and see whether we an de�ne the semantis ofthe logial system SFOL by RS . For this we intuitively work the relativizationmapping bakwards.We start out with the sorts. These are members of the signature, so they shouldbe reeted diretly in the struture of the model. Sine they are relativized tounary prediates, a sort A must orrespond to a subset DA = fa 2 D� j I(A ) =Tg � D� of the universe D�. Now, the signature axioms tell us that if [A � B ℄ 2 �,then DA � DB and if [::A ℄ 2 �, then I() 2 DA . In partiular, the signatureaxiom for funtional sorts insists on the right input-output behavior of funtions.For a variable ontext �, the ontext assumptions speify that the ontext iswell-sorted.Note that this is a (a posteriori) veri�ation of the semantis of sorted logisfrom the literature. Also note that this aount does not entail the fat that sortsare non-empty (a fat that is often assumed in sorted logis). We only know thisif there is a onstant delaration for eah base sort in the signature.We will say that the semantis we have onstruted by looking at the relativiza-tion was indued by RS from the the semantis of FOL. Now, the relativizationtheorem gives us a onservative extension result: If ND(FOL) is sound for �rst-order semantis, then ND(SFOL) is for the indued semantis. Furthermore, thelogial system SFOL is not more expressive than FOL.In the speial ase of R:SFOL �! FOL we also have the onverse result,(SFOL and FOL are equally expressive), sine there is a partial inverse RTop toRS (RS ÆRTop = IdFOL), whih embeds FOL as a fragment into SFOL.RTop(�)ontains only one (base) sort Top� and one delaration [::Top�℄, for eah onstantof type � in � (here we use the onvention that Top�!� = Top� ! Top�). Thelanguage and alulus morphism are the identity. Clearly, the semantis induedfrom the semantis of SFOL by RTop is again the semantis of FOL.4.3. Relativizing Type Theory into Set TheoryThe goal of the next setion will be to onstrut a hierarhy of representa-tion languages ulminating in a high-level logial system MV (see setion 5)for formalizing mathematis. BMV is a joint generalization of Ohori's reord�-alulus (47) and the sorted �-alulus from (41). MV extends BMV by spe-ialized sort mahinery to formalize mathematial strutures like groups. Before



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 29we undertake that, let us briey omplete the disussion of the lower half ofFig. 7.The method of relativizations an be used to build up the simply typed �-alulus (�!) from axiomati set theories like ZF (25), and we will spend the restof this setion exploring this possibility to ground the hierarhy of representationlanguages in set theories. Sine the logial side of this is rather standard and well-understood (see e.g. (21)) and has been formalized in several dedution systems,e.g.in Otter (49) or Isabelle (48), we will only briey sketh the proess.Axiomati set theories like ZF only ome with a basi type  of \set" and withthe logial relation onstant 2 for element-hood. The axiomati method is usedto restrit set omprehension to get around paradoxial sets like Russell's setof all sets that do not ontain themselves: the theories ontain spei� axiomsfor set omprehension; for instane there is an axiom stating that for any setsA and B , the Cartesian produt A � B is again a set. (Partial) funtions areonstrued as univoal relations (a relation F � A � B is a funtion, i� for all(x; y); (x; z) 2 F we have y = z) and funtion appliation is represented asprojetion to the seond argument (f[a℄ is the (unique) b, suh that (a; b) 2 f.)We start out by relativizing the simply typed �-alulus to typed set theoryT Set, i.e. a simply typed higher-order prediate logi HOL together with a for-mulation of the ZF axioms, interpreting sets as prediates and element-hood asprediation (i.e. A 2 S stands for S(A)). HOL is a variant of Andrews' systemQ with omprehension axioms instead of �-onversion; the types make T Setonsistent (see (3) for a dedution-related introdution of higher-order logi andthe simply typed model theory). Using the tehniques from (21; 48), we use theseletion axiom from ZF to onstrut a �-operator, i.e. a T Set-formula thatbehaves like the �-abstration operator. Thus we an onstrut a language mor-phism from the simply typed �-alulus to T Set by mapping �-abstrations in�! to HOL-formulae using �. The alulus morphism is onstruted by mappingthe �-axiom sheme of �! to the proof of the validity � in T Set.The next step is to relativize T Set (higher-order logi) to sorted �rst-orderlogi. For this, we an either use a tehnique developed by Manfred Kerber (38)or we an diretly use the de�nition of funtions as univoal relations in ZFto build a logi morphism from T Set to sorted �rst-order logi. Finally, thetehniques detailed in setion 4.1 get us to lassial ZF. Note that we have totake are to relativize the ZF axioms in the soure system to a form in whihthey are equivalent to the ZF axioms native to the target system.4.4. EvaluationThe logi morphisms presented in this setion an always be used to transformany proof in the soure system into one of the target system (this is the reasonfor the de�nition of logi morphism used in this artile), in other words, froma purely theoretial point of view, the expressive type-theoreti representationformalisms in the MV hierarhy an be viewed as being only syntati sugar



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 30to enhane legibility. However, from a pratial point of view, the expressiveformalisms allow for more eÆient inferene systems that allow the knowledgebase system to give added value servies, that would be impratial on the levelof set theory.We believe that while axiomati set theories address foundational issues offormalizing mathematis { in the old representational tradition of lassial logi,where there is a quest for the minimal logial system that is expressive enoughto enode all relevant problems { logial systems like the simply typed �-alulusare more adequate to address omputational needs of doing mathematis.Orthogonal to the debate about set theory vs. type theory, there is a disussion,whether or not formalized mathematis should be onstrutive or not. We do notmake any assertion about this, but note, that it is simple to extend the hierarhyof representation languages by providing a logial morphism to intuitionisti settheory that basially introdues orales for the law of the exluded middle; seee.g. (33). In Fig. 7, we have marked the intuitionisti logial systems with an iand the orale-morphisms with dotted lines.In the next setion, we will ontinue to develop higher-level representationformalisms for mathematis by the logial morphism method disussed in thissetion.5. Mathematial VernaularIn this setion, we develop the basi onepts for a representation languageMVfor formalizing and reasoning about mathematis in MBase. Suh a logi mustbe exible, easy to use, and last but not least, it must support the rih, struturedinferene mahinery mathematiians have at their disposal. In short, it should bemodeled after the natural language of everyday mathematis, that is sometimesalled \mathematial vernaular" (This term is taken from N.G. de Bruin in (19),where he proposes a di�erent logial system with similar intentions).In ontrast to other authors, we ontend that this language an be modeled ina formal language, and that the system MV is a good �rst approximation. Wewill develop the syntax and operational semantis of MV, and show that it anbe grounded in simpler logial systems (and ultimately in axiomati set theory)by the tehnique of logial morphisms developed in setion 4. This also gives usa way of relativizing all inferene mehanisms, suh as sort omputation, sortedhigher-order mathing and uni�ation into less expressive logis, where they an(if wanted) be veri�ed.Note that the relativizations give us a form of set-theoreti semantis (bymapping formulae to set theory), whih an be shown to be equivalent to thestandard Tarski-style semantis for �! (see (3) for typed Henkin models and (41)for a sorted version).To get a better intuition about the language, we will develop MV in threesteps. To introdue the basi setup of the language we start out with a lan-guage BMV, whih extends the simply typed �-alulus by sorts and reords in



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 31setion 5.1. Then we suessively enhane the pratial expressive power of thelanguage by introduing label-seletive appliation and abstrations, and depen-dent sorts as additional language onstruts using semigroups as the motivatingexample. As we will see in setion 5.5, this does not enhane the expressivityin priniple, but (as we will see in the mathematial examples in setion 5.4) ithas pratial advantages both for oniseness of representation and in enablinginferene proedures.5.1. BMV an Expressive Sorted Reord-�-CalulusT ::= � j o j T ! T 0 j ff`1: T 1; : : : ; `n: T ngg (Types: �; �; : : :)S ::= TopT j S ! S 0 j ff`1::S1; : : : ; `n::Sngg j S u S 0 (Sorts A ; B ; : : :)M ::= X j  j (MN) j �XM (Terms A;B; : : :)j ff`1 =M1; : : : ; `n =Mngg jM:`variables : X; Y; Z; onstants : ;��;^;:� ::= ; j �; [M::S℄ j �; [S:> T ℄ j �; [S � S 0℄ (Signature)� ::= ; j �; [X::S℄ (Environment)Figure 12: Syntax of BMVBMV is a sorted reord-�-alulus (see Fig. 5.1), i.e. an extension of the simplytyped �-alulus by reords. We will use the type o for the truth values and thetype � for individuals. As a onsequene terms and formulae an be distinguishedby their type: the equivalents of (�rst-order) formulae are �-terms of type o,whereas terms are �-terms of type �. We will all a type a reord type, i� it isof the form ff`1:�1; : : : ; `n:�ngg, and we will use the standard reord seletionoperator \." with the assumption that it is only applied to reord types.Furthermore, the type system is augmented with a typed sort system, thatan be used to speify domains and ranges of funtions and thus enables thesystem to ompute most of the de�nedness preonditions that are ubiquitous inmathematis fully autonomously. From an abstrat point of view, sorts enableus to onstrain the set of models and restrit the inferene proedures to thisset of models. It is important for the soundness of the system that sorts are alsotyped (see Fig. 15 for an inferene system that omputes the type of a givensort).The set of judgments (see Fig. 5.1) that are needed for the formal developmentof the alulus omprises the typing judgments for terms � �̀� A:� and sortss̀� A :> �, the sorting judgment (� s̀� A::A ).All of these judgments are relative to a set of global type/sort assumptions inthe signature � and the judgments for terms (sorts do not ontain variables)are also relative to a set of (loal) type and sort assumptions � (the ontext)for the variables.



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 32� `̀s� M M is provable from assumptions �s̀� A � B Sort A 2 S is a subsort of B 2 S�̀� A :> � Sort A 2 S has type � 2 T (at most one per sort A )� s̀� A::A Term A has sort A assuming � and �� �̀� A:� Term A has type � 2 T0 assuming � and �Figure 13: Judgments[A::A ℄ 2 �� s̀� A::A [X::A ℄ 2 �� s̀� X::A � s̀� A:�� s̀� A::Top�� s̀� A::C ! A � s̀� C::C� s̀� AC::A �; X::B s̀� A::A s̀� B :> �� s̀� �X�A::B ! A� s̀� A::A � s̀� A=��B� s̀� B::A� s̀� A::A� s̀� A:`::A :` � s̀� A1::A 1 : : : � s̀� An::A n� s̀� ff`1 = A1; : : : ; `n = Angg::ff`1::A 1 ; : : : ; `n::A ngg� s̀� A::A � s̀� A::B� s̀� A::A u B � s̀� A::A u B� s̀� A::A � s̀� A::A u B� s̀� A::BFigure 14: Well-sorted terms in BMVThe most important judgment for well-formedness of MV expressions is theterm sorting judgment (see Fig. 14), whih lassi�es terms by their sorts. The�rst set of rules omes from the ordinary sorted �-alulus (see (41) for anintrodution), the seond is an obvious adaptation of Ohori's rules for reordtyping (47), and the third set of rules is that for intersetion sorts from (44).The most important rule in the sorted alulus is the �rst one in Fig. 14, theterm delaration rule. In ontrast to other systems it allows to delare and usesort information for term shemata like [XR � X::P℄ (doubling a real numberprodues an positive real), [(�X X); (�X YR)::M ℄ (the identity and the onstantfuntion are monomials), and even [(�F;G;X FX �GX)::M 2 ! M ℄ (the set ofmonoids is losed under pointwise multipliation). Note that the latter give afull theory of monoid funtions on the reals. The term typing judgment { whihguarantees onsisteny and termination of ��-redution { is de�ned in terms of



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 33[A :> �℄ 2 ��̀� A :> � �̀� Top�:> � �̀� A :> � �̀� B :> ��̀� A ! B :> �! ��̀� A 1 :> �1 : : : �̀� A n :> �n�̀� ff`1::A 1 ; : : : ; `n::A ngg:> ff`1:�1; : : : ; `n:�ngg �̀� A :> ff`:�; : : :gg�̀� A :`:> �Figure 15: Sort Typing[A � B ℄ 2 �s̀� A � B s̀� A � A s̀� A � B s̀� B � Cs̀� A � Cs̀� A u B � A s̀� A u B � BA 0 � A B � B 0A ! B � A 0 ! B 0 Top�!� � Top� ! Top�Figure 16: Subsortingit: if � s̀� A::A and �̀� A :> �, then � �̀� A:�. Note that the typed system isjust Ohori's reord alulus (47), whih is a onservative extension of the simplytyped �-alulus.For suh a onstrution, sorts must also be typed (see Fig. 15 for an inferenesystem for the sort typing judgment). We will see in setion 5.5 that this givesus a onservative extension of the simply typed �-alulus. Subsorting is usedin the signature to delare an intended subset relation between sorts. We do nothave to delare all subsort relations in the signature, sine some an be inferredby the inferene system in Fig. 16. Note that we do not need a subsort judgmentin a system like BMV, sine the notion of subsorting is in priniple subsumed bythe mehanism of term delarations ( the rules in Fig. 16 are in fat admissible;see (41) for details). However it is good to inlude them expliitly in a systemlike MV , intuitive usability and readability are important. With the methodsfrom (41), we an hek that MV is a well-de�ned system, e.g. if s̀� A � B , thenthere is a type � 2 T , suh that �̀� A :> � and �̀� B :> �.Now, we ome to the BMV alulus for validity: a variant of Gentzen's al-ulus of natural dedution. We will use alphabeti renaming and permutation



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 34�; X::B s̀� A::A � s̀� B::B� `̀s� (�XB A)B �!� [B=X℄A � �̀� A:�! � X =2 Free(A)� `̀s� (�XAX) �!� A� `̀s� ff` = A; : : :gg:` �!� A � `̀s� ff`1 = A:`1; : : : ; `n = A:`ngg �!� AFigure 17: Operational Equality for BMV.� `̀s� �AB � s̀� A::A� `̀s� BA �; [X::A ℄ `̀s� AX� `̀s� �AA � `̀s� A =��� B � `̀s� A� `̀s� BFigure 18: Natural Dedution for BMV.for reords, reord types and reord sorts without referene. Furthermore, MVknows sorted variants of ��-redution like the one in (41) and furthermore �-redution for reord onstrutors (see Fig. 18). Finally, we have the introdutionand elimination rules for the sorted quanti�er �A . The �A (A 2 S) are logialonstants of sort (A ! Topo) ! Topo for BMV, we use the usual higher-orderabstrat syntax, where 8XA A stands for �A (�XA).5.2. Label-Seletive Abstration and AppliationWhen formalizing larger bodies of mathematis or reusing already existing the-ories it often beomes problemati to remember argument order of funtions.For this, programming languages like Common Lisp { where the situation issimilar { have developed the so-alled keyword arguments, i.e. a variant offuntion appliation and abstration, where the mapping of arguments to formalparameters is not based on argument order, but on identi�ation by so-alledkeywords. This idea has been formalized by Ait Kai and Garrigue in the so-alled label-seletive �-alulus (2), whih extends the simply typed �-alulusby label-seletive appliation and abstration.In the following, we will briey sketh how to extend MV analogously. For-mally, we need an additional type shema: � �̀! �, a orresponding sort shemaA �̀! B and two new term onstrutors: [A�`B℄ for labeled appliation and�`XA for labeled �-abstration. We will reuse the reord labels as seletionlabels, sine they serve a similar purpose (` and k orrespond to the keywords



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 35� s̀� A::C �̀! A � s̀� C::C� s̀� [A�`C℄::A �; X::B s̀� A::A� s̀� �`XA::B �̀! A�; X::B s̀� A::A � s̀� B::B[(�`XA)�`B℄ �!� [B=X℄AX =2 Free(B)[(�`XA)�kB℄ �!� (�`X [A�kB℄) � �̀� A:� �̀! � X =2 Free(A)(�`X [A�`X℄) �!� AA 1 `1�! A 2 `2�! B =� A 2 `2�! A 1 `1�! B(�`X �kY A) =� (�kY �`XA) [A�`B�kC℄ =� [A�kC�`B℄Figure 19: A label-seletive extension to MV .in Lisp). Finally, we will use the n-ary notation [A�`B�kC℄ as an abbreviationfor [[A�`B℄�kC℄.The extensions to the respetive inferene systems an be found in Fig. 19.In partiular, we onsider labeled appliation/abstration to be ommutative(they are assoiative by onstrution, sine types are left-assoiative). With thisextension, to MV we an for instane have a onstant div for integer divisionand express the term 5div2 as [div�dividend5�divisor2℄ or [div�divisor2�dividend5℄5.3. Dependent (Reord) SortsLabel-seletivity gives us another advantage, we an extend it to a system withdependent sorts, if we allow terms and labels of type � ! o to appear as basesorts loally. Coneptually, in BMV, sorts are unary prediate onstants, so thegeneralization is not as large as it seems at �rst. Let us look at the followingformalization of assoiativity:asso := �SetS �OpF 8XSYSZS FX(FY Z) = F (FXY )Z (1)In BMV , this would have the sort Top�!o ! (A ! A ! A ) ! Topo for some apriori given sort A . We would however to have [asso�SetS℄ (assoiativity on agiven set S) to have sort (S! S! S)! Topo, i.e. to be a prediate on binaryfuntions on S.



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 36If we extend the set of base sorts by variables of type � ! o (and of oursemake the sort typing judgment dependent on a ontext �, by extending all rulesin Fig. 15 with ontexts in the obvious way) and add the �rst two rules in Fig. 20to MV, then we obtain the following sort derivation, whih gives us a sort thatdoes show the dependene missing above....[S::Top�!o℄; [F ::S ! S ! S℄ s̀� (8XSYSZS FX(FY Z) = F (FXY )Z)::Topo[S::Top�!o℄ s̀� �OpF 8XSYSZS FX(FY Z) = F (FXY )Z::(S ! S ! S) Op��! Topos̀� asso::Top�!o Set��! (Set3) Op��! TopoHere (and in the following) we use A 3 as an abbreviation for the sort A ! A !A .Unfortunately, the sorts disussed so far are not yet expressive enough for adiret representation of ommon mathematial strutures suh as semigroups. Asemigroup is a pair (S; Æ), were S is an arbitrary set and Æ:S � S �! S is anassoiative binary funtion on S. Just as in the ase of assoiativity disussed insetion 5.3, we would like to represent S as a sort S and Æ as a funtion of sortS! S! S in a reord of type ffSet:�! o;Op:�! �! �gg. However, in thesystem developed so far, we annot express a reord sort likeSetop := ffSet::Top�!o;Op::Set ! Set ! SetggThe seond two rules in Fig. 20 extend MV by very dependent reordsorts. This name is hosen to resemble Jason Hikey's \very dependent reordtypes" (31) and serve the same purpose, even if the formalization on the levelof sorts is muh more unproblemati, sine there are no onsisteny problemsinvolved: Well-typedness is preserved at the level of (simple) reord types.To make the reords dependent, we have to serialize the reord onstrutionrule from Fig. 14. Tehnially, we will (ab)use the ontext to store the nees-sary assumptions about the feature values and use the standard reord mergeoperator 
 to write down the rules in Fig. 20.Let IN be the set of natural numbers and +::N3 the addition funtion onnatural numbers, then we have the following sort derivation in MV.s̀� +::IN3[Set = IN℄ s̀� +::Set3[Set = IN℄ s̀� ffOp = +gg::ffOp::Set3gg s̀� Top�!o:> �! os̀� ffSet = IN;Op = +gg::Setop



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 37�; [X::B ℄ s̀� A::A �̀� B :> � ! o� s̀� �`XA::B �̀! [`=X℄A � s̀� A::C �̀! A � s̀� C::C� s̀� AC::[C=`℄A�; [` = A℄ s̀� B::B � s̀� A::A � �̀� A :> �! o� s̀� ff` = Agg 
B::ff`::A gg 
 B � s̀� [B=`℄A::[B=`℄A�; [` = B℄ s̀� A::AFigure 20: ExtendingMV by dependent sorts
s̀� fA jPg � A � s̀� A::A � `̀s� PA� s̀� A::fA jPg�̀� P:�! o �̀� A :> ��̀� fA jPg:� �; [X::fA jPg℄ `̀s� PXFigure 21: Augmenting MV by Seletion Sorts5.4. Seletion Sorts and SemigroupsIn this setion, we will fortify our intuition about MV by onsidering an exam-ple from elementary algebra: semigroups. To be able to handle them naturally,we will need to upgrade the system by seletion sorts. Conretely, we use anew sort onstrutor f�j�g that yields a new (base) sort fA jPg for a given sortA with �̀� A :> � and a losed term P of type � ! o. Intuitively, this sortorresponds to the set of all objets of sort A , on whih P holds. Considerfor instane the set of ontinuous real funtions, that we an model as the sortC := f(R ! R)j(�X 8� 9Æ : : :)g. Now we an represent the theorem that the sumof two ontinuous funtions is again ontinuous by 8FCGC C (�XR +(FX)(GX))If we want to prove this lemma, we have to be able to expand the de�nitions ofthe sort C , whih explains the neessity of the last axiom in Fig. 21. Note thatone we have proven this theorem, we an interpret it as a term delaration, addit to the signature, and diretly use it for further sort omputations.But let us ome bak to the problem of modeling semigroups. We have seenin setion 5.3 that we an represent the struture onsisting of a set and anoperation on this set by the sort Setop = ffSet::Top�!o;Op::Set3gg, thus we anrepresent the sort of all semigroups bySemigroup := fSetopjAg where A := (�X [asso�Set(X:Set)�Op(X:Op)℄)



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 38As we have seen above, we have s̀� asso::A := (Top�!o) Set��! (Set3) Op��! Topoand therefore we an show that Semigroup is a well-typed sort.[X::Setop℄ s̀� asso::A [X::Setop℄ s̀� X:Set::Top�!o[X::Setop℄ s̀� [asso�SetX:Set℄::(X:Set)3 Op��! Topo ...[X::Setop℄ s̀� X:Op::(X:Set)3[X::Setop℄ s̀� [asso�Set(X:Set)�Op(X:Op)℄::Topos̀� �X [asso�Set(X:Set)�Op(X:Op)℄::Setop! Topo�̀� fSetopj�X [asso�Set(X:Set)�Op(X:Op)℄g:> ffSet:�! o;Op:�3ggTo see how we an use the seletion sorts, let us now prove that the operation of asemigroup is assoiative on its set, i.e. we want to prove the formula �SemigroupA,then { using Semigroup = fSetopjAg { we have [X::Semigroup℄ `̀s� AX by theaxiom in Fig. 20 and thus `̀s� �SemigroupA by the sorted quanti�er introdutionrule from Fig. 18.5.5. Relativization for extended MVIn this setion, we will present two relativization morphisms that show that thereords and seletion sorts inMV an be eliminated and that therefore MV is aonservative extension of the simply typed �-alulus.For onstruting an elimination morphism for label-seletive appliations andabstrations, we will make use of the reord alulus in BMV. Intuitively, thetranslation works like this: maximal hains of labeled abstrations are repre-sented as single abstrations over reords with the same labels. Similarly, max-imal hains of labeled appliations as appliations to single reords. In our ex-ample involving integer division we would translate:[[div�dividend5℄�divisor2℄ to divffdividend = 5; divisor = 2ggdiv=��dividendX �divisorY A to �Zffdividend:�;divisor:�ggA0The language morphism � is given by the three equations below.A 1 `1�! : : : `n�1���! A n `n�! B = ff`1::A 1gg 
 [A 1=`1℄(ff`2::A 2gg 
 [A 2=`2℄(: : :
[A n�1=`n�1℄ff`n::A ngg) : : :)! B�`1X1 : : : �`nXnA = �Z [Z:`1=X1℄; : : : ; [Z:`n=Xn℄A[B�`1C1� : : :�`nCn℄ = Aff`1 = C1; : : : ; `n = CnggHere, A and B must be of base type and B may not be an appliation, so thatwe always transform maximal sequenes of arguments and bound variables inone step. Note that this is not a restrition of generality, sine we an always�-expand. This translation uses the fat that entries in a reord do not have a
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� `̀�� ��A (�X PX ) BX) � s̀� A::A� `̀�� PA) BA � `̀�� PA� `̀�� BA

[�; [X::A ℄ `̀�� PX℄1�; [X::A ℄ `̀�� AX 1�; [X::A ℄ `̀�� PX ) AX� `̀�� (�Y PY ) AY )X� `̀�� ��A (�X PX ) AX)Figure 22: Relativizing Seletion Sorts (from the Calulus Morphism)�xed order to obtain the order-independene of labeled abstration:[B�`1C1�`2C2℄ = Bff`1 = A1; `2 = A2gg= Bff`2 = A2; `1 = A1gg = [B�`2C2�`1C1℄�`1X1 �`2X2A = �Z [Z:`1=X1℄; [Z:`2=X2℄A= �Z [Z:`2=X2℄; [Z:`1=X1℄A = �`2X2 �`1X1AThe argumentation for the types and sorts is analogous to the ase for applia-tions. A tedious but simple alulation with ND proofs shows that this languagemorphism an be extended to a alulus morphism. In partiular, the inferenerules in Fig. 19 turn into trivial ND proofs about reords and their sets of labels.We will not go in to details for relativizing away reord sorts and types. Thisan be ahieved by using one of two standard tehniques. By introduing a newtype � for reord objets and modeling all reord labels as partial funtions fromreords to values. Thus a reord BMV of type ff`:�; k: �gg would reeive type� and we would extend the signature by funtions f`: � ! � and fk: � ! �.Alternatively, one an �x an ordering on reord labels and map reords to n-tuples.The logi morphism for eliminating seletion sorts uses the fat that we ande�ne seletion sorts by relativization using PfAjPg := �X PAX ^PX, just like wedid for ordinary sort relativization in setion 4.1. Thus the language morphismrelativizes all ourrenes of formulae of the form �fA jPgA to �A (�X PX ) A).The alulus morphism is given in Fig. 22, it shows the relativization rules for�fA jPg elimination and introdution. Finally, the relativization of the axiom inFig. 20 is a trivial. Note that this allows any proof �; [X::fA jPg℄ `̀s� A to betransformed into one of the form for �; [X::A ℄ `̀�� A under the assumption of�; [X::A ℄ `̀�� PX. This justi�es the impliation introdution step in the transfor-mation of the seond derivation in Fig. 22 (we only have to make sure that the�rst rule is eliminated �rst during the transformation).



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 406. ConlusionWe have desribed the data model of the MBase system, a web-based, dis-tributed mathematial knowledge base (it is realized as a mathematial servieinMathWeb) that o�ers the infrastruture for a universal repository of formal-ized mathematis. We have explained how the distribution of MBase supportsrepositories from the arhive server level, where large parts of formalized mathe-matis are kept entrally, to the personal (srath-pad) level, where a researherhas a personal MBase to manage her mathematial theories under develop-ment. In between there may be workgroup or institute servers, that supportollaborative development of mathematial theories.We have presented a methodology for building a hierarhy of representationlanguages for a mathematial knowledge base. We have shown that using logimorphisms allows us to de�ne high-level language features, suh as dependentsorts in a step-by-step manner from lower (and more standard) ones, and ulti-mately from axiomati set theory. The intended meaning of the more expressivelogial systems is indued via the logial morphisms from the simpler logial sys-tems, thus a knowledge base that is built up using the method proposed in thisartile is truly grounded in set theory. An implementation of the logi morphismsin a knowledge base system, suh as the MBase system under development inSaarbr�uken, will give onstrutive evidene to the old belief of working mathe-matiians that all of mathematis an be relativized (and thus grounded) in settheory.We have instantiated this methodology by skething the development of asorted �-alulus that we laim is well-suited for formalizing mathematial pra-tie. It is an extension of the sorted �-alulus from (41) by dependent funtion{,reord{, and seletion sorts. We have skethed the relativizations needed to in-tegrate it into theMBase system. The advantage of a sorted formulation over alassial type-theoreti one (e.g. LF dependent type disipline or Jason Hikeys\very dependent reord types" (31)) is that onsisteny is a onsequene of therelativization, sine the sorts are typed. This makes all objets simply typed,and hene important meta-theorems like strong normalization of the built-inredutions are relatively easy to prove.The next step will be to develop inferene proedures like higher-order math-ing that are needed for answering high-level queries in MBase. We onjeturethat this will be possible by adapting the methods (in partiular, the struturetheorem) from (41). In fat, one key motivation to extend known representationlanguages for mathematis by the additional struture developed in this artilewas to use the additional struture for inferene purposes. We onjeture thatthe availability of suh inferene proedures will deide on the usefulness, andthus ultimately on the suess of a mathematial knowledge base system.The MBase servie an be used as an ontology server giving a semantisfor system integration and furthermore, the formal representation of knowledge



M. Kohlhase, A. Franke: MBase: Mathematial Knowledge and Context 41elements allows semantis-based retrieval of distributed mathematial fats. Pos-sible queries to MBase ould be glossed as follows:1. For a formula A, give me all knowledge elements B, whih are instanesof A; This kind of queries allows searhing for all instanes of a givenshema. This is partiularly valuable if the formalism allows funtion andprediate variables. For instane a shema A = 8X; Y F (X + Y = Y +X)allows to searh for knowledge elements that use/assert the ommutativityof addition using the variable F to return the ontext.2. Give me all theorems/simpli�ers that are appliable to a formula C. Inthis query, mathing has to be augmented by quanti�er elimination. Itis interesting to obtain a set of possible forward inferenes in a onretesituation.3. Classify the mathematial struture given by the set S of axioms. This kindof query ould be issued, in order to retrieve the mathematial knowledgeabout a onrete mathematial struture (whih may turn out to be a well-known one like a ring in disguise). A possible follow-up query ould be onewhether there are \interesting" speializations of the struture that wouldallow for stronger results.These queries ruially depend on the notion of mathing employed. The moreexpressive (higher up in the taxonomy in Fig. 7) the representation formalismis, the more powerful the mathing algorithms an beome (e.g. higher-ordermathing in �!).It will be neessary to augment the known mathing algorithms to make themaware of the logi morphisms: If we are only looking for formulae, building inthe language morphisms will be suÆient; if we want to be able to searh forproofs of a ertain form, it will also be neessary to extend mathing to proofsand also to build in alulus morphisms. This will generate interesting researhquestions that we will address in due ourse, but not in this artile.Finally, there are many kinds of data mining appliations that ould be run ona larger olletion of formal mathematial knowledge. For instane it would beinteresting to searh for similarity of mathematial strutures. Also to searh forpossible logi morphisms between theories that may be reused later to transportproofs.Referenes[1℄ A. Adams, H. Gottliebsen, S. Linton, and U. Martin. VSDITLU: a Veri�ableSymboli De�nite Integral Table Look-up. In Ganzinger (28), pages 112{126.[2℄ Hassan A�it-Kai and Jaques Garrigue. Label-seletive lambda-alulus:Syntax and onuene. In Proeedings of the 13th International Conferene
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