
INTEGRATING COMPUTER ALGEBRA INTOPROOF PLANNINGManfred KerberSchool of Computer Science, The University of Birmingham,Birmingham B15 2TT, England, e-mail: M.Kerber@cs.bham.ac.ukURL: http://www.cs.bham.ac.uk/~mmkMichael Kohlhase and Volker SorgeFachbereich Informatik, Universit�at des Saarlandes, D-66141 Saarbr�ucken,Germany, e-mail: fkohlhase|sorgeg@ags.uni-sb.deURL: http://jswww.ags.uni-sb.de/f~kohlhase|~sorgeg(Received ..... ; Accepted in �nal form .....)Abstract. Mechanised reasoning systems and computer algebra systems have dif-ferent objectives. Their integration is highly desirable, since formal proofs ofteninvolve both of the two di�erent tasks, proving and calculating. Even more impor-tantly, proof and computation are often interwoven and not easily separable.In this contribution we advocate an integration of computer algebra into mech-anised reasoning systems at the proof plan level. This approach allows to view thecomputer algebra algorithms as methods, that is, declarative representations of theproblem solving knowledge speci�c to a certain mathematical domain. Automationcan be achieved in many cases by searching for a hierarchic proof plan at the method-level using suitable domain-speci�c control knowledge about the mathematical algo-rithms. In other words, the uniform framework of proof planning allows to solve alarge class of problems that are not automatically solvable by separate systems.Our approach also gives an answer to the correctness problems inherent in suchan integration. We advocate an approach where the computer algebra system pro-duces high-level protocol information that can be processed by an interface to deriveproof plans. Such a proof plan in turn can be expanded to proofs at di�erent levelsof abstraction, so the approach is well-suited for producing a high-level verbalisedexplication as well as for a low-level machine checkable calculus-level proof.We present an implementation of our ideas and exemplify them using an auto-matically solved example. Changes in the criterion of `rigour ofthe proof' engender major revolutionsin mathematics. H. Poincar�e, 1905Key words: mechanised reasoning, computer algebra, hierarchical proof planning,proof checking. 1. IntroductionThe computer and the development of high-level programming lan-guages made possible the mechanisation of logic as well as the realisa-



2 M. KERBER, M. KOHLHASE, V. SORGE.tion of mechanical symbolic calculations, we could witness in the lastforty years. This has lead to two rather disjoint academic �elds: mecha-nised reasoning and computer algebra, which each have their own meth-ods, interests and traditions, even though they share common roots:none of the two �elds is imaginable without the underlying foundationof mathematical logic or the mathematical study of symbolic calcula-tions (leading to such algorithms and methods as the determination ofthe GCD or the Gau�ian elimination). Only in the last decade we haveseen a move towards an integration of the �elds driven by the insightthat real-world formal problems often involve a mixture of both com-putation and reasoning, hence an integration of mechanised reasoningsystems and computer algebra systems is highly desirable (cf. [Buc85]).This is the case in particular, since deduction systems are very weak,when it comes to computation with mathematical objects, and com-puter algebra systems manipulate highly optimised representations ofthese objects, but do not yield any formally checkable proof information(if they give any explanation at all).In the remainder of this introduction we brie
y summarise key pointsof mechanised reasoning systems as well as of computer algebra systemsand then give a short preview on the integration approach advocatedin this paper. By its nature, such a short description has to abstractfrom many details and to simplify considerably.1.1. Mechanised Reasoning SystemsMechanised reasoning systems (for short MRS in the following) arebuilt with various purposes in mind. One goal is the construction of anautonomous theorem prover, whose strength achieves or even surpass-es the ability of human mathematicians. Another is to build a systemwhere the user derives the proof, with the system guaranteeing its cor-rectness. A third purpose consists in modelling human problem-solvingbehaviour on a machine, that is, cognitive aspects are the focus.Advanced theorem proving systems often try to combine the di�er-ent goals, since they can complement each other in an ideal way. Let usroughly divide existing theorem-proving systems into three categories:machine-oriented theorem provers, proof checkers, and human-oriented(plan-based) theorem provers.Normally all these systems do not exist in a pure form anymore, andin some systems like our own 
mega system [BCF+97] it is explicitlytried to combine the reasoning power of automated theorem provers aslogic engines, the specialised problem solving knowledge of the proofplanning mechanism, and the interactive support of tactic-based proofdevelopment environments. We think that the combination of these
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INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 3complementary approaches inherits more advantages than drawbacks,because for most tasks domain-speci�c as well as domain-independentproblem-solving know-how is required and for di�cult tasks more oftenthan not an explicit user-interaction should be provided. While such anapproach seems to be general enough to cope with any kinds of logic-level proofs, it neglects the fact that for many mathematical �elds,the everyday work of mathematicians only partially consists in provingor verifying theorems. Calculation plays an equally important rôle. Insome cases the tasks of proving theorems and calculating simpli�ca-tions of certain terms can be separated from each other, but very oftenthe tasks are interwoven and inseparable. In such cases an interactivetheorem proving environment will only provide rather poor support toa user. Although theoretically any computation can be reduced to the-orem proving, this is not practical for non-trivial cases, since the searchspaces are intractable. For many of these tasks, however, no search isnecessary at all, since there are numerical or algebraic algorithms thatcan be used. If we think of Kowalski's equation \Algorithm = Logic+ Control" [Kow79], general purpose procedures do not (and cannot)provide the control for doing a concrete computation.1.2. Computer Algebra SystemsEarly computer algebra systems (CAS for short) developed from col-lections of algorithms and data structures for the manipulation of alge-braic expressions like the multiplication of polynomials, or the deriva-tion and integration of functions [Hea95]. Abstractly spoken, the mainobjective of a CAS can be viewed in the simpli�cation of an algebraicexpression or the determination of a normal form. Today there is abroad range of such systems, ranging from very generally applicablesystems to a multitude of systems designed for speci�c applications.Unlike MRS, CAS are used by many mathematicians as a tool in theireveryday work, they are even widely applied in sciences, engineeringand economics. Their high academic and practical standard re
ects thefact that the study of symbolic calculation has long been an establishedand fruitful sub�eld of mathematics that has developed the mathemat-ical theory and tools.Most modern systems [Wol96, CGG+92, JS92] have in common thatthe algebraic algorithms are integrated in a very comfortable graphicaluser interface that includes formula editing, visualisation of mathemat-ical objects and even an interface to programming languages. As in thecase of MRS the representation languages of CAS di�er from systemto system, which complicates the integration of such systems as wellas the cooperation between them. This de�ciency has been attacked in
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4 M. KERBER, M. KOHLHASE, V. SORGE.the OpenMath initiative [AvLS96], which strives for a standard CAScommunication protocol. Currently the main emphasis is laid on stan-dardising the syntax and the computational behaviour of the mathe-matical objects, while their properties or semantics are not considered.That means there is no explicit representation format for theorems,lemmata and proofs. Some speci�c systems allow to specify mathemat-ical domains and theories. For instance in systems likeMuPad [Fuc96]or Axiom [JS92], computational behaviour can be speci�ed by attach-ing types and axiomatisations to mathematical objects; but this alsofalls short of a comprehensive representation of all relevant mathemat-ics. Furthermore, almost all CAS fail to give an explanation or proof oftheir solution to the problem at hand, even though some mathematicaltheories like that of Gr�obner bases can be successfully applied to the-orem proving in elementary geometry [Cho88, Kap88, CGZ94, Wu94].1.3. Contributions of this PaperNot only the fact that a mutual simulation of the tasks of an MRS anda CAS can be quite ine�cient, but more that the daily work of math-ematicians is about proving and calculating points to the integrationof such systems, since mathematicians want to have support in both oftheir main activities. Indeed two independent systems can hardly covertheir needs, since in many cases the tasks of proving and calculating arehardly separable. As pointed out by Buchberger [Buc96a] the integra-tion problem is still unsolved, but it can be expected that a successfulcombination of these systems will lead to \a drastic improvement ofthe intelligence level" of such support systems.Our paper addresses two immediate questions occurring in the inte-gration of automated reasoning and computation systems.� How can the algorithms be integrated, so that the underlyingmathematical knowledge is mutually respected and a synergy e�ectis achieved?� How can the correctness problem inherent in any such combinationbe addressed? In particular, how can results from the CAS beintegrated into a proof without having to completely trust theCAS?We advocate an integration of computer algebra into mechanised rea-soning systems using the proof planning paradigm. This approachallows to encapsulate the computer algebra algorithms into meth-ods, that is, declarative representations of the problem solving knowl-edge speci�c to a certain mathematical domain. The proof planningparadigm enables a user to guide a proof or to fully hand over the con-
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INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 5trol to a planner, which in turn can use computer algebra systems, ifthe speci�cations for the corresponding algorithms are met. The use ofhierarchic proof plans at the method-level gives a suitable granularityof integration, since it allows to directly use existing (human) controlknowledge about the interplay of computation and reasoning.A proper integration into the proof planning approach answers thequestion about the correctness automatically, since the correspondingquestions are solved for proof planning. In this area a proof plan caneither be rejected (the tactics are not executable, hence the plan can-not be used to build a proof) or executed. The later results either in afurther planning phase to �ll in possible gaps or in an accepted machine-checkable proof. Hence a proper integration requires that the computeralgebra system produces high-level protocol information that can beprocessed by an interface to derive proof plans which themselves canbe seamlessly integrated into the overall proof plan generated in theproblem solving attempt. Since this can be expanded into an explicit,checkable proof in order to obtain a correctness guarantee for the com-bined solution, we have also given a principled answer to the correctnessproblem.The feasibility of the approach advocated in the sequel has beenveri�ed by integrating a simple CAS into the 
mega proof planningsystem. Therefore, we organise the paper around this experiment anddescribe the relevant features with a system perspective. Our approachrequires a mode of the CAS that generates information from which itis possible to generate a proof plan. For that reason the integration ofa standard CAS makes major adaptations unavoidable (in particular itis necessary to change the source code of these systems). Our approachis not committed to the particular systems involved, in particular, thework reported here should be understood rather as a proof of principlethan as the development of a state-of-the-art integrated system.Moreover, we will make the details of the approach more concrete byexplaining them by means of an example that cannot easily be solvedby either a mechanised reasoning system or a computer algebra systemalone, but that needs the combined e�orts of systems of each kind.2. Related WorkWe give a short description of some of the experiments to combine MRSand CAS and roughly categorise them into three classes with respectto the treatment of proofs that is adopted, that is, with respect to thecorrectness issue. In doing so we only describe in detail the approachesof integrating CAS into MRS, that is, essentially the MRS is the master
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6 M. KERBER, M. KOHLHASE, V. SORGE.and the CAS the slave, since our approach is also of this kind. Withthe same right, one can of course follow the converse direction, namelyto approach the integration from the point of the CAS and indeed suchapproaches are also successfully undertaken (see e.g. [CZ92, Buc96]).The question about the granularity of integration is treated uni-formly by all these experiments. The application of the CAS is treatedas another (derived) rule of inference at the level of the (tactic) calcu-lus, so the granularity of integration depends on the granularity of thecalculus or the tactics involved.In the �rst category of attempts (see e.g. [HT93b, BHC95]) oneessentially trusts that the CAS properly work, hence their results aredirectly incorporated into the proof. All these experiments are at leastpartly motivated by achieving a broader applicability range of formalmethods and this objective is de�nitively achieved, since the range ofmathematical theorems that can be formally proved by the system com-binations is much greater than that provable by MRS alone. However,CAS are very complex programs and therefore only trustworthy to alimited extent, so that the correctness of proofs in such a hybrid systemcan be questioned. This is not only a minor technical problem, but willremain unsolved for the foreseeable future since the complexity (notonly the code complexity, but also the mathematical complexity) of aCAS does not permit a veri�cation of the program itself with currentlyavailable program veri�cation methods. Conceptually, the main contri-bution of such an integration is the solution of the software-engineeringproblem how to pass the control between the programs and translatingresults forth and back. While this is an important subproblem, it doesnot seem to cover the full complexity of the interaction of reasoning andcomputation found in mathematical theorem proving. In an alternativeapproach that formally respects correctness, but essentially trusts CAS,an additional assumption standing for the CAS is introduced, so thatessentially formulae are derived that are proved modulo the correctnessof the computer algebra system at hand (see e.g. [HT93b]).The second category (for which [HT93a] is paradigmatic) is moreconscious about the rôle of proofs, and only uses the CAS as an oracle,receiving a result, whose correctness can then be checked deductively.While this certainly solves the correctness problem, this approach onlyhas a limited coverage, since even checking the correctness of a calcula-tion may be out of scope of most MRS, when they don't have additionalinformation. Indeed from the point of applicability, the results of theCAS help only in cases, where the veri�cation of a result is simplerthan its discovery, such as prime factorisations, solving equations, orsymbolic integration. For other calculations, such as symbolic additionor multiplication of polynomials and di�erentiation, the veri�cation isjust as complex as the calculation itself, so that employing the CAS
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INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 7does not speed up the proof construction process. Typically in longercalculations, both types of sub-calculations are contained.A third approach of integrating computer algebra systems into aparticular kind of mechanised reasoning system, consists in the meta-theoretic extension of the reasoning system as proposed for instancein [BM81, How88] and been realised inNuprl [Con86]. In this approacha constructive mechanised reasoning system is basically used as itsown meta-system, the constructive features are exploited to synthesisea correct computer algebra system and due to bridge rules betweenground and meta-system it is possible to integrate the so-built CASthat it can be directly used as a component. The theoretical propertiesof the meta-theoretic extension guarantee that if the original systemwas correct then the extended system is correct too. This method isthe most appealing one from the viewpoint of correctness, althoughthe assumption that the original (also rather complex) system must becorrect can hardly be expected to be self-evident for any non-trivialsystem. A disadvantage compared to the other two approaches is thatit is not possible to employ an existing CAS, but that it is necessary to(re)implement one in the strictly formal system given by the basic MRS.Of course this is subject to the limitations posed by the (mathematicaland software engineering) complexities mentioned above.The main problem of integrating CAS into MRS without violatingcorrectness requirements is that CAS are generally highly optimisedtowards maximal speed of computation but not towards generatingexplanations of the computations involved. In most cases, this is dealtwith by meta-theoretic considerations why the algorithms are adequate.This lack of explanation makes it not only impossible for the averageuser to understand or convince himself of the correctness of the com-putation, but leaves any MRS essentially without any information whytwo terms should be equal. This is problematic, since computation-al errors have been reported even for well-tested and well-establishedCAS. From the reported categories of approaches only the last oneseriously addresses this problem.3. 
mega as an Open System for Integrating Computation
mega is a proof development system, based on the proof planningparadigm. In this section we describe its architecture and componentsand show how this supports the integration of computer algebra sys-tems. Since the goal of this paper is not to present a system descriptionof 
mega, but to document the integration of computer algebra intoit, we try to be as concise as possible and introduce the relevant parts
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8 M. KERBER, M. KOHLHASE, V. SORGE.only, the general architecture, the proof planner, and the integrationpossibilities for external reasoners.3.1. The Proof Development Environment 
megaThe entire process of theorem proving in 
mega can be viewed asan interleaving process of proof planning, execution and veri�cationcentred around a hierarchical proof plan data structure.Several integrated tools support the user in interacting with thesystem. Some of them are also available to the proof planner.Theory DatabaseSince methods and control knowledge used in proof planning are most-ly domain-speci�c, 
mega organises the mathematical knowledge in ahierarchy of theories. Theories represent signature extensions, axioms,de�nitions, and methods that make up typical established mathemati-cal domains. Each theorem has its home theory and therefore has accessto the theory's signature extensions, axioms, de�nitions, and lemmatawithout explicitly introducing them. A simple inheritance mechanismallows to incrementally build larger theories from smaller parts.We give an overview of the part of 
mega's theory database thatis necessary for solving our extended example in Figure 1.Proof ExplanationProof presentation is one important feature of a mathematical assis-tant that has been neglected by traditional deduction systems. 
megaemploys an extension of the Proverb system [HF96] developed by ourgroup that allows for presenting proofs and proof plans in natural lan-guage. In order to produce coherent texts that resemble those found inmathematical textbooks, Proverb employs state-of-the-art techniquesof natural language processing.Due to the possibly hierarchical nature of 
mega proofs, these canbe verbalised at more than one level of abstraction, which can be select-ed by the user.To summarise our view of proofs, for every theorem an explicit proofhas to be constructed so that on the one hand it can be checked bya proof checker, on the other hand the system provides support torepresent this proof in a high-level form that is easily readable byhumans [HF96]. Neither the process of generating proofs nor that ofchecking them is fully replaced by the machine but only supported. Ifa human mathematician wants to see a proof, he/she can do so at anappropriate level of abstraction.
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INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 93.2. Proof PlanningThe central data structure for the overall process is the Proof plan DataStructure (PDS). This is a hierarchical data structure that representsa (partial) proof at di�erent levels of abstraction (called proof plans). Itis represented as a directed acyclic graph, where the nodes are justi�edby (LCF-style) tactic applications. Conceptually, each such justi�cationrepresents a proof plan (the expansion of the justi�cation) at a lowerlevel of abstraction that is computed when the tactic is executed1. In
mega, we explicitly keep the original proof plan in an expansion hier-archy. Thus the PDS makes the hierarchical structure of proof plansexplicit and retains it for further applications such as proof explanationor analogical transfer of plans.Once a proof plan is completed, its justi�cations can successivelybe expanded to verify the well-formedness of the corresponding PDS.This veri�cation phase is necessary, since the correctness of the dif-ferent components (in particular, that of external ones like automatedtheorem provers or computer algebra systems) cannot be guaranteed.When the expansion process is carried out down to the underlyingND-calculus (natural deduction), the soundness of the overall systemrelies solely on the correctness of the veri�er and of ND. This alsoprovides a basis for the controlled integration of external reasoningcomponents if each reasoner's results can (on demand) be transformedinto a sub-PDS. The level to which the proofs have to be expandeddepends on the sophistication of the proof checker. As pointed out byBarendregt [Bar96], a more complex proof-checker that accepts proofsin a more expressive formalism may drastically reduce the length of thecommunicated proofs. If the high-level justi�cations are not expandedbut accepted as they are, our approach reduces to one in which the com-puter algebra system is fully trusted. In short, the hierarchical natureof the PDS supports the full spectrum of user preferences, from totaltrust in the CAS, over partial trust in certain levels to full expansionof the proofs in a detailed calculus level description that is machinecheckable.A PDS can be constructed by automated or mixed-initiative plan-ning, or pure user interaction that can make use of the integrated tools.In particular, new pieces of PDS can be added by directly calling tac-tics, by inserting facts from a database, or by calling some external rea-soner (cf. Section 3.3) such as an automated theorem prover or a com-puter algebra system. Automated proof planning is only adequate for1 This proof plan can be recursively expanded, until we have reached a proof planthat is in fact a fully explicit proof, since all nodes are justi�ed by the inference rulesof a higher-order variant of Gentzen's calculus of natural deduction (ND).
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10 M. KERBER, M. KOHLHASE, V. SORGE.problem classes for which methods and control knowledge have alreadybeen established.The goal of proof planning is to �ll gaps in a given PDS by forwardand backward reasoning [HKKR94] (proof plans were �rst introducedby Bundy, see [Bun88, BSvH+93]). Thus from an abstract point ofview the planning process is the process of exploring the search spaceof planning states that is generated by the plan operators in order to�nd a complete plan from a given initial state to a terminal state.
mega's proof planner is an extension of the well-known STRIPSalgorithm that can be evoked to construct a proof plan for a nodeg (the goal node) from a set I of supporting nodes (the initial state)using a set Ops of proof planning operators, here called methods. Amethod is a (partial) speci�cation of a tactic in a meta-level language.In 
mega planning is combined with hierarchical expansion of methodsand precondition abstraction. The plans found by this procedure aredirectly incorporated into the PDS as a separate level of abstraction.In this model, the actual reasoning competence of the planner andthe user builds upon the availability of appropriate methods togeth-er with meta-level control knowledge that guides the planning. At themoment, 
mega provides user-de�ned method ratings as a means ofcontrol and can use analogy as a control strategy of the planner. Twoexamples of methods are displayed in the section on the extended exam-ple, Section 3.4.3.3. Integration of Computer Algebra Systems asExternal ReasonersAccording to the di�erent modes of 
mega there are di�erent levelson which an external reasoning system, RSys, can be integrated:� Interactive calls, RSys is represented as a command call-RSysthat invokes the reasoner on a particular subproblem and returnsthe result,� Proof planning, RSys is represented as a method whose speci-�cation contains knowledge about the problem solving behaviourand option settings for RSys.� Justi�cations, RSys can serve as a justi�cation of a declarativelygiven subgoal that is left to be proved by RSys.In any case, the proof found by RSys must eventually be transformedinto a PDS, since this is the proof-theoretic basis of 
mega. For auto-mated theorem provers like Otter [McC94], we described the inte-gration in [HKK+94] and the necessary proof transformation to PDSin [HF96], so we will not pursue this matter here. The integration of
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INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 11CAS follows the same paradigm and is the main topic of this paper,so we will develop the paradigm for the case of external computationsin 
mega. We will see examples for the three di�erent levels of inte-grations of a CAS into 
mega in the example in the next section, sowe will not go into that here. This leaves us with the question of thetransformation of the CAS results into PDS.If we take the idea of generating explicit PDS seriously also forcomputations we can neither just take existing systems nor follow theapproach of meta-theoretic extensions, since 
mega is a classical proofsystem and does not use constructive logic. On the other hand we can-not forgo using them even in cases, where the veri�cation of a cal-culation is much easier than the calculation itself (e.g., integrationof functions); the computation needed for verifying alone is in manycases still much too complicated to be automatically checked withoutany guidance. For instance even the proof for the binomial formula(x + y)2 = x2 + 2xy + y2 (a trivial problem for any computer alge-bra system) needs more then 70 single steps in the natural deductioncalculus2. Thus using theorem provers or rewriting systems to �nd suchproofs can produce unnecessarily large search spaces and thus absorbvaluable resources. On the other hand such proofs show a remarkableresemblance to algebraic calculations themselves and suggest the use ofthe CAS not only to instantly compute the result of the given problem,but also to guide a proof in the way of exploiting the implicit knowledgeof the algorithms. We propose to do this extraction of information notby trying to reconstruct the computation in the MRS after the resultis generated { as we have seen, even in case of a trivial example for aCAS this may turn out to be a very hard task for an MRS { but ratherto extend the CAS algorithm itself so that it produces some logicallyusable output alongside the actual computation. Surely in most casesa user would not like to see proofs at a level where the binomial formu-la is explained (although a novice might want to). This means that ahierarchical approach to proof generation is appropriate, in which theabstraction level of the proof presentation can be chosen by the user.Our approach is to use the mathematical knowledge implicit in theCAS to extract proof plans that correspond to the mathematical com-putation in the CAS. So essentially the output of a CAS should betransferable into a sequence of tactics, which presents a high-leveldescription for the proof of correctness of the computation the CAShas performed. Note that this does not prove general correctness ofthe algorithms involved, instead it only gives a proof for a particularinstance of computation. The high-level description can then be used to2 Proofs of this length are among the hardest ever found by totally automatictheorem provers without domain-speci�c knowledge.
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12 M. KERBER, M. KOHLHASE, V. SORGE.produce a readable explanation or further expanded to a level that canbe automatically checked by proof checkers. The level of abstractionon which the checking can take place, depends on the level of sophisti-cation of the proof checker. For a naive proof checker, the proof mustbe expanded to an explicit calculus level. The decision to extract proofplans rather than concrete proofs from the CAS is essential to the goalof being verbose without transmitting too much detail.For our purpose, we need di�erent modes, in which we can use theCAS. Normally, during a proof search, we are only interested in theresult of a computation, since the assumption that the computationis correct is normally justi�ed for established CAS. When we want tounderstand the computation { in particular, in a successful proof { weneed a mode of the CAS that gives enough information to generate ahigh-level description of the computation in terms of the mathemat-ics involved. This is is described in the next section in detail. Beforedoing so we describe how the integrated system automatically solvesan extended example from an economics examination.3.4. Extended ExampleThe concrete task at hand is to minimise the costs for running amachine while producing a certain product.Problem: The output of a machine can range over a certain interval,the interval I = [1; 7]. The cost of the product prod is determined bythe costs of water and electricity for producing prod , which are givenby the functions� r1 = (0:5d2 + 3) m3prod � r2 = (4d2�24d+6) kWhprodand the prices for water and electricity� p1 = 2 DMm3 � p2 = 0:5 DMkWhDetermine the output d in I of the machine such that the total costsare minimal.This example serves our purposes for several reasons. Firstly, itallows us to show the interaction of proof planning with symbolic com-putation and the extraction of proof plans from calculations. Secondly,the mathematics involved is simple enough to be fully explained (onlysimple polynomial manipulations are necessary). Thirdly, it is not anexample we created, but the problem is a slightly varied version of a
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INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 13minimisation problem from a masters examination in economics at theUniversit�at des Saarlandes, Saarbr�ucken [WiW89].In order to solve problems like this, we have integrated a simple CASinto 
mega, called �-Cas3.The �-Cas-system is very simple and can at the moment only per-form basic polynomial manipulations and di�erentiation, but it su�cesfor automatically solving the example at hand. Clearly, for a practi-cal system for mathematical reasoning, a much more developed systemlike Maple [CGG+92], Reduce [Hea95], Axiom [JS92], or Mathemat-ica [Wol96] has to be integrated. The technicalities of the integrationwill be described in Section 4.For the formalisation of the example, we use the theory mecha-nism of 
mega to create a theory economy (see Figure 1) that con-tains the domain-speci�c knowledge (both the factual and the methodknowledge) needed for the problem solution. Obviously, we need abackground theory of costs in economics (that handles both numer-ical parts and denomination of cost functions) and one of minimisationof real functions, therefore, our theory inherits material from the theo-ries costs and calculus. The calculus theory is provided by 
megaand contains relevant parts of the knowledge of an elementary calculustextbook: For instance, the real numbers are introduced as a complete,dense archimedian �eld (based on elementary algebraic notions suchas groups and rings de�ned in the respective theories). The set of realnumbers (showing the existence of such a complete, dense archimedian�eld) are constructed as the quotient �eld of the ring of sequences ofrational numbers over the ideal of null-sequences. The rational num-bers in turn are constructed as signed fractions of natural numbersthat are de�ned from the Peano axioms in theory natural. All of thesemathematical theories are based on the theories function, set, andrelation, that specify naive (simply typed) set theory and the prop-erties of functions and relations on such sets. Finally, the whole hier-archy builds on the theory base, which declares the underlying logicby providing the logical connectives and quanti�ers and the basic NDinference rules.The theory economy provides a type � of units that covers the dif-ferent units of denominations { in our example m3 (for volume), kWh(for work), prod (for product) and DM (for the price). We then for-malise prices as triples consisting of one real number and two unitsand cost functions as a real function together with two units (read asinput/output units). Note, that just as in the real world, addition (�)3 The �-Cas system is part of the standard distribution of 
mega which canbe obtained from http://www.ags.uni-sb.de/software/deduktion/omega. Theexample is accessible as WiWi-Exam in the theory economy.
KeKoSo.tex; 23/03/1998; 14:00; no v.; p.13



14 M. KERBER, M. KOHLHASE, V. SORGE.
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Figure 1. Theory hierarchy in 
mega's knowledge basemultiplication (
) and comparison of costs and cost functions is de�nedas that of their real parts with respect to the denominations. For thesecalculations we have the axioms CF1 and CF2. If two denominationsdi�er, we can relate them by their prices, for this purpose we use axiomPr. CF1 cf(f; u; v)� cf(g; u; v) = cf(f + g; u; v)CF2 cf(f; u; v)
 cf(g; v; w) = cf(f � g; u; w)Pr price(f; u; v)) cf(g; v; w) = cf(f � g; u; w)
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INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 15Optimisation in economy is formalised by a predicate Opt on a costfunction cf(f;DM ; prod ) and an interval I that is true, whenever fhas a total minimum4 on I.O Opt(cf(f;DM ; prod ); I), 9x TotMin(x; f; I)Thus we can state the problem as the following formula5THM H ` Opt([cf(�d 0:5d2 + 3;m3; prod )�cf(�d 4d2 � 24d + 6; kWh ; prod )]; [1; 7])where H is a set of hypotheses that are needed for the complete proof,for instance the price axiomsPm3 price(2;DM ;m3)PkWh price(0:5;DM ; kWh)The planner solves the problem by generating a high-level proofplan consisting of methods from its domain speci�c method base oneconomics exam questions6.We are going to outline this process by describing its major steps.In particular, we will demonstrate how the proof planner of 
megaand the �-Cas-system interact, and make explicit, on which entries ofa mathematical database this interaction depends. The planner �ndsthe following simple proof plan:4 The predicate TotMin and the problem solving knowledge related to it is inher-ited from the theory calculus.5 Actually the formalisation of the problem is not fully correct, since the examineris not only interested in the proof that there exists such an x, but he/she wants toknow the value of x as well as a proof that this value �ts the requirements. Obviously,such an answer cannot be obtained from the formula here, but only from a proofthat is constructive for the variable x, where we can extract a witness term. Thisis no problem for a CAS nor for an MRS based on constructive logic, but for atraditional MRS based on classical logic, the proof construction process has to bere�ned to guarantee constructivity for x. Note that the arguments, why the witnessfor x meets the requirements can still be classical and non-constructive. For 
megathis means that the proof planner may only use methods in our proof plan that areconstructive to get the wanted answer as presented here and not a non-constructiveabstract argument. Finally note that this phenomenon is another argument in favourmanipulating explicit proofs. Without this, one may �nd oneself in the position, thatone is convinced (by meta-theoretic arguments) of the existence of a (constructive)proof, but in fact without one from which to extract a term witness to answer theexam question.6 Questions for certain standard exams are a good example for a very restrictedmathematical domain, since the proofs and calculations involved are highly stan-dardised. Therefore �nding the proof plan in this example is not a big problem for
mega.
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16 M. KERBER, M. KOHLHASE, V. SORGE.1 Mult-by-Price2 Mult-by-Price3 Add-by-Denom4 Optimise5 TotMin-Rollewhere the �rst three methods compute the actual cost function byadjusting the denominations and adding. Method 4 uses Axiom O foroptimisation. As the example only contains polynomials of degree two,the planner selects a method TotMin-Rolle (cf. Figure 3) for �nd-ing total minima that makes implicit use of Rolle's theorem from thecalculus theory:Let f be a polynomial of degree two, then f has a total minimum atx 2 [a; b], i� f has a minimum at x and f(a) � f(x) � f(b).Formally we get the following equivalence:TotMin TotMin(x; f; [a; b]), x 2 [a; b] ^Min(x; f)^f(x) � f(a) ^ f(x) � f(b)Note that Rolle's theorem is accessible in the current theory and, toensure correctness, the database has to contain its formal proof.Now let us take a closer look at some of the methods in order to get afeeling of how this initial proof plan can be expanded. In Figures 2 and 3we have given slightly simpli�ed presentations of the Mult-by-Priceand TotMin-Rolle method7.The declaration slot of the method simply de�nes the meta-variablesused in the body of the method. The premises, conclusions, and theconstraint describe the applicability of the method. In the example ofMult-by-Price, for instance, line L4 has to be present and to be anopen subgoal, while L1 and L3 are lines that can be used in order toinfer L4. L1 has to be given already, whereas L3 is generated by theapplication of the method (indicated by the �). Since the method isintended to prove L4, after the application of the method, this line canbe deleted from the current planning state (we indicate this by the 	).In the constraint slot further applicability criteria are described, whichcannot be formulated in terms of proof line schemata. Declarations,premises, constraints, and conclusions form the speci�cation part ofthe method. In order to be able to mechanically adapt methods thetactic part is further subdivided into the declarative content and theprocedural content. (However, this particular feature is not importantfor the purpose of this paper.) In our examples the procedural content7 We have especially adjusted the syntax of the constraint in a way that is morecomprehensive for the reader.
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INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 17Method : Mult-by-PriceDeclarations L1; L2; L3; L4: prlnH1;H2;H3: list(prln) J1: justf; g; v; w; �; �0;  ;  0: variablePremises L1;�L3Constraint   (2ndarg(termocc(cf; �)) 6= DM ! termocc(cf; �))g  1starg( ) v  2ndarg( ) w  3rdarg( ) 0  cf(g � f;DM ; w)�0  replace( 0;  ; �)Conclusions 	L4DeclarativeContent (L1)H2 ` price(f;DM ; v) (J1)(L2)H1;H2 ` cf(g; v; w) =  0 (Pr L1)(L3)H3 `�0 (Call-CAS)(L4)H1;H2;H3 `� (=subst L3 L2)ProceduralContent schema� interpreterFigure 2. The Mult-by-Price method from theory cost.consists of a schema-interpreter, which essentially inserts the declar-ative content (using the bindings made in the planning phase) at thecorrect place in the current partial proof tree. In the concrete examplethe lines L1 through L4 are inserted (Note that we adopted a linearisedversion of ND proofs as introduced in [And80]).In order to understand to which piece of actual proof these methodsevaluate, we have to examine the declarative content and the bind-ings performed in particular in the constraint. The constraint of theMult-by-Price-method states a rather simple computation: if there isa cost function in the given open line which has a denomination otherthan DM, it is multiplied with the appropriate price. The multiplicationof the real parts is carried out by the CAS and the corresponding costfunction is constructed. As this point is crucial for understanding theworking scheme of a method we will view the bindings in the constraintstep by step: When applied to the current plan the method is matchedwith the open goals of the planning state. The �rst pass of the planneryields that L4 can be matched with our theorem THM. Thus its formulaOpt([cf(�d 0:5d2+3;m3; prod )�cf(�d 4d2�24d+6; kWh ; prod )]; [1; 7])is bound to the meta-variable �. It is then examined to �nd an occur-rence of a cost function. If such a subterm exists its arguments arebound to g; v; w and by matching line L1 we receive the numerical partof price in f (if the appropriate price is not provided the application ofthe method would fail here). Afterwards the new cost function is com-
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18 M. KERBER, M. KOHLHASE, V. SORGE.puted (according to axiom Pr) in  0 and �nally �0 contains the resultof replacing the old cost function in � by  0. Hence in the �rst planstep the optimisation formula stored in �0 contains the cost functioncf(�d 1d2 + 6;DM ; prod ) as a subterm.With all these meta-variables instantiated the subproof contribut-ed by the Mult-by-Price-method consists of lines L2 and L3 in thedeclarative content. Here we observe that L2 results from applying theprice-axiom Pr (which is fetched from the database) to line L1. Fur-thermore note that in L3 we have a call to the CAS as a justifyingmethod for the line. This means that at this point in the proof plan-ning procedure, the CAS is called in order to compute the product ofprice and original cost function. The line resulting from this calculationis then used as the new open subgoal in the planning state.Summarising the e�ects of the method Mult-by-Price can beobserved in two steps. First the goal line THM is justi�ed with themethod yielding the following subproof:L1 H ` Opt([cf(�d 1d2 + 6;DM ; prod )� (Open)cf(�d 4d2 � 24d + 6; kWh ; prod )]; [1; 7])THM H ` Opt([cf(�d 0:5d2 + 3;m3; prod )� (MbPL1)cf(�d 4d2 � 24d + 6; kWh ; prod )]; [1; 7])Then the method in the justi�cation of line THM (which has beenabbreviated due to a lack of space) could be expanded thereby insertingthe intermediate steps as described above by instantiating the macrosteps of the method. Note that the following expanded subproof is ata more detailed level of abstraction in the PDS. In particular, thejusti�cation of THM itself is di�erent at this level.Pm3 Pm3 ` price(2;DM ;m3) (HYP)L2 H ` cf(�d 0:5d2 + 3;m3; prod ) =cf(�d 1d2 + 6;DM ; prod ) (Pr Pm3)L1 H `Opt([cf(�d 1d2 + 6;DM ; prod )�cf(�d 4d2 � 24d + 6; kWh ; prod )]; [1; 7])(Open)THMH `Opt([cf(�d 0:5d2 + 3;m3; prod )�cf(�d 4d2 � 24d + 6; kWh ; prod )]; [1; 7])(=substL1L2)In the proof of THM, the method Mult-by-Price is applied twicein order to normalise both summands. To preserve space we willnot present the next two methods of our proof plan as extensive-ly as the Mult-by-Price-method. Add-by-Denom is very similar toMult-by-Price and applies axiom CF1 inside the optimisation functionOpt to compute the �nal cost function. In its course the CAS is calledonce to perform a polynomial addition. Then the Optimise-methodsimply introduces the de�nition for the Opt function of axiom O.
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INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 19Method : TotMin-RolleDeclarations L1; L2; L3; L4; L5; L6; L7; L8; L9; L10; L11: prlnH1;H2;H3: list(prln) J1; J2: justa; b; f; x: variable y; �; �; �: termPremises L1; L2Constraint degree(�) := 2y  compute with CAS(minimum;�)Conclusions 	L12
DeclarativeContent

(L1) H1 `8f 8x (f 0(x) = 0 ^f 00(x) > 0)) Min(x; f)(J1)(L2) H2 `8a 8b 8x x 2 [a; b],(a � x ^ x � b) (J2)(L3) H3 `�0(y) = 0 (Call-CAS)(L4) H3 `�00(y) > 0 (Call-CAS)(L5) H3 `� � y (Simplify)(L6) H3 ` y � � (Simplify)(L7) H3 `�(y) � �(�) (Simplify)(L8) H3 `�(y) � �(�) (Simplify)(L9) H3 `Min(y; �) (L1 L3 L4)(L10)H3 ` y 2 [�; �] (L2 L5 L6)(L11)H3 `TotMin(y; �; [�; �]) (TotMinL7L8L9L10)(L12)H3 `9x TotMin(x; �; [�; �]) (9I L11)ProceduralContent schema� interpreterFigure 3. The TotMin-Rolle method from theory calculus.Far more interesting than these two methods is the TotMin-Rolle-method as it contains a di�erent example for the use of a CAS in
mega. Again the presentation of the method in Figure 3 is simpli�ed.The TotMin-Rolle method is applied at a stage of the proof wherethe actual minimum of the cost function has to be introduced. This taskis ful�lled within the constraint of the method. The compute with CASstatement actually calls the CAS in quiet mode to compute the min-imum of the function � and store it in the meta-variable y. At thisstage, the CAS is used as an oracle here, just as in [HT93a]. In ourexample the minimum of the cost function is at y = 2 and the ND-lineof the form 9x TotMin(x; �x (3x2 + (�12x+ 9)); [1; 7])will be transformed by eliminating the existentially quanti�ed variable:TotMin(2; �x (3x2 + (�12x+ 9)); [1; 7])
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20 M. KERBER, M. KOHLHASE, V. SORGE.The rest of the proof plan is devoted to proving that the result is actu-ally a total minimum. This is done by using the de�nition for TotMinfrom the database and furthermore by using the de�nitions for mini-mum and interval which correspond to line L1 and L2 in the methodTotMin-Rolle. These de�nitions are introduced in lines L9 through L11by applying them to the correct assertions given in lines L3 throughL8. This is expressed by the justi�cations in the corresponding lines; forinstance, the justi�cation of line L10 states that we can infer y 2 [�; �]from the lines L5 and L6 with the de�nition of interval in line L2.A closer look at the justi�cations of lines L3 through L8 reveals thatthese contain methods themselves. Lines L3 and L4 again depend oncalculations of the CAS which computes the �rst and second derivativeof our cost function. The justi�cations Simplify correspond to a methodperforming basic arithmetic simpli�cations and comparisons.Consisting of only 5 methods the above proof plan gives the impres-sion of a small proof and on an abstract level it is indeed; an experiencedmathematician might not want to see more. But expanding the planinto a partially grounded ND proof gives it a length of 90 lines, con-taining lines justi�ed by the CAS. The proof on this level may roughlycorrespond to a proof that a novice would like to see and that wouldform a reasonable solution of the exam problem once it is presented innatural language by the Proverb system. By rerunning the CAS in aproof plan generating mode on the CAS-justi�cations and extractingproof plans, the proof can be expanded to a more detailed proof plancontaining an account of the mathematics behind the calculations. Thisproof plan already contains 135 plan steps and { if the user does notfeel comfortable with the level of detail yet { can then be expandedto a calculus-level ND proof of length 354. Note that even this proofis not a stand-alone proof of the minimisation theorem, but dependson the proofs of a number of lemmata from a database. Furthermore,in these proofs the simpli�cation of ground arithmetic expressions isnot expanded, for instance, into a representation involving zero andthe successor function either, which would be necessary to obtain adetailed logic-level proof.
4. Integrating Computations into Explicit ProofsIn this section we describe Sapper (System for Algorithmic ProofPlan Extraction and Reasoning), which generates proof plans fromCAS output. As mentioned in Section 3.3, for the intended integration
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INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 21it is necessary to augment the CAS with mathematical information for aproof plan generating mode in order to achieve the proposed integrationat the level of proofs. For the �-Cas system, which we have developedto demonstrate the feasibility of the approach, this was rather simple, aswe will demonstrate below. Enriching a state of the art CAS with sucha mode for producing the necessary additional protocol information,would of course require a considerable amount of work.4.1. ArchitectureThe Sapper system can be seen as a generic interface for connecting
mega (or another proof plan-based mechanised reasoning system)with one or several computer algebra systems (see Figure 4). An incor-porated CAS is treated as a slave to 
mega which means that onlythe latter can call the �rst one and not vice versa. From the softwareengineering point of view, 
mega and the CAS are two independentprocesses while the interface is a process providing a bridge for com-munication. Its rôle is to automate the broadcasting of messages bytransforming output of one system into data that can be processed bythe other8.Unlike other approaches (see [HC95, GPT96] for example) we donot want to change the logic inside our MRS. In the same line, wedo not want to change the computational behaviour of the computeralgebra algorithms. In order to achieve this goal the trace output of thealgorithm is kept as short as possible. In fact most of the computationsfor constructing a proof plan is left to the interface. The proof planscan directly be imported into 
mega.This makes the integration independent of the particular systems,and indeed all the results below are independent of the CAS employedand make only some general assumptions about the MRS (such as beingproof plan-based). Moreover, the interface approach helps us to keepthe CAS free of any logical computation, for which such a system is notintended anyway. Finally, the interface minimises the required changesto an existing CAS, while maintaining the possibility of using the CASstand-alone. The only requirement we make for integrating a particularCAS is that it has to produce enough protocol information so that aproof plan can be generated from this information. The proof plan inturn can be expanded by the MRS into a proof verifying the concretecomputation.The interface itself can be roughly divided into two parts; the trans-lation part and the plan generator. The �rst performs syntax transla-tions between 
mega and a CAS in both directions while the latter8 This is an adaptation of the general approach on combining systems in [CMP91].
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22 M. KERBER, M. KOHLHASE, V. SORGE.
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Figure 4. Interface between 
mega and computer algebra systemsonly transforms verbose output of the CAS to 
mega proof plans.Clearly only the translation part depends on the particular CAS thatis invoked.For the translations a collection of data structures { called abstractCAS 9 { is provided each one referring to a particular connected CAS(or just parts of one). The main purpose of these structures is to specifyfunction mappings, relating a particular function of 
mega to a cor-responding CAS-function and the type of its arguments. Furthermoreit provides functionality to convert the given arguments of the mapped
mega function to CAS input. In the same fashion it transforms resultsof algebraic computations back into data that can be further processedby 
mega. The functionality in this part of our interface o�ers us thepossibility of connecting any CAS as a black box system, as in the �rstapproach we have described in Section 2. For instance, we may want touse a very e�cient system without a mode for generating proof plans in9 In a reimplementation of Sapper we would probably use the OpenMath pro-tocol [AvLS96] as a lingua franca on the CAS side.
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INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 23proof search as black box system, and then another less e�cient systemwith such a mode for the actual proof construction, once it is clear whatthe proof should look like. This corresponds to recent techniques usedin knowledge based systems, where the explanation component is notjust a trace of the rules applied during the search, but the explanationis reconstructed by an independent component.The plan generator solely provides the machinery for our main goal,the proof plan extraction. Equipped with supplementary informationon the proof by 
mega it records the output produced by the par-ticular algebraic algorithm and converts it into a proof plan. Here therequirements of keeping the CAS side free of logical considerations andon the other hand of keeping the interface generic seem con
icting atthe �rst glance. However, this con
ict can be solved by giving both sidesof the interface access to a database of mathematical facts formalisingthe mathematics behind the particular CAS algorithms. Conceptually,this database together with the mappings governing the access, providesthe semantics of the integration of 
mega with a particular CAS. Thusexpanding the plan generator is simply done by expanding the theorydatabase by adding new tactics.While 
mega itself can access the complete database, Sapper'splan generator in the interface is only able to use tactics and lookuphypotheses of a theory (cf. Figure 4). The CAS does not interact withthe database at all: it only has to know about it and references thelogical objects (methods, tactics, theorems, or de�nitions) in the proofplan generating mode. Thus knowledge about the database is compileda priori into the algebraic algorithms in order to document their calcu-lations.4.2. Proof Plan ExtractionLet us now take a closer look at the implementation of the proof plangeneration in �-Cas and at the expansion process of its output. Thisshould demonstrate how proofs can be extracted from computer alge-bra calculation and provide an intuition on the requirements that ourapproach poses on the CAS side.As an example we will consider a polynomial addition from theexample above. Normally, an experienced mathematician would notlike to see any proof at all for that, while a high-school studentwould like to. As we have seen in our example, the main purposeof the Add-by-Demon-method is to compute the �nal cost functioncf(�d (3d2 � 12d + 9);DM ; prod ). This is done in �-Cas by addingthe two polynomials �d d2 + 6 and �d 2d2 � 12d + 3. In the remain-der of this subsection we will expand this addition in several steps andthereby obtain a calculus level proof for the computation.
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24 M. KERBER, M. KOHLHASE, V. SORGE.Before examining this example in detail, let us consider the gener-al scheme of the proof plan generation inside the polynomial additionalgorithm of �-Cas. We �rst take a look at the di�erent representationsof a polynomial p in the variables x1; : : : ; xr: p = nPi=1�ixe1i1 � � � xerir . Thelogical language of 
mega is a variant of the simply typed �-calculus(indeed we use a stronger type system, but here we want to keep thingsas simple as possible), so the polynomials are represented as polyno-mial functions, that is, as �-expression where the formal parametersx1; : : : ; xr are �-abstracted (mathematically, p is a function of r argu-ments):p : �x1 � � � �xr (+ (��n (� (" x1 e1n) � � �)) � � � (��1 (� (" x1 e11) � � �));For the notation, we use a pre�x notation; the symbols +, � and "denote binary functions for addition, multiplication and exponentiationon the reals. In this representation, we can use �-reduction for theevaluation of polynomials.In �-Cas, we use a variable dense, expanded representation as aninternal data structure for polynomials (as described in [Zip93], forinstance). Thus every monomial is represented as a list containing itscoe�cient together with the exponents of each variable. Hence we getthe following representation for p:p : ((�n e1n � � � ern) � � � (�1 e11 � � � er1))Let us now turn to the actual �-Cas algorithm for polynomi-al addition. This simple algorithm adds polynomials p and q by acase analysis on the exponents10 with recursive calls to itself. So letp = nPi=1�ixe1i1 � � � xerir and q = mPi=1�ixf1i1 � � � xfrir . We have presented thealgorithm in the jth component of p and the kth component of q in aLisp-like pseudo-code in Figure 5. Intuitively, the algorithm proceedsby ordering the monomials, advancing the leading monomial either ofthe �rst or the second arguments; in the case of equal exponents, thecoe�cients of the monomials are added.Obviously, the only expansions of the original algorithm needed forthe proof plan generation are the additional (tactic...) statements11.10 We assume a lexicographic monomial order and employ it for ordering theexponents. Thus we make use of the operators >, <, and = in an intuitive sense.Furthermore we can de�ne the rank of a monomial as the vector given by its expo-nents and the rank of a polynomial as the maximum rank of its monomials withrespect to the lexicographic monomial order.11 Observe that in this case, the called tactics do not need any additional argu-ments, since our plan generator in the interface keeps track of the position in the
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INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 25(poly-add (p q)(= (e1j � � � erj )(f1k � � � frk))(tactic "mono-add")(cons-poly (�j + �k)xe1j1 � � � xerjr(poly-add nPi=j+1�ixe1i1 � � � xerir mPi=k+1�ixf1i1 � � � xfrir ))(> (e1j � � � erj )(f1k � � � frk))(tactic "pop-first")(cons-poly �jxe1j1 � � � xerjr(poly-add nPi=j+1�ixe1i1 � � � xerir mPi=k �ixf1i1 � � � xfrir ))(< (e1j � � � erj )(f1k � � � frk))(tactic "pop-second")(cons-poly �kxf1k1 � � � xfrkr(poly-add nPi=j �ixe1i1 � � � xerir mPi=k+1�ixf1i1 � � � xfrir )))Figure 5. Polynomial addition in �-Cas.They just produce the additional output by returning keywords of tac-tic names to the plan generator and do not have any side e�ects. Inparticular, the computational behaviour of the algorithm does not haveto be changed at all.If we now apply this algorithm to the two polynomialsp := x2 + 6 q := 2x2 � 12x+ 3we obtain the following proof plan:(mono-add, pop-second, mono-add)First the two quadratic monomials from p and q are added, then thelinear term of q (the second argument) is raised, since it only appearsin one argument, and �nally the remaining monomials are added up.In the case of the polynomial addition, each of the methods (proofplan operators) directly corresponds to a tactic with the same name,that is, the list of the three methods above directly represents a concreteproof plan for polynomial addition of the concrete polynomials p andproof and thus knows on which monomials the algorithm works when returning atactic. This way we need not to be concerned which form a monomial actually hasduring the course of the algorithm.
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26 M. KERBER, M. KOHLHASE, V. SORGE.q. (In the following representation we omitted the context in which thepolynomials are embedded in the actual proofs.)((x2 + 6) + (2x2 � 12x+ 3))(3x2 + (6 + (�12x+ 3))) (mono-add)(3x2 � 12x+ (6 + 3)) (pop-second)(3x2 � 12x+ 9) (mono-add)These four lines correspond to a step-by-step version of the basicHigh School algorithm. So far the expansion of the call-cas-methodhas been exclusively done by �-Cas proof plan generation mode. Butat this stage �-Cas cannot provide us with any more details about thecomputation and the subsequent expansion of the next hierarchic levelcan be achieved without further use of a CAS.Let us for instance take a look at the pop-second tactic to under-stand its logical content. The tactic itself describes a reordering in asum that looks in the general case as follows:(a+ (b+ c)) = (b+ (a+ c)) (1)For the current example we can view a and c as arbitrary polynomialsand b as a monomial of rank greater than that of the polynomial a.It is now obvious that the behaviour of pop-second is determined bythe pattern of the sum it is applied to. If in equation (1) the poly-nomial c does not exist, pop-second is equivalent to a single applica-tion of the law of commutativity. Otherwise, like in our example, thetactic performs a series of commutativity and associativity steps. Thepop-second step above can thus be expanded in a plan which re
ectsthe single step applications of the laws of commutativity and associa-tivity.(3x2 + (6 + (�12x+ 3)))(3x2 + ((6� 12x) + 3)) (associativity)(3x2 + ((�12x+ 6) + 3)) (commutativity)(3x2 � 12x+ (6 + 3)) (associativity)Assuming we have expanded the two mono-add tactics as well, wehave constructed a representation of the proof at a level where it onlyneeds the axioms in the polynomial ring. To �nally expand this to a ful-ly explicit calculus level proof, we further expand all three justi�cationsof the above lines. This leads to a sequence of eliminations of univer-sally quanti�ed variables in the corresponding hypothesis, the axiomsof commutativity and associativity. In our example the commutativityaxiom would be transformed in the following fashion:
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INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 278a8b (a+ b) = (b+ a) (THM)8b (6 + b) = (b+ 6) (8E 6)(6� 12x) = (�12x+ 6) (8E �12x)Here, the justi�cation (THM) in the �rst proof line indicates thatthe commutativity of + was imported from the theory real in 
megasmathematical database, where it was established as a theorem. Theremaining lines are natural deduction inferences: universal eliminationsthat instantiate a with the number 6 and b with the term �12x.Altogether this single application of the pop-second-tactic is equiv-alent to a calculus-level proof of 11 inference steps. The length of thesubproof for this trivial polynomial addition is 43 single steps. Thisexample shows how it is possible to mechanically construct a proofverifying the correctness of any particular CAS computation withoutverifying the CAS algorithm (or their implementation) in the generalcase.However, the calculus level proofs for the computations are very longand rather boring and therefore hardly any human user might actuallywant to see much less read them. Therefore the Proverb proof expla-nation system in 
mega provides a more realistic alternative, since itgives the user access to representations of the parts of the proof onvarious levels of abstractions making use of the hierarchical structureof the underlying PDS. For instance, it is then possible to presentthe computations with some intermediate steps, as it is customary intextbooks. For example, we could include the three steps of the HighSchool algorithm mentioned above, to illustrate the polynomial addi-tion. (The decision which steps should be included and which omitted,depends of course on the expertise of readers for which a particularproof presentation is intended.)Despite all these abstractions in both developing and presenting theproof, we can still use any proof checker for ND-calculus to verify allsteps including computations. Furthermore, if we assume we have amore sophisticated proof checker, for example one that works modulothe axioms of polynomial rings, it is also possible to check the proofon an abstract level. As already mentioned, the more sophisticated theproof checker is, the more concise the communicated proofs can be.We have tested proof plan extraction from simple recursive and iter-ative CAS algorithms, where it works quite well, since these algorithmsclosely correspond to the mathematical de�nitions of the correspondingconcepts. However, more complicated schemes like divide-and-conqueralgorithms (for instance, the polynomial multiplication of Karatsubaand Ofman [KO63]) cannot be adapted to our approach so easily with-out extending the mathematical knowledge base by corresponding lem-mata.
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28 M. KERBER, M. KOHLHASE, V. SORGE.The example of the polynomial addition is surely a trivial one, wehave chosen it solely for presentation reasons. In particular it is verylikely to be correct in any real-world implementation, since it is welltested and does not depend on sophisticated mathematical theoremsfor which fuzzy boundary cases must be considered. For the sake ofargument, let us assume an error in the implementation, for instance,in the second case of the polynomial addition algorithm in Figure 5the cons-poly statement was forgotten, so that the algorithm has thefollowing (incorrect) form(> (e1j � � � erj )(f1k � � � frk))(tactic "pop-first")(poly-add nPi=j+1�ixe1i1 � � � xerir mPi=k �ixf1i1 � � � xfrir )In the computation of ((x2+6)+(2x2�12x+3)) that we have discussedabove, the second case is never used, and the computation would becorrect although the program is not.If we now change the order of addition of our polynomials p and q toq+ p we get the following incorrect result from the changed algorithm:((x2 + 6) + (2x2 � 12x+ 3)) = (3x2 + 9)Inserting the proof plan generated by the faulty algorithm then yields((2x2 � 12x+ 3) + (x2 + 6))(3x2 + ((�12x+ 3) + 6)) (mono-add)(3x2 + (3 + 6)) (pop-first)(3x2 + 9) (mono-add)In checking, the proof checker would see that the pop-first step isnot justi�ed, since the expansion corresponds to the application of thelaw of associativity. This would yield ((�12x+3)+6) = (�12x+(3+6))and thus would not be applicable during the expansion. Thus the proofplan and consequently the calculation would be rejected by 
mega.Note that in a large system with literally millions of possible cases,the correctness of a calculation like (x2+6)+(2x2�12x+3) depends onlyon a tiny subset of the whole program. It is a strength of our approach,that only the calculations that are necessary for a given proof would bechecked. This has the advantage that errors on di�erent levels can bedetected (in particular, on the levels of algorithms, of compilers, andof processors). Of course, for very long computations checking can bepretty expensive. Moreover, highly elaborated and e�cient algorithmsin state of the art CAS might be hard to augment with proof plan
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INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 29generation modes. As we have seen in the example above, the math-ematical knowledge in the database has to re
ect the mathematicalknowledge in the algorithm in order to easily decorate the algorithmsby a proof plan generation mode. However, to extend and prove cor-responding lemmata is not a trivial task for sophisticated algorithms.In particular such an approach would go very much in the direction ofprogram veri�cation.Even if it proves practically impossible to extract the informationthat is valuable at the conceptual, mathematical level, it is always pos-sible to reserve these elaborated techniques for the quiet mode used inproof discovery, and use more basic algorithms, for which the mathe-matics is easier and that are more easily decorated by a proof plan gen-eration mode, for the proof extraction phase. Systems like Axiom [JS92]or MuPAD [Fuc96] seem to come closest among standard CAS to theneeds for a proof plan generation, since one can already attach axioma-tisations to algorithms. 5. ConclusionIn this work we have reported on an experiment of integrating a com-puter algebra system into the interactive proof development environ-ment 
mega, not only at the system level, but also at the level ofproofs. The motivation for such an integration is the need for supportof a human user when his/her proofs contain non-trivial computations.We have shown that the proof planning paradigm in general and the
mega system in particular provide an open environment for such anextended integration that supports di�erent integration levels.In our approach it is not possible to use a standard CAS for theintegration as it is, since such a system provides answers, but no directlyusable justi�cations from which proof plans can be extracted. This,however, turned out to be essential in an environment that is built toconstruct communicable and checkable proofs.In order to achieve a solution that is compatible with such a strongrequirement, we have adopted a generic approach, where the onlyrequirement for the CAS is that it has a proof plan generation mode forthe generation of communicable and checkable proofs. Since we want toachieve the two goals simultaneously, namely to have high-level descrip-tions of the calculations of the CAS for communicating them to humanusers as well as low-level ones for mechanical checking, we representthe protocol information in form of high-level hierarchical proof plans,which can be expanded to the desired detail. Fully expanded proofplans correspond to natural deduction proofs which can be mechani-
KeKoSo.tex; 23/03/1998; 14:00; no v.; p.29



30 M. KERBER, M. KOHLHASE, V. SORGE.cally checked by a simple proof checker. In the case that the CAS hasmade a mistake the proof checker will detect it.The general idea and the fundamentals of the integration of a CASinto an MRS are independent from the concrete proof developmentenvironment 
mega and the concrete computer algebra system �-Cas.It can be realised in any plan-based theorem prover. Proof extractioncan even be realised on any tactic-based system and with any CASthat can protocol its calculations in form of tactics. Axiom [JS92] andMuPAD [Fuc96] seem to be best suited for a corresponding extensionsince one can already attach axiomatisations to algorithms. If in addi-tion the algorithms could be enriched in a way that they produce pro-tocol information in every computation step, that is, state which of theattached axioms are used and what the particular instantiations are,the system would probably �t in with our approach pretty well.A useful extension of our approach would consist in the usage ofvarious algorithms for the same computation, for instance, one as afast and e�cient algorithm that is not suitable for knowledge extractionwhile searching for a proof. Afterwards, when actually documenting thewhole proof a less e�cient algorithm, which is optimised to �nd shortproofs, can provide a complete proof plan.Although the correctness issue can be achieved by a tactic-basedapproach as well and does not need the speci�cations that are used inproof planning, the full strength of an integration where considerableautomated support is provided cannot be achieved on this level, sinceit is not possible to perform mechanical reasoning about the tactics.Such an automation can, however, be achieved by the proof planningapproach, where the proof planner can automatically call a CAS pro-cedure, when the conditions in the corresponding method are met. Theusefulness of an integration on this level can already be seen in the caseof our simple �-Cas: After the integration we are able to prove optimi-sation problems which were out of reach without such a support. Onthe other hand, the system is able to give explanations of the involvedcomputations at various levels of abstraction. A feature that is missingfrom todays CAS.From our experiments we expect that the successful integration ofany powerful computer algebra systems would considerably enhancethe reasoning power of any mechanised reasoning system.Acknowledgements The work presented in this paper was support-ed by the \Deutsche Forschungsgemeinschaft" in SFB 378, projectOMEGA. It bene�ted a lot from discussions in the Calculemus interestgroup.
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