INTEGRATING COMPUTER ALGEBRA INTO
PROOF PLANNING

Manfred Kerber

School of Computer Science, The University of Birmingham,
Birmingham B15 2TT, England, e-mail: M.Kerber@cs.bham.ac.uk
URL: http://wuw.cs.bham.ac.uk/ mmk

Michael Kohlhase and Volker Sorge

Fachbereich Informatik, Universitat des Saarlandes, D-66141 Saarbricken,
Germany, e-mail: {kohlhase|sorge}@ags.uni-sb.de

URL: http://jsuww.ags.uni-sb.de/{ kohlhase| “sorge}

(Received ; Accepted in final form)

Abstract. Mechanised reasoning systems and computer algebra systems have dif-
ferent objectives. Their integration is highly desirable, since formal proofs often
involve both of the two different tasks, proving and calculating. Even more impor-
tantly, proof and computation are often interwoven and not easily separable.

In this contribution we advocate an integration of computer algebra into mech-
anised reasoning systems at the proof plan level. This approach allows to view the
computer algebra algorithms as methods, that is, declarative representations of the
problem solving knowledge specific to a certain mathematical domain. Automation
can be achieved in many cases by searching for a hierarchic proof plan at the method-
level using suitable domain-specific control knowledge about the mathematical algo-
rithms. In other words, the uniform framework of proof planning allows to solve a
large class of problems that are not automatically solvable by separate systems.

Our approach also gives an answer to the correctness problems inherent in such
an integration. We advocate an approach where the computer algebra system pro-
duces high-level protocol information that can be processed by an interface to derive
proof plans. Such a proof plan in turn can be expanded to proofs at different levels
of abstraction, so the approach is well-suited for producing a high-level verbalised
explication as well as for a low-level machine checkable calculus-level proof.

We present an implementation of our ideas and exemplify them using an auto-
matically solved example.

Changes in the criterion of ‘rigour of
the proof’ engender major revolutions
in mathematics.

H. Poincaré, 1905

Key words: mechanised reasoning, computer algebra, hierarchical proof planning,
proof checking.

1. Introduction

The computer and the development of high-level programming lan-
guages made possible the mechanisation of logic as well as the realisa-

2 M. KERBER, M. KOHLHASE, V. SORGE.

tion of mechanical symbolic calculations, we could witness in the last
forty years. This has lead to two rather disjoint academic fields: mecha-
nised reasoning and computer algebra, which each have their own meth-
ods, interests and traditions, even though they share common roots:
none of the two fields is imaginable without the underlying foundation
of mathematical logic or the mathematical study of symbolic calcula-
tions (leading to such algorithms and methods as the determination of
the GCD or the GauBian elimination). Only in the last decade we have
seen a move towards an integration of the fields driven by the insight
that real-world formal problems often involve a mixture of both com-
putation and reasoning, hence an integration of mechanised reasoning
systems and computer algebra systems is highly desirable (cf. [Buc85]).
This is the case in particular, since deduction systems are very weak,
when it comes to computation with mathematical objects, and com-
puter algebra systems manipulate highly optimised representations of
these objects, but do not yield any formally checkable proof information
(if they give any explanation at all).

In the remainder of this introduction we briefly summarise key points
of mechanised reasoning systems as well as of computer algebra systems
and then give a short preview on the integration approach advocated
in this paper. By its nature, such a short description has to abstract
from many details and to simplify considerably.

1.1. MECHANISED REASONING SYSTEMS

Mechanised reasoning systems (for short MRS in the following) are
built with various purposes in mind. One goal is the construction of an
autonomous theorem prover, whose strength achieves or even surpass-
es the ability of human mathematicians. Another is to build a system
where the user derives the proof, with the system guaranteeing its cor-
rectness. A third purpose consists in modelling human problem-solving
behaviour on a machine, that is, cognitive aspects are the focus.

Advanced theorem proving systems often try to combine the differ-
ent goals, since they can complement each other in an ideal way. Let us
roughly divide existing theorem-proving systems into three categories:
machine-oriented theorem provers, proof checkers, and human-oriented
(plan-based) theorem provers.

Normally all these systems do not exist in a pure form anymore, and
in some systems like our own QMEGA system [BCFT97] it is explicitly
tried to combine the reasoning power of automated theorem provers as
logic engines, the specialised problem solving knowledge of the proof
planning mechanism, and the interactive support of tactic-based proof
development environments. We think that the combination of these

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.2

INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 3

complementary approaches inherits more advantages than drawbacks,
because for most tasks domain-specific as well as domain-independent
problem-solving know-how is required and for difficult tasks more often
than not an explicit user-interaction should be provided. While such an
approach seems to be general enough to cope with any kinds of logic-
level proofs, it neglects the fact that for many mathematical fields,
the everyday work of mathematicians only partially consists in proving
or verifying theorems. Calculation plays an equally important role. In
some cases the tasks of proving theorems and calculating simplifica-
tions of certain terms can be separated from each other, but very often
the tasks are interwoven and inseparable. In such cases an interactive
theorem proving environment will only provide rather poor support to
a user. Although theoretically any computation can be reduced to the-
orem proving, this is not practical for non-trivial cases, since the search
spaces are intractable. For many of these tasks, however, no search is
necessary at all, since there are numerical or algebraic algorithms that
can be used. If we think of Kowalski’s equation “Algorithm = Logic
+ Control” [Kow79], general purpose procedures do not (and cannot)
provide the control for doing a concrete computation.

1.2. COMPUTER ALGEBRA SYSTEMS

Early computer algebra systems (CAS for short) developed from col-
lections of algorithms and data structures for the manipulation of alge-
braic expressions like the multiplication of polynomials, or the deriva-
tion and integration of functions [Hea95]. Abstractly spoken, the main
objective of a CAS can be viewed in the simplification of an algebraic
expression or the determination of a normal form. Today there is a
broad range of such systems, ranging from very generally applicable
systems to a multitude of systems designed for specific applications.
Unlike MRS, CAS are used by many mathematicians as a tool in their
everyday work, they are even widely applied in sciences, engineering
and economics. Their high academic and practical standard reflects the
fact that the study of symbolic calculation has long been an established
and fruitful subfield of mathematics that has developed the mathemat-
ical theory and tools.

Most modern systems [Wol96, CGGT92, JS92] have in common that
the algebraic algorithms are integrated in a very comfortable graphical
user interface that includes formula editing, visualisation of mathemat-
ical objects and even an interface to programming languages. As in the
case of MRS the representation languages of CAS differ from system
to system, which complicates the integration of such systems as well
as the cooperation between them. This deficiency has been attacked in

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.3

4 M. KERBER, M. KOHLHASE, V. SORGE.

the OpenMath initiative [AvLS96], which strives for a standard CAS
communication protocol. Currently the main emphasis is laid on stan-
dardising the syntax and the computational behaviour of the mathe-
matical objects, while their properties or semantics are not considered.
That means there is no explicit representation format for theorems,
lemmata and proofs. Some specific systems allow to specify mathemat-
ical domains and theories. For instance in systems like MUPAD [Fuc96]
or AxioM [JS92], computational behaviour can be specified by attach-
ing types and axiomatisations to mathematical objects; but this also
falls short of a comprehensive representation of all relevant mathemat-
ics. Furthermore, almost all CAS fail to give an explanation or proof of
their solution to the problem at hand, even though some mathematical
theories like that of Grobner bases can be successfully applied to the-
orem proving in elementary geometry [Cho88, Kap88, CGZ94, Wu94].

1.3. CONTRIBUTIONS OF THIS PAPER

Not only the fact that a mutual simulation of the tasks of an MRS and
a CAS can be quite inefficient, but more that the daily work of math-
ematicians is about proving and calculating points to the integration
of such systems, since mathematicians want to have support in both of
their main activities. Indeed two independent systems can hardly cover
their needs, since in many cases the tasks of proving and calculating are
hardly separable. As pointed out by Buchberger [Buc96a] the integra-
tion problem is still unsolved, but it can be expected that a successful
combination of these systems will lead to “a drastic improvement of
the intelligence level” of such support systems.

Our paper addresses two immediate questions occurring in the inte-
gration of automated reasoning and computation systems.

— How can the algorithms be integrated, so that the underlying
mathematical knowledge is mutually respected and a synergy effect
is achieved?

— How can the correctness problem inherent in any such combination
be addressed? In particular, how can results from the CAS be
integrated into a proof without having to completely trust the
CAS?

We advocate an integration of computer algebra into mechanised rea-
soning systems using the proof planning paradigm. This approach
allows to encapsulate the computer algebra algorithms into meth-
ods, that is, declarative representations of the problem solving knowl-
edge specific to a certain mathematical domain. The proof planning
paradigm enables a user to guide a proof or to fully hand over the con-

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.4

INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 5

trol to a planner, which in turn can use computer algebra systems, if
the specifications for the corresponding algorithms are met. The use of
hierarchic proof plans at the method-level gives a suitable granularity
of integration, since it allows to directly use existing (human) control
knowledge about the interplay of computation and reasoning.

A proper integration into the proof planning approach answers the
question about the correctness automatically, since the corresponding
questions are solved for proof planning. In this area a proof plan can
either be rejected (the tactics are not executable, hence the plan can-
not be used to build a proof) or executed. The later results either in a
further planning phase to fill in possible gaps or in an accepted machine-
checkable proof. Hence a proper integration requires that the computer
algebra system produces high-level protocol information that can be
processed by an interface to derive proof plans which themselves can
be seamlessly integrated into the overall proof plan generated in the
problem solving attempt. Since this can be expanded into an explicit,
checkable proof in order to obtain a correctness guarantee for the com-
bined solution, we have also given a principled answer to the correctness
problem.

The feasibility of the approach advocated in the sequel has been
verified by integrating a simple CAS into the (XMEGA proof planning
system. Therefore, we organise the paper around this experiment and
describe the relevant features with a system perspective. Our approach
requires a mode of the CAS that generates information from which it
is possible to generate a proof plan. For that reason the integration of
a standard CAS makes major adaptations unavoidable (in particular it
is necessary to change the source code of these systems). Our approach
is not committed to the particular systems involved, in particular, the
work reported here should be understood rather as a proof of principle
than as the development of a state-of-the-art integrated system.

Moreover, we will make the details of the approach more concrete by
explaining them by means of an example that cannot easily be solved
by either a mechanised reasoning system or a computer algebra system
alone, but that needs the combined efforts of systems of each kind.

2. Related Work

We give a short description of some of the experiments to combine MRS
and CAS and roughly categorise them into three classes with respect
to the treatment of proofs that is adopted, that is, with respect to the
correctness issue. In doing so we only describe in detail the approaches
of integrating CAS into MRS, that is, essentially the MRS is the master

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.5

6 M. KERBER, M. KOHLHASE, V. SORGE.

and the CAS the slave, since our approach is also of this kind. With
the same right, one can of course follow the converse direction, namely
to approach the integration from the point of the CAS and indeed such
approaches are also successfully undertaken (see e.g. [CZ92, Buc96]).

The question about the granularity of integration is treated uni-
formly by all these experiments. The application of the CAS is treated
as another (derived) rule of inference at the level of the (tactic) calcu-
lus, so the granularity of integration depends on the granularity of the
calculus or the tactics involved.

In the first category of attempts (see e.g. [HT93b, BHC95]) one
essentially trusts that the CAS properly work, hence their results are
directly incorporated into the proof. All these experiments are at least
partly motivated by achieving a broader applicability range of formal
methods and this objective is definitively achieved, since the range of
mathematical theorems that can be formally proved by the system com-
binations is much greater than that provable by MRS alone. However,
CAS are very complex programs and therefore only trustworthy to a
limited extent, so that the correctness of proofs in such a hybrid system
can be questioned. This is not only a minor technical problem, but will
remain unsolved for the foreseeable future since the complexity (not
only the code complexity, but also the mathematical complexity) of a
CAS does not permit a verification of the program itself with currently
available program verification methods. Conceptually, the main contri-
bution of such an integration is the solution of the software-engineering
problem how to pass the control between the programs and translating
results forth and back. While this is an important subproblem, it does
not seem to cover the full complexity of the interaction of reasoning and
computation found in mathematical theorem proving. In an alternative
approach that formally respects correctness, but essentially trusts CAS,
an additional assumption standing for the CAS is introduced, so that
essentially formulae are derived that are proved modulo the correctness
of the computer algebra system at hand (see e.g. [HT93b]).

The second category (for which [HT93a] is paradigmatic) is more
conscious about the role of proofs, and only uses the CAS as an oracle,
receiving a result, whose correctness can then be checked deductively.
While this certainly solves the correctness problem, this approach only
has a limited coverage, since even checking the correctness of a calcula-
tion may be out of scope of most MRS, when they don’t have additional
information. Indeed from the point of applicability, the results of the
CAS help only in cases, where the verification of a result is simpler
than its discovery, such as prime factorisations, solving equations, or
symbolic integration. For other calculations, such as symbolic addition
or multiplication of polynomials and differentiation, the verification is
just as complex as the calculation itself, so that employing the CAS

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.6

INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 7

does not speed up the proof construction process. Typically in longer
calculations, both types of sub-calculations are contained.

A third approach of integrating computer algebra systems into a
particular kind of mechanised reasoning system, consists in the meta-
theoretic extension of the reasoning system as proposed for instance
in [BM81, How88] and been realised in NUPRL [Con86]. In this approach
a constructive mechanised reasoning system is basically used as its
own meta-system, the constructive features are exploited to synthesise
a correct computer algebra system and due to bridge rules between
ground and meta-system it is possible to integrate the so-built CAS
that it can be directly used as a component. The theoretical properties
of the meta-theoretic extension guarantee that if the original system
was correct then the extended system is correct too. This method is
the most appealing one from the viewpoint of correctness, although
the assumption that the original (also rather complex) system must be
correct can hardly be expected to be self-evident for any non-trivial
system. A disadvantage compared to the other two approaches is that
it is not possible to employ an existing CAS, but that it is necessary to
(re)implement one in the strictly formal system given by the basic MRS.
Of course this is subject to the limitations posed by the (mathematical
and software engineering) complexities mentioned above.

The main problem of integrating CAS into MRS without violating
correctness requirements is that CAS are generally highly optimised
towards maximal speed of computation but not towards generating
explanations of the computations involved. In most cases, this is dealt
with by meta-theoretic considerations why the algorithms are adequate.
This lack of explanation makes it not only impossible for the average
user to understand or convince himself of the correctness of the com-
putation, but leaves any MRS essentially without any information why
two terms should be equal. This is problematic, since computation-
al errors have been reported even for well-tested and well-established
CAS. From the reported categories of approaches only the last one
seriously addresses this problem.

3. QMEGA as an Open System for Integrating Computation

QOMEGA is a proof development system, based on the proof planning
paradigm. In this section we describe its architecture and components
and show how this supports the integration of computer algebra sys-
tems. Since the goal of this paper is not to present a system description
of OMEGA, but to document the integration of computer algebra into
it, we try to be as concise as possible and introduce the relevant parts

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.7

8 M. KERBER, M. KOHLHASE, V. SORGE.

only, the general architecture, the proof planner, and the integration
possibilities for external reasoners.

3.1. THE PROOF DEVELOPMENT ENVIRONMENT {IMEGA

The entire process of theorem proving in {YMEGA can be viewed as
an interleaving process of proof planning, execution and verification
centred around a hierarchical proof plan data structure.

Several integrated tools support the user in interacting with the
system. Some of them are also available to the proof planner.

Theory Database
Since methods and control knowledge used in proof planning are most-
ly domain-specific, MEGA organises the mathematical knowledge in a
hierarchy of theories. Theories represent signature extensions, axioms,
definitions, and methods that make up typical established mathemati-
cal domains. Each theorem has its home theory and therefore has access
to the theory’s signature extensions, axioms, definitions, and lemmata
without explicitly introducing them. A simple inheritance mechanism
allows to incrementally build larger theories from smaller parts.

We give an overview of the part of OMEGA’s theory database that
is necessary for solving our extended example in Figure 1.

Proof Ezplanation

Proof presentation is one important feature of a mathematical assis-
tant that has been neglected by traditional deduction systems. QMEGA
employs an extension of the PROVERB system [HF96] developed by our
group that allows for presenting proofs and proof plans in natural lan-
guage. In order to produce coherent texts that resemble those found in
mathematical textbooks, PROVERB employs state-of-the-art techniques
of natural language processing.

Due to the possibly hierarchical nature of 2MEGA proofs, these can
be verbalised at more than one level of abstraction, which can be select-
ed by the user.

To summarise our view of proofs, for every theorem an explicit proof
has to be constructed so that on the one hand it can be checked by
a proof checker, on the other hand the system provides support to
represent this proof in a high-level form that is easily readable by
humans [HF96]. Neither the process of generating proofs nor that of
checking them is fully replaced by the machine but only supported. If
a human mathematician wants to see a proof, he/she can do so at an
appropriate level of abstraction.

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.8

INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 9

3.2. PROOF PLANNING

The central data structure for the overall process is the Proof plan Data
Structure (PDS). This is a hierarchical data structure that represents
a (partial) proof at different levels of abstraction (called proof plans). It
is represented as a directed acyclic graph, where the nodes are justified
by (LCF-style) tactic applications. Conceptually, each such justification
represents a proof plan (the ezpansion of the justification) at a lower
level of abstraction that is computed when the tactic is executed'. In
OMEGA, we explicitly keep the original proof plan in an expansion hier-
archy. Thus the PDS makes the hierarchical structure of proof plans
explicit and retains it for further applications such as proof explanation
or analogical transfer of plans.

Once a proof plan is completed, its justifications can successively
be expanded to verify the well-formedness of the corresponding PDS.
This verification phase is necessary, since the correctness of the dif-
ferent components (in particular, that of external ones like automated
theorem provers or computer algebra systems) cannot be guaranteed.
When the expansion process is carried out down to the underlying
ND-calculus (natural deduction), the soundness of the overall system
relies solely on the correctness of the verifier and of ND. This also
provides a basis for the controlled integration of external reasoning
components if each reasoner’s results can (on demand) be transformed
into a sub-PDS. The level to which the proofs have to be expanded
depends on the sophistication of the proof checker. As pointed out by
Barendregt [Bar96], a more complex proof-checker that accepts proofs
in a more expressive formalism may drastically reduce the length of the
communicated proofs. If the high-level justifications are not expanded
but accepted as they are, our approach reduces to one in which the com-
puter algebra system is fully trusted. In short, the hierarchical nature
of the PDS supports the full spectrum of user preferences, from total
trust in the CAS, over partial trust in certain levels to full expansion
of the proofs in a detailed calculus level description that is machine
checkable.

A PDS can be constructed by automated or mixed-initiative plan-
ning, or pure user interaction that can make use of the integrated tools.
In particular, new pieces of PDS can be added by directly calling tac-
tics, by inserting facts from a database, or by calling some external rea-
soner (cf. Section 3.3) such as an automated theorem prover or a com-
puter algebra system. Automated proof planning is only adequate for

! This proof plan can be recursively expanded, until we have reached a proof plan

that is in fact a fully explicit proof, since all nodes are justified by the inference rules
of a higher-order variant of Gentzen’s calculus of natural deduction (ND).

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.9

10 M. KERBER, M. KOHLHASE, V. SORGE.

problem classes for which methods and control knowledge have already
been established.

The goal of proof planning is to fill gaps in a given PDS by forward
and backward reasoning [HKKR94] (proof plans were first introduced
by Bundy, see [Bun88, BSvH'93]). Thus from an abstract point of
view the planning process is the process of exploring the search space
of planning states that is generated by the plan operators in order to
find a complete plan from a given initial state to a terminal state.

OMEGA’s proof planner is an extension of the well-known STRIPS
algorithm that can be evoked to construct a proof plan for a node
g (the goal node) from a set I of supporting nodes (the initial state)
using a set Ops of proof planning operators, here called methods. A
method is a (partial) specification of a tactic in a meta-level language.
In OQMEGA planning is combined with hierarchical expansion of methods
and precondition abstraction. The plans found by this procedure are
directly incorporated into the PDS as a separate level of abstraction.

In this model, the actual reasoning competence of the planner and
the user builds upon the availability of appropriate methods togeth-
er with meta-level control knowledge that guides the planning. At the
moment, 2MEGA provides user-defined method ratings as a means of
control and can use analogy as a control strategy of the planner. Two
examples of methods are displayed in the section on the extended exam-
ple, Section 3.4.

3.3. INTEGRATION OF COMPUTER ALGEBRA SYSTEMS AS
EXTERNAL REASONERS

According to the different modes of QMEGA there are different levels
on which an external reasoning system, RSYS, can be integrated:

— Interactive calls, RSYS is represented as a command call-RSys
that invokes the reasoner on a particular subproblem and returns
the result,

— Proof planning, RSYS is represented as a method whose speci-
fication contains knowledge about the problem solving behaviour
and option settings for RSYs.

— Justifications, RSYS can serve as a justification of a declaratively
given subgoal that is left to be proved by RSvs.

In any case, the proof found by RSYS must eventually be transformed
into a PDS, since this is the proof-theoretic basis of QMEGA. For auto-
mated theorem provers like OTTER [McC94], we described the inte-
gration in [HKK™94] and the necessary proof transformation to PDS
in [HF96], so we will not pursue this matter here. The integration of

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.10

INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 11

CAS follows the same paradigm and is the main topic of this paper,
so we will develop the paradigm for the case of external computations
in OMEGA. We will see examples for the three different levels of inte-
grations of a CAS into (IMEGA in the example in the next section, so
we will not go into that here. This leaves us with the question of the
transformation of the CAS results into PDS.

If we take the idea of generating explicit PDS seriously also for
computations we can neither just take existing systems nor follow the
approach of meta-theoretic extensions, since MEGA is a classical proof
system and does not use constructive logic. On the other hand we can-
not forgo using them even in cases, where the verification of a cal-
culation is much easier than the calculation itself (e.g., integration
of functions); the computation needed for verifying alone is in many
cases still much too complicated to be automatically checked without
any guidance. For instance even the proof for the binomial formula
(x +y)? = 22 + 2zy + y? (a trivial problem for any computer alge-
bra system) needs more then 70 single steps in the natural deduction
calculus?. Thus using theorem provers or rewriting systems to find such
proofs can produce unnecessarily large search spaces and thus absorb
valuable resources. On the other hand such proofs show a remarkable
resemblance to algebraic calculations themselves and suggest the use of
the CAS not only to instantly compute the result of the given problem,
but also to guide a proof in the way of exploiting the implicit knowledge
of the algorithms. We propose to do this extraction of information not
by trying to reconstruct the computation in the MRS after the result
is generated — as we have seen, even in case of a trivial example for a
CAS this may turn out to be a very hard task for an MRS — but rather
to extend the CAS algorithm itself so that it produces some logically
usable output alongside the actual computation. Surely in most cases
a user would not like to see proofs at a level where the binomial formu-
la is explained (although a novice might want to). This means that a
hierarchical approach to proof generation is appropriate, in which the
abstraction level of the proof presentation can be chosen by the user.

Our approach is to use the mathematical knowledge implicit in the
CAS to extract proof plans that correspond to the mathematical com-
putation in the CAS. So essentially the output of a CAS should be
transferable into a sequence of tactics, which presents a high-level
description for the proof of correctness of the computation the CAS
has performed. Note that this does not prove general correctness of
the algorithms involved, instead it only gives a proof for a particular
instance of computation. The high-level description can then be used to

2 Proofs of this length are among the hardest ever found by totally automatic
theorem provers without domain-specific knowledge.

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.11

12 M. KERBER, M. KOHLHASE, V. SORGE.

produce a readable explanation or further expanded to a level that can
be automatically checked by proof checkers. The level of abstraction
on which the checking can take place, depends on the level of sophisti-
cation of the proof checker. For a naive proof checker, the proof must
be expanded to an explicit calculus level. The decision to extract proof
plans rather than concrete proofs from the CAS is essential to the goal
of being verbose without transmitting too much detail.

For our purpose, we need different modes, in which we can use the
CAS. Normally, during a proof search, we are only interested in the
result of a computation, since the assumption that the computation
is correct is normally justified for established CAS. When we want to
understand the computation in particular, in a successful proof we
need a mode of the CAS that gives enough information to generate a
high-level description of the computation in terms of the mathemat-
ics involved. This is is described in the next section in detail. Before
doing so we describe how the integrated system automatically solves
an extended example from an economics examination.

3.4. EXTENDED EXAMPLE

The concrete task at hand is to minimise the costs for running a
machine while producing a certain product.

Problem: The output of a machine can range over a certain interval,
the interval I = [1,7]. The cost of the product prod is determined by
the costs of water and electricity for producing prod, which are given
by the functions

o ry = (4d> —24d+6) L7

and the prices for water and electricity

opy =224 o py =05 41

Determine the output d in I of the machine such that the total costs
are minimal. [

This example serves our purposes for several reasons. Firstly, it
allows us to show the interaction of proof planning with symbolic com-
putation and the extraction of proof plans from calculations. Secondly,
the mathematics involved is simple enough to be fully explained (only
simple polynomial manipulations are necessary). Thirdly, it is not an
example we created, but the problem is a slightly varied version of a

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.12

INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 13

minimisation problem from a masters examination in economics at the
Universitat des Saarlandes, Saarbriicken [WiW89].

In order to solve problems like this, we have integrated a simple CAS
into QMEGA, called pu-CAs3.

The p-CAs-system is very simple and can at the moment only per-
form basic polynomial manipulations and differentiation, but it suffices
for automatically solving the example at hand. Clearly, for a practi-
cal system for mathematical reasoning, a much more developed system
like Maple [CGG192], Reduce [Hea95], Axiom [JS92], or Mathemat-
ica [Wol96] has to be integrated. The technicalities of the integration
will be described in Section 4.

For the formalisation of the example, we use the theory mecha-
nism of Q)MEGA to create a theory economy (see Figure 1) that con-
tains the domain-specific knowledge (both the factual and the method
knowledge) needed for the problem solution. Obviously, we need a
background theory of costs in economics (that handles both numer-
ical parts and denomination of cost functions) and one of minimisation
of real functions, therefore, our theory inherits material from the theo-
ries costs and calculus. The calculus theory is provided by QMEGA
and contains relevant parts of the knowledge of an elementary calculus
textbook: For instance, the real numbers are introduced as a complete,
dense archimedian field (based on elementary algebraic notions such
as groups and rings defined in the respective theories). The set of real
numbers (showing the existence of such a complete, dense archimedian
field) are constructed as the quotient field of the ring of sequences of
rational numbers over the ideal of null-sequences. The rational num-
bers in turn are constructed as signed fractions of natural numbers
that are defined from the Peano axioms in theory natural. All of these
mathematical theories are based on the theories function, set, and
relation, that specify naive (simply typed) set theory and the prop-
erties of functions and relations on such sets. Finally, the whole hier-
archy builds on the theory base, which declares the underlying logic
by providing the logical connectives and quantifiers and the basic ND
inference rules.

The theory economy provides a type v of units that covers the dif-
ferent units of denominations in our example m3 (for volume), kWh
(for work), prod (for product) and DM (for the price). We then for-
malise prices as triples consisting of one real number and two units
and cost functions as a real function together with two units (read as
input/output units). Note, that just as in the real world, addition (&)

8 The pu-Cas system is part of the standard distribution of QMEGA which can
be obtained from http://www.ags.uni-sb.de/software/deduktion/omega. The
example is accessible as WiWi-Exam in the theory economy.

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.13

14 M. KERBER, M. KOHLHASE, V. SORGE.

economy

T

costs caculus

rea

seg uences/

metric-space
rational

|

orcered field)
integer
f'el rdered- rlng/ ‘

natural
I‘I‘ n
group
n'lonm d

semgroup topoI ogy ordered
\
st{uct
function Set rel ation

\base/

Figure 1. Theory hierarchy in QMEGA’s knowledge base

multiplication (®) and comparison of costs and cost functions is defined
as that of their real parts with respect to the denominations. For these
calculations we have the axioms CF1 and CF2. If two denominations
differ, we can relate them by their prices, for this purpose we use axiom
Pr.

CF1 cf(fu.v) ®cflg,u,v) = cf(f+g,u,0)
CF2 cf(fiuv) @cflg,v,w) = cf(f-g,u,w)
Pr price(f,u,v) = cf(g,v,w) - Cf(f : gauaw)

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.14

INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 15

Optimisation in economy is formalised by a predicate Opt on a cost
function ¢f(f, DM, prod) and an interval I that is true, whenever f
has a total minimum?* on I.

O Opt(ef(f, DM, prod),I) < Fz. TotMin(z, f, 1)
Thus we can state the problem as the following formula®

THM H F Opt([cf (A\d-0.5d* + 3,m3, prod)®
cf (Ad-4d? — 24d + 6, kWh, prod)],[1,7])

where H is a set of hypotheses that are needed for the complete proof,
for instance the price axioms

P,z price(2, DM, m?)
Pywy price(0.5, DM, kWh)

The planner solves the problem by generating a high-level proof

plan consisting of methods from its domain specific method base on

economics exam questions®.

We are going to outline this process by describing its major steps.
In particular, we will demonstrate how the proof planner of QMEGA
and the u-CAs-system interact, and make explicit, on which entries of
a mathematical database this interaction depends. The planner finds
the following simple proof plan:

4 The predicate TotMin and the problem solving knowledge related to it is inher-
ited from the theory calculus.

5 Actually the formalisation of the problem is not fully correct, since the examiner
is not only interested in the proof that there exists such an z, but he/she wants to
know the value of z as well as a proof that this value fits the requirements. Obviously,
such an answer cannot be obtained from the formula here, but only from a proof
that is constructive for the variable x, where we can extract a witness term. This
is no problem for a CAS nor for an MRS based on constructive logic, but for a
traditional MRS based on classical logic, the proof construction process has to be
refined to guarantee constructivity for x. Note that the arguments, why the witness
for x meets the requirements can still be classical and non-constructive. For QMEGA
this means that the proof planner may only use methods in our proof plan that are
constructive to get the wanted answer as presented here and not a non-constructive
abstract argument. Finally note that this phenomenon is another argument in favour
manipulating explicit proofs. Without this, one may find oneself in the position, that
one is convinced (by meta-theoretic arguments) of the existence of a (constructive)
proof, but in fact without one from which to extract a term witness to answer the
exam question.

6 Questions for certain standard exams are a good example for a very restricted
mathematical domain, since the proofs and calculations involved are highly stan-
dardised. Therefore finding the proof plan in this example is not a big problem for
QMEGA.

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.15

16 M. KERBER, M. KOHLHASE, V. SORGE.

Mult-by-Price
Mult-by-Price
Add-by-Denom
Optimise
TotMin-Rolle

Tt s W N =

where the first three methods compute the actual cost function by
adjusting the denominations and adding. Method 4 uses Axiom O for
optimisation. As the example only contains polynomials of degree two,
the planner selects a method TotMin-Rolle (cf. Figure 3) for find-
ing total minima that makes implicit use of Rolle’s theorem from the
calculus theory:

Let f be a polynomial of degree two, then f has a total minimum at
x € [a,b], iff f has a minimum at z and f(a) > f(x) < f(b).

Formally we get the following equivalence:
TotMin TotMin(z, f,[a,b]) < = € [a,b] A Min(z, f)A
flz) < fla) A fz) < f(b)

Note that Rolle’s theorem is accessible in the current theory and, to
ensure correctness, the database has to contain its formal proof.

Now let us take a closer look at some of the methods in order to get a
feeling of how this initial proof plan can be expanded. In Figures 2 and 3
we have given slightly simplified presentations of the Mult-by-Price
and TotMin-Rolle method’.

The declaration slot of the method simply defines the meta-variables
used in the body of the method. The premises, conclusions, and the
constraint describe the applicability of the method. In the example of
Mult-by-Price, for instance, line L4 has to be present and to be an
open subgoal, while L; and Lg are lines that can be used in order to
infer Ly4. Ly has to be given already, whereas L3 is generated by the
application of the method (indicated by the @). Since the method is
intended to prove Ly4, after the application of the method, this line can
be deleted from the current planning state (we indicate this by the ©).
In the constraint slot further applicability criteria are described, which
cannot be formulated in terms of proof line schemata. Declarations,
premises, constraints, and conclusions form the specification part of
the method. In order to be able to mechanically adapt methods the
tactic part is further subdivided into the declarative content and the
procedural content. (However, this particular feature is not important
for the purpose of this paper.) In our examples the procedural content

7 We have especially adjusted the syntax of the constraint in a way that is more
comprehensive for the reader.

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.16

INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 17

Method : Mult-by-Price
L] y LQ, L3, L42 prIn
Declarations| H1, Ha, Hs: list(prin) Ji: just
fog,v,w, ¢, ¢ 1, 4)': variable
Premises |Li,®L3
1 < (2ndarg(termocc(cf, ¢)) # DM — termocc(cf, ¢))
. g < lstarg(v) v ¢ 2ndarg(y) w < 3rdarg(y
Constraint W cf(g-(f?DM,w) (%) (%)
¢ « replace (¢, v,)

Conclusions |©L4
(L) Hy Fprice(f, DM ,v) (Jy)

Declarative | (L) Hy, Hy Fef(g,v,w) =9" (Pr Ly)
Content (L3) Hs Fq' (Call-CAS)

(L4) Hi,Hy, H3 F ¢ (=subst L3 Ly)
Ef)%%(é(rilltlral schema — interpreter

Figure 2. The Mult-by-Price method from theory cost.

consists of a schema-interpreter, which essentially inserts the declar-
ative content (using the bindings made in the planning phase) at the
correct place in the current partial proof tree. In the concrete example
the lines Ly through L, are inserted (Note that we adopted a linearised
version of ND proofs as introduced in [And80]).

In order to understand to which piece of actual proof these methods
evaluate, we have to examine the declarative content and the bind-
ings performed in particular in the constraint. The constraint of the
Mult-by-Price-method states a rather simple computation: if there is
a cost function in the given open line which has a denomination other
than DM, it is multiplied with the appropriate price. The multiplication
of the real parts is carried out by the CAS and the corresponding cost
function is constructed. As this point is crucial for understanding the
working scheme of a method we will view the bindings in the constraint
step by step: When applied to the current plan the method is matched
with the open goals of the planning state. The first pass of the planner
yields that L4 can be matched with our theorem THM. Thus its formula
Opt([cf(Ad.0.5d%>+3,m?, prod) ®cf (Ad.4d? —24d+6, kWh, prod)], [1,7])
is bound to the meta-variable ¢. It is then examined to find an occur-
rence of a cost function. If such a subterm exists its arguments are
bound to g, v, w and by matching line L; we receive the numerical part
of price in f (if the appropriate price is not provided the application of
the method would fail here). Afterwards the new cost function is com-

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.17

18 M. KERBER, M. KOHLHASE, V. SORGE.

puted (according to axiom Pr) in ¢’ and finally ¢’ contains the result
of replacing the old cost function in ¢ by %’. Hence in the first plan
step the optimisation formula stored in ¢’ contains the cost function
cf (Md-1d%? + 6, DM, prod) as a subterm.

With all these meta-variables instantiated the subproof contribut-
ed by the Mult-by-Price-method consists of lines Ly and L3 in the
declarative content. Here we observe that Lo results from applying the
price-axiom Pr (which is fetched from the database) to line L;. Fur-
thermore note that in L3 we have a call to the CAS as a justifying
method for the line. This means that at this point in the proof plan-
ning procedure, the CAS is called in order to compute the product of
price and original cost function. The line resulting from this calculation
is then used as the new open subgoal in the planning state.

Summarising the effects of the method Mult-by-Price can be
observed in two steps. First the goal line THM is justified with the
method yielding the following subproof:

Ly H F Opt([cf(Md1d? + 6, DM, prod) @ (Open)
cf (Ad.4d? — 24d + 6, kWh, prod)], [1, 7))

THM H + Opt([cf (Ad-0.5d* + 3, m3, prod) & (MbP L)
cf (Ad.4d? — 24d + 6, kWh, prod)], [1, 7))

Then the method in the justification of line THM (which has been
abbreviated due to a lack of space) could be expanded thereby inserting
the intermediate steps as described above by instantiating the macro
steps of the method. Note that the following expanded subproof is at
a more detailed level of abstraction in the PDS. In particular, the
justification of THM itself is different at this level.

P,,;s P, price(2, DM, m?) (HYP)
Lo H Fef(A0.5d% +3,m?, prod) = (Pr P,,3)
cf(Ade1d? + 6, DM , prod)
Li H FOpt([cf(Ad1d? + 6, DM, prod)® (Open)
cf (A\dedd? — 24d + 6, kWh, prod)],[1,7])
THMH F Opt([cf(Ad-0.5d* + 3, m?, prod)® (=substLiLy)

cf (Ad-4d? — 24d + 6, kWh, prod)], [1,7])

In the proof of THM, the method Mult-by-Price is applied twice
in order to normalise both summands. To preserve space we will
not present the next two methods of our proof plan as extensive-
ly as the Mult-by-Price-method. Add-by-Denom is very similar to
Mult-by-Price and applies axiom CF1 inside the optimisation function
Opt to compute the final cost function. In its course the CAS is called
once to perform a polynomial addition. Then the Optimise-method
simply introduces the definition for the Opt function of axiom O.

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.18

INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 19

Method : TotMin-Rolle

L] 3 L27 L37 L47 L57 Lﬁu L77 LS; L97 L]Ou LH : prln
Declarations | H1, Ha, H3: list(prin) Jy, Jy: just

a,b, f,z: variable Yy, P, a, B: term
Premises Ly, Ly
C . degree(¢) = 2

onstraint y < compute_with_CAS(minimum, ¢)

Conclusions |©L13

(L1) Hy "VfV -(f(r) =0 A (J1)

f{z) > 0) = Min(z, f
(Ly) Hy I—Va Vo2 € [a,b] & ()
a<zAz<bh)

(Ly) Hak¢"(y) >0 (Call-CAS)
Declarative |(L5) HsFa <y (Simplify)
Content (Lg) HsFy<p (Simplify)

(L7) H3k¢(y) < ¢l (Simplify)

(Ls) Hzko¢(y) < ¢(B) (Simplify)

(Lg) H3zFMin(y,) (L1 L3z Ly)

Ll[] H‘; l—’l/ € [(}{,] L2 L5 LG)

Lyy) Hs F TotMin(y, ¢, [a, 5]) TotMin L; Lg Lg Ly)

(L]Q) H3 l_ EIE TOtMlD(.’E ¢, [a, ,6]) (3[L]])
Ef)%‘é‘é‘ril‘tlral schema — interpreter

Figure 3. The TotMin-Rolle method from theory calculus.

Far more interesting than these two methods is the TotMin-Rolle-
method as it contains a different example for the use of a CAS in
QOMEGA. Again the presentation of the method in Figure 3 is simplified.

The TotMin-Rolle method is applied at a stage of the proof where
the actual minimum of the cost function has to be introduced. This task
is fulfilled within the constraint of the method. The compute_with_CAS
statement actually calls the CAS in quiet mode to compute the min-
imum of the function ¢ and store it in the meta-variable y. At this
stage, the CAS is used as an oracle here, just as in [HT93a]. In our
example the minimum of the cost function is at y = 2 and the ND-line
of the form

Jz. TotMin(z, Az. (322 + (=122 +9)),[1,7))
will be transformed by eliminating the existentially quantified variable:

TotMin(2, Az. (322 + (—122 +9)),[1,7])

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.19

20 M. KERBER, M. KOHLHASE, V. SORGE.

The rest of the proof plan is devoted to proving that the result is actu-
ally a total minimum. This is done by using the definition for TotMin
from the database and furthermore by using the definitions for mini-
mum and interval which correspond to line L; and Lo in the method
TotMin-Rolle. These definitions are introduced in lines Lg through L1y
by applying them to the correct assertions given in lines L3 through
Lg. This is expressed by the justifications in the corresponding lines; for
instance, the justification of line Ly, states that we can infer y € [«]
from the lines Ly and Lg with the definition of interval in line Ls.

A closer look at the justifications of lines L3 through Lg reveals that
these contain methods themselves. Lines L3 and L, again depend on
calculations of the CAS which computes the first and second derivative
of our cost function. The justifications Simplify correspond to a method
performing basic arithmetic simplifications and comparisons.

Consisting of only 5 methods the above proof plan gives the impres-
sion of a small proof and on an abstract level it is indeed; an experienced
mathematician might not want to see more. But expanding the plan
into a partially grounded ND proof gives it a length of 90 lines, con-
taining lines justified by the CAS. The proof on this level may roughly
correspond to a proof that a novice would like to see and that would
form a reasonable solution of the exam problem once it is presented in
natural language by the PROVERB system. By rerunning the CAS in a
proof plan generating mode on the CAS-justifications and extracting
proof plans, the proof can be expanded to a more detailed proof plan
containing an account of the mathematics behind the calculations. This
proof plan already contains 135 plan steps and — if the user does not
feel comfortable with the level of detail yet — can then be expanded
to a calculus-level ND proof of length 354. Note that even this proof
is not a stand-alone proof of the minimisation theorem, but depends
on the proofs of a number of lemmata from a database. Furthermore,
in these proofs the simplification of ground arithmetic expressions is
not expanded, for instance, into a representation involving zero and
the successor function either, which would be necessary to obtain a
detailed logic-level proof.

4. Integrating Computations into Explicit Proofs
In this section we describe SAPPER (System for Algorithmic Proof

Plan Extraction and Reasoning), which generates proof plans from
CAS output. As mentioned in Section 3.3, for the intended integration

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.20

INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 21

it is necessary to augment the CAS with mathematical information for a
proof plan generating mode in order to achieve the proposed integration
at the level of proofs. For the u-CAS system, which we have developed
to demonstrate the feasibility of the approach, this was rather simple, as
we will demonstrate below. Enriching a state of the art CAS with such
a mode for producing the necessary additional protocol information,
would of course require a considerable amount of work.

4.1. ARCHITECTURE

The SAPPER system can be seen as a generic interface for connecting
OMEGA (or another proof plan-based mechanised reasoning system)
with one or several computer algebra systems (see Figure 4). An incor-
porated CAS is treated as a slave to QMEGA which means that only
the latter can call the first one and not vice versa. From the software
engineering point of view, QMEGA and the CAS are two independent
processes while the interface is a process providing a bridge for com-
munication. Its role is to automate the broadcasting of messages by
transforming output of one system into data that can be processed by
the other8.

Unlike other approaches (see [HC95, GPT96] for example) we do
not want to change the logic inside our MRS. In the same line, we
do not want to change the computational behaviour of the computer
algebra algorithms. In order to achieve this goal the trace output of the
algorithm is kept as short as possible. In fact most of the computations
for constructing a proof plan is left to the interface. The proof plans
can directly be imported into 2MEGA.

This makes the integration independent of the particular systems,
and indeed all the results below are independent of the CAS employed
and make only some general assumptions about the MRS (such as being
proof plan-based). Moreover, the interface approach helps us to keep
the CAS free of any logical computation, for which such a system is not
intended anyway. Finally, the interface minimises the required changes
to an existing CAS, while maintaining the possibility of using the CAS
stand-alone. The only requirement we make for integrating a particular
CAS is that it has to produce enough protocol information so that a
proof plan can be generated from this information. The proof plan in
turn can be expanded by the MRS into a proof verifying the concrete
computation.

The interface itself can be roughly divided into two parts; the trans-
lation part and the plan generator. The first performs syntax transla-
tions between QMEGA and a CAS in both directions while the latter

8 This is an adaptation of the general approach on combining systems in [CMP91].

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.21

22 M. KERBER, M. KOHLHASE, V. SORGE.

reeEEEEEEEEEEEE-- \
! Interface !
; Trandator ;

result | || Absract u-CAS | result
i I
1

QMEGA | tyn. + args. | Function Mappings } call u-CAS
call : I
info ;

I I tactics

pl I

aceess Plan Generator : know|edge

e e e = = - - —

Hypotheses | = "~
Theorems

Methods
Tactics

Figure 4. Interface between QMEGA and computer algebra systems

only transforms verbose output of the CAS to QOMEGA proof plans.
Clearly only the translation part depends on the particular CAS that
is invoked.

For the translations a collection of data structures called abstract
CAS® is provided each one referring to a particular connected CAS
(or just parts of one). The main purpose of these structures is to specify
function mappings, relating a particular function of QMEGA to a cor-
responding CAS-function and the type of its arguments. Furthermore
it provides functionality to convert the given arguments of the mapped
OMEGA function to CAS input. In the same fashion it transforms results
of algebraic computations back into data that can be further processed
by QMEGA. The functionality in this part of our interface offers us the
possibility of connecting any CAS as a black box system, as in the first
approach we have described in Section 2. For instance, we may want to
use a very efficient system without a mode for generating proof plans in

9 In a reimplementation of SAPPER we would probably use the OpenMath pro-
tocol [AvLS96] as a lingua franca on the CAS side.

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.22

INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 23

proof search as black box system, and then another less efficient system
with such a mode for the actual proof construction, once it is clear what
the proof should look like. This corresponds to recent techniques used
in knowledge based systems, where the explanation component is not
just a trace of the rules applied during the search, but the explanation
is reconstructed by an independent component.

The plan generator solely provides the machinery for our main goal,
the proof plan extraction. Equipped with supplementary information
on the proof by QOMEGA it records the output produced by the par-
ticular algebraic algorithm and converts it into a proof plan. Here the
requirements of keeping the CAS side free of logical considerations and
on the other hand of keeping the interface generic seem conflicting at
the first glance. However, this conflict can be solved by giving both sides
of the interface access to a database of mathematical facts formalising
the mathematics behind the particular CAS algorithms. Conceptually,
this database together with the mappings governing the access, provides
the semantics of the integration of QMEGA with a particular CAS. Thus
expanding the plan generator is simply done by expanding the theory
database by adding new tactics.

While QQMEGA itself can access the complete database, SAPPER’s
plan generator in the interface is only able to use tactics and lookup
hypotheses of a theory (cf. Figure 4). The CAS does not interact with
the database at all: it only has to know about it and references the
logical objects (methods, tactics, theorems, or definitions) in the proof
plan generating mode. Thus knowledge about the database is compiled
a priori into the algebraic algorithms in order to document their calcu-
lations.

4.2. PROOF PLAN EXTRACTION

Let us now take a closer look at the implementation of the proof plan
generation in p-CAS and at the expansion process of its output. This
should demonstrate how proofs can be extracted from computer alge-
bra calculation and provide an intuition on the requirements that our
approach poses on the CAS side.

As an example we will consider a polynomial addition from the
example above. Normally, an experienced mathematician would not
like to see any proof at all for that, while a high-school student
would like to. As we have seen in our example, the main purpose
of the Add-by-Demon-method is to compute the final cost function
cf (Md-(3d? — 12d + 9), DM, prod). This is done in p-CAs by adding
the two polynomials Ad-d? + 6 and Ad.2d? — 12d + 3. In the remain-
der of this subsection we will expand this addition in several steps and
thereby obtain a calculus level proof for the computation.

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.23

24 M. KERBER, M. KOHLHASE, V. SORGE.

Before examining this example in detail, let us consider the gener-
al scheme of the proof plan generation inside the polynomial addition
algorithm of u-CAS. We first take a look at the different representations

. . . L eq. €.
of a polynomial p in the variables zy,...,z,: p = > ajz, -+ -z, '. The

logical language of (IMEGA is a variant of the SiI;lp]ly typed A-calculus
(indeed we use a stronger type system, but here we want to keep things
as simple as possible), so the polynomials are represented as polyno-
mial functions, that is, as A-expression where the formal parameters
Z1,...,%, are A-abstracted (mathematically, p is a function of r argu-
ments):

Pt Az Aen(t (on (+ (D arer,)) (ran (x (F a1 eny)),

For the notation, we use a prefix notation; the symbols +, * and 1
denote binary functions for addition, multiplication and exponentiation
on the reals. In this representation, we can use (-reduction for the
evaluation of polynomials.

In pu-CAS, we use a variable dense, expanded representation as an
internal data structure for polynomials (as described in [Zip93], for
instance). Thus every monomial is represented as a list containing its
coefficient together with the exponents of each variable. Hence we get
the following representation for p:

P ((an eln"'ern)"'(al 611---6“))

Let us now turn to the actual u-CAS algorithm for polynomi-
al addition. This simple algorithm adds polynomials p and ¢ by a
case analysis on the exponents'? with recursive calls to itself. So let
p= i oy xy’ and g = % ﬁ,’r{ll i T{TZ We have presented the
algoéitlhm in the jth componevhtlof p and the kth component of ¢ in a
Lisp-like pseudo-code in Figure 5. Intuitively, the algorithm proceeds
by ordering the monomials, advancing the leading monomial either of
the first or the second arguments; in the case of equal exponents, the
coefficients of the monomials are added.

Obviously, the only expansions of the original algorithm needed for
the proof plan generation are the additional (tactic...) statements'!.

10 We assume a lexicographic monomial order and employ it for ordering the
exponents. Thus we make use of the operators >, <, and = in an intuitive sense.
Furthermore we can define the rank of a monomial as the vector given by its expo-
nents and the rank of a polynomial as the maximum rank of its monomials with
respect to the lexicographic monomial order.

1 Observe that in this case, the called tactics do not need any additional argu-
ments, since our plan generator in the interface keeps track of the position in the

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.24

INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 25

(poly-add (p q)
(: (elj T eTj)(flk T frk))

(tactic "mono-add")
er.

(cons-poly (aj + Be)zy? e ay
L T N T
(poly-add . amy'---x;" > Bizy' "))

1=j+1 i=k+1

(> (elj e e?"j)(flk e frk))
(tactic "pop-first")
(cons-poly ayjx;” - 2,

n €1, €r; m fli fri
(poly-add Y azy 'z’ Y Bizy ' --xr''))
i=j+1 i—k

(< (elj "'eTj)(flk e frk))

(tactic "pop-second")

(cons-poly ﬂkx'{l’“ ol

L e, er; f fr;
(poly-add > ajzy ' -~z > Biwy' - -zr')))
i—j =kt 1

Figure 5. Polynomial addition in pu-CAs.

They just produce the additional output by returning keywords of tac-
tic names to the plan generator and do not have any side effects. In
particular, the computational behaviour of the algorithm does not have
to be changed at all.

If we now apply this algorithm to the two polynomials

p=x’4+6 q:=22> 122+ 3

we obtain the following proof plan:
(mono-add, pop-second, mono-add)

First the two quadratic monomials from p and ¢ are added, then the
linear term of ¢ (the second argument) is raised, since it only appears
in one argument, and finally the remaining monomials are added up.

In the case of the polynomial addition, each of the methods (proof
plan operators) directly corresponds to a tactic with the same name,
that is, the list of the three methods above directly represents a concrete
proof plan for polynomial addition of the concrete polynomials p and

proof and thus knows on which monomials the algorithm works when returning a
tactic. This way we need not to be concerned which form a monomial actually has
during the course of the algorithm.

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.25

26 M. KERBER, M. KOHLHASE, V. SORGE.

g. (In the following representation we omitted the context in which the
polynomials are embedded in the actual proofs.)

(2% + 6) + (222 — 122 + 3))

(322 + (6 4+ (—12z + 3))) (mono-add)
(322 — 12z + (6 + 3)) (pop-second)
(322 — 122 +9) (mono-add)

These four lines correspond to a step-by-step version of the basic
High School algorithm. So far the expansion of the call-cas-method
has been exclusively done by pu-CAs proof plan generation mode. But
at this stage u-CAs cannot provide us with any more details about the
computation and the subsequent expansion of the next hierarchic level
can be achieved without further use of a CAS.

Let us for instance take a look at the pop-second tactic to under-
stand its logical content. The tactic itself describes a reordering in a
sum that looks in the general case as follows:

(a+(b+¢c)=(b+ (a+c)) (1)

For the current example we can view a and ¢ as arbitrary polynomials
and b as a monomial of rank greater than that of the polynomial a.
It is now obvious that the behaviour of pop-second is determined by
the pattern of the sum it is applied to. If in equation (1) the poly-
nomial ¢ does not exist, pop-second is equivalent to a single applica-
tion of the law of commutativity. Otherwise, like in our example, the
tactic performs a series of commutativity and associativity steps. The
pop-second step above can thus be expanded in a plan which reflects
the single step applications of the laws of commutativity and associa-
tivity.

(322 + (6 + (=122 + 3)))

(3z% + ((6 — 12z) + 3)) (associativity)
(327 + ((—12z + 6) + 3)) (commutativity)
(322 — 122 + (6 + 3)) (associativity)

Assuming we have expanded the two mono-add tactics as well, we
have constructed a representation of the proof at a level where it only
needs the axioms in the polynomial ring. To finally expand this to a ful-
ly explicit calculus level proof, we further expand all three justifications
of the above lines. This leads to a sequence of eliminations of univer-
sally quantified variables in the corresponding hypothesis, the axioms
of commutativity and associativity. In our example the commutativity
axiom would be transformed in the following fashion:

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.26

INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 27

VaVb.(a +b) = (b+ a) (THM)
Vb (6 + b) = (b + 6) (VE 6)
(6 —12z) = (—12z + 6) (VE —12z)

Here, the justification (THM) in the first proof line indicates that
the commutativity of + was imported from the theory real in QMEGAS
mathematical database, where it was established as a theorem. The
remaining lines are natural deduction inferences: universal eliminations
that instantiate a with the number 6 and b with the term —12z.

Altogether this single application of the pop-second-tactic is equiv-
alent to a calculus-level proof of 11 inference steps. The length of the
subproof for this trivial polynomial addition is 43 single steps. This
example shows how it is possible to mechanically construct a proof
verifying the correctness of any particular CAS computation without
verifying the CAS algorithm (or their implementation) in the general
case.

However, the calculus level proofs for the computations are very long
and rather boring and therefore hardly any human user might actually
want to see much less read them. Therefore the PROVERB proof expla-
nation system in QMEGA provides a more realistic alternative, since it
gives the user access to representations of the parts of the proof on
various levels of abstractions making use of the hierarchical structure
of the underlying PDS. For instance, it is then possible to present
the computations with some intermediate steps, as it is customary in
textbooks. For example, we could include the three steps of the High
School algorithm mentioned above, to illustrate the polynomial addi-
tion. (The decision which steps should be included and which omitted,
depends of course on the expertise of readers for which a particular
proof presentation is intended.)

Despite all these abstractions in both developing and presenting the
proof, we can still use any proof checker for ND-calculus to verify all
steps including computations. Furthermore, if we assume we have a
more sophisticated proof checker, for example one that works modulo
the axioms of polynomial rings, it is also possible to check the proof
on an abstract level. As already mentioned, the more sophisticated the
proof checker is, the more concise the communicated proofs can be.

We have tested proof plan extraction from simple recursive and iter-
ative CAS algorithms, where it works quite well, since these algorithms
closely correspond to the mathematical definitions of the corresponding
concepts. However, more complicated schemes like divide-and-conquer
algorithms (for instance, the polynomial multiplication of Karatsuba
and Ofman [KO63]) cannot be adapted to our approach so easily with-
out extending the mathematical knowledge base by corresponding lem-
mata.

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.27

28 M. KERBER, M. KOHLHASE, V. SORGE.

The example of the polynomial addition is surely a trivial one, we
have chosen it solely for presentation reasons. In particular it is very
likely to be correct in any real-world implementation, since it is well
tested and does not depend on sophisticated mathematical theorems
for which fuzzy boundary cases must be considered. For the sake of
argument, let us assume an error in the implementation, for instance,
in the second case of the polynomial addition algorithm in Figure 5
the cons-poly statement was forgotten, so that the algorithm has the
following (incorrect) form

(> (elj e e?"j)(flk e f?”k))
(tactic "pop-first")

6’7-Z

n
(poly-add Y azy" zm il
i=j+1

In the computation of ((2246)+ (222 — 12.7:+3)) that we have discussed

above, the second case is never used, and the computation would be
correct although the program is not.

If we now change the order of addition of our polynomials p and ¢ to
q+ p we get the following incorrect result from the changed algorithm:

(22 +6) + (222 — 122 + 3)) = (322 +9)
Inserting the proof plan generated by the faulty algorithm then yields

(2:5 — 122 + 3) + (22 + 6))

(

(322 + ((—122 + 3) +6)) (mono-add)
(322 + (3 +6)) (pop-first)
(322 +9) (mono-add)

In checking, the proof checker would see that the pop-first step is
not justified, since the expansion corresponds to the application of the
law of associativity. This would yield ((—122+3)46) = (—12z+(3+6))
and thus would not be applicable during the expansion. Thus the proof
plan and consequently the calculation would be rejected by QMEGA.

Note that in a large system with literally millions of possible cases,
the correctness of a calculation like (224-6)+ (222 —12z43) depends only
on a tiny subset of the whole program. It is a strength of our approach,
that only the calculations that are necessary for a given proof would be
checked. This has the advantage that errors on different levels can be
detected (in particular, on the levels of algorithms, of compilers, and
of processors). Of course, for very long computations checking can be
pretty expensive. Moreover, highly elaborated and efficient algorithms
in state of the art CAS might be hard to augment with proof plan

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.28

INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 29

generation modes. As we have seen in the example above, the math-
ematical knowledge in the database has to reflect the mathematical
knowledge in the algorithm in order to easily decorate the algorithms
by a proof plan generation mode. However, to extend and prove cor-
responding lemmata is not a trivial task for sophisticated algorithms.
In particular such an approach would go very much in the direction of
program verification.

Even if it proves practically impossible to extract the information
that is valuable at the conceptual, mathematical level, it is always pos-
sible to reserve these elaborated techniques for the quiet mode used in
proof discovery, and use more basic algorithms, for which the mathe-
matics is easier and that are more easily decorated by a proof plan gen-
eration mode, for the proof extraction phase. Systems like Aziom [JS92]
or MuPAD [Fuc96] seem to come closest among standard CAS to the
needs for a proof plan generation, since one can already attach axioma-
tisations to algorithms.

5. Conclusion

In this work we have reported on an experiment of integrating a com-
puter algebra system into the interactive proof development environ-
ment 2MEGA, not only at the system level, but also at the level of
proofs. The motivation for such an integration is the need for support
of a human user when his/her proofs contain non-trivial computations.
We have shown that the proof planning paradigm in general and the
QIMEGA system in particular provide an open environment for such an
extended integration that supports different integration levels.

In our approach it is not possible to use a standard CAS for the
integration as it is, since such a system provides answers, but no directly
usable justifications from which proof plans can be extracted. This,
however, turned out to be essential in an environment that is built to
construct communicable and checkable proofs.

In order to achieve a solution that is compatible with such a strong
requirement, we have adopted a generic approach, where the only
requirement for the CAS is that it has a proof plan generation mode for
the generation of communicable and checkable proofs. Since we want to
achieve the two goals simultaneously, namely to have high-level descrip-
tions of the calculations of the CAS for communicating them to human
users as well as low-level ones for mechanical checking, we represent
the protocol information in form of high-level hierarchical proof plans,
which can be expanded to the desired detail. Fully expanded proof
plans correspond to natural deduction proofs which can be mechani-

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.29

30 M. KERBER, M. KOHLHASE, V. SORGE.

cally checked by a simple proof checker. In the case that the CAS has
made a mistake the proof checker will detect it.

The general idea and the fundamentals of the integration of a CAS
into an MRS are independent from the concrete proof development
environment 2MEGA and the concrete computer algebra system p-CAS.
It can be realised in any plan-based theorem prover. Proof extraction
can even be realised on any tactic-based system and with any CAS
that can protocol its calculations in form of tactics. Aziom [JS92] and
MuPAD [Fuc96] seem to be best suited for a corresponding extension
since one can already attach axiomatisations to algorithms. If in addi-
tion the algorithms could be enriched in a way that they produce pro-
tocol information in every computation step, that is, state which of the
attached axioms are used and what the particular instantiations are,
the system would probably fit in with our approach pretty well.

A useful extension of our approach would consist in the usage of
various algorithms for the same computation, for instance, one as a
fast and efficient algorithm that is not suitable for knowledge extraction
while searching for a proof. Afterwards, when actually documenting the
whole proof a less efficient algorithm, which is optimised to find short
proofs, can provide a complete proof plan.

Although the correctness issue can be achieved by a tactic-based
approach as well and does not need the specifications that are used in
proof planning, the full strength of an integration where considerable
automated support is provided cannot be achieved on this level, since
it is not possible to perform mechanical reasoning about the tactics.
Such an automation can, however, be achieved by the proof planning
approach, where the proof planner can automatically call a CAS pro-
cedure, when the conditions in the corresponding method are met. The
usefulness of an integration on this level can already be seen in the case
of our simple u-CAS: After the integration we are able to prove optimi-
sation problems which were out of reach without such a support. On
the other hand, the system is able to give explanations of the involved
computations at various levels of abstraction. A feature that is missing
from todays CAS.

From our experiments we expect that the successful integration of
any powerful computer algebra systems would considerably enhance
the reasoning power of any mechanised reasoning system.

Acknowledgements ~ The work presented in this paper was support-
ed by the “Deutsche Forschungsgemeinschaft” in SFB 378, project
OMEGA. It benefited a lot from discussions in the Calculemus interest

group.

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.30

INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 31

The authors would like to thank Lassaad Cheikhrouhou for his help
with QMEGA’s proof planner and with coding the methods for our
examples. Furthermore, we would like to thank Deepak Kapur and the
anonymous referees for carefully reading earlier versions of the paper
and for their detailed comments that helped us to improve the presen-
tation considerably.

And80.

AvLS96.

Bar96.

BCFT97.

BHC95.

BMSI1.

BSvH'93.

Buc85.

Buc96.

Buc96a.

Bung88.

CGG*92.

CGZ94.

References

P. B. Andrews. Transforming matings into natural deduction proofs.
In W. Bibel and R. Kowalski, editors, Proceedings of the 5th CADE,
pages 281 292, Les Arc, France, 1980. Springer Verlag, LNCS 87.

J. Abbot, A. van Leeuwen, and A. Strotmann. Objectives of OpenMath.
Technical Report 12, RIACA, Eindhoven, June 1996.

H. Barendregt. Computations and formal proofs in type theory. Talk
at the 2nd Meeting of the CALCULEMUS Project, Schlof Dagstuhl,
Germany, 18.11.-20.11.1996. See also The quest for correctness, available
as URL:
ftp://ftp.cs.kun.nl/pub/CompMath.Found/quest.ps.Z, 1996.
C. Benzmiiller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang,
M. Kerber, M. Kohlhase, E. Melis, A. Meier, W. Schaarschmidt, J. Siek-
mann, and V. Sorge. QMEGA: Towards a mathematical assistant. In
W. McCune, editor, Proceedings of the 14th CADE, pages 252-255,
Townsville Australia, 1997. Springer Verlag, LNAT 1249.

C. Ballarin, K. Homann, and J. Calmet. Theorems and algorithms:
An interface between Isabelle and Maple. In A. H. M. Levelt, edi-
tor, Proceedings of International Symposium on Symbolic and Algebraic
Computation (ISSAC’95), pages 150 157. ACM Press, 1995.

R. S. Boyer and J S. Moore. Metafunctions. In R. S. Boyer and
J S. Moore, editors, The Correctness Problem in Computer Science,
pages 103-184. Academic Press, 1981.

A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill.
Rippling: A heuristic for guiding inductive proofs. AI 62:185-253,
1993.

B. Buchberger. Symbolic Computation (An Editorial). J. Symbolic
Computation, 1:1 6, 1985.

B. Buchberger. Using Mathematica for Doing Simple Mathematical
Proofs. Invited Talk at the 4th Tokyo Mathematica Users’ Conference,
November 2-3, 1996.

B. Buchberger. Mathematische Software-Systeme: Drastische Erwei-
terung des “Intelligenzniveaus” entsprechender Programme erwartet.
Informatik Spektrum, 19/2:100 101, 1996.

A. Bundy. The use of explicit plans to guide inductive proofs. In
E. L. Lusk and R. A. Overbeek, editors, Proceedings of the 9th CADE,
pages 111-120, Argonne, Illinois, USA, 1988. Springer Verlag, LNCS
310.

B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Mona-
gan, and S. M. Watt. First leaves: a tutorial introduction to Maple V.
Springer Verlag, 1992.

S.-C. Chou, X.-S. Gao, and J.-Z. Zhang. Machine Proofs in Geome-
try: Automated Production of Readable Proofs for Geometry Theorems.
World Scientific, Singapore, 1994.

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.31

32

Cho88.

CMP9I1.

Con86.

CZ92.

Fuc96.

GPT96.

HC95.

Hea95.

How88.

HKK194.

HKKR94.

HF96.

HT93a.

HT93b.

JS92.

Kap88.

M. KERBER, M. KOHLHASE, V. SORGE.

S.-C. Chou. Mechanical geometry theorem proving. Mathematics and
its applications. D. Reidel Publishing Company, Dordrecht, 1988.

D. Clément, F. Montagnac, and V. Prunet. Integrated software compo-
nents: A paradigm for control integration. In Proceedings of the Euro-
pean Symposium on Software Development Environments and CASE
Technology, 1991. Springer Verlag, LNCS 509.

R. L. Constable et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice Hall, 1986.

E. Clarke and X. Zhao. Analytica — A theorem prover in Mathemat-
ica. In Automated Deduction, pages 761 763, 11th International Con-
ference on Automated Deduction, Saratoga Springs, New York, 15-18
June 1992.

B. Fuchssteiner et al. (The MuPAD Group). MuPAD User’s Manual.
John Wiley and Sons, 1996.

F. Giunchiglia, P. Pecchiari, and C. Talcott. Reasoning theories —
towards an architecture for open mechanized reasoning systems. In
F. Baader and K. U. Schulz, editors, Frontiers of combining systems
(FroCoS-1) : 1st International Workshop, pages 157 174 , Munich, Ger-
many, 1996. Kluwer Academic Publishers.

K. Homann and J. Calmet. An open environment for doing mathe-
matics. In M. Wester, S. Steinberg, and M. Jahn, editors, Proceedings
of 1st International IMACS Conference on Applications of Computer
Algebra, Albuquerque, USA, 1995.

A. C. Hearn. Reduce user’s manual: Version 3.6. Technical Report,
Rand Corporation, Santa Monica, CA; USA, 1995.

D. J. Howe. Computational metatheory in Nuprl. in E. Lusk and
R. Overbeek, editors, Proceedings of the 9th CADE pages 238-257,
Argonne, Illinois, USA, 1988. Springer Verlag, LNCS 310.

X. Huang, M. Kerber, M. Kohlhase, E. Melis, D. Nesmith, J. Richts,
and J. Siekmann. -MKRP: A proof development environment. In
A. Bundy, editor, Proceedings of the 12th CADE, pages 788-792, Nancy,
1994. Springer Verlag, LNAI 814.

X. Huang, M. Kerber, M. Kohlhase, and J. Richts. Adapting methods
to novel tasks in proof planning. In B. Nebel and L. Dreschler-Fischer,
editors, KI-94: Advances in Artificial Intelligence — Proceedings of KI-
94, 18th German Annual Conference on Artificial Intelligence, pages
379-390, Saarbriicken, Germany, 1994. Springer Verlag, LNAT 861.

X. Huang and A. Fiedler. Presenting machine-found proofs. In
M. A. McRobbie and J. K. Slaney, editors, Proceedings of the 13th
CADE, pages 221 225, New Brunswick, New Jersey, USA, 1996.
Springer Verlag, LNAT 1104.

J. Harrison and L. Théry. Extending the HOL theorem prover with a
computer algebra system to reason about the reals. In C.-J. H. Seger
J. J. Joyce, editor, Higher Order Logic Theorem Proving and its Appli-
cations (HUG ‘93), pages 174 184, 1993. Springer Verlag, LNCS 780.
J. Harrison and L. Théry. Reasoning about the reals: The marriage of
HOL and Maple. In A. Voronkov, editor, Proceedings of the 4th Inter-
national Conference on Logic Programming and Automated Reasoning
(LPAR’98), pages 351 353, St. Petersburg, Russia, 1993. Springer Ver-
lag, LNAT 698.

R. D. Jenks and R. S. Sutor. AXIOM: The Scientific Computation
System. Springer Verlag, 1992.

D. Kapur. A refutational approach to theorem proving in geometry.
Artificial Intelligence, 37:61-93, 1988.

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.32

INTEGRATING COMPUTER ALGEBRA INTO PROOF PLANNING 33

KO63.

Kow79.

McC94.

WiWweg9.

‘Wol96.

Wud4.

Zip93.

A. Karatsuba and Y. Ofman. Multiplication of Multidigit Numbers by
Automata. Soviet Physics-Doklady, 1963.

R. Kowalski. Algorithm = Logic 4+ Control. Communications of the
Association for Computing Machinery, 22:424 436, 1979.

W. W. McCune. Otter 3.0 reference manual and guide. Techni-
cal Report ANL-94-6, Argonne National Laboratory, Argonne, Illinois,
USA, 1994.

Diplomthemen SS-89 Nr. 35. Fachschaft Wirtschaftswissenschaften,
Universitiat des Saarlandes, Saarbriicken, Germany, 1989.

S. Wolfram. The Mathematica Book: Version 3.0. Wolfram Media, Inc.,
Champaign, IL, 3rd edition, 1996.

W. Wu. Mechanical Theorem Proving in Geometries: Basic Principles.
Texts and monographs in symbolic computation. Springer, Wien, 1994.
R. Zippel. Effective Polynomial Computation. Kluwer Academic Press,
1993.

Address for correspondence:
Manfred Kerber

School of Computer Science

The University of Birmingham
Birmingham B15 2TT, England
e-mail: M.Kerber@cs.bham.ac.uk
Tel: (+44)-121-414-4787

Fax: (+44)-121-414-4281

KeKoSo.tex; 23/03/1998; 14:00; no v.; p.33

