
Higher-Order Multi-Valued Resolution

Michael Kohlhase
Fachbereich Informatik
kohlhase@cs.uni-sb.de,

Ortwin Scheja
Fachbereich Mathematik
scheja@math.uni-sb.de

Universität des Saarlandes, 66041 Saarbrücken, Germany

ABSTRACT. This paper introduces a multi-valued variant of higher-order res-
olution and proves it correct and complete with respect to a variant of Henkin’s
general model semantics. This resolution method is parametric in the number
of truth values as well as in the particular choice of the set of connectives (given
by arbitrary truth tables) and even substitutional quantifiers. In the course of
the completeness proof we establish a model existence theorem for this logical
system. The work reported in this paper provides a basis for developing higher-
order mechanizations for many non-classical logics.

KEY WORDS: higher-order logic, resolution, multi-valued, λ-calculus

1 Introduction

From the first attempts of modeling everyday reasoning within the framework
of classical first-order logic it has been known that many relevant aspects can-
not be adequately expressed in it. This has lead to many specialized logics
in the field of artificial intelligence that use more than two truth values in or-
der to deal with notions like vagueness, uncertainty, undefinedness and even
non-monotonicity. These logics primarily obtain their specialized behavior by
utilizing nonstandard truth tables for connectives and quantifiers.

On the other hand, the past 25 years have seen a tremendous increase in
the deductive power of automated reasoning systems for standard predicate
logic. These systems have reached the ability to solve non-trivial theorems
fully automatically. Stimulated by this development, multi-valued logics are
now treated in the context of deduction systems, i.e. with an emphasis on
mechanization [Car87, Car91, BF92, Häh94].

A sorted version of these methods [KK97] was used to mechanize Kleene’s
strong logic for partial functions [Kle52], thus giving a clean foundation for
first-order automated theorem proving in mathematics, where most functions

are only defined on parts of the universe.
Another problem that has been addressed by multi-valued logics is that of

so-called presuppositions, where natural language allows to draw conclusions
that classical logic does not warrant.1 These phenomena have been widely
studied in the philosophy of language from a semantic point of view, but lack
an efficient mechanization, which is a primary concern of artificial intelligence.
See [KK97] for an attempt using four- and five-valued formalisms.

In spite of these successful attempts, a first-order language and mecha-
nization is not fully satisfactory for real applications in mathematics and lin-
guistics. They cannot be adequate for mathematics, since quantification over
functions or predicates is widespread and not even Peano arithmetic can be
fully axiomatized in first-order logic. They are also insufficient for linguis-
tics, where many modern analyses of natural language make use of higher-
order language constructs [DSP91, GK96] and integrate world-knowledge into
the semantics construction process by higher-order theorem proving [GKvL96].
Since higher-order reasoning with presuppositions is ubiquitous in natural lan-
guage [Kra95, Mus89], a higher-order version of [KK97] based on the results of
this paper would provide a computational basis for a more adequate integration
of world knowledge.

Of course higher-order multi-valued logics can be easily formalized and rea-
soned about in logical frameworks like Isabelle [Pau94] or Elf [Pfe91]. Such
a definition only gives a natural-deduction calculus for the logics, and not a
universal automated theorem prover. But full automation of the basic reason-
ing procedures is an equally important goal for applications in mathematics,
linguistics and artificial intelligence.

To facilitate the development of specialized higher-order logics geared to
these applications, we need a generalization of the multi-valued logic framework
mentioned above to higher-order logic. In this paper, we try to do just that:
We define a multi-valued higher-order logic HOLn and present an appropriate
resolution calculus HRn. To prove completeness of this calculus we establish a
multi-valued model existence theorem that is a joint generalization of Andrews’
“unifying principle” for higher-order logic [And71] and Carnielli’s [Car87] for
multi-valued first-order logics. Just like the latter, the method is parametric
in the choice of the sets of truth values, connectives and quantifiers and can be
instantiated yielding a mechanization for a wide range of particular logics. As
a running example for this general framework we present a higher-order version
Kleene’s stong three-valued logic for partial functions mentioned above.

The choice of the resolution paradigm for automated theorem proving is
not significant; since our proof theory relies on a model existence theorem and
not so much on the calculus, an adaption of the higher-order tableau calculus
from [Koh98] would be straightforward. Naturally, the results reported here

1For instance, albeit in classical first order logic there is the assumption that the universe of
discourse is non-empty, it is not assumed that restrictions as usually expressed by implications
are non-empty. A straightforward translation of “All humans are mortal” into first-order logic
does not presuppose that there are any humans at all.

are widely applicable, they extend to all logical systems that combine multiple
truth values with λ-binding and βη-conversion. We exemplify this by instanti-
ating the methods developed in this paper to simple three-valued higher-order
logic K3 of partial functions. Even if the target logic does not contain higher-
order features, the added expressivity of HOLn can admit simple and efficient
relativizations (especially for first-order target logics, such as modal logics).
Thus in these cases HRn makes mechanization of the target logic much sim-
pler than the first-order multi-valued frameworks.

2 Higher-Order Logic

In this paper we study a higher-order logic HOLn, which is parametric in the
number n of truth values and the choice of connectives and quantifiers. It is
based on the simply typed lambda calculus which we will shortly review in the
following.

2.1 Syntax

Definition 2.1 (Types) Let BT := {o, ι}, then the set T of types is induc-
tively defined to be the set BT together with all expressions α → β, where α
and β are types. Here the base type ι stands for the set of individuals and
the type o for the truth values. The functional type α→ β denotes the type
of functions with domain α and codomain β. The types in BT ⊂ T are called
base types, types of the form α → β are called functional types. We use
the convention of association to the right for omitting parentheses in functional
types, thus α → β → γ is an abbreviation for (α → (β → γ)). This way the
type γ := β1 → . . . → βk → α denotes the type of k-ary functions, that take
k arguments of the types β1, . . . , βk and have values of type α. To conserve
even more space we use a kind of vector notation and abbreviate γ by βk → α.

We will write finite functions like substitutions or variable assignments
as sets of pairs ϕ := [a1/X1], . . . , [ak/Xk] with the intended meaning that
ϕ(Xi) = ai. Furthermore we use the convention that ψ := ϕ, [a/X] assigns
a to X and coincides with ϕ everywhere else.

For the definition of well-formed formulae we fix a signature and a collec-
tion of variables, i.e. a typed collection Σ :=

⋃
α∈T Σα and V :=

⋃
α∈T Vα

of symbols, such that each Vα is countably infinite.
We denote the constants by lower case letters and the variables by upper

case letters and use bold upper case letters Aα, Bα→β , Cγ . . . as syntactical
variables for well-formed formulae.

Definition 2.2 (Well-Formed Formulae) For each α ∈ T we define the set
wffα(Σ) of well-formed formulae of type α inductively:

1. Σα ⊆ wffα(Σ) and Vα ⊆ wffα(Σ).

2. If A ∈ wffβ→α(Σ) and B ∈ wffβ(Σ), then AB ∈ wffα(Σ).

3. If A ∈ wffα(Σ), then (λXβ A) ∈ wffβ→α(Σ).

We call formulae of the form AB applications, and formulae of the form
λXα A λ-abstractions. We will often write the type as a subscript Aα, if it
is not irrelevant or clear from the context.

We adopt the usual definition of free and bound (all occurrences of the
variable X in λXα A are called bound), variables and call a formula closed,
iff it does not contain free variables. As in first-order logic the names of bound
variables have no meaning at all, thus we consider alphabetic variants as iden-
tical and use a notion of substitution that systematically renames bound vari-
ables in order to avoid variable capture. We refer to formulae of type o as
propositions and as sentences if they are closed.

We assume fixed subsets J =
⋃
l∈IN J l ⊆ Σ of connectives and Q =⋃

α∈T Qα ⊆ Σ of quantifiers. Here J l is the set of l-ary connectives of
type ol → o and Qα ⊆ Σ(α→o)→o. We generally apply the convention that
quantified expression QXα A is an abbreviation of Qα(λXα A), which is a well-
formed formula (in the λ-calculus, quantifiers can be represented by ordinary
constants, since the λ-binding mechanism can be utilized).

Remark 2.3 (Classical Higher-Order Logic) The syntax of classical higher-
order logic (CHOL) can be recovered as an instance of HOL2, where we have
J = {¬o→o,∨o→o→o} and Q = {Πα

∣∣α ∈ T }. According to our convention,
∀Xα A is an abbreviation for Πα(λXα A). For the semantics we refer to Re-
mark 2.5.

In order to make the notation of well-formed formulae more legible, we
use the convention that the group brackets (and) associate to the left and
that the square dot denotes a left bracket, whose mate is as far right as
consistent with the brackets already present. Additionally, we combine succes-
sive λ-abstractions, so that the formulae λX1 . . . Xn AE1 . . .Em and λXn AEm

stand for (λX1(λX2 . . . (λXn(AE1)E2 . . .Em) · · ·).
Let λ ∈ {β, βη, η}. We say that a well-formed formula B is obtained from a

well-formed formula A by a one-step λ-reduction (A⇒λ B), if it is obtained
by applying one of the following rules to a well-formed part of A.

β-Reduction (λX C)D⇒β [D/X]C.

η-Reduction If X is not free in C, then (λX CX)⇒η C.

As usual we denote the transitive reflexive closure of a reduction relation ⇒λ

with→∗λ. These rules induce equivalence relations =β ,=η, and =βη on wff(Σ),
which we call the λ-equality relations. A formula that does not contain a
λ-redex, and thus cannot be reduced by λ-reduction, is called a λ-normal
form.

The λ-reduction relations are terminating and confluent, as the reader can
convince himself by looking at the proofs for instance in [HS86]. Thus for any
formula A there is a sequence of λ-reductions A →∗λ A↓ such that A↓ is a
λ-normal form.

2.2 Semantics

For the semantics we first define the higher-order algebras, which will serve
as models for the underlying simply typed λ-calculus. Then we will specialize
the type o of truth values to give the system its meaning of a multi-valued
higher-order logic.

Higher-order algebras are built up from a carrier set D, i.e. a collection
D = {Dα

∣∣α ∈ T } of sets, such that Dα→β is a subset of the set F(Dα;Dβ) of
functions from Dα to Dβ , and a (well-typed) interpretation I: Σ −→ D.

We call a function ϕ:V −→ D an assignment, iff ϕ(Xα) ∈ Dα for all vari-
ables Xα. A pair A := (D, I) is a higher-order algebra, iff for each assignment
ϕ the interpretation function I can inductively be extended to a total value
function Iϕ: wff(Σ)→ D by the following rules.

1. Iϕ(X) = ϕ(X), if X is a variable,

2. Iϕ(c) = I(c), if c is a constant,

3. Iϕ(AB) = Iϕ(A) [Iϕ(B)],

4. Iϕ(λXα Bβ) is the function f ∈ Dα→β such that f(a) := Iϕ,[a/X](B) for
all a ∈ Dα.

Remark 2.4 (Term Algebra) Maybe the most prominent example of a higher-
order algebra is the set wff(Σ)

y of closed well-formed formulae in βη-normal
form, together with I = IdΣ. Here we consider formulae A of type α → β as
functions, such that A(B) = (AB)

y. In this setting, assignments are ground
substitutions and Iϕ(A) = ϕ(A)

y. Note that η-equality is essential for obtain-
ing a higher-order algebra, since otherwise the resulting functions would not
be extensional: For instance λX AX and A are not β-equal but (λX AX)B
and AB have the same β-normal form for all possible arguments B.

So far the semantical notions do not make any requirements on the special
type o of truth values. In contrast to classical higher-order logic, HOLn has
a finite set B of truth values that has n ≥ 2 elements. In this, we have a
designated, nonempty subset T ⊆ B that denotes those truth values, which are
considered as true (in the sense that formulae that evaluate to a member of T
are valid).

We have claimed that HOLn is parametric in the choice of the set of con-
nectives and quantifiers. Indeed, the semantics makes no assumptions on the
value j̃ = I(j): Bl → B for a connective j ∈ J l.

In first-order multi-valued logics the intended meaning of a quantifier Q is
traditionally given as a function Q̃: P∗(B) −→ B, where we write P(M) for
the power set of a set M and P∗(M) := P(M) \ ∅. With this, the value of a
quantified expression is computed by applying Q̃ to the set of truth-values of
all of the instances of its scope.

In higher-order logic this construction is all the more natural, since a truth-
function Q̃ induces the value I(Q) that is defined by I(Q)(p) = Q̃(p(Dα)) for
all p ∈ Dα→o. Thus we have

Iϕ(QXα A) = Iϕ(Qα(λXα A)) = Q̃(Iϕ(λXα A)(Dα))

= Q̃({Iϕ,[a/X](A)
∣∣a ∈ Dα})

Remark 2.5 (Semantics of CHOL) Note that these definitions generalize the
classical case, where B = {T,F} and T = {T}. The connectives ¬ and ∨ are
given the well-known classical truth-functions. The choice that ∀̃(M) is true,
iff M = {T} gives us the following value for the quantifier Πα: I(Πα)(p) =
∀̃(p(Dα)) = T iff p(Dα) = {T}. In other words, I(Πα) is the predicate that
checks whether its argument is the universal predicate.

In the following we will assume that the truth tables j̃ of connectives and
truth functions Q̃ for quantifiers are fixed (given by the user).

Definition 2.6 (Henkin Model) A higher-order algebra A is called a Hen-
kin model, iff Do = B, I(j) = j̃ and I(Q)(f) = Q̃({f(a)

∣∣a ∈ Dα}) for any
j ∈ J and Q ∈ Qα.

The class of standard models (where we furthermore require that Dα→β
is the set of all functions Dα −→ Dβ) is in some way the most natural notion of
semantics for HOLn. However, Gödel’s incompleteness result shows that there
cannot be calculi that are complete with respect to the notion induced by this
semantics, a fact that makes it virtually useless for our purposes.

In this paper we use an even weaker semantics than Henkin models which
does not make the strong assertions about extensionality on Do that Henkin
models do2. Treating extensionality would lead to a more complex resolution
calculus [BK98], and we want to concentrate on the issues of multiple truth
values here. Hence we do not require that Do = B, but make the more general
assumption that there exists a valuation (a mapping that respects the intended
meaning of connectives and quantifiers) from Do to B.

Definition 2.7 (Frege Model) Let A = (D, I) be a higher-order algebra,
then a surjective total function υ:Do −→ B with

1. υ (I(j)(a1, . . . , al)) = j̃ (υ(a1), . . . , υ(al)) for any j ∈ J l.
2The fact that in CHOL we have Do = {T, F} implies that equivalent propositions can be

substituted for each other.

2. υ (I(Q)(f)) = Q̃
(
{υ(f(a))

∣∣a ∈ Dα}) for any Q ∈ Qα.

is called a valuation for A. In this case we call the triple M := (D, I, υ) a
Frege model. For a given assignment ϕ the evaluation of a formula A consists
of the interpretation Iϕ(A) in A and the subsequent valuation with υ. Thus
we call a formula A ∈ wffo(Σ) valid inM under an assignment ϕ (M |=ϕ A),
iff υ ◦ Iϕ(A) ∈ T.

2.3 A Three-Valued Instance

We will use a three-valued instance K3 of our generic logic HOLn as a running
example3. K3 is a variant of Kleene’s strong three-valued logic for recursive
partial predicates on natural numbers [Kle52]. It shares its truth values and
the truth-tables and truth-functions. In particular we have B = {T,F,⊥} and
T = {T}. Here the third truth value ⊥ is intended for atomic formulae that
contain a non-denoting subformula, such as 1

0 or the predecessor of zero. K3

has the same sets of connectives and quantifiers as classical logic, which have
extended truth functions:

∨̃ F ⊥ T

F F ⊥ T
⊥ ⊥ ⊥ T
T T T T

¬̃
F T
⊥ ⊥
T F

∀̃(M) :=

 T for M = {T}
⊥ for M = {T,⊥}or {⊥}
F F ∈M

Even though K3 uses the same truth-function ∀̃ for the universal quantifier, it
differs from Kleene’s logic in the definition of quantification itself: To model
partial functions Kleene assumes an error element ⊥ and excludes ⊥ from the
domain of quantification. This is necessary, since he furthermore assumes that
all functions and predicates are strict with respect to ⊥ (i.e. if Iϕ(A) = ⊥, then
Iϕ(fA) = ⊥ and Iϕ(pA) = ⊥), which together with unrestricted quantification
would lead to a logic without theorems.

To arrive at a higher-order logic for partial functions, we formalize Kleene’s
additional assumptions by an error constant ⊥α ∈ Σα for all types α ∈ T where
I(⊥o) = ⊥, and the following strictness axioms.

∀Fα→β F⊥α = ⊥β (1)

Furthermore, to model restricted quantification, we define the restricted Kleene
quantifier ∀r, such that ∀rXα A abbreviates ∀Xα (X 6= ⊥α)⇒ A.

Remark 2.8 (Equality in K3) For modelling partial functions, we need an
equality that is a strict binary relation, i.e. A = B should be undefined when-
ever A or B is; the primitive equality we have used above in the strictness
axioms and to define restricted quantification is not, since ⊥ = ⊥.

3The purpose of this logic is only to serve as a demonstration object for the methods
developed in this paper, an efficient mechanization would need sort reasoning as we have
shown in [KK97, KK94]

We have two options to formalize this kind of equality in K3:

• We can assume a second primitive equality constant =α
s of type α →

α→ o for each type α, such that I(=α
s) is the strict identity relation on

Dα, i.e. the unique strict relation that is the identity on Dα \ {I(⊥α)}.
This essentially means that we have to augment the strictness axioms
by axioms for transitivity, reflexivity, symmetry, and substitutivity of
equality.

• We can define a strict equality relation via a variant of the well-known
Leibniz formulation:

=α
s := λXαYα ∀Pα→o (!PX∧!PY) ≡ (PX ⇒ PY)

Here, we need an additional connective ! for definedness such that I(!) is
true on T and F and false on ⊥.

The intuition behind the Leibniz formula is that two objects are equal,
iff there are no discerning properties P . Note that =s is strict, since the
formula A =s ⊥ reduces to

∀Pα→o (!PA∧!P⊥) ≡ (PA⇒ P⊥)

This universal statement is undefined, since we can take P to be the
property that is true on all its (defined) arguments: It makes (!PA∧!P⊥)
false but makes (PA⇒ P⊥) undefined, since it makes PA true and P⊥
undefined.

Remark 2.9 An alternative to this multi-valued approach to partial functions
is the two-valued logic PF proposed by Bill Farmer [Far90]. PF is a variant of
CHOL, where the function universes Dα→β in Henkin models are sets of partial
functions instead of total functions. The logic also models partiality using error
elements, but interprets atomic propositions as false, if one of the arguments
is undefined. While this leads to a simpler logical system, it has the severe
disadvantage of yielding unwanted theorems such as

∀rX,Y
X

Y
= Z ⇒ X = Y ∗Z

This formula is considered problematic in mathematics, since it neglects the
condition that Y 6= 0. It is a theorem of PF even for Y = 0, since then
X/Y = Z is false and thus the implication true as a whole.

Now we can use K3 to formalize a simple mathematical fact about function
division, namely a cancellation law for real functions:

Theorem: For all real functions F and G, the product of F/G and
G is F , provided that G is nowhere zero.

Note the use of quantification over functions in this example.

Example 2.10 Of the real numbers we use the constants 0, 1 and the functions
inv and ∗. We will use the symbols ∗ and ÷ on functions, defined by

∗ = (λF,GλX (FX)∗(GX)) (2)
÷ = (λF,GF∗(λX inv(GX))) (3)

In order to prove the theorem we need the following axioms of elementary
calculus.

∀rX (invX =s ⊥ι) ≡ X =s 0 (4)
∀rX (X 6=s 0)⇒ (invX∗X) =s 1 (5)

together with associativity of ∗ and the unit axiom for 1 and ∗. In the theory
defined by axioms (1)–(5), the theorem stated above has the form

∀rF,G (∀rX GX 6=s 0 ∧GX 6= ⊥)⇒ (∗(÷FG)G) =s F (6)

3 Model Existence

In this section we introduce an important tool for proving completeness re-
sults in higher-order logic. Model existence theorems state that sets which
belong to a so-called abstract consistency class are satisfiable. With their
help the completeness proof for a given logical system C is reduced to the
(purely proof-theoretic) demonstration that the class of C-consistent sets is
an abstract consistency class. This proof technique was first introduced by
Smullyan in [Smu68] based on work by Hintikka and Beth. It was later gen-
eralized to higher-order logic by Andrews in [And71] and to multi-valued first-
order logics by Carnielli [Car87]. Since there is no simple Herbrand theorem
in higher-order logic, Andrews’ theorem has become the standard method for
completeness proofs in higher-order logic.

We call a pair Aw a labeled formula, iff A ∈ wffo(Σ) and w ∈ B. For a
labeled formula Aw we require υ ◦Iϕ(A) = w. As usual we can derive a notion
of satisfiability from this.

For the definition of an abstract consistency class we must consider the
relation of satisfiability of a labeled formula jA

w
to the values of its subformulae

Ai. The immediate answer to this question is that Iϕ(jA) = j̃(Iϕ(A)) and
thus (Iϕ(A1), . . . , Iϕ(Al)) ∈ j̃−1(w) is the relevant condition. However it is
possible to optimize this condition, if j̃ is constant on some argument. We
formalize this in the notion of a P-consequence, which has been introduced
under the name Π-consequence by Carnielli [Car87]. We avoid the latter name
for higher-order logic, since it could lead to confusion with the Πα-quantifier.

Definition 3.1 (P-Consequence) Let B∗ := B ∪ {∗} and ~vl = (v1, . . . , vl)
and ~wl = (w1, . . . , wl) be members of B∗l, then we say that ~vl is more general
than ~wl (~vl v ~wl), if for some N ⊆ {1, . . . , n} we have vk = ∗ for all k ∈ N
and wi = vi for all i /∈ N . Intuitively, higher generality can be obtained by
replacing some components of a vector by ∗. For a sequence A = A1 . . .Al

of formulae we write A
~vl for the set {Avi

i

∣∣vi 6= ∗}. Asterisks mark positions
without influence on the value of connective formulae; they can be left out of
consideration while forming semantic consequences. Let us extend the func-
tion j̃ to all of B∗ by inductively defining j̃(v1, . . . , vi−1, ∗, vi+1, . . . , vl) = v

whenever j̃(v1, . . . , vi−1, w, vi+1, . . . , vl) = v for all w ∈ B and undefined else.
Then we call the set Hv(j) := j̃−1(v) ⊆ B∗n the propositional condition for
a connective j and the truth value v. From this we can choose a set µvHv(j)
of generators (a vector ~vl generates the set of all ~wl with ~vl v ~wl). Now let
Bv be a labeled formula of the form (jA1 . . .Al)v, then a set A

~wl is called a
P-consequence of Bv, iff ~wl ∈ µvHv(j).

Example 3.2 For the connectives of K3 we have the following P-consequences:

P-cons.
(¬A)F {AT}
(¬A)⊥ {A⊥}
(¬A)T {AF}

P-consequences
(A ∨B)F {AF}, {BF}
(A ∨B)⊥ {A⊥,B⊥}, {A⊥,BT}, {AT,B⊥}
(A ∨B)T {AT,BT}

Note that the set of P-consequences can be empty. Furthermore this con-
struction is not necessarily unique for connectives of arity k > 2 (for a detailed
discussion see [Häh94]). In order to have a unique notion of P-consequence
we fix some general method of constructing these sets in advance. This a
priori choice makes the presentation of the calculus and the completeness ar-
guments simpler; for an actual application and implementation of the calculus
in section 4, where optimization is essential, it may be necessary to compute
P-consequences on a case-by-case basis. We do not consider the optimization of
multi-valued calculi [Häh96, Sal96] here, since it is independent of higher-order
logic.

For the construction of term models it is necessary to introduce formulae
that contain witnesses for existential expressions. For this we assume a count-
ably infinite set of new witness constants (which we will denote with fα, fβ . . .)
for each type.

Definition 3.3 (Set of witnesses) Let M = {w1, . . . , wm} ⊆ B be a set of
truth values, A ∈ wffα→o(Σ) a closed formula and Φ be a set of sentences. We
call a set ΞM (A) := {(Af1)w1 , . . . , (Afm)wm} a set of M-witnesses for A
in environment Φ, if f1, . . . , fm are new for Φ.

Definition 3.4 (Abstract Consistency Class) Let ∇ be a class of sets of
labeled propositions, then ∇ is called an abstract consistency class, iff ∇ is
closed under subsets, and for all sets Φ ∈ ∇ the following conditions hold:

∇1 There are no truth values v 6= w, such that Av,Aw ∈ Φ for an atomic
formula A ∈ wffo(Σ).

∇2 If Aw ∈ Φ, then Φ ∪ {A↓w} ∈ ∇.

∇3 If Bv = (jA1 . . .Al)v ∈ Φ, then there is a P-consequence Ψ of Bv, such
that Φ ∪Ψ ∈ ∇.

∇4 If (QαA)v ∈ Φ, then there is a set M ⊆ B of truth values with Q̃(M) = v,
such that for any set ΞM (A) of M -witnesses in the environment Φ and
for each closed formula B ∈ wffα(Σ) there is a truth value w ∈ M , such
that Φ ∪ ΞM (A) ∪ {(AB)w} ∈ ∇.

We call an abstract consistency class saturated, iff for all Φ ∈ ∇ and all
propositions A ∈ wffo(Σ) we have Φ ∪ {Av} ∈ ∇ for some v ∈ B.

Remember that abstract consistency is intended to be a notion of consis-
tency that is independent of a particular calculus. Thus the first condition just
states that there may not be elementary contradictions in “consistent” sets,
whereas the second one is a closure condition for βη-equality. The remain-
ing conditions state that a “consistent” set of propositions can be extended
by certain logical preconditions without loosing “consistency”. In contrast to
the two-valued case, n-valued quantifiers have in general both existential and
universal nature, thus it is necessary to extend by preconditions that contain
arbitrary instances as well as witnesses. The condition ∇2 is the only one that
is particular to higher-order logic, the others are analogous to their first-order
counterparts (see for instance [Car91])

The significance of abstract consistency classes lies in the following theorem.

Theorem 3.5 (Existence of Frege Models) Let ∇ be a saturated abstract
consistency class and H ∈ ∇, then there is a Frege model M with M |= H.

Proof: A class Γ of sets is said to be of finite character, if for any set H the
condition H ∈ Γ is equivalent to K ∈ Γ for every finite subset K of H. We
can assume that ∇ is of finite character, since (saturated) abstract consistency
classes can be extended conserving abstract consistency and saturation.

The set H can be extended to a higher-order Hintikka set, i.e. a set H that
is maximal in ∇ with H ⊆ H by the well-known Henkin completion procedure:
For a given enumeration A1,A2, . . . of propositions, we construct a sequence
Hi of finite supersets of H by adding Ai to Hi, iff Hi ∪ {Ai} ∈ ∇. The set
H :=

⋃
Hi is in ∇, since we have assumed ∇ to be of finite character. It is

also maximal, since for any proposition Ai, such that H ∪ {Ai} ∈ ∇, we have
Ai ∈ Hi+1 ⊂ H; thus H is a Hintikka set.

From this we can build a Frege model (D, I, υ) that satisfies H by choosing
D to be the set of closed formulae in βη-normal forms, and I to be the identity
on constants and finally υ(Ao) = w, iff Aw ∈ H. It is well-known, that
(D, I) is a higher-order algebra (Recall Remark 2.4: Assignments ϕ into D are
just ground substitutions and Iϕ(A) is the βη-normal form of ϕ(A), which is
closed, since ϕ is ground.), so it only remains to verify that υ is a valuation.
This is a consequence of the maximality of Hintikka sets for saturated abstract
consistency classes, which gives us stronger variants of the abstract consistency
conditions.

H1 For any proposition A ∈ wffo(Σ) we have Av ∈ H for exactly one truth
value v ∈ B.

(∇1 gives us the assertion for atoms and at most one truth value, satura-
tion for at least one truth value. The generalization to arbitrary propo-
sitions is proven by structural induction.)

H2 Aw ∈ H, iff A↓w ∈ H.

(The converse direction of ∇2 follows by maximality of H in ∇: If Aw /∈
H, but A↓w ∈ H, then Av ∈ H by H1 for some v 6= w, thus A↓v ∈ H by
∇2 contradicting H1.)

H3 Bv = (jA1 . . .Al)v ∈ H, iff there is a P-consequence Ψ of Bv, such that
Ψ ⊆ H.

H4 (QαA)v ∈ H, iff there is a set M ⊆ B of truth values with Q̃(M) = v,
such that for any set ΞM (A) of M -witnesses in the environment H and
for each closed formula B ∈ wffα(Σ) there is a truth value w ∈ M , such
that ΞM (A) ∈ H and (AB)w ∈ H.

The first two properties give totality and well-definedness of the function υ,
while the second two guarantee the two valuation conditions from Definition 2.7.

Note that with this construction we can only obtain Frege models, not Henkin
models, since the set of closed formulae of sort o is different from B.

4 Resolution (HRn)

Now that we have specified the semantics we can turn to the exposition of our
resolution calculus HRn. There are three main differences to the first-order
case. First, higher-order unification is undecidable, therefore we cannot simply
use it as a sub-procedure that is invoked during resolution. The solution for
this problem is to treat the unification problem as a constraint and residuate
it in the resolution and factoring rules. In fact we use negative equality literals
that are disjunctively bound to the clause (cf. 4.2).

Not all instantiations for predicate variables can be found by unification.
For completeness the instantiations of head variables of literals must contain

logical constants, which cannot be supplied by unification, since they are not
even present in the clauses set, as they have been eliminated in the clause
normal form transformations.

Finally, naive Skolemization is not sound for higher-order logic: For instance
in CHOL it is possible to use it to prove a version of the axiom of choice, which
is known to be independent. In this paper we will follow Dale Miller’s solution
(cf. [Mil83]) to this problem: His idea is to introduce arities for the witness
constants (we call the resulting pair fkα, where the arity k is smaller than the
length of α a Skolem constant). Then the language is restricted to so-called
Skolem formulae, where all Skolem constants fkα have all their necessary
arguments (i.e. at least k of them) and furthermore no variables occurring in
necessary arguments of Skolem constants are bound outside. Note that the
resulting fragment (Miller calls it the “Herbrand Universe”) is well-defined and
closed under (restricted) substitutions and β-reduction and long normal forms.

Remark 4.1 Alternatively, we could have used Dale Miller’s quantifier “rais-
ing” [Mil92] which is dual to Skolemization, but does not need Skolem con-
stants, or we could have directly encoded the dependency relation introduced
by the quantifier sequencing into an explicit variable relation that is part of
the clauses (for details see [Koh98]).

4.1 Clause Normal Form

In our definition of clauses, we will use disjunctions as meta-symbols for sets
of formulae, in order to enhance legibility. Note that since the disjuncts are
labeled formulae, these can easily be discerned from the disjunction constants
which might appear in the signature.

Definition 4.2 (Clause) If Mi ∈ wffo(Σ) and vi ∈ B, then we call a formula
D := C ∨ E a generalized clause, if C is of the form C := Mv1

1 ∨ . . . ∨Mvn
n ,

and if E is a disjunction of pairs of the form A1 6=?B1 ∨ . . . ∨Am 6=?Bm (we
will consider unification pairs of the form Aα 6=?Bα as literals, since this will
simplify the presentation). We callD a clause, iff the Mvi

i are literals (a labeled
formula Av is called literal, if the head of A is a parameter or variable). In
order to conserve space we will write disjunctions of the form

∨
v∈V Av as AV ,

so Av ∨Aw becomes Avw.

In HRn the transformation to clause normal form only need two parametric
rules, one for the connectives

C ∨ (jA)v D ∈
∨
~wl∈µvHv(j) A

~wl

RC : j
C ∨D

which basically transforms a labeled connective formula (jA)v into the cross
product of all it’s P-consequences A

~wl ; and one for the quantifiers

C ∨ (QαA)w D ∈
∨
M∈ eQ−1(w) β(M)

RC : Q
C ∨D

where β(M) = {(A(fkiXk))wi
∣∣wi ∈M} ∪ {(AZα)M} with {X1, . . . , Xk} is the

set of free variables of A and and where Zα is a new variable. This set plays
the role of the set ΞM (A) of witnesses defined in 3.3. The key difference is that
instead of arbitrary instances β(M) uses variables that will be instantiated
appropriately by unification.

For a a given set Ψ of generalized clauses we call the set cnf(Ψ) of clauses
that is derivable from Ψ the clause normal form of Ψ. Since in order to
show that a sentence A ∈ wffo(Σ) is valid (i.e. obtains a truth value in T),
it is sufficient to refute that A obtains a truth value in B \ T, we define the
refutation clause form of a set Φ of sentences as

RCF(Φ) =
⋃

A∈Φ

cnf
(
AB\T

)
If we apply the rules above to classical higher-order logic, we obtain the

traditional clause normal form reductions for ¬ and ∨, but a quantifier reduc-
tion that is significantly less efficient. Fortunately, wide classes of naturally
occurring quantifiers admit generic optimizations [Häh94, Sch94] that yield the
classical rules for CHOL. This also holds for our running example K3, where
we obtain the following (optimized) transformation rules. For instance the ∀⊥
rule, where the number of introduced clauses is decreased from six to two.

C ∨ (A ∨B)T

C ∨AT ∨BT

C ∨ (A ∨B)F

C ∨AF C ∨BF

C ∨ (A ∨B)⊥

C ∨A⊥F C ∨B⊥F C ∨A⊥ ∨B⊥

C ∨ (¬A)T

C ∨AF

C ∨ (¬A)⊥

C ∨A⊥

C ∨ (¬A)F

C ∨AT

C ∨ (ΠαA)T

C ∨ (AX)T

C ∨ (ΠαA)F

C ∨ (A(fkiXk))F

C ∨ (ΠαA)⊥

C ∨ (A(fkiXk))⊥ C ∨ (AX)⊥T

The regularity of K3 allows us to optimize this clause normal form even
further: As first noticed by Rainer Hähnle [Häh94], clause normalization can
be more efficient, if we process disjunctions L{v1,...,vn} (written as Lv1...vn)
in one step. In particular for K3, labeled formulae containing literals LT⊥F

are tautologous and can be deleted and normalization rules acting on AT,⊥ or
AF,⊥ (intuitively meaning that the formula A must not be F/T) are much more
regular than the combination of the T, and ⊥ rules induced by the disjunctions.
For instance we have the following rules for sets of signs

C ∨ (A ∨B)T⊥

C ∨AT⊥ ∨BT⊥

C ∨ (A ∨B)F⊥

C ∨AF⊥ C ∨BF⊥

C ∨ (ΠαA)T⊥

C ∨ (AX)T⊥

C ∨ (ΠαA)F⊥

C ∨ (A(fkiXk))F⊥

Let us now return to our example 2.10 to prove Theorem 6, we have to consider
the clause normal form of the set of axioms (1)–(5) labeled with T, together
with (6) labeled with F⊥ (we have to refute that it obtains the truth values F
or ⊥). Using the optimized reduction rules above the refutation clause form of
our example 2.10 has the following form:

A1 (Fι→ι⊥ι = ⊥ι)T

A2 X = ⊥T ∨ (invX = ⊥)F ∨ (X =s 0)T

A3 X = ⊥T ∨ (invX = ⊥)T ∨ (X =s 0)F

A4 (X = ⊥)T ∨ (X =s 0)T ∨ (invX∗X) =s 1T

T1 (f0 = ⊥)F⊥

T2 (g0 = ⊥)F⊥

T3 (X = ⊥)T⊥ ∨ (g0X =s 0)F⊥

T4 (X = ⊥)T⊥ ∨ (g0X = ⊥)F⊥

T5 ((λY (f0Y)∗(inv(g0Y))∗(g0Y)) =s f0)F⊥

where A1 comes from strictness (1), A2-A3 from (4), and A4 comes from (5).
The theorem clauses T1 to T5 have been obtained from (6) by eliminating
definitions (2) and (3) and clause normalizing.

We will not execute the refutation here, since multi-valued resolution proofs
look almost exactly the same as classical resolution proofs (the special features
of the logic only come into play during the clause form transformation) and the
particular refutation of our example is rather large (especially after expanding
the equality with the Leibniz formula from 2.8).

To show the correctness of the normalization process, we first have to take a
look at the concept of satisfiability for clauses. This is nearly straightforward:

a clause is satisfiable, iff one of its literals is. However, due to the non-standard
nature of Skolem constants, they may not be interpreted as normal functions in
the model, but rather in a Skolem extension ofM. This extends the carrier
D of M by a carrier S for the Skolem constants, where S = {Skα} with

Skαk→β = F(Dα1 × · · · × Dαk
;Dβ)

and extends I, such that Skolem constants fkα are interpreted in Skα. Note that
since we only consider the restricted fragment, where all necessary arguments
of Skolem constants are present, the obvious value function Iϕ is well-defined.
Thus a clause C is satisfiable in a Skolem model M = (D,S, I), iff there is
either a literal Lv in C, such that Iϕ(L) = v or a pair A 6=? B, such that
Iϕ(A) 6= Iϕ(B) for some assignment ϕ.

Theorem 4.3 (Refutation Clause Form Theorem) A set Φ of sentences
is valid, if RCF(Φ) is unsatisfiable.

Proof: Recall that a set Φ of sentences is valid in a modelM = (D, I), iff for all
propositions A ∈ Φ we have Iϕ(A) ∈ T, or equivalently, if the initial generalized
clause I := AB\T is unsatisfiable in the Skolem extension MS = (D,S, I) of
M. Note that since I does not contain any Skolem constants, the two notions
of satisfiability coincide. Thus the proof of the assertion reduces to checking
that the clause form transformation conserves satisfiability. For the connective
cases, this is unproblematic:

C ∨ (jA)r D ∈
∨
~wl∈µvHr(j) A

~wl

RC : j
C ∨D

LetMS satisfy the C∨(jA)r, we can assume that Iϕ(jA) = r, since otherwise
the assertion is trivial. Thus ~wl = (υ(Iϕ(A1)), . . . , υ(Iϕ(Al))) ∈ j̃−1(r) =
Hr(j) and consequently one of the µvHr(j) is more general than ~wl. Since the
line of reasoning above only depends of the variable assignment ϕ, for any such
ϕ one of the P-consequences and thus D will be satisfied.

In the quantifier case, we are in the following situation

C ∨ (QαA)w D ∈
∨
M∈ eQ−1(w) β(M)

RC : Q
C ∨D

LetMS satisfy the C∨ (QαA)w, as above, we can assume that Iϕ(QαA) = w.
Thus it remains to show that we can extend I for the new Skolem constants,
such that it satisfies the new clause D introduced in the rule. Since we have as-
sumed that Iϕ(QαA) = w, we have Q̃(M) = w, where M = {υ(Iϕ(A)(a))

∣∣a ∈

Dα} and thus M ∈ Q̃−1(w). Clearly, the proof is complete, if we can show
that every clause K in β(M) is satisfiable. For this we have to consider two
cases. If K = (AZα)M , then we know that υ(Iϕ(AZ)) ∈ M for any variable
assignment ϕ. In other words, K is satisfiable.

If K = A(fkXk)r for some r ∈ M , where {X1, . . . , Xk} are the free vari-
ables of A with types αi, then we know that there is an a = aϕ ∈ Dα
with υ(Iϕ(A)(a)) = r by construction. Since Iϕ(A) only depends on the
ϕ-values on {X1, . . . , Xk}, we can choose I(fk) ∈ Skαk→α as the function
(ϕ(X1), . . . , ϕ(Xk)) 7→ aϕ. Note that as ϕ varies over all variable assignments,
(ϕ(X1), . . . , ϕ(Xk)) covers Dα1 × · · · × Dαk

.

4.2 Higher-Order Unification

Now we will briefly review higher-order unification and its properties, for de-
tails we refer the reader to [Sny91]. The algorithm consists of two parts. A
deterministic, terminating simplification part decomposes terms, and estab-
lishes variables bindings for partial solutions and directly generalizes first-order
unification. This leaves unification pairs in a form, where both formulae are
applications and at least one has a variable at its head. The strategy of the
non-deterministic part is to bind this head variable to a (most general) for-
mula that enables further simplification. Thus the head of the binding must
either match that of the other formula, or be a bound variable, that (upon β-
reduction) projects up the head of a subformula. Technically, the right notion
of binding is presented in Definition 4.4, which we give in detail, since we need
it independently.

Definition 4.4 (General Binding) Let α = (βl → γ), and h be a constant
or variable of type (δm → γ), then G := λX l

αl
hVm is called a general binding

of type α and head h, if Vi = HiX l
αl

. If h is the Skolem constant fk, then
Vi = Hi for i ≤ k, since otherwise we leave the Herbrand Universe.

The Hi are new variables of types βl → δi (or δi for i ≤ kif h = fk). It is
easy to show that general bindings indeed have the type and head claimed in
the name and are most general in the class of all such terms. Moreover they
are unique up to the choice of variable names.

General bindings, where the head is a bound variable Xj
βj

are called pro-
jection bindings (we write them as Gjα(Σ)) and imitation bindings (written
Ghα(Σ)) else. Since we need both imitation and projection bindings for higher-
order unification, we collect them in the set of Approximations

Ahα(Σ) := {Ghα(Σ)} ∪ {Gjα(Σ)
∣∣j ≤ l} .

The non-deterministic part becomes problematic in the case of so-called
flex-flex pairs, where both formulae of a pair have head variables, since the
head of the binding has to be guessed. Fortunately, in the application in auto-
mated theorem proving, it is sufficient to guarantee the existence of an arbitrary

unifier, rather than calculate it. Thus for deduction purposes we only need pre-
unification, a variant of higher-order unification that considers flex-flex pairs
as solved (see [Sny91] for details).

4.3 The Resolution Calculus HRn

Now we turn to the actual resolution calculus HRn. The previous results set
the stage by giving a semantic justification of a resolution calculus that proves
sentences A by converting AB\T to clause normal form and then by deriving
the empty clause from that. Intuitively, this refutes that possibility that A
obtains a value in B \ T in order to prove that it indeed obtains a value in T
and thus is valid.

Definition 4.5 (Higher-Order Resolution (HRn)) The calculus HRn is
a variant of Huet’s resolution calculus from [Hue72], and has the following
rules of inference:

Nv ∨C Mw ∨D v 6= w
HR : R

C ∨D ∨M 6=?N

Mv ∨Nv ∨C
HR : F

Mv ∨C ∨M 6=?N

which operate on the clause part of clauses. For manipulating the unification
constraints HRn utilizes pre-unification rules (cf. [Sny91]) of which we will only
state the most interesting one:

C ∨ FαU 6=?hV
HR : f/r

C ∨ F 6=?G ∨ FU 6=?hV

Here G is a general binding in Ahα(Σ). The following inference rule

FαU
v ∨C

HR : P
C ∨ FU

v ∨ F 6=?P

generates instantiations for flexible literals, i.e. literals where the head symbol
is a positive variable. Here P ∈ Akα(Σ) is a general binding of type α that
approximates some logical constant k ∈ J ∪Q. HRn has one further inference

rule

C ∨ E ∨X 6=?A
HR : E

D

where X 6=?A is solved in E ∨X 6=?A and D ∈ RCF([A/X]C∨ [A/X]E). This
rule propagates partial solutions from the constraints to the clause part, and
thus helps detect clashes early. Since the instantiation may well change the
propositional structure of the clause by instantiating a predicate variable, we
have to renormalize the resulting generalized clause on the fly.

We call a clause empty, iff it does not contain any proper literals and its
unification constraint is pre-solved (i.e. contains only solved pairs X 6=?A or
flex/flex pairs). Clearly any empty clause is unsatisfiable with respect to Frege
models, since the constraint is solvable. We will call a set Ψ of generalized
clauses refutable, iff the empty clause is derivable from it and a set Φ of
sentences provable, iff RCF(Φ) is refutable.

In contrast to Huet’s calculus we allow pre-unification transformations to
be applied to clauses during the resolution process. This generalization allows
us to investigate more realistic strategies than in Huet’s calculus, which uses
the “lazy unification” strategy, that only allows unification to happen after a
clause has been derived that only consists of unification constraints.

Theorem 4.6 (Soundness) If a set Φ of propositions is provable, then it is
valid.

Proof: The soundness is a simple consequence of the soundness of unification
and the refutation clause form theorem 4.3 since the resolution and factoring
rules residuate the appropriate unification constraint.

Lemma 4.7 Let Φ be a set of generalized clauses, θ a substitution, and D a
refutation of θ(Φ). Then there is a derivation D′: Φ `HR E, where E is a set
of pairs. Furthermore there is an extension θ′ of θ, such that

• θ′ unifies E, and

• the new variables in the domain of θ′ do not occur in Φ.

Proof sketch: The derivation D′ is constructed along the line of D. In order
to do this, it is essential to maintain a close correspondence between the clause
sets involved (see the notion of a clause set isomorphism in [Koh94]). Note
that the clause normal form transformations from D can also be applied to the
corresponding clauses in Φ with the exception of the case, where the clause in
Φ contains a flexible literal, whose head θ instantiates with a formula whose
head is a logical constant. Here the transformation from D must be mimicked
by using the HR : P rule that introduces the appropriate constant. Since the

HR : P rule contains an application of HR : E, the ensuing clause normal
form transformation makes it possible to update the correspondence. Thus by
a simple inductive argument we see that the clause normal form transformation
part of D can be lifted to a HR-derivation.

The rest of D can then be lifted one inference rule at a time. The only two
interesting aspects of this:

• In the lifting of the HR : E rule, we can have the case, that again θ
introduces logical constants in the codomain of the eliminated variables.
Fortunately, this can be solved by exactly the argument above.

• The clause isomorphism can be destroyed by the fact that literals in D
may correspond to more than one literal in D′, then we use HR : F to
collapse them (restoring the correspondence).

The results on θ′ are obtained by maintaining θ along with the correspondence
(updating it with the primitive substitutions) and carefully analyzing unifia-
bility conditions.

Theorem 4.8 (Completeness) HRn is complete for Frege models.

Proof: The proof is conducted by verifying that the property of clause sets not
to be refutable is a saturated abstract consistency property. So by the model
existence theorem 3.5 we see that non-refutable sets of generalized clauses are
satisfiable in the class of Frege models. Since this is just the contrapositive
of the statement of completeness, we have finished the proof. Thus it only
remains to verify the conditions of 3.4.

∇1 We prove the converse: Assume there are literals Av,Aw ∈ Φ for v 6= w,
then Φ is refutable, since there are unit clauses Av and Aw in the clause
normal form of Φ, which can be resolved to the empty clause as the
resulting unification constraint A 6=?A is trivially solvable.

∇2 This condition is trivially met, since the clause normal form is invariant
under βη-equality.

∇3 Again we prove the converse: Assume that for each P-consequence Ci of
a formula (jA)w there is a refutation of Φ ∪ C. We inductively merge
these refutations together to a refutation D of Φ ∪C1 ⊗ · · · ⊗Cl where
Ψ⊗Θ is the set

{A ∨B
∣∣A ∈ cnf(Ψ); B ∈ cnf(Θ)}

For this construction we use a technical result (disjunction lemma) that
refutations of Ξ ∪ Ψ and Ξ ∪ Θ imply the existence of a refutation of
Ξ ∪ (Ψ⊗Θ). We conclude the proof by remarking that C1 ⊗ · · · ⊗Cl is
just the clause normal form of (jA)w.

∇4 Let (QA)v ∈ Φ. We have to show that the existence of a family of
refutations DwM of Φ∪ΞM (A)∪{(AB)w}, where M ∈ Q̃−1(v) and w ∈M
implies the existence of a refutation D of Φ.

Remember that in the clause normal form reduction, (QA)v is trans-
formed to generalized clauses of the form L1 ∨ . . . ∨ Lk, where the Li

come from some β(M i). From refutations DwM , w ∈ M , we will con-
struct refutations DM of Φ ∪ β(M). With a disjunction lemma tech-
nique similar to the one above the DM are combined to a refutation D
of Φ ∪ {L1 ∨ . . . ∨ Lk

∣∣Li ∈ β(Mi)}, which has the same refutation clause
form as Φ. Thus D is indeed the refutation needed to complete the proof.

Let us fix a M = {w1, . . . , wm} ∈ Q̃−1(v), then

β(M) = {(A(fkiXk))wi
∣∣wi ∈M} ∪ {(AX)M}

For each DwM , w ∈M , the lifting lemma (cf. 4.7 take θ = [B/X]) guaran-
tees a derivation FwM : Φ∪ΞM (A)∪{(AX)w} `HR C, where the resulting
clause C only contains a set Ew of pairs. Again by a disjunction lemma
technique, we can combine these to a derivation

FM : Φ ∪ ΞM (A) ∪ {(AX)w1 ∨ . . . ∨ (AX)wk} `HR Ew1 ∨ . . . ∨ Ewn

The solutions θw of the Ew from the lifting lemma can be combined to a
substitution θM = θw1 ∪ . . . ∪ θwk , since they agree on X. Thus Ew1 ∨
. . .∨Ewn is pre-unifiable and hence (higher-order unification is complete)
there is a derivation Hm (using only pre-unification steps) that derives
the empty clause from Ew1 ∨ . . . ∨ Ewn . Finally we remark the Skolem
subterms (i.e. the Skolem constants with all their necessary arguments)
from the clause form transformation directly correspond to the witness
constants in the abstract consistency property.

Finally, to convince ourselves that ∇ is saturated, we show that for any set
Φ ∈ ∇ and any proposition A, there must be a truth value w ∈ B, such that
Φ∪{Aw} ∈ ∇. To prove the contraposition, let us assume that Φ∪{Aw} /∈ ∇
for every w ∈ B, in other words that there are refutations for all Φ ∪ {Aw}.
By the disjunction lemma, there must be a refutation for Φ ∪ {AB}. This
contradicts our assumption that Φ ∈ ∇, since the last clause is a tautology and
cannot contribute to a refutation.

5 Conclusion

We have presented a multi-valued higher-order logic HOLn and a higher-order
resolution calculus HRn that is sound and complete with respect to multi-
valued Frege models. Since this logical system combines multiple truth values
and parametric choice of connectives and quantifiers with higher-order features,
such as λ-binding and βη-conversion, it is a suitable basis for the development

of artificial intelligence logics. However, as we have seen in the example, HOLn
can only be a starting point for the development of a higher-order logic with
partial functions. In order for an adequate treatment of quantification (which
must exclude the undefined element for a higher-order account of partial func-
tions) it will be necessary to combine it with the sort techniques of [Koh94] in
the spirit of [KK97]. This will yield a suitable basis for formalizing and mecha-
nizing informal mathematical vernacular. Similarly, given a more general treat-
ment of generalized quantifiers we will obtain a higher-order mechanization of
presuppositions, as a basis for an adequate integration of world knowledge and
pragmatics in the process of natural language semantics construction.

References

[And71] Peter B. Andrews. Resolution in type theory. Journal of Symbolic
Logic, 36(3):414–432, 1971.

[BF92] Matthias BaazChristian G. Fermüller. Resolution for many-valued
logics. In LPAR’92, 624 LNAI, 107–118. Springer Verlag, 1992.

[BK98] C. Benzmüller and M. Kohlhase. Extensional Higher-Order Resolu-
tion. in Proc. CADE-15, LNAI, Springer Verlag, 1998.

[Car87] Walter A. Carnielli. Systematization of finite many-valued logics
through the method of tableaux. Journal of Symbolic Logic, 52:473–
493, 1987.

[Car91] Walter A. Carnielli. On sequents and tableaux for many-valued
logics. Journal of Non-Classical Logic, 8(1):59–76, 1991.

[DSP91] Mary Dalrymple, Stuart ShieberFernando Pereira. Ellipsis and
higher-order-unification. Linguistics and Philosophy, 14:399–452,
1991.

[Far90] William M. Farmer. A partial-function version of Church’s simple
theory of types. Journal of Symbolic Logic, 55:1269–1291, 1990.

[GK96] Claire GardentMichael Kohlhase. Higher–order coloured unification
and natural language semantics. In Proceedings of ACL’96. Associ-
ation for Computational Linguistics, Santa Cruz, 1996.

[GKvL96] Claire Gardent, Michael KohlhaseNoor van Leusen. Corrections and
Higher-Order Unification. In Proceedings of KONVENS’96, 268–
279. De Gruyter, 1996.

[Häh94] Reiner Hähnle. Automated Deduction in Multiple-Valued Logics, 10
International Series of Monographs on Computer Science. Oxford
University Press, 1994.

[Häh96] Reiner Hähnle. Exploiting data dependencies in many-valued logics.
Journal of Applied Non-Classical Logics, 6(1):49–69, 1996.

[HS86] J. HindleyJ. Seldin. Introduction to Combinators and Lambda Cal-
culus. Cambridge University Press, 1986.

[Hue72] Gérard P. Huet. Constrained Resolution: A Complete Method for
Higher Order Logic. , Case Western Reserve University, 1972.

[KK94] Manfred KerberMichael Kohlhase. Mechanising Partiality with-
out Re-Implementation. In Alan Bundy, , KI’97, 1303 in LNAI,
Springer Verlag, 1997.

[KK97] Manfred KerberMichael Kohlhase. A mechanization of strong
Kleene logic for partial functions. In Alan Bundy, , CADE’94,
814 in LNAI, 371–385, Springer Verlag, 1994.

[KK97] Manfred KerberMichael Kohlhase. Reasoning without believing: On
the mechanization of presuppositions and partiality. To appear in
Lopez, Manandhar, Nutt eds. Computational Logic for Natural Lan-
guage Understanding, Springer Verlag.

[Kle52] Stephen C. Kleene. Introduction to Meta-Mathematics. North Hol-
land, 1952.

[Koh94] Michael Kohlhase. A Mechanization of Sorted Higher-Order Logic
Based on the Resolution Principle. , Universität des Saarlandes,
1994.

[Koh98] Michael Kohlhase. Higher-order automated theorem proving. In
Wolfgang BibelPeter Schmitt, , Automated Deduction – A Basis for
Applications, 2, Kluwer, 1998. .

[Kra95] Emiel Krahmer. Discourse and Presupposition. , University of
Tilburg, 1995.

[Mil83] Dale Miller. Proofs in Higher-Order Logic. , Carnegie-Mellon Uni-
versity, 1983.

[Mil92] Dale Miller. Unification under a mixed prefix. Journal of Symbolic
Computation, 14:321–358, 1992.

[Mus89] R.A. Muskens. Meaning and Partiality. , University of Amsterdam,
1989.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. 828 of
LNCS. Springer Verlag, 1994.

[Pfe91] Frank Pfenning. Logic programming in the LF logical framework. In
Gérard P. HuetGordon D. Plotkin, , Logical Frameworks. Cambridge
University Press, 1991.

[Sal96] Gernot Salzer. Optimal axiomatizations for multiple-valued opera-
tors and quantifiers based on semilattices. In M.A. McRobbieJ.K.
Slaney, , CADE’96, 1104 in LNAI, 688–702, Springer Verlag, 1996.

[Sch94] Ortwin Scheja. Resolution in mehrwertigen Logiken höherer Stufe.
SEKI-Working-Paper SWP-94-07, Universität des Saarlandes, 1994.

[Smu68] Raymond M. Smullyan. First-Order Logic. Springer Verlag, 1968.

[Sny91] Wayne Snyder. A Proof Theory for General Unification. Progress
in Computer Science and Applied Logic. Birkhäuser, 1991.

