
Uni�ation in a �-Calulus withIntersetion TypesMihael KohlhaseFB InformatikUniversit�at des SaarlandesW-6600 Saarbr�uken, Germanykohlhase�s.uni-sb.deFrank PfenningDepartment of Computer SieneCarnegie Mellon UniversityPittsburgh, PA 15213, USAfp�s.mu.eduAbstratWe propose related algorithms for uni�ation and onstraint simpli�a-tion in �!&, a re�nement of the simply-typed �-alulus with subtypesand bounded intersetion types. �!& is intended as the basis of a logialframework in order to ahieve more suint and delarative axiomatiza-tions of dedutive systems than possible with the simply-typed �-alulus.The uni�ation and onstraint simpli�ation algorithms desribed here laythe groundwork for a mehanization of suh frameworks as onstraint logiprogramming languages and theorem provers.1 IntrodutionThe motivation for our work omes from the area of logial frameworks. Alogial framework is a meta-language for the spei�ation and implementa-tion of dedutive systems as they arise in logi and the study of programminglanguages. Examples of suh frameworks are LF [?℄, hereditary Harrop for-mulae [6℄, and ALF [?℄. All these frameworks are based on some type theory.They have been used as the basis for the logi-independent theorem proverIsabelle [8℄ and the logi programming languages �Prolog [7℄ and Elf [9℄.Extensive experiments in logi and the theory of programming languageshave been arried out in these implementations.In a reent paper [?℄ the seond author has proposed a re�nement of the1

type theory �� underlying the LF logial framework in order to simplify thepresentation of many dedutive systems. This re�nement, ��&, inorporatessubtypes and intersetion types. In addition to a more natural reetionof informal mathematial pratie in the spei�ations of languages anddedutive systems, we also believe that re�nement types an be bene�ialto exeution in logi programming languages suh as �Prolog or Elf andto searh in theorem provers suh as Isabelle. In �rst-order languages thepotential of order-sorted type strutures have long been realized (see, forexample, [10, ?, ?℄) and we see our work as a natural extension of thesee�orts.At the heart of theorem proving or logi programming lies uni�ation.In this paper we present 3 related algorithms for uni�ation and onstraintsimpli�ation for �!&, a re�nement of the simply-typed �-alulus withsubtypes and bounded intersetion types. It builds upon Huet's algorithmfor the simply-typed �-alulus [3℄ and extensions to related languages byNipkow and Qian [?℄ and the �rst author [4, 5℄, although the systems areinomparable in terms of their expressive power. The motivating examplebelow should help to illustrate the di�erenes. A �-alulus with simplesubtypes as onsidered by [?℄ ontains no intersetions and type labels on �-abstrations are not interpreted as bounds. This means that the neessarysort omputations for our algorithm are signi�antly more omplex. Thesystem onsidered by the �rst author in [5℄ permits so-alled term dela-rations whih lead to an undeidable type-heking problem and is thus insome ways more general. On the other hand, in order to model interse-tion types, one would have to add an in�nite olletion of new types andin�nitely many new term delarations to a given signature.The rest of this paper is strutured as follows. We begin with a moti-vating example in the ontext of �Prolog, followed by the de�nition of �!&.We then disuss general (pre)-uni�ation in �!&. We onlude the paper bypresenting transformations for uni�ation restrited to higher-order patternsin the sense of Miller [?℄.2 A Motivating ExampleThe value of subsorting (sometimes alled subtyping) for �rst-order logiprogramming languages has long been reognized and extensively investi-gated (see, for example, [10, ?, ?℄). Type systems with subsorts a�orda onise, yet delaratively orret formulation of many programs. Fur-thermore, many programming errors manifest themselves as type errors at2

ompile-time. Current higher-order logi programming languages with aterm language inluding �-abstrations (suh as �Prolog or Elf) are basedon simple, polymorphi, or dependent type disiplines, but do not inorpo-rate a notion of subtyping. This an be traed in part to a lak of a uniformand aurate type system that ombines funtion types (whih lassify �-abstrations) with subtyping. As a motivating example we onsider thelassi�ation of legal goals and programs in �Prolog. We begin with thelanguage of formulae.Simple Types A ::= a j o j A1 ! A2Formulae F ::= At j F1 ^ F2 j F1 � F2 j F1 _ F2 j 8x:AF j 9x:AFHere o is the distinguished type for formulae and a stands for expliitlydelared type onstants. An atom At has the normal form hM1 : : :Mn fora variable or non-logial onstant h, where the type of the whole expressionmust be o. Programs and goals must be restrited in order to guaranteethat the uniform proof property is satis�ed for the resulting logi and goal-direted searh will be omplete. The restrition we show here is to higher-order hereditary Harrop formulae [6℄. The notation Atr stands for rigidatoms, that is, atoms whose head must be a onstant.Programs D ::= Atr j D1 ^D2 j G � D j 8x:ADGoals G ::= At j G1 ^G2 j G1 _G2 j D � G j 9x:AG j 8x:AGThere is one further restrition: subterms of Atr may not ontain implia-tions. If this restrition were relaxed, then for onstants q and r of type oand p of type o! o, the goal pG ^G has a proof given the programp((q _ r) � (r _ q));but it has no uniform proof. The diÆulty is that the subterm (q_r) � (r_q)is not a legal goal, but beomes a goal after the instantiation of the variableG. Unfortunately this restrition also rules out programs suh as meta-interpreters whih annot lead to a failure of the uniform proof property. Inorder to irumvent this problem, we would like to distinguish legal goals gand legal programs d as re�nements of the type o of formulae. This leads tothe following re�nement delarationsg :: od :: oBut what then is the type of onjuntion, for example? For one, it maps twogoals to a goal, but is also maps two programs to a program. Of ourse, it3

also still maps two arbitrary formulae to a formula. Similar onsiderationsapply to impliation and we have^ : o! o! o � : o! o! o^ : g ! g ! g � : d! g ! g^ : d! d! d � : g ! d! dThe delarations for the remaining logial onstants an now easily be added;we omit them here for the sake of brevity. Multiple typings are not limitedto onstants: the funtion �x: o �y: o y ^ x, for example, should intuitivelyhave preisely the same types as ^. In order to see this onsider the resultof applying this funtion to two goals G1 and G2: the result will always bea goal (namely G2 ^ G1). But this fat annot be expressed in a systemof simple subtypes (suh as the one onsidered in [?℄): we need to addintersetion types, written as A1&A2. With the system we propose belowwe an infer, for example,(�x: o �y: o y ^ x) : (o! o! o)&(g ! g ! g)&(d! d! d)(�x: o �y: o y � x) : (o! o! o)&(g ! d! g)&(d! g ! d)In ontrast to other aluli, the type labels on �-abstrations here must beonsidered as bounds on the sorts of possible instantiations of the variable.Thus, in order to type-hek a �-expression �x:AM we must analyze Mfor every subtype of A. In order to guarantee that this proess remains�nitary and prinipal types exist, we distinguish between proper types andsorts. Proper types (suh as o in our example) divide terms into disjointolletions. Sorts (suh as g and d) re�ne the type struture by lassifyingterms (whih must already possess the same proper type) more auratelythan is possible with proper types alone. We thus refer to this type systemas a system of re�nement types. Note that sorts may not neessarily bedisjoint. For example, every (rigid) atom is both a legal goal and a legalprogram. Thus a new prediate pred on integers should be delared withpred : int ! (g& d)or we ould add another sort a of atoms and delare it a subsort of both dand g: a :: o a � g a � dpred : int ! aWith this type struture, we an now safely program with higher-order pred-iates without undue restritions. The ounterexample above now fails, sine4

G is a variable of sort g and the argument (q _ r) � (r _ q) does not havesort g (only type o). On the other hand, safe usage in a meta-interpretersuh as 8D: d 8G: g (hyp(D) � solve(G)) � solve(D � G)is permitted if we have the typings solve: g ! g and hyp: d! d.We have many other examples where re�nement types are bene�ial inhigher-order logi programming. For example, in the higher-order repre-sentation of natural dedutions [1℄ one an distinguish normal forms as are�nement of arbitrary derivations instead of expliitly enoding two dif-ferent representations. In the implementation of funtional languages [?℄re�nement types an distinguish values from arbitrary expressions insteadof leaving this distintion impliit. The interested reader is referred to [?℄for further examples and disussion.3 Basi De�nitionsThe syntax of �!& is that of the simply-typed �-alulus augmented withthe intersetion operator & for types. The main hange in the languageonerns signatures, where we drop the restrition that eah onstant bedelared at most one. We furthermore add re�nement delarations a1 :: a2whih delares sort a1 as a re�nement of type a2 and subsort delarationsa1 � a2 whih delares that a1 is a subsort of a2. The inferene rules forvalid signatures guarantee ertain onsisteny properties between multipledelarations.Types A ::= a j A1 ! A2 j A1&A2Objets M ::= j x j �x:AM jM1M2Contexts � ::= � j �; x:ASignatures � ::= � j �; a: Type j �; :A j �; a1 :: a2 j �; a1 � a2We use a and b to range over type onstants, to range over objet onstants,and x, y, and z to range over objet variables. We also restrit ontextsso that eah variable is delared at most one. Sine we also identify �-onvertible terms, this does not essentially restrit the inferene rules below.We will all A&B the intersetion of A and B, but refer to A and B as itsonjunts.Our system is more restritive than ustomary formulations of inter-setion types (see, for example, [?, ?, ?℄). The validity judgments belowintrodue a distintion between proper types and sorts. Proper types behave5

essentially like simple types and do not ontain intersetions. Sorts furtherre�ne proper types by enabling a more preise lassi�ation of terms, butsorts an only be interseted or ompared if they re�ne the same propertype. In the ontext of a funtional language as in [2℄, this leads to a deid-able type inferene problem. Here we are more onerned with the fat thatthe adequay of representations in the logial framework is preserved. Forthis it is vital that we do not extend the language of �-terms, but only thelanguage of types that lassify them. Thus the type labels in �-abstrationsare restrited to proper types. For type-heking, a type label A ats as abound and the body of the �-term is analyzed for eah sort B that re�nes A.By the restritions skethed above only �nitely many suh sorts B exist upto a simple syntati equivalene. For further disussion and some examplesthe interested reader is referred to [?℄.3.1 JudgmentsThe validity judgments have the following form. Here, Type is a speialtoken to allow a uniform presentation of the validity judgments for typesand objets. ` � Sig � is a valid signature�̀ � Ctx � is a valid ontext�̀ A: Type A is a valid type� �̀ M :A M is a valid objet of type AWe also need some auxiliary judgments. In partiular,�̀ A :: B A re�nes B�̀ A � B A is a subsort of BWe begin with the re�nement judgment for types.�̀ A1 :: B1 �̀ A2 :: B2�̀ A1 ! A2 :: B1 ! B2 �̀ A1 :: B �̀ A2 :: B�̀ A1&A2 :: Ba: Type in ��̀ a :: a a :: a0 in ��̀ a :: a0Note that the re�nement relation is neither transitive nor reexive. Theonditions on valid signatures will guarantee that exatly one of the last6

two rules is appliable for any delared onstant, and the seond only for aunique a0. This implies that in a valid signature � for a given A there existsat most one B suh that �̀ A :: B. We all a type A suh that �̀ A :: A aproper type.The next set of rules de�nes the valid signatures.` � Sig ` � Sig a not delared in �` �; a: Type Sig` � Sig �̀ A: Type �̀ A :: A0 �̀ Ai :: A0 for every :Ai in � (1)` �; :A Sig` � Sig a2: Type in � a1 not delared in �` �; a1 :: a2 Sig` � Sig a1 :: a3 in � a2 :: a3 in �` �; a1 � a2 SigThe rule (1) for onstant delarations enfores that in a valid signature,all types Ai delared for a given onstant re�ne the same proper type A0.Valid ontexts are straightforward, just as in the simply-typed �-alulus.�̀ � Ctx �̀ � Ctx �̀ A: Type�̀ �; x:A CtxThe rules for valid types enfore that all type onstants are delared andthat sorts an only be interseted if they re�ne a ommon proper type.a: Type in ��̀ a: Type a :: b in ��̀ a: Type �̀ A1: Type �̀ A2: Type�̀ A1 ! A2: Type�̀ A1: Type �̀ A2: Type �̀ A1 :: B �̀ A2 :: B�̀ A1&A2: Type7

Subsorting is ontravariant in the domain sort, as expeted. The rulesguarantee that we an only ompare sorts that re�ne a ommon propertype. a � b in ��̀ a � b �̀ A1 :: B �̀ A2 :: B�̀ A1 &A2 � A1 �̀ A1 :: B �̀ A2 :: B�̀ A1 &A2 � A2�̀ A � B1 �̀ A � B2�̀ A � B1&B2 �̀ A! B1 :: C �̀ A! B2 :: C�̀ (A! B1)&(A! B2) � A! (B1&B2)�̀ B1 � A1 �̀ A2 � B2�̀ A1 ! A2 � B1 ! B2�̀ A :: B�̀ A � A �̀ A � B �̀ B � C�̀ A � CWe introdue a partial equivalene relation� on types by de�ning �̀ A � Bas an abbreviation for �̀ A � B and �̀ B � A. It is easy to verify that(with respet to a valid signature) any proper type has only �nitely manyre�nements up to � equivalene.Lemma 3.1 (Basi Properties of Sorts) We impliitly assume that bothsides of eah of the equivalenes below re�ne the same type.(i) A&B � B&A; (ii) A&(B&C) � (A&B)&C;(iii) A&A � A; (iv) (A! B)&(A! C) � A! B&C:In the rules for valid objets we see that the type label of a �-abstrationmust be a proper type and that the body of the �-expression may be analyzed

8

for every sort whih re�nes this type.x:A in �� �̀ x:A :A in �� �̀ :A� �̀ M :A1 � �̀ M :A2� �̀ M :A1&A2 � �̀ M :A �̀ A � B� �̀ M :B� �̀ M1:A2 ! A1 � �̀ M2:A2� �̀ M1M2:A1 �̀ B :: A �; x:B �̀ M :C� �̀ �x:AM :B ! C3.2 Algorithmi JudgmentsThe judgments given above are delarative and it is not immediately obvious,for example, if the subsorting or typing judgments are deidable. FollowingPiere [?℄, we formulate new versions of these judgments whih diretlyembody an algorithm for deiding subsorting and synthesizing a minimaltype for an objet.We start with the algorithmi version of the subtype judgment, �̀ A vB. It requires an auxiliary operator � on types that is used to unurryfuntion types. �̀ a v a a � a0 in � �̀ a0 v b�̀ a v b�̀ A1 v B ! a�̀ A1&A2 v B ! a �̀ A2 v B ! a�̀ A1&A2 v B ! a�̀ A v B � C1 ! C2�̀ A v B ! (C1 ! C2) �̀ B1 v A1 �̀ A2 v B2 ! a�̀ A1 ! A2 v B1 � B2 ! a�̀ A v B ! C1 �̀ A v B ! C2�̀ A v B ! C1&C29

Theorem 3.2 The judgment �̀ A v B is e�etively deidable. Further-more, if A and B are types not ontaining the � operator suh that �̀ A :: Cand �̀ B :: C for some C, then �̀ A � B, i� �̀ A v B.Proof: By an interpretation into Piere's system [?℄.The seond judgment expresses that M has minimal type A, written as� �̀ M 2 A. For the purposes of this system and the remainder of the paper,it is onvenient to treat intersetion as an operator on multiple argumentsand oasionally a set of arguments. This is admissible in view of the basiproperties of & (f. Lemma 3.1).x:A in �� �̀ x 2 A � �̀ 2 &fAj:A in �g� �̀ M1 2 &i (Bi ! Ci) � �̀ M2 2 A� �̀ M1M2 2 &fCij �̀ A v Big� �̀ �x:AM 2 &fB ! Cj �̀ B :: A; �; x:B �̀ M 2 CgThe intersetion operator applied to an empty set is unde�ned. The lastrule ould lead to an in�nite intersetion, but there are only �nitely manyre�nements of a proper type up to �. Thus only �nitely many onjuntsontribute to the intersetion and we an operationalize the rule by assum-ing a �xed algorithm for enumerating re�nements of a proper type. Thisinferene system is now syntax-direted, and it is therefore immediate thatthe judgment � �̀ M 2 A is deidable.Theorem 3.3 Given a valid signature �, a ontext � valid in � and typesA and B valid in �. Then � �̀ M :A i� � �̀ M 2 B and �̀ B � A.Proof: Again, via an interpretation into the system of Piere. It is ruialfor this interpretation that the number of �-equivalene lasses of sortsre�ning a proper type is �nite.Lemma 3.4 Let �̀ A :: A1 ! A2, then � �̀ M :A, i� � �̀ �x:A1Mx:A.10

Proof: Via ompleteness of the algorithmi judgments.We will write M � N , if M and N are onvertible by ��-onversions.Lemma 3.5 (Normal Form Lemma) Let M be a term suh that � �̀M :C. Then there is a long normal form N = �x1:F1 : : : xn:Fk hN1 : : : Nm,suh that h is a onstant or variable and M � N . As usual we all h thehead of M .4 General Bindings and Type ConstraintsThe notion of a general binding is entral to all higher-order uni�ationalgorithms. In ontrast to the simply typed �-alulus, general bindings forterms in �!& are not unique up to the hoie of the new variables. Thereforewe obtain additional nondeterminism in the imitation and projetion steps.However, in ontrast to the ase with full term delarations [5℄, we have thattype-erasures of all general bindings are unique and the types of the newvariables only depend on the types of the binding and its head. Thereforewe will handle the nondeterminism by introduing type variables (whih wedenote by �) for the uni�ation algorithm and delay the omputation ofthe atual type information for the new variables into type onstraints. Inorder to simplify the notation we write A for the proper type B suh that�̀ A :: B. We also assume in the following that all types are valid, thus Aalways exists and is unique.De�nition 4.1 (General Binding) Let h be a onstant or variable with� �̀ h 2 A and C � &j�l C1j �! : : : �! Ckj �! Dj a sort. Then thegeneral binding G of type C with the head h is the termG = �x1:C1j : : : �xk:Ckj h[y1x1 : : : xk℄ : : : [ynx1 : : : xk℄where yi: &j�l C1j �! : : : �! Ckj �! �ji and the f�ji j1 � i � ng aresolutions of the type onstraint SChC de�ned below. As Lemma 4.3 willshow, G is a most general term with head h and sort C.If h is a onstant or a free variable we write the general binding as GhCand all it a general imitation binding. If h is the bound variable xi, then wewrite GiC and all it the general i-projetion binding. In this ase we writethe type onstraint as SCiC .In order for � �̀ GhC :C to hold we have to guarantee that for all 1 � j � l�; x1:C1j ; : : : ; xk:Ckj �̀ h[y1x1 : : : xk℄ : : : [ynx1 : : : xk℄:Dj :11

This in turn requires that h at least map the �ji into Dj . These onsid-erations together with the o- and ontravariane of � explain the typeonstraints SChC = A � &1�j�l �j1 �! : : : �! �jn �! Dj;SCiC = V1�j�l Cij � �j1 �! : : : �! �jn �! DjDe�nition 4.2 We will all a substitution � = [M1=x1; : : : ;Mn=xn℄ well-typed in a ontext �, i� � �̀ xi:Ai implies � �̀ Mi:Ai. Let W be a setof variables. Then we write � = �[W ℄ if for all x 2 W , �(x) = �(x), and� � �[W ℄ if there exists a well-typed substitution � suh that � Æ � = �[W ℄.Lemma 4.3 (General Binding Lemma) If � ` M :C and the head ofM is h, then there exists a general binding G of type C with the head h anda well-typed substitution �, suh that �(G) �M .Proof: By lemma 3.5 we an assumeM to be in normal form, that is,M hasthe form �x1:F1 : : : �xk:Fk hN1 : : : Nn. We only treat the ase where h is nota bound variable | the other ase is similar. Let C = &j�l C1j �! : : : �!Ckj �! Dj and � �̀ M :C. Then �; x1:C1j ; : : : ; xk:Ckj ` hN1 : : : Nn:Djfor all 1 � j � l.Now let A = &j�mA1j ! : : :! Anj ! Bj and � �̀ h 2 A. Thus, sinehN1 : : : Nn is well-typed and of type Dj , there is a k � m, suh that �̀ Bk vDj and there are types F ji , suh that � �̀ Ni 2 F ji and �̀ F ji v Ajk. Wean easily verify that � �̀ A1k ! : : :! Ank ! Bk v F j1 ! : : :! F jn ! Djfor all j, so the type assignment [F ji =�ji ℄ is a solution of SChC .Now let G be the general binding for the head h and the type CG = �x1:C1j : : : �xk:Ckj h[y1x1 : : : xk℄ : : : [ynx1 : : : xk℄suh that yi: &j�lC1j �! : : : �! Ckj �! �ji . We note that Cij is just Fiand de�ne �(yr) = �x1:F1 : : : �xk:Fk Nr. Then � is well-typed in the ontext� and we furthermore have that �(G) � �x1:F1 : : : �xk:Fk hN1 : : : Nn.Lemma 4.4 If � = [M=x℄ [�0 then there exists a general binding G and asubstitution �, suh that � = [M=x℄[�[�0[dom(�)℄ = �Æ [G=x℄[�0[dom(�)℄.Proof sketh: Diretly from Lemma 4.3.Example 4.5 Let� = B: Type; T :: B;F :: B;^:T �! T �! T;^:T �! F �! F;^:F �! T �! F;^:F �! F �! F:12

ThenGT̂�!F &F�!T = �x:B ^ [y1x℄[y2x℄SCT̂�!F &F�!T = T �! T �! T &T �! F �! F &F �! T �! F&F �! F �! F � �11 �! �12 �! F &�21 �! �22 �! TThe onstraints on the types of y1 and y2 have the following three solutionsy1:F �! T &T �! F ; y2:F �! T &T �! Ty1:F �! T &T �! F ; y2:F �! T &T �! Fy1:F �! T &T �! T ; y2:F �! T &T �! F5 General Uni�ation and Pre-Uni�ationBuilding upon the notion of general binding and type onstraint simpli-�ation we give a set of transformations for general uni�ation and pre-uni�ation, whih we will prove orret and omplete with the methods of[11℄.De�nition 5.1 (Uni�ation Problem) A uni�ation problem is a for-mula in the languageF ::=M := N j 9x:AF j 8u:AF j 9� :: AF j F1 ^ F2 j > j A1 � A2where the types A may now ontain type variables �. We will all allsubformulae of F of the form A1 � A2 type onstraints. The re�nementjudgment is extended in the obvious way (assuming � re�nes A in the sopeof 9� :: A) and we require that for eah type onstraint A1 � A2 there is aproper type A suh that A1 :: A and A2 :: A.Sine we have de�ned type variables to range only over the (�nite) setof re�nements of a given type, the set of solutions of a type onstraint ise�etively omputable by a generate-and-test approah. It is lear, however,that this is not a viable implementation strategy. A more reasonable on-straint simpli�er an be derived from the algorithmi rules for subtyping,but we leave the details to a future paper.In order to simplify the presentation of the algorithm, we assume thatall uni�ation formulae are in 98-form. Eah formula is equivalent to one inthis form by raising [?℄. We will refer to the universally quanti�ed variablesas parameters and use the meta-variables u and v to range over parameters.Note that they may not our in the substitution terms for existential vari-ables, whih we denote by x, y, and z. We also use h to stand for either a13

onstant or a parameter. Furthermore, we �x the signature � and omit theontext � and simply write M 2 A for the judgment � �̀ M 2 A when theontext � an be reovered from the plae in whih M appears.De�nition 5.2 (Provability) The basi judgment is � `̀ F (F is prov-able) is de�ned by the following inferene rules.� �̀ M :A M � N � �̀ N :A� `̀ M := N � `̀ > � `̀ F � `̀ G� `̀ F ^G� �̀ M :A � `̀ [M=x℄F`̀ 9x:AF �̀ B :: A � `̀ [B=�℄F`̀ 9� :: AF�; u:A `̀ F� `̀ 8u:AF �̀ A � B� `̀ A � BWe all a substitution � for the existential variables in a uni�ationformula F legal for F if it is well-typed and no parameters our in theinstantiation terms for �. Note that a proof of a formula F in 98 formuniquely determines a legal substitution � for the existential variables in F .Conversely, any ground instane of a legal uni�er for the equations in thematrix of F uniquely determines a proof for F . In slight abuse of notation,we will thus all suh a � a uni�er for F . The notion of most general uni�eris extended similarly to formulae.De�nition 5.3 (Solved Form) A uni�ation formula F is in solved formif it ontains no sort onstraints and all of its equations are in solved form,i.e., of the form x :=M , suh that x 2 A, M 2 B and B � A, neither x norany parameter u is free in M , and x is not free elsewhere in F . It is easy toshow that if F is in solved form with matrix x1 :=M1 ^ : : : ^ xn :=Mn then�F = [M1=x1; : : : ;Mn=xn℄ is a most general uni�er for F .Note that a formula in solved form is not neessarily provable from theempty ontext, sine some sorts may be empty. However we feel that thenonemptyness of sorts should be treated in the dedution system that usesthe uni�ation algorithm, rather than in uni�ation itself (f. Theorem 5.5).14

De�nition 5.4 (Transformations for General Uni�ation) In the de-sription of the rules, we use F� to stand for the matrix of F . We omit theobvious versions of the rules where the equations on the left-hand side arereversed.trivial M :=M =) >.deompose hM1 : : :Mn := hN1 : : : Nn =)M1 := N1 ^ : : : ^Mn := Nn.merge x := M suh that x 2 A, M 2 B and B � A, then F� =) x :=M ^ [M=x℄F�, if neither x nor any parameter u ours in M and xours elsewhere in F�.imitate xM1 : : :Mm := N1 : : : Nn =) xM1 : : :Mm := N1 : : : Nn ^ x :=GA ^ SCA, where x 2 A.i-projet xM1 : : :Mm := N =) xM1 : : : Mm := N ^ x := GiA ^ SCiA wherex 2 A.guess xM1 : : :Mm := yN1 : : : Nn =) xM1 : : :Mm := yN1 : : : Nn ^ x := GhA ^SChA if h is some onstant or existential variable and x 2 A.simplify onstraint type onstraints an be simpli�ed by any sound on-straint simpli�er.lam-lam �v:AM := �v:AN =) 8v:AM := N . Note that the type labelson both sides must be the same for the equation to be valid (they areproper types, not sorts).lam-term �v:AM := N =) 8v:AM := N v whereN is not a �-abstration.Furthermore we require the strutural rules that deal with quanti�er ex-hange from [?℄ and rules to erase > from a onjuntion.These transformations (and those of the following uni�ation algorithms)an be employed by very di�erent algorithms, depending on the strategyinvolved in onstraint simpli�ation. Solving type onstraints eagerly aftereah imitation and projetion step amounts to separate imitation rules foreah solution.For a realisti implementation it seems advantageous to pass the typeonstraints along and wait for more information in form of further instan-tiation. Suh further instantiation might be provided by further imitation15

steps. An implementation of the algorithm would also add rules to iden-tify failure due to non-appliability of rules early and yield a more eÆientalgorithm.The soundness of the transformations an readily be established fromthe soundness of the onstraint simpli�er and lemmata 4.3 and 3.4 by usingthe tehniques from [11℄. Now we will turn to the ompleteness of thetransformations.Theorem 5.5 (Completeness) For any uni�er � of a uni�ation formulaF there exists a sequene of transformations for general well-typed uni�a-tion from F to S in solved form, suh that �S � �[X℄ where X is the set ofexistential variables in F .Proof sketh: We de�ne a variant of the transformations from De�ni-tion 5.4 that operate on a pair (�; F), where F is a uni�ation formula and� is a substitution. For � = [M=x℄ [�0 let G be the general binding and �the substitution guaranteed by Lemma 4.4. The transformations imitate,projet and guess are of the form (�; F) =) (�0[�[[M=x℄; F^x := G^SC),where � is as in Lemma 4.4.Obviously we get a subsystem of that de�ned in De�nition 5.4, if werestrit this variant to the uni�ation formulae. Furthermore in ontrast tothe unrestrited system it an be shown that all sequenes of transformationsin this system must terminate with an irreduible pair (�; F). On the otherhand by lose inspetion of the transformations using lemma 4.3, we ansee that irreduible pairs are in solved form. Thus we get the ompletenessresult from De�nition 5.3.The notion of pre-uni�ation is of interest to automated theorem proving,sine pre-uni�ers an always be extended to uni�ers (see Lemma 5.7) and thepre-uni�ation problem is often tratable. We will only state the de�nitionsand the ompleteness result.De�nition 5.6 (Transformations for General Pre-Uni�ation) Thetransformations for pre-uni�ation are the same as those for general uni-�ation exept that the guess rule is dropped.These rules are applied to an initial uni�ation problem, until it is inin pre-solved form, that is all equations are in either in solved form or theheads of both sides of the equation are existential variables.Lemma 5.7 Pre-solved uni�ation problems are always uni�able.16

Proof: Let F be a uni�ation problem in pre-solved form and let E bean equation xM1 : : :Mm := yN1 : : : Nn in F where x and y are existentialvariables. Then the substitution� = [[�x1:Aj1 : : : xn:Ajn z℄=x; [�y1:Cj1 : : : yn:Cjm z℄=y℄where x; y are existential variables with x 2 &j�kAj1 �! : : : �! Ajn �!Bj , y 2 &j�lCj1 �! : : : �! Cjm �! Dj and z: &j�k Bj &&j�lDj uni�esE. This idea an be extended to solve all equations of this form simultane-ously.Theorem 5.8 (Completeness of Pre-Uni�ation) For any pre-uni�er� of a uni�ation formula F there exists a sequene of transformations forgeneral pre-uni�ation from F to a pre-solved form S, suh that �S � �[X℄where X is the set of existential variables in F .Corollary 5.9 If F is a losed uni�ation problem and F is transformedinto a (pre-)solved form S by a sequene of transformations for general uni-�ation or pre-uni�ation and all sorts of variables that are existentiallybound in S are nonempty, then `̀ F .6 Uni�ation Restrited to PatternsWe now speialize the algorithm from Setion 5 to patterns, whih are de-�ned just as in the simply-typed �-alulus: any ourene of an existentialvariable x in 9x1:A1 : : : 9xq:Aq8u1:B1 : : : 8up:Bp Fmust have the form xu'(1) : : : u'(n), where ' is a partial permutation fromn into p, i.e., an injetive mapping form 1; : : : ; n to 1; : : : ; p. The transfor-mations for pattern uni�ations are those of De�nition 5.4 where the ruleguess is replaed by the following transformations.De�nition 6.1 (Transformations for Pattern Uni�ation) Here x andy are existential variables where x:C = &j�k C1j ! : : :! Cnj ! Dj .var-var-same xu'(1) : : : u'(n) := xu (1) : : : u (n) is transformed intox := �v1:B'(1) : : : �vn:B'(n) x0 v�(1) : : : v�(l);where � is a partial permutation satisfying: there exists a k suh that�(k) = '(i) i� '(i) = (i) and x0: &j�k C�(1)j ! : : :! C�(l)j ! Dj isa new existential variable. 17

var-var-di� xu'(1) : : : u'(n) := y u (1) : : : u (m). Then let '0 and 0 bepartial permutations satisfying: there exists a k suh that '0(k) = iand 0(k) = j i� '(i) = (j). We transform intox := �v1:B'(1) : : : �vn:B'(n) z v'0(1) : : : v'0(l) ^y := �v1:B (1) : : : �vm:B (m) z v 0(1) : : : v 0(l); wherez : &j�k C 0(1)j ! : : :! C 0(l)j �! DjNote that in the ase of higher-order patterns the use of the rules projetand imitate are deterministi, that is, all but the imitation or one projetionimmediately lead to failure. The sort onstraints, however, may still havemultiple solutions.Theorem 6.2 (Completeness of Pattern Uni�ation) Let F be a loseduni�ation problem where all objets are higher-order patterns. Then thetransformations of pattern uni�ation always terminate and either1. yield a uni�ation problem S in solved form and �S is a uni�er forF . Furthermore, if all sorts of existentially bound variables in S arenonempty, then `̀ F .or 2. yield a uni�ation problem where none of the transformations are ap-pliable and F is not provable.7 Conlusion and Further WorkThe uni�ation algorithms presented here an serve as a basis for pratialimplementations of theorem provers or logi programming languages whihinorporate a notion of subtype and intersetion type. Standard tehniquesshould be appliable to ahieve the same eÆieny as urrent implementa-tions of higher-order uni�ation or pattern uni�ation whenever no subtypeor re�nement delarations are made. The presene of sort onditions po-tentially leads to an explosion of the searh spae during uni�ation. Intheorem proving this merely shifts work from logial inferenes to uni�a-tion where it is handled algorithmially, and we expet it to improve overallperformane. In logi programming many sort omputations an be shownto be redundant at ompile-time, given that the goal is always maintainedin well-sorted form. This situation is familiar from (�rst-order) order-sortedlogi programming and we believe that suh stati analysis is neessary toobtain a pratial system. 18

We would also like to extend the algorithm to ��&, a type theory withintersetion and dependent types proposed in [?℄. An extension of the lan-guage Elf [9℄ along these lines would be based on a onstraint solver (ratherthan a uni�ation or pre-uni�ation algorithm) that solves pattern uni�a-tion problems, but maintains other equations and sort onditions as on-straints. The prinipal question in this ontext is when and to what extentsort omputation should lead to branhing during the omputation. Thiswill depend in large part upon the results of experimentation with a proto-type implementation.Finally, we would like to onsider relaxing some of the restritions ofthe urrent system without disturbing its basi properties. For example, itmay be possible to admit arbitrary type labels in abstrations if we also addonversion rules that relabel abstrations with ompatible types.Aknowledgments. The �rst author was supported by the \Sonderfor-shungsbereih 314, K�unstlihe Intelligenz" of the Deutshe Forshungsge-meinshaft (DFG) and the \Studienstiftung des deutshen Volkes". Theseond author was supported in part by the U.S. Air Fore under ContratF33615-90-C-1465, ARPA Order No. 7597.Referenes[1℄ Amy Felty. Speifying and Implementing Theorem Provers in a Higher-Order Logi Programming Language. PhD thesis, Department of Com-puter and Information Siene, University of Pennsylvania, July 1989.[2℄ Tim Freeman and Frank Pfenning. Re�nement types for ML. In Pro-eedings of the SIGPLAN '91 Symposium on Language Design and Im-plementation, Toronto, Ontario. ACM Press, June 1991. To appear.Also available as Ergo report 91{097.[3℄ G�erard Huet. A uni�ation algorithm for typed �-alulus. TheoretialComputer Siene, 1:27{57, 1975.[4℄ Mihael Kohlhase. Order-sorted type theory I: Uni�ation. SEKI-Report SR-91-18 (SFB), Universit�at des Saarlandes, Saarbr�uken, 1991.[5℄ Mihael Kohlhase. Beweissysteme mit Logiken h�oherer Stufe. InKarl Hans Bl�asius and Hans-J�urgen B�urkert, editors, Deduktionssys-teme, Automatisierung des Logishen Denkens, hapter 6, pages 213{238. R. Oldenbourg Verlag, 2 edition, 1992.19

[6℄ Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Sedrov.Uniform proofs as a foundation for logi programming. Annals of Pureand Applied Logi, 51:125{157, 1991.[7℄ Gopalan Nadathur and Dale Miller. An overview of �Prolog. InRobert A. Kowalski and Kenneth A. Bowen, editors, Logi Program-ming: Proeedings of the Fifth International Conferene and Sympo-sium, Volume 1, pages 810{827, Cambridge, Massahusetts, August1988. MIT Press.[8℄ Lawrene C. Paulson and Tobias Nipkow. Isabelle tutorial and user'smanual. Tehnial Report 189, Computer Laboratory, University ofCambridge, January 1990.[9℄ Frank Pfenning. Logi programming in the LF logial framework. InG�erard P. Huet and Gordon D. Plotkin, editors, Logial Frameworks.Cambridge University Press, 1991.[10℄ Gert Smolka. Logi Programming over Polymorphially Order-SortedTypes. PhD thesis, Universit�at Kaiserslautern, 1989.[11℄ Wayne Snyder. A Proof Theory for General Uni�ation. Progress inComputer Siene and Applied Logi. Birkh�auser, 1991.

20

