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Abstract. Theories are an essential structuring principle that enable
modularity, encapsulation, and reuse in formal libraries and programs
(called classes there). Similar effects can be achieved by dependent record
types. While the former form a separate language layer, the latter are a
normal part of the type theory. This overlap in functionality can render
different systems non-interoperable and lead to duplication of work.

We present a type-theoretic calculus and implementation of a variant of
record types that for a wide class of formal languages naturally corre-
sponds to theories. Moreover, we can now elegantly obtain a contravari-
ant functor that reflects the theory level into the object level: for each
theory we obtain the type of its models and for every theory morphism a
function between the corresponding types. In particular this allows shal-
low — and thus structure-preserving — encodings of mathematical knowl-
edge and program specifications while allowing the use of object-level
features on models, e.g. equality and quantification.

1 Introduction

In the area of formal systems like type theories, logics, and specification and
programming languages, various language features have been studied that allow
for inheritance and modularity, e.g., theories, classes, contexts, and records. They
all share the motivation of grouping a list of declarations into a new entity such
asin R=[x1:A1,...,2,: Ay]. The basic intuition behind it is that R behaves
like a product type whose values are of the form (x1 : A1 :=ay,..., 2, Ay = ay).
Such constructs are indispensable already for elementary applications such as
defining the algebraic structure of Semilattices (as in Figure 1), which we will
use as a running example.

U : type
A :U-U-U
Semilattice = { assoc eVz,y,z: U (zAy)Az=zA(yAz)
commutative : ...
idempotent

Fig. 1. A Grouping of Declarations for Semilattices
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The names of the grouping constructs vary between systems, and we will call
them theories and records in the sequel. An overview of some representative
examples is given in the table on the right. For a discussion of these concepts
and a comprehensive review of the related work we refer the reader to [MRK].

The two approaches have different advantages. Stratified grouping permits
a separation of concerns between the core language and the module system. It
also captures high-level structure well in a way that is easy to manage and dis-
cover in large libraries, closely related to the advantages of the little theories
approach [FGT92]. But integrated grouping allows applying base language op-
erations (such as quantification or tactics) to the grouping constructs. For this
reason, the (relatively simple) stratified Coq module system is disregarded in
favor of records in major developments such as [Mat].

Allowing both features can lead to a duplication of work where the same hi-
erarchy is formalized once using theories and once using records. A compromise
solution is common in object-oriented programming languages, where classes be-
have very much like stratified grouping but are at the same time normal types
of the type system. We call this internalizing the higher level features. While
combining advantages of stratified and integrated grouping, internalizing is a
very heavyweight type system feature: stratified grouping does not change the
type system at all, and integrated grouping can be easily added to or removed
from a type system, but internalization adds a very complex type system fea-
ture from the get-go. It has not been applied much to logics and similar formal
systems: the only example we are aware of is the FoCaLiZe [Har+12] system. A
much weaker form of internalization is used in OBJ and related systems based
on stratified grouping: here theories may be used as (and only as) the types
of parameters of parametric theories. Most similarly to our approach, OCaml’s
first-class modules internalize the theory (called module type in OCaml) M as
the type module M; contrary to both OO-languages and our approach, this kind
of internalization is in addition and unrelated to integrated grouping.

In any case, because theories usually allow for advanced declarations like
imports, definitions, and notations, as well as extra-logical declarations, system-



atically internalizing theories requires a correspondingly expressive integrated
grouping construct. Records with defined fields are comparatively rare; e.g.,
present in [Luo09] and OO-languages. Similarly, imports between record types
and/or record terms are featured only sporadically, e.g., in Nuprl [Con+86],
maybe even as an afterthought only.

Finally, we point out a closely related trade-off that is orthogonal to our
development: even after choosing either a theory or a record to define grouping,
many systems still offer a choice whether a declaration becomes a parameter or
a field. See [SW11] for a discussion.

Contribution We present the first formal system that systematically internalizes
theories into record types. The central idea is to use an operator Mod that turns
the theory T' into the type Mod (7"), which behaves like a record type. We take
special care not to naively compute this record type, which would not scale well
to the common situations where theories with hundreds of declarations or more
are used. Instead, we introduce record types that allow for defined fields and
merging so that Mod (T') preserves the structure of T'.

Our approach combines the advantages of stratified and integrated grouping
in a lightweight language feature that is orthogonal to and can be easily com-
bined with other foundational language features. Concretely, it is realized as a
module in the MMT framework [Rabl4], which allows for the modular design of
foundational languages. By combining our new modules with existing ones, we
obtain many formal systems with internalized theories. In particular, our typing
rules conform to the abstractions of MMT so that MMT’s type reconstruction
[Rab17] is immediately applicable to our features. We showcase the potential in
a case study based on this implementation, and which is interesting in its own
right: A formal library of elementary mathematical concepts that systematically
utilizes Mod (-) throughout for algebraic structures, topological spaces etc.

Overview We formulate our approach in the setting of a dependently-typed A-
calculus, which we recall in Sect. 2. This section also serves as a gentle primer for
defining language features in MMT. Sect. 3 introduces our notion of record types,
based on which we introduce the model-operator in Sect. 4. Sect. 5 presents our
implementation and a major case study on elementary mathematics. This paper
is a shortened version of [MRK], which also contains all the proofs.

2 Preliminaries

We introduce the well-known dependently-typed lambda calculus as the starting
point of our development. The grammar is given in Figure 2. The only surprise
here is that we allow optional definitions in contexts; this is a harmless conve-
nience at this point but will be critical later on when we introduce records with
defined fields. As usual, we write T — T" instead of [],.. T when possible. We
also write T[z/T"] for the usual capture-avoiding substitution of 7" for x in T.

MMT uses a bidirectional type system, i.e., we have two separate judgments
for type inference and type checking. Similarly, we have two equality judgments:
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Fig. 2. Grammar for Contexts and Expressions

one for checking equality of two given terms and one for reducing a term to
another one. Our judgments are given in Figure 3.

Adding record types in Section 3 will introduce non-trivial subtyping, e.g.,
[z:T,y:S] is asubtype of [z : T].?> Therefore, we already introduce a subtyping
judgment here even though it is not needed for dependent function types yet.
For our purposes, it is sufficient (and desirable) to consider subtyping to be an
abbreviation: I'+ Ty < Ty iff forallt I' +t < T implies ' + t < T5.

[Judgment  [Intuition |

- ctx I' is a well-formed context

I't<=T t checks against type/kind T'.
I'-t=1T type/kind of term ¢ is inferred to be T
I'+t1 =t2:T|t1 and t2 are equal at type T’

't ~to t1 computes to to

I'+Ty <:Ty |11 is a subtype of T»

Fig. 3. Judgments

The pre/postconditions of these judgments are as follows: I' - t < T
assumes that T is well-typed and implies that ¢ is well-typed. I' + ¢ = T implies
that both t and T are well-typed. I' + t; ~ to implies that ¢y is well-typed iff 1
is (which puts additional burden on computation rules that are called on not-
yet-type-checked terms). Equality and subtyping are only used for expressions
that are assumed to be well-typed, i.e., I' +t; =9 : T implies I' + t; < T, and
I' = Ty <: Ty implies that T; is a type/kind.

Remark 1 (Horizontal Subtyping and Equality). The equality judgment could
alternatively be formulated as an untyped equality ¢ = ¢'. That would require
some technical changes to the rules but would usually not be a huge difference.
In our case, however, the use of typed equality is critical.

For example, consider record values r1 = {a:=1,b:=1) and ro = {a:=1,b := 2)
as well as record types R = [a:nat] and S = [a: nat,b: nat]. Due to horizontal
subtyping, we have S <: R and thus both r; < S and r; < R. This has the
advantage that the function S — R that throws away the field b becomes the
identity operation. Now our equality at record types behaves accordingly and
checks only for the equality of those fields required by the type. Thus, r1 =ry: R
is true whereas 1 = ro : S is false, i.e., the equality of two terms may depend on
the type at which they are compared. While seemingly dangerous, this makes

3 This is sometimes called horizontal subtyping. In that case, the straightforward
covariance rule for record types is called vertical subtyping.



sense intuitively: 71 can be replaced with 7o in any context that expects an
object of type R because in such a context the field b, where ry and ro differ, is
inaccessible.

Of course, this treatment of equality precludes downcasts: an operation that
casts the equal terms r1 : R and ro : R into the corresponding unequal terms of
type S would be inconsistent. But such downcasts are still possible (and valuable)
at the meta-level. For example, a tactic GroupSimp(G,x) that simplifies terms
z in a group G can check if G is commutative and in that case apply more
simplification operations.

The full rules of a lambda calculus can be found in the long version [MRK]
We can now show that the usual variance rule for function types is derivable

Theorem 1. The following subtyping rule is derivable:

I'-A<A" INw:A+B' < B
F'_H:r:A’ B’ < Hm:AB

Moreover, we can show that every well-typed term t has a principal type
T in the sense that (i) I' + ¢ « T and (ii) whenever I" + ¢ < T’ then also
I' - T <: T'. The principal type is exactly the one inferred by our rules (see
Theorem 2).

3 Record Types with Defined Fields

We now introduce record types as an additional module of our framework by
extending the grammar and the rules. The basic intuition is that [I'] and (I)
construct record types and terms. We call a context fully typed resp. defined
if all fields have a type resp. a definition. In [I'], I" must be fully typed and may
additionally contain defined fields. In (I"), I" must be fully defined; the types are
optional and usually omitted in practice.

Because we frequently need fully defined contexts, we introduce a notational
convention for them: a context denoted by a lower case letters like v is always
fully defined. In contrast, a context denoted by an upper case letter like I may
have any number of types or definitions.

3.1 Records

We extend our grammar as in Figure 4, where the previously existing parts are
grayed out.

Remark 2 (Field Names and Substitution in Records). Note that we use the same
identifiers for variables in contexts and fields in records. This allows reusing re-
sults about contexts when reasoning about and implementing records. In par-
ticular, it immediately makes our records dependent, i.e., both in a record type
and — maybe surprisingly — in a record term every variable x may occur in



I':=-|La[:T][=T]
T == x| type | kind
| My T | Az : T T | TV To
| L)) | T record types, terms, projections

Fig. 4. Grammar for Records

subsequent fields. In some sense, this makes x bound in those fields. However,
record types are critically different from X-types: we must be able to use z in
record projections, i.e., x can not be subject to a-renaming.

As a consequence, capture-avoiding substitution is not always possible. This
is a well-known problem that is usually remedied by allowing every record to
declare a name for itself (e.g., the keyword this in many object-oriented lan-
guages), which is used to disambiguates between record fields and a variable in
the surrounding context (or fields in a surrounding record). We gloss over this
complication here and simply make substitution a partial function.

Before stating the rules, we introduce a few critical auxiliary definition:

Definition 1 (Substituting in a Record). We extend substitution ¢[z/t'] to
records:

- [[331 T, Ty Tnﬂ [y/t]
_ { [z1:Tuly/t], .. xic1 : Tica[y/t], xi  Tiy e ooy s T if y = 2y
[z1: (Taly/t]), ... 20 : (Tuly/t])] else
if none of the x; are free in ¢t. Otherwise the substitution is undefined.
_ _ Nz =t xg = ty)ify e {a, 2
—{xy =t =) [yft] = {{961 = (t1[y/t]), .. xn = (ta[y/t])) else
if none of the x; are free in ¢. Otherwise the substitution is undefined.

= (ro)[y/t] = (rly/t])-=.

Definition 2 (Substituting with a Record). We write t[r/A] for the result
of substituting any occurrence of a variable x declared in A with r.x

In the special case where r = (), we simply write ¢[d] for t[(d) /5], i.e., we
have t[z1 == t1,...,2n =ty ] = t{zn/tn] ... [21/t1].

Our rules for records are given in Figure 5. Their roles are systematically
similar to the rules for functions: three inference rules for the three constructors
followed by a type and an equality checking rule for record types and the (in
this case: two) computation rules. We remark on a few subtleties below.

The formation rule is partial in the sense that not every context defines a
record type or kind. This is because the universe of a record type must be as
high as the universe of any undefined field to avoid inconsistencies. For example,
max(a : nat) = type, max(a : type) = kind and max(a : kind) is not defined. If
we switched to a countable hierarchy of universes (which we avoid for simplicity),
we could turn every context into a record type.

The introduction rule infers the principal type of every record term. Because
we allow record types with defined fields, this is the singleton type containing



Formation:

1, Actx A fully typed max A e {type,kind}
I'[A] = max A

where max A is the maximal universe of all undefined fields in A
Introduction:

I, Actx ¢ fully defined A like § but with all missing types inferred

I'+(0) =[4]
Elimination:
I'er=[A,z:T[:=t],A2]
I'erax=T[r/A:]
Type checking:
For z:T[=t]e A additionally for z: T :=te A

'erxz<T[r/A] TI'tra=tr/A]:T[r/A] I'+r=R
I'er<=[A4]

Equality checking (extensionality):

For every (z:T)e A

I'-rix=rox:T[ri/A]
I'eri=ry:[A]

Computation:

0=01,z[:T]:=t,00 I't{0)=R TI'rr=[A,z:T:=t,As]
I'+(0).x ~ t[d1] I'-ra~tlr/A]

Fig. 5. Rules for Records

only that record term. This may seem awkward but does not present a problem
in practice, where type checking is preferred over type inference anyway.

The elimination rule is straightforward, but it is worth noting that it is
entirely parallel to the second computation rule.*

The type checking rule has a surprising premise that r must already be well-
typed (against some type R). Semantically, this assumption is necessary because
we only check the presence of the fields required by [A] — without the extra
assumption, typing errors in any additional fields that r might have could go
undetected. In practice, we implement the rule with an optimization: If r is
a variable or a function application, we can efficiently infer some type for it.
Otherwise, if r = (J), some fields of ¢ have already been checked by the first
premise, and we only need to check the remaining fields. The order of premises
matters in this case: we want to first use type checking for all fields for which [A]

4 Note that it does not matter how the fields of the record are split into A; and A
as long as A; contains all fields that the declaration of x depends on.



provides an expected type before resorting to type inference on the remaining
fields.

In the equality checking rule, note that we only have to check equality at
undefined fields — the other fields are guaranteed to be equal by the assumption
that r and ro have type [A].

Like the type checking rule, the first computation rule needs the premise that
r is well-typed to avoid reducing an ill-typed into a well-typed term. In practice,
our framework implements computation with a boolean flag that tracks whether
the term to be simplified can be assumed to be well-typed or not; in the former
case, this assumption can be skipped.

The second computation rule looks up the definition of a field in the type of
the record. Both computation rules can be seen uniformly as definition lookup
rules — in the first case the definition is given in the record, in the second case
in its type.

Ezample 1. Figure 6 shows a record type of Semilattices (actually, this is a
kind because it contains a type field) analogous to the grouping in Figure 1
(using the usual encoding of axioms via judgments-as-types and higher-order
abstract syntax for first-order logic).

U : type
A U-U-U
Semilattice := | assoc RVz,y,z: U (zAy)Az=zA(yAz)
commutative : ...
idempotent

Fig. 6. The (Record-)Kind of Semilattices

Then, given a record r : Semilattice, we can form the record projection
r.A, which has type r.U — r.U — r.U and r.assoc yields a proof that r.A is
associative. The intersection on sets forms a semilattice so (assuming we have
proofs Nn-assoc, N—comm, N—idem with the corresponding types) we can give an
instance of that type as

interSL: Semilattice := (U := Set, A := N,assoc := N—assoc,...)

Theorem 2 (Principal Types). Our inference rules infer a principal type for
each well-typed normal term.

In analogy to function types, we can derive the subtyping properties of record
types. We introduce context subsumption and then combine horizontal and ver-
tical subtyping in a single statement.

Definition 3 (Context Subsumption). For two fully typed contexts A; we
write I' = Ay > Ay iff for every declaration z : T[:= t] in A; there is a declaration
x:T'[:=t'] in Ay such that

— I'=T" < T and



— if ¢ is present, then sois ¢/ and I'+~t=¢t': T
Intuitively, A; < Ay means that everything of A; is also in Ay. That yields:

Theorem 3 (Record Subtyping). The following rule is derivable:

I'+ Al > AQ
I'+ H:AQII <: HAﬂ]

3.2 Merging Records

We introduce an advanced operation on records, which proves critical for both
convenience and performance: Theories can easily become very large containing
hundreds or even thousands of declarations. If we want to treat theories as record
types, we need to be able to build big records from smaller ones without explod-
ing them into long lists. Therefore, we introduce an explicit merge operator +
on both record types and terms.

In the grammar, this is a single production for terms:

T:=T+T
The intended meaning of + is given by the following definition:

Definition 4 (Merging Contexts). Given a context A and a (not necessarily
well-typed) context F, we define a partial function A @ E as follows:
- F=F
— If A=d, Ay where d is a single declaration for a variable x:
o if z is not declared in E: (d,4¢) ® E = d, (Agd E)
e if £ = Ey,e, E1 where e is a single declaration for a variable z:
x if a variable in Ej is also declared in Ag: A @ E is undefined,
* if d and e have unequal types or unequal definitions: A @ F is unde-
fined®,
* otherwise, (d, Ag) @& (Eo, e, E1) = Eg,m, (Ao, E1) where m arises by
merging d and e.

Note that @ is an asymmetric operator: While A must be well-typed (relative
to some ambient context), F may refer to the names of A and is therefore not
necessarily well-typed on its own.

We do not define the semantics of + via inference and checking rules. Instead,
we give equality rules that directly expand + into & when possible:

FI, (A @ Ay) ctx FI,(61 ®02) ctx
FI—[[Al}]ﬁ-[[AQﬂM[[AlEBAQ}] F'—{51}+{52>"?{51®62>

FL(A®6) ctx
I'+~[A]+{6) ~ (A &)

®It is possible and important in practice to also define A @ E when the
types/definitions in d and e are provably equal. We omit that here for simplicity.



In implementations some straightforward optimizations are needed to verify the
premises of these rules efficiently; we omit that here for simplicity. For example,
merges of well-typed records with disjoint field names are always well-typed, but
e.g., [z : nat] + [ : bool] is not well-typed even though both arguments are.

In practice, we want to avoid using the computation rules for + whenever
possible. Therefore, we prove admissible rules (i.e., rules that can be added
without changing the set of derivable judgments) that we use preferentially:

Theorem 4. If Ry, Rs, and Ry + Ry are well-typed record types, then Ry + Ry is
the greatest lower bound with respect to subtyping of Ry and Rs. In particular,
I'rr<Ri+Ryiff Trr< Ry and I'7r < Ry

If I'+r; < R; and r1 + 1o is well-typed, then I' 11 +7r9 < Ry + Ro

Inspecting the type checking rule in Figure 5, we see that a record r of type
[A] must repeat all defined fields of A. This makes sense conceptually but would
be a major inconvenience in practice. The merging operator solves this problem
elegantly as we see in the following example:

Ezample 2. Continuing our running example, we can now define a type of semi-
lattices with order (and all associated axioms) as in Figure 7.

< U->U->U:=Xx,y:U x=xAy
SemilatticeOrder := Semilattice + | refl :+ Va:U. a < a:= (proof)

interSLO := SemilatticeOrder + interSL

Fig. 7. Running Example
Now the explicit merging in the type SemilatticeOrder allows the projec-
tion interSLO. <, which is equal to Az,y : (interSLO.U) . (z = z(interSLO.A)y)

and interSLO.refl yields a proof that this order is reflexive — without needing
to define the order or prove the axiom anew for the specific instance interSL.

4 Internalizing Theories

4.1 Preliminaries: Theories

O:=-10,X={I'}|O6, X: X1 > X2={I"} theory level
["o=-| [ a[: T]|[:=T]| I, include X includes
T ==z | type | kind

| MLy T | A : T/ T | Th Ty

P | T | T2 + T

Fig. 8. A Simple Stratified Language
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We introduce a minimal definition of stratified theories and theory mor-
phisms, which can be seen as a very simple fragment of the MMT language
[RK13]. The grammar is given in Figure 8, again graying out the previously
introduced parts.

Each of the two levels has its own context: Firstly, the theory level context
O introduces names X, which can be either theories X = {I'} or morphisms
X :P - Q={I'}, where P and @ are the names of previously defined theories.
Secondly, the expression level context I' is as before but may additionally
contain includes include X of other theories resp. morphisms X. We call a
context flat if it does not contain includes.

All judgments are as before except that they acquire a second context,
e.g., the typing judgment now becomes @;I" + ¢ < T. With this modification,
all rules for function and record types remain unchanged. However, we add the
restriction that I" in [I'] and (I") must be flat.

We omit the rules for theories and morphisms for brevity and only sketch
their intuitions. We think of theories as named contexts and of morphisms as
named substitutions between contexts. Includes allow forming both modularly
by copying over the declarations of a previously named object. While theories
may contain arbitrary declarations, morphisms are restricted: Let @ contain
P ={I'} and Q = {A}. Then a morphism V : P - Q = {6} is well-typed if &
is fully defined (akin to record terms) and contains for each declaration = : T
of P a declaration x = t where ¢ may refer to all names declared in Q. V in-
duces a homomorphic extension V that maps P-expressions to Q-expressions.
The key property of morphisms is that, if V' is well-typed, then O; P+t < T
implies ©;Q + V (t) < V(T) and accordingly for equality checking and subtyp-
ing. Thus, theory morphisms preserve judgments and (via propositions-as-types
representations) truth. Moreover, it is straightforward to extend the above with
identity and composition so that theories and morphisms form a category. We
refer to [Rab14] for details.

4.2 Internalization

We can now add the internalization operator, for which everything so far was
preparation. We add one production to the grammar:

T ::=Mod (X)

The intended meaning of Mod (X) is that it turns a theory X into a record
type and a morphism X : P — @ into a function Mod (Q) — Mod (P). For sim-
plicity, we only state the rules for the case where all include declarations are at
the beginning of theory/morphism:

P ={include P,...,include P,,, A} in ©® A flat max P defined
O;I' -Mod (P) ~Mod (Py) +...+Mod (P,) + [A]

V:P - Q@ ={includeVi,...,includeV,,,0} in © § flat

O; ' +Mod (V) ~ Ar: Mod (Q) . Mod (P) + (Mod (V1) 1) + ...+ (Mod (V;,) 7) + (6] 7])
where we use the following abbreviations:

11



— In the rule for theories, max P is the biggest universe occurring in any decla-
ration transitively included into P, i.e., max P = max{max P, ..., max P,, max A}
(undefined if any argument is).

— In the rule for morphisms, 6[7] is the result of substituting in § every refer-
ence to a declaration of x in @ with r.z.

In the rule for morphisms, the occurrence of Mod (P) may appear redundant; but
it is critical to (i) make sure all defined declarations of P are part of the record
and (ii) provide the expected types for checking the declarations in 4.

Ezample 3. Consider the theories in Figure 9. Applying Mod (-) to these theo-
ries yields exactly the record types of the same name introduced in Section 3
(Figures 6 and 7), i.e., we have interSL < Mod (Semilattice) and interSLO <
Mod (SemilatticeOrder). In particularly, Mod preserves the modular structure
of the theory.

U 1 type
A :U-U-U
theory Semilattice = { assoc EVx,y,z: U (zAy)AzzasA(yaz)
commutative : ...
idempotent

include Semilattice
order :U->U->U:=Xz,y:Uxzzzry

theory SemilatticeOrder = refl ‘Va:U.a<a:= (proof)

Fig. 9. A Theory of Semilattices

The basic properties of Mod (X ) are collected in the following theorem:

Theorem 5 (Functoriality). Mod (-) is a monotonic contravariant functor from
the category of theories and morphisms ordered by inclusion to the category of
types (of any universe) and functions ordered by subtyping. In particular,
— if P is a theory in © and max P € {type,kind}, then ©;I + Mod(P) «
max P
— if V: P - Q is a theory morphism in ©; + Mod (V') < Mod (Q) — Mod (P)
— if P is transitively included into @, then ©;I" + Mod (Q) <: Mod (P)

An immediate advantage of Mod (-) is that we can now use the expression level
to define expression-like theory level operations. As an example, we consider the
intersection P n P’ of two theories, i.e., the theory that includes all theories
included by both P and P’. Instead of defining it at the theory level, which
would begin a slippery slope of adding more and more theory level operations,
we can simply build it at the expression level:

PP :=Mod(Q1) +...+Mod (Q,)

12



where the Q; are all theories included into both P and P’.°

Note that the computation rules for Mod are efficient in the sense that the
structure of the theory level is preserved. In particular, we do not flatten the-
ories and morphisms into flat contexts, which would be a huge blow-up for big
theories.”

However, efficiently creating the internalization is not enough. Mod (X)) is
defined via +, which is itself only an abbreviation whose expansion amounts
to flattening. Therefore, we establish admissible rules that allow working with
internalizations efficiently, i.e., without computing the expansion of +:

Theorem 6. Fiz well-typed © and I such that P = {include P, ...,include P,, A}
in ©. Then the following rules are admissible:

1<i<n z:TeA z:T:=te A

O;I'-r<=Mod(F;) O;I'+ra<=T[r/P] O;I'+-raz=tr/P]:T[r/P] I'-r=R
O;I'+1 < Mod (P)

1<i<n 1<i,j<n

O;I'-r;<=Mod(P;) O;'v+ri=r;:P,nP; O;I'+(0)[r/P]<[A] I'r=R
O;I' -Mod (P) + 71+ ...+ 75 + {8) = Mod (P)

where [r/P] abbreviates the substitution that replaces every x declared in a
theory transitively-included into P with r.x.8

The first rule in Theorem 6 uses the modular structure of P to check r at
type Mod (P). If r is of the form (d), this is no faster than flattening Mod (P)
all the way. But in the typical case where r is also formed modularly using a
similar structure as P, this can be much faster. The second rule performs the
corresponding type inference for an element of Mod (P) that is formed following
the modular structure of P. In both cases, the last premise is again only needed
to make sure that r does not contain ill-typed fields not required by Mod (P).
Also note that if we think of Mod (P) as a colimit and of elements of Mod (P) as
morphisms out of P, then the second rule corresponds to the construction of the
universal morphisms out of the colimit.

Ezample 4. We continue Ex. 3 and assume we have already checked interSL «
Mod (Semilattice) (¥*).

We want to check interSL + (0) < Mod (SemilatticeOrder). Applying the
first rule of Thm. 6 reduces this to multiple premises, the first one of which is
(*) and can thus be discharged without inspecting interSL.

5 Note that because P n P’ depends on the syntactic structure of P and P’, it only
approximates the least upper bound of Mod (P) and Mod (P’) and is not stable under,
e.g., flattening of P and P’. But it can still be very useful in certain situations.

" The computation of max P may look like it requires flattening. But it is easy to
compute and cache its value for every named theory.

8 In practice, these substitutions are easy to implement without flattening r because
we can cache for every theory which theories it includes and which names it declares.
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Ex. 4 is still somewhat artificial because the involved theories are so small.
But the effect pays off enormously on larger theories.

5 Implementation and Case Study

We have implemented a variant of the record types and the Mod (:)-operator
described here in the MMT-system (as part of [LFX]). They are used extensively
in the Math-in-the-Middle archive (MitM), which forms an integral part in the
OpenDreamKit [Deh+16] and MaMoRed [Koh+17] projects. In particular the
formalizations of algebra and topology are systematically built on top of the
concepts presented in this paper.

The archive sources can be found at [Mit], and its contents can be inspected
and browsed online at https://mmt.mathhub.info under MitM/smglom. Note
that the Mod (-) operator is called Models0f here.

U : type
+ :U-U-U
theory Ring = . U~U-U
assoc_plus bVz,y,z:U (z+y)+z2x+ (y+2)

commutative_plus: ...
include Ring }

theory Field = {inversestimes VU x#0=3Jy.z-y=1

include AbelianGroup
theory Module(R :Mod (Ring)) = { scalarmult : RU - U - U

theory VSpace(F : Mod (Field)) = { include Nodule(F) }

Fig. 10. Theories for R-Modules and Vector Spaces

For a particularly interesting example that occurs in MitM, consider the
theories for modules and vector spaces (over some ring/field) given in Figure 10,
which elegantly follow informal mathematical practice. Going beyond the syntax
introduced so far, these use parametric theories. Our implementation extends
Mod to parametric theories as well, namely in such a way that Mod (Module) :
IT Ritod(ring) Mod (Module(R)) and correspondingly for fields. Thus, we obtain

Mod (VSpace) = AF : Mod (Field).((Mod (Module) F) +...)

and, e.g., Mod (VSpace) R <: Mod (Module) R. Because of type-level parameters,
this requires some kind of parametric polymorphism in the type system. For
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our approach, the shallow polymorphism module that is available in MMT is
sufficient.

6 Conclusion

We have presented a formal system that allows to systematically combine the
advantages of stratified and integrated grouping mechanisms found in type the-
ories, logics, and specification/programming languages. Concretely, our system
allows internalizing theories into record types in a way that preserves their de-
fined fields and modular structure.

Our MitM case study shows that theory internalization is an important
feature of any foundation; especially if it interfaces to differing mathematical
software systems. Our experiments have also shown that (predicate) subtyping
makes internalization even stronger in practice. But type-inference in the com-
bined system induces non-trivial trade-offs; which we leave to future work.
Acknowledgements The work reported here has been kicked off by discussions
with Jacques Carette and William Farmer who have experimented with theory
internalizations into record types in the scope of their MathScheme system. We
acknowledge financial support from the OpenDreamKit Horizon 2020 European
Research Infrastructures project (#676541).
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