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Mathematical Knowledge Management: Transcending the One-Brain-Barrier with Theory Graphs

Michael Kohlhase (Jacobs University Bremen, Germany)

We present the emerging discipline of Mathematical Knowl-
edge Management (MKM), which studies the possibility of
computer-supporting and even automating the representation,
cataloguing, retrieval, refactoring, plausibilization, change
propagation and in some cases even application of mathe-
matical knowledge.
We focus on theory graph technology here, which supports
modular and thus space-efficient representations of mathe-
matical knowledge and allows MKM systems to achieve a lim-
ited mathematical literacy that is necessary to complement
the abilities of human mathematicians and thus to enhance
their productivity.

1 Introduction

Computers and Humans have complementary strengths. While
the former can handle large computations and data volumes
flawlessly at enormous speeds, humans can sense the envi-
ronment, react to unforeseen circumstances and use their in-
tuitions to guide them through only partially understood situ-
ations. In mathematics we make use of this complementarity
by letting humans explore mathematical theories and come up
with novel proofs, while delegating symbolic/numeric com-
putation and typesetting of documents to computers.

There is, however, one area where the specific strengths of
computers are not commonly exploited in mathematics: the
management of existing mathematical knowledge. In contrast
to the creation of new knowledge, which requires (human) in-
sights and intuition, the management (cataloguing, retrieval,
refactoring, plausibilization, change propagation and in some
cases even application) of mathematical knowledge can be
supported by machines and can even be automated in the near
future given suitable representation formats and algorithms.

With more than 100 thousand articles published annually,
the times where a human could have an overview over – let
alone have working knowledge in – all of mathematics are
long gone. Even web-based information systems with global
reach like the Cornell e-print arXiv [ArX] and reviewing ser-
vices like the AMS reviews [MR] or Zentralblatt Math [ZBM]
cannot prevent duplication of work and missed opportunities
for the application of mathematical results.

Even if they make mathematical documents available at the
click of a mouse, they cannot transcend a fundamental invari-
ant: to do mathematics with any of that knowledge, it must
pass through a human brain, which has a very limited ca-
pacity – compared to the volume, breadth and diversity of
mathematical knowledge currently accessible in documents.
We will call this the one-brain-barrier (OBB) of mathemat-
ics. Of course the OBB applies to all areas of human knowl-
edge but the highly networked nature and rigorous presenta-
tion of mathematical knowledge make it a particularly appeal-
ing subject for studying the possibilities of machine support
in knowledge management.

The effect of the OBB is particularly noticeable for the

mathematical practice of framing, i.e. establishing that an
object a (of class A) can be viewed as an incarnation of a
class B of objects (via an interpretation mapping ι : B → A);
see [KK09] for an introduction. Framing is exceedingly suc-
cessful in establishing seemingly new mathematical knowl-
edge in bulk: proving a single theorem T about objects b in B
yields the theorem ι(T ) about objects ι(b) in A “for free”. In-
fluential interpretations (where the theory of B is particularly
rich) are often referred to as “representation theorems” as they
cross-fertilise between mathematical areas by bridging repre-
senational differences. But the method of framing is useful
also in the small: we use it every time we apply a theorem,
only that we usually do not state necessary interpretations ex-
plicitly but leave their reconstruction to the reader. The ability
to to this without conscious thought is part of every mathe-
matical education. The utility and ubiquity of framing lets
some mathematicians consider it a defining characteristic of
mathematical practice.

Note that the proof that any A can be interpreted to be a
B may be highly non-trivial; but the problems with finding
interpretations and representation theorems begin way before
that: a prerequisite is that working knowledge about both As
and Bs is co-located in one brain. There are two kinds of
situation where interpretations are needed:

1. We have established a new result about a class B of ob-
jects and want to apply it to all known objects a that can
be interpreted to be of class B.

2. We study object b (of class B) and want to see whether
there are classes A it can be interpreted as, so that we can
take advantage of the knowledge about A.

Both induce a search problem for an interpretation ι : B→ A,
where A ranges over “all mathematical knowledge”. So, even
if we assume that the knowledge about B is already available
– a questionable assumption in 2 – the OBB hits us with full
force. Note that even though the proof of the representation
theorem for ι usually requires (human) insight and intuition,
the application of the frame (the transport of the knowledge
from B to A) is a largely syntactical process, which can be
machine-supported.

In this article, we want to survey the field of Mathematical
Knowledge Management, its basic ideas and methodological
basis in general (next section), then focus on a subset of meth-
ods that put the notion of framing at the centre (Section 3) and
show how they can be used to transcend the one-brain barrier
in Section 4. Section 5 concludes the article.

2 Mathematical Knowledge Management

Mathematical Knowledge Management (see [MKM; Far11])
is a young research area at the intersection of mathematics,
artificial intelligence, computer science, library science and
scientific publishing. The objective of MKM is to develop
new and better ways of managing sophisticated mathemati-
cal knowledge based on innovative technology of computer
science, the internet and intelligent knowledge processing.
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MKM is expected to serve mathematicians, scientists and en-
gineers who produce and use mathematical knowledge; ed-
ucators and students who teach and learn mathematics; pub-
lishers who offer mathematical textbooks and disseminate new
mathematical results; and librarians who catalogue and organ-
ise mathematical knowledge.

Even though MKM focuses on (MK)M (the “management
of mathematical knowledge”), its methods touch on M(KM)
(the “mathematics of knowledge management”). It is a fun-
damental tenet of MKM that important aspects of knowledge
can be formalised into a state where their management can be
supported by machines. Conversely, it is assumed that only by
making such aspects of knowledge formal – e.g. by seman-
tics extraction – will they become amenable to automation.
As a consequence, semantisation is an important concern for
MKM.

As the “client list” of MKM above already suggests, the
notion of knowledge management is rather inclusive. Corre-
spondingly, the aspects of knowledge studied by MKM and
the “depth of formalisation” are varied, ranging from full for-
malisation of the mathematical content in a logical system
[Har08; Wie08] to machine-readable versions of the Mathe-
matics Subject Classification [Lan+12].

It has always been an aim of the MKM community to build
a digital mathematical library – envisioned to be universal in
[Far11]. Based on this, sophisticated mathematical software
systems could help humans articulate, organise, disseminate
and access mathematical knowledge to allow them to concen-
trate on those parts of doing mathematics that need human
cognitive facilities – creating new mathematical knowledge
and appreciating the beauty of the existing canon.

In this paper we focus on ways to structure a digital mathe-
matical library into modular theory graphs and explain salient
mathematical practices in this setting. Our exposition here
follows [RK13], which introduces OMDoc/MMT, currently
the strongest formulation of theory graph ideas, which were
initially introduced in [FGT92] and extended to a comprehen-
sive representation format for mathematical knowledge and
documents (OMDoc: Open Mathematical Documents [Koh06]).

3 Theory Graphs & Computer-Supported Framing

The main idea of the theory graphs paradigm in MKM is to
take the idea of interpretations seriously and use it as a struc-
turing principle in a modular representation methodology for
mathematical knowledge. Neither the modularity principle
nor the use of interpretations are particularly new in mathe-
matics – they have been the main structural mechanism be-
hind Bourbaki’s systematic redevelopment of mathematics.
But the MKM community is developing ways of formalising
them and is making use of these structures for machine sup-
port. We will now explore the basic notions and show how
these relate to the mathematical practice of framing.

Theory graphs build on two central notions: theories (the
nodes of the graph) and theory morphisms (the edges). The
former are just collections of symbols denoting indivisible
mathematical objects and axioms stating the assumptions this
theory makes about them.

Theory morphisms are mappings from symbols in the
source theory to expressions in the target theory, such that
all axioms are mapped to theorems of the target theory.

(*)

Figure 1 shows a simple example of a theory graph. It con-
sists of a theory monoid of monoids, which has the symbols
op for the binary composition operation and unit for its neu-
tral element. Symbols and axioms (which we omit in Figure 1
for simplicity) have tripartite global names of the form g?t?c
in OMDoc/MMT, where g is the URL of the document that
contains the theory t and c is the name of a symbol in t. Note
that such tripartite names (MMT URIs) are valid uniform re-
source identifiers, which is a crucial prerequisite for being
used in web-based MKM systems. In Figure 1, we have as-
sumed that all theories are in the same document and we can
therefore omit the URL g throughout.

Inheritance Now, a theory cgp of Abelian groups can be
obtained from a monoid by adding an inverse operation inv.
In OMDoc/MMT we can avoid duplication of representations
by utilising an inclusion morphism (visualised by an arrow
↪→) that “copies” all symbols and axioms from the source
theory monoid to cgp. Note that inclusion morphisms are
trivially theory morphisms, since the target is defined to make
them so. OMDoc/MMT treats incoming inclusions like sym-
bols and names them in their target theory, so that the inclu-
sion of the monoid in Figure 1 is globally accessible to MKM
systems via the MMT URI g?cgp?mon. The inherited sym-
bols are available in cgp via the name of the inclusion that
supplied them, e.g. composition as mon/op or globally as
g?cgp?mon/op. Axioms are inherited similarly.

monoid
op, unit

cgp
mon, inv

ring
add, mul

cgp?mon

ring?add

ring?mul

Figure 1: A simple Theory Graph

In the next step we
can obtain a theory
ring via two inclu-
sions: ring?add and
ring?mul (and adding
a distributivity axiom).
Note that ring has two
distinct binary opera-
tions: the additive ring?add/mon/op and the multiplicative
ring?mul/op, two neutral elements: ring?add/mon/unit and
ring?mul/unit, and the additive inverse ring?add/inv. Note
that the respective copies of the axioms of mon and cgp are
inherited as well. ring inherits eight axioms: two closure, two
associativity and two neutrality axioms, plus additive inverse
and commutativity. We see that OMDoc/MMT can mimic the
efficiency of mathematical vernacular in this respect.

Notation Before we go on with our exploration of Figure 1,
a clarification of the level of representation is in order. We
have seen that the use of inclusion morphisms gives us theory
structures that systematically supply URIs for the objects we
expect. We should think of OMDoc/MMT as a kind of “ma-
chine language” for representing mathematical knowledge.
In particular, URIs as names are good for communication
of knowledge over the internet and its manipulation by ma-
chines but they are woefully inadequate for communication
with humans, who expect to see, for example, ◦ instead of
MMT URI g?cgp?mon/op in Abelian groups and may use +

for ring?add/mon/op and · for ring?mul/op in rings. To ac-
count for this, OMDoc/MMT offers a system of notation def-
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initions that allow us to associate human-oriented notations
with symbols and regain the familiar and helpful notations of
mathematical discourse. Indeed, making notation definitions
first-class citizens of the representation format allows us to
model them and their effects in modular theory graphs: they
are inherited along inclusions and thus available wherever the
inherited symbols are visible. In MKM systems that commu-
nicate with humans, we use notation definitions to generate
formula presentations for the user but keep the symbol URIs
to render additional services, e.g. definition lookup.

Views We have seen that inclusions can be used for a mod-
ular development of, for example, the elementary algebraic
hierarchy. But the real power of theory graphs comes from
another kind of theory morphisms: views. In contrast to in-
clusions they link two pre-existing theories and thus we have
to prove that all the source axioms are theorems of the target
theory to establish the theory morphism condition (*). More-
over, views usually have non-trivial symbol mappings. In Fig-
ure 2 we extend the theory graph from Figure 1 with a theory
of integers and two views. v1 maps the monoid operation to
integer addition and the neutral element to the integer number
zero. To establish this mapping as a view we have to establish
(*) by proving closure of Z under +, associativity of +, and
x + 0 = x for all x ∈ Z (the proof obligations induced by v1)
from the axioms of integers.

monoid
op, unit

cgp
mon, inv

ring
add, mul

cgp?mon

ring?add

ring?mul

integers
+, 0,−

v2 :{
mon/op 7→ +

mon/unit 7→ 0

}
or mon 7→ v1

inv 7→ −

v1 :
op 7→ +

unit 7→ 0

v2

inclusion

view

v3

v4 : x op y 7→ y op x

Figure 2: A Theory Graph with Views/Examples

The view v2 is similar, only that it additionally maps the
inverse operation to − and has proof obligations for the in-
verse axiom and commutativity. Note that v2 can be made
modular by mapping the inclusion mon to v1 instead of the
direct mapping of (inherited) symbols. This also allows us to
inherit/reuse the proof obligations of v1 in v2. A view v3 from
ring to integers can be established similarly.

Theory Morphisms Transport Proofs and Theorems But
more important than the mechanics of theory graphs is the
realisation that in the presence of a theory morphism S

σ
−→

T by (*) any S -theorem t becomes a T -theorem σ(t) as the
S -proof π of t can be translated along σ: any appeal to an
S -axiom in π becomes an appeal to a T -theorem in σ(π) by
(*). In particular, σ(t) can be referred to as T?[v]/t, just like
induced symbols, only that v is the MMT URI of the view σ.

In this context, note that the pragmatics of structures (in-
clusions with non-trivial mappings) and views are comple-
mentary. Structures are constitutive to a theory and restrict

the “applicability” of a theory, since they introduce axioms
that must be fulfilled by proof obligations, while views are
(logically) redundant but allow us to “apply” a theory else-
where. The subgraph induced by structures must be acyclic,
while views may induce cycles. Indeed, theory isomorphisms
(pairs of inverse theory morphisms) are a good way to repre-
sent equivalent theories, alternative definitions, etc.

Views at Work in Mathematics In our example in Fig-
ure 2, this means that all group theorems apply to (Z,+) (and
all theories that are reachable from it via theory morphisms).
This already explains one mathematical practice: proving a
conjecture in the greatest possible generality. In theory graph
terms, this means establishing a theorem as low as possible
(in terms of the pre-order induced by theory morphisms) in
the graph, since the “cone of influence” gets bigger this way.

Another mathematical practice is to abbreviate proofs by
meta-arguments, e.g. “(iv) the proof of this case follows from
case (iii) by symmetry”. In most cases, such proofs by meta-
arguments can be seen as making the reader aware of a theory-
endomorphism like v4 that can be used to transport the proof
of (iii) into one of (iv). Finally, mathematical examples can
be interpreted as theory morphisms in theory graphs (another
consequence of (*)). In our example, (Z,+, 0) is an example
of a monoid by v1, (Z,+, 0,−) is an example of an Abelian
group via v2 and (Z,+, 0,−, ∗, 1) is an example of a ring via
v3. An example becomes “non-obvious” if it has at least one
view component.

Framing In conclusion, we note that theory morphisms are
very natural candidates for representing the structures under-
lying the mathematical practice of framing highlighted in the
introduction. Indeed, we can see the condition (*) as being
the essence of framing. We are currently exploring the logi-
cal and cognitive consequences of this idea. It seems that the-
ory morphisms directly account for representation theorems
like Stone’s theorem or Ken Ribet’s link from the Taniyama-
Shimura conjecture to Fermat’s last theorem, which made
Wiles’ proof possible. But framing also seems to be at work
in less obvious places, e.g. in mathematical synonyms. The
concepts of “nodes” and “edges” in a graph are often called
“points” and “lines”, borrowing terminology from geometry.
I believe that this metaphoric usage of names is licensed by a
partial view from (linear, ordered) geometry to theory graphs.
A problem in the study of framing is that it is a cultural skill of
mathematics and that mathematical literacy requires master-
ing framing to a level where it becomes almost subconscious,
and therefore hard to observe via introspection.

MKM for Theory Graphs Even our simple example in
Figure 2 shows that theory graphs are very information-rich
objects whose structure can be used to explain many mathe-
matical practices. But the full power of theory graphs only
comes out when they are implemented in a software system
that supports these practices. OMDoc/MMT has been imple-
mented in the MMT API [Rab13], which supports services
including notation-definition-based presentation (see above),
incremental flattening (i.e. computation of the symbols, ax-
ioms and theorems of a theory S induced by the theory graph),
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as well as type- and proof-checking (an important aspect of
MKM we have neglected in this article).

induced

represented

Figure 3: Knowledge
Addressable in MMT

Such systems allow us to make
use of the space efficiency afforded
by the modular representation in the-
ory graphs: we only need to rep-
resent (and store) a small subset of
the knowledge available to an expe-
rienced mathematician. In our expe-
rience, the induced knowledge out-
weighs the represented by a factor
of 50/1 (if it is finite at all) even for
relatively small theory graphs. Note
that the quotient of the size of the in-
duced knowledge over the represented knowledge is a good
measure not only for the space efficiency of the representa-
tion system but also for the mathematical literacy of a human.
Experienced mathematicians induce much more (implicit)
knowledge from what they read than inexperienced ones –
because the former, it is conjectured, have more densely con-
nected mental theory graphs at their disposal. OMDoc/MMT
provides standardised identifiers for all induced knowledge
items and the MMT API can compute their values on demand
and reason with them. In this sense, the MMT API can be
considered to possess a certain amount of “mathematics lit-
eracy” that allows it to render higher-level mathematical ser-
vices.

4 Overcoming the One-Brain-Barrier

We have seen above that with theory graph technology, MKM
systems can achieve a certain level of mathematical literacy
even without the ability for automated reasoning – another
important aspect of MKM we will not cover in this article.
But in the foreseeable future it seems clear that no machine
will even come close to a human mathematician’s creative
ability of inventing new mathematics. But we can make use of
the high storage capacity and cheap computation that MKM
offers. It is claimed that even with limited mathematical lit-
eracy, machines can (i) complement human mathematicians
and (ii) even uncover – rather than discover – novel mathe-
matics by overcoming the OBB, if we have theory graphs that
contain more knowledge than the average human mathemati-
cian. In this section, we will assume such theory graphs will
become available and sketch one example for (i) and two for
(ii) – which may provide motivation for organising a com-
munity effort to build such graphs. Starting points could be
theorem prover libraries like the Mizar library [Miz], which
has more than 1000 theories which together contain more than
50,000 formal theorems and definitions (see Figure 4 for the
inheritance graph – the Mizar theory language only supports
inclusions). We are currently in the process of exporting half-
a-dozen theorem prover libraries into the OMDoc/MMT for-
mat to create a large theory graph (the Open Archive of For-
malizations; OAF) to experiment on.

Complementing Humans by Searching the Induced Knowl-
edge Space The idea is very simple: we use a formula search
engine like MathWebSearch (see [KMP12; Koh+13]) and

Figure 4: The Mizar Inheritance Graph

instead of indexing all the represented knowledge items with
their respective URIs, we extend this to the set of induced
items and their MMT URIs (which the MMT API can com-
pute by flattening). Consider the situation in Figure 5, where
we are searching for the associativity formula X + (Y + Z) =

(X + Y) + Z, and MathWebSearch returns the MMT URI
http://latin.omdoc.org/math?IntAryth?assoc, which – to-
gether with the underlying theory graph – contains enough
information to generate an explanation of the reason + is as-
sociative on Z.

Figure 5: Searching for Induced Knowledge Items

In essence, this experimental search engine searches the
space of (induced) mathematical knowledge rather than just
the space of mathematical documents.

Making Bourbaki Accessible Ideas like the ones above can
solve one of the problems with the Bourbaki book series,
which is written in such a very concise and modular man-
ner that it can only be understood if one has all the previous
parts in memory. We have extracted the theory graph under-
lying the first 30 pages of Algebra I [Bou74]. It contains 51
theories, 94 inclusions and 10 views. The theories contain 82
Symbols, 38 axioms, 30 theorems and 17 definitions [Lau07].
For knowledge items higher up in the graph, there is no (sin-
gle) place in the book which states all their axioms or proper-
ties. With the MMT API, we can generate flattened descrip-
tions for reference and with FlatSearch we can search for their
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properties. We conjecture that the simple explanation feature
from Figure 5 can be extended into a “course generator” that
generates a self-contained – modulo the reader’s prerequisite
knowledge – document that explains all aspects necessary for
understanding the search hits. With theory graph technology,
Bourbaki’s Elements can be read by need, as a foundational
treatise should be, instead of being restricted to beginning-to-
end reading.

Uncovering Theorems We can now come back to the dis-
cussion on the OBB from the introduction. One way to over-
come the problem of missing interpretations is to systemat-
ically search for them – after all, machine computation is
comparatively cheap and the number of potential theory mor-
phisms is bounded by the square of the number of theories
times the number of symbols in theories. In particular, the
MathWebSearch formula search engine [KMP12] can ef-
ficiently search for substitutions (which are essentially the
same as the symbol-to-expression mappings of theory mor-
phisms). We have explored this idea before the theory graph
technology was fully developed, and the TheoScrutor sys-
tem [Nor08] found a considerable number of simple views
in the Mizar library. While these were relatively syntactic
and obvious – after all, for a view finder to work, the proofs
for the proof obligations have to be part of the library al-
ready – they had not previously been noticed because of the
OBB, even though the Mizar project has a “library commit-
tee” tasked with finding such linkages. We expect that once
the OAF is sufficiently stable, a renewed experiment will yield
many more, and more interesting views and possibly novel
theorems – after all, the HOL Light and Isabelle Libraries
contain Tom Hales’ proof of the Kepler Conjecture and the
Coq library contains the proof of Feit-Thomson’s Odd-Order
Theorem.

Note that once a set of views has been found by the view-
finder, we can generate the induced theorems in all accessible
theories and iterate the view finding process, which might find
more views with the induced theorems.

Refining Theory Graphs Finally, even partial views – which
should be much more numerous than total ones in a theory
graph – can be utilised. Say we have the situation below with
two theories S and T , a partial theory morphism S

σ
−→ T with

domain D and codomain C, and its partial inverse δ.

S
D

T
C

σ

δ

Then we can pass to the following more modular theory graph,
where S ′ := S \D and T ′ := T\C. In this case we think of the
equivalent theories D and C as the intersection of theories S
and T along σ and δ. Note that any views out of S and T now
have to be studied, if they can be pulled back to C and D.

S ′ T ′

D C

σδ

σ

δ

We have observed that many of the lesser known algebraic
structures in Bourbaki naturally arise as theory intersections
between better known structures. We hope to explain the re-
maining ones via other category-theory-inspired theory graph
transformation operations.

Note that operations like theory intersections apply the-
ory graph technology to the problem of theory graph main-
tenance, which is itself a problem greatly hampered by the
OBB without MKM techniques.

5 Conclusion

In this paper we have explored opportunities to lift the one-
brain barrier in mathematics, which limits the application of
mathematical knowledge both inside the mathematical do-
main as well as in other disciplines. We propose that the way
forward is to employ computer systems that can systemati-
cally explore immense knowledge spaces, if these are repre-
sented in sufficiently content-oriented formats. Together with
the creation, curation and application of digital mathematical
libraries (DMLs), this is one of the central concerns of the
new field of Mathematical Knowledge Management (MKM).

We have presented the theory graphs approach as a repre-
sentation paradigm for mathematical knowledge that allows
us to make its modular and highly networked structure ex-
plicit and therefore machine-actionable. We have seen that
theory graphs following the “little theories” approach contain
the information structures necessary to explain – and thus ul-
timately support by computer – many mathematical practices
and culture skills. This has the potential to significantly ex-
tend the “mathematical literacy” of mathematical knowledge
management systems and consequently make them more suit-
able as tools that complement human skills.

We have explored three exemplary mathematical applica-
tions of theory graph technologies and one MKM-internal to
give an intuition of what services we can expect if we em-
bark on the enterprise of representing large bodies of math-
ematical knowledge and its network structures in machine-
actionable formats. The availability of such DMLs is cur-
rently the largest bottleneck for overcoming the OBB in math-
ematics. We are currently experimenting with establishing an
open archive of formal mathematics (the OAF project [OAF])
by integrating theorem prover libraries. But formalisation of-
ten poses a high burden on the author and forces decisions
about logical foundations that are irrelevant mathematically.
Therefore, we are currently researching ways the theory graph
methods presented here can be extended to representations of
mathematical knowledge in which the degree of formalisa-
tion is flexible. Flexiformal representations – see [Koh13]
for a discussion – are much closer to mathematical vernacu-
lar, which mixes informal parts (natural language) with for-
mal parts (e.g. formulae and functional markup for mathe-
matical statements) and are therefore easier to obtain in prac-
tice. But mathematical literacy may be limited by the avail-
ability of formal/machine-actionable parts; therefore, we are
additionally investigating methods for automated semantics-
extraction from mathematical documents, which would greatly
enhance the reach of the methods described in this paper.
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