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Abstract.
of its naive translation into classical first-order langeiagnsider-
ably differ. An important discrepancy that is addressedhis pa-
per is about the implicit assumption what exists. For insaim the
case of universal quantification natural language usesatshs and
presupposes that these restrictions are non-empty, whikassical
logic it is only assumed that the whole universe is non-empty
the other hand, all constants mentioned in classical lagigeesup-
posed to exist, while it makes no problems to speak aboutthgpo
ical objects in everyday language. These problems have tisen
cussed in philosophical logic and some adequate many-aédgecs

The semantics of everyday language and the semantictherefore always range over the whole (non-empty) univénselas-

sical logic the standard way to restrict a quantificatiorhis eise of
an implication, which may, however, have an antecedent @ritpty
domain.

A first attempt to overcome this problem is to employ threlered
Kleene logic, where a third truth valu@defined is assumed which
is given to every atomic formula containing a non-determdiabject
like a dragon. This approach has been disputed since it dbedow
hypothetical reasoning of the kind “Let us assume that aldns
can fly and that Tabaluga is a dragon, hence Tabaluga canffiye' |
assume that Tabaluga does not exist, in a representatioeeh&

were developed to model these phenomena much better then cldogic the last statementan_f1y(Tabaluga) would be evaluated to

sical first-order logic can do. An adequate calculus, howevas
not yet been given. Recent years have seen a thorough gesti
of the framework of many-valued truth-functional logicsnfortu-
nately, restricted quantifications are not truth-functipmence they
do not fit the framework directly. We solve this problem by lgpmm
recent methods from sorted logics.

1 Introduction

¢ From the first attempts of modelling everyday reasoningiwihe
framework of classical logic, it has been known that mangwaeht
aspects cannot be adequately expressed in classicalrfilstlogic.
The attempts to cope with these have lead to a variety ofdogic

undefined and not to true at all.

In [3] Bergmann proposes a four-valued logic to cope with pre
suppositions. She essentially argues that the semantgtaissof
a formula has two independent dimensions, first a classiah t
value, i.e.,t or £, and second a value, which tells whether the for-
mula is secure (i.e. talks about existing objects) or nothincase
can_fly(Tabaluga), the formula should be true but insecure.

While the presupposition that all mentioned objects exisad-
equate unless the opposite is explicitly said, the quaatitinal
presuppositions of everyday languages differ from thoselas-
sical logic. For instance, an everyday sentence like “Alll-ch
dren of John are sleeping” presuppose that John really hiks ch
dren. Therefore the representation in classical firstioldgic
Vz. child_of(z, John) — sleeps(z) is not adequate, since this

In this paper we address one of these problems, namely that @fentence is true even when John has no children at all.

so-calledpresuppositionswhere natural language allows to draw
conclusions that classical logic does not warrant (foranse im-
plicit consensus that universally quantified statementgeaover
non-empty domains). These phenomena have been widelydtimndi
the philosophy of language from a semantic point of view,laok
an efficient mechanisation, which is a primary concern dficidl
intelligence. One of the more logic-oriented ways to coptnthis
phenomenon is to use a four-valued logic [3]. We take thiglag a
starting point of a mechanisation by a resolution calculus.

There are two different kinds of presuppositions: theantifica-

To overcome this problem Bergmann proposes a restrictea-qua
tification of the syntactic fornVa cp;14_of (2, 30m)- sleeps(z), where
the semantics of the quantifier is defined such that for a tnak a
secure universally quantified statement the restrictigression is
assumed to be non-empty.

Our mechanisation is based on the work of Carnielli [2],
Hahnle [5], Baaz and Fermiiller [1], who have developedhods
for the operationalisation of many-valued first-order &@giHow-
ever all of these approaches have in common that theytratie-
functional that is, composed formulae obtain their truth values from

tional ones presuppose that the domain of quantifications is nontheir components and (for quantifiers) frahinstances of the scope.

empty and theexistential onesassume the existence of constants.

In natural language, the first ones are mandatory, whereasettond
kind is defeasible (it is possible to talk about non-exigtantities
in natural language). Surprisingly enough, the standamhsécs of
classical logic treats the two kinds almost the opposite wagstants
always must have denotations, that is, just speaking aboutba
ject means that is must exist (for instance, speaking abdtagon,
means that there is one), while quantifications are unoéstriand
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Therefore a direct utilisation of these methods is impdssibr
Bergmann'’s logic, since the quantifiers range only over aictsd
domain.

2 Logic

The main feature of Bergmann'’s logic for presuppositiorisig3a
two-dimensional set of truth values, where the classical ave re-
placed by four truth-values which are represented by pahsre the
first component consists of the values true and false, andettend
of the values secure and insecure. In the following we detiheise
truth values byt ™, £+, t~, andf .



In this paper, we further formalise Bergmann’s logic and an-p
ticular present a resolution calculus for this logic. Startfrom an
approach like that in [6] where we have presented a mechamisa
of three-valued Kleene logic, the main problem of this waska
give a proper treatment of restricted quantification and fresup-
positions. The range of the quantifiers is restricted andrasd to be
non-empty.

In the following we present the logic systéPt, which is a variant
of Bergmann's ideas from [3]. The treatment of the reswitpart of
a quantification is very similar to the sort techniques depet! in [8].

Definition 2.1 (Signature) A signatureX: = (V, F, P) consists of
the following disjoint setsy is a countably infinite set ofariable
symbols F is a set offunction symbolsand?P is a set ofpredicate
symbolghat contains a special predicd®e called security predicate.
The setsF andP are subdivided into the sefs® of function symbols
of arity k andP* of predicate symbols of arity. Note that individual
constants are just nullary functions.

Definition 2.2 (Terms and Formulae) We define the set dérmsto

be the set of variables together witbompound termg (¢*, ..., t*)
for termst!, ... t* and f € F*. The set offormulaeconsists of
atoms(P(t*,...,t"), where P € P) and of compound formulae

ANB,AV B, A— B,-A,!A, TA,Vzs. A, and3zs. A, where
A, B, andS are formulae.

The intended meaning of thestricted quantificatiorvVzs. A is
that A holds for the set of alt: for which S holds, and that further-
more this set is nonempty. The meanind.éfis thatA is secure, and
that of T A is that A holds, but may be insecure.

Note that the concept of restricted quantification is a gaisation
of sorted logics, where variables are restricted by sedabrts, i.e.
unary predicates: For any unary predicBt& P the restricted quan-
tificationVz p,. A is equivalent to the sorted quantificatigmp. A
as it can be found in sorted logics.

For an intuitive treatment of presuppositions for termsri@o
sponding to questions whether Pegasus exists, whethea hasse,
or about the nature and existence of it's left front hoof) 8e a set
of so-called term declarations.

Definition 2.3 (Term Declarations) Let A be a formula, then we
call A* (the formulaA indexed with the intended truth value €
{t*,£*,¢7, £ }), alabelled formula The setTD of term declara-
tionsis a set of labelled formulae.

We now will define the four-valued, two-dimensional sememti

for PL by decorating the truth value of a formula with a “security

value”. Thus the set of truth values contaitis and£* for secure
truth and falsity anad ~, £~ for the insecure ones.

Definition 2.4 (X-Algebra) LetX be a signature, then a pdid, 7)
is called aX-algebrawith carrier set.A, iff the interpretation func-

Definition 2.6 Let ¢ be aX-assignment into &-algebra(A,7)
then we define thealue functioriZ,, from formulae taA inductively
to be

1. Z,(f) == Z(f), if f isafunction or a predicate.

2. I, (z) := ¢(x), if zis a variable.

3. Lo(f(th,.. . t") = T(F)(Tp(t"), ... Zo(th)), if fis a

function or predicate.

Note that this definition applies ¥ andF alike, thus we have given
the semantics of all atomic formulae.

Definition 2.7 The value of a formula dominated by a connective is
obtained from the value(s) of the subformula(e) in a truthetional
way. Therefore it suffices to define the truth tables for thenea-
tives:
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For formulaS and each variable (we call the paif(z, S) arestric-
tion) let

A (S,z) =
AY(S,z) =

fa€ A| L, umSeftt t7}}
{(L eA ‘ I%[a/z]S = t+}

We call a restriction(z, S) empty if Ai(S,x) is. With this we
can define the semantics of the universal quantifier by riquir
Z,(Vzs. A) to be

tTif Z, (o/mA =t T foralla € AZ(S,z) and A (S, z) # 0
£+, ifthereis am € AZ (S, z) With Z,, [/, ;A = £

7,0 T, 1ajejA = {tF,t "} foralla € AX(S, 2),

butZ, ;,,.14 =t~ for somea € A% (S, z).

o £, ifthereis am € A% (S, z) with Z, [,/ A = £~

Note that with this definition, the condition tha(z) € Ai(S, x)
is conserved. We call this conditiovell-sortednessof assignments.
Consequently, all assignments in the construction of tineaséics
of a sentence are well-sorted, if we start from the emptygassent
(which we can always do, since like in classical logic theugadf a
formula only depends on those for it's free variables). Tivaswill
restrict ourselves to well-sorted assignments.

With the specification of the behaviours of the connectived a
guantifiers we have completed the definition of the semantfcs

tion Z mapsF andP to functions and predicates of the appropriate formulae. We say that a labelled formulf* is satisfied by ¢, iff

arity over.A. The only restriction we pose is thatD) c {t+,£"}.

We call elementa € A secure if Z(D)(a) = t*, elseinsecure
and we subdivide4 into subsetsA™ of secure andd™~ of insecure
elements. Our definition of semantics entails that A™ U4~ and
AT NnA™ =0.

Z,(A) = a andvalid, iff it is satisfied by all well-sorted assign-
ments.

Remark 2.8 Now we can further study the relation of restricted
quantification to sorted logics. Those usually define taerier

Note that our treatment of undefined elements differs from th AP S A for any sort (unary predicat® € P) as Ap := {a €

Kleene approach taken in [6], where all undefined elemeetilan-
tified, since here we want to be able to reason about propesfie
undefined objects instead of only stating undefinedness.

Definition 2.5 (X-assignment) Let (A, Z) be aX-algebra, then we
call a total mapping: V — A a X-assignmentWe denote the&-
assignment that coincides withaway fromz and maps: to a with

o la/a].

A | Z(P)(a) = t} and use that to define sorted quantification as
Z,(Vzp. A)to be true, iffZ, [,,.](A) is true for alla € Ap. Note
that sorted logics usually assume that the are non-empty and

3 The logics of Cohn and Weidenbach [4, 8] do away with thisrieigin that
has always been considered as a technical anomaly thatlediatad the
need of special treatments in the transformation to claosaal form and
for instantiations in the resolution calculus: A unifiertthantains variables
of sorts that are empty does not lead to a correct refutation.




therefore lead to the same presupposition®aon the sorted frag-
ment.

We exploit this similarity in this paper by generalising tstach-
niques for the mechanisation BL.

Definition 2.9 (X-Model) Let A be a formula, then we call Z-
algebraM := (A,Z) a -model for A (written M = A), iff
Z,(A) = t* for all ¥-assignmentss. With this notion we can de-
fine the notions of/alidity, (un)-satisfiability andentailmentin the
usual way. For a sef’D of term declarations, we say thatl is a
TD-Model, iff all labelled formulae i7™D are valid (cf. 2.7).

In the following we will only considefTD-models. From a purely
theoretical point of view, term declarations do not yieldrenexpres-
sivity, since they can be axiomatised (any intended trulihevean be
characterised by combinations of the connecthaasdT). However,
from a practical point of view, the term declarations prevalcon-
venient means of specifying the belief about existence arntalgy
in the world. Furthermore, the term declarations can be fseob-
timisations of the calculus by sorted unification as in [7].

Remark 2.10 The “tertium non datur” principle of classical logic is
no longer valid, since formulae can be insecure, in whicle ¢asy
are neither true nor false. We do however have a “quintum aurt|
principle, that is, formulae are either true or false, bdeipendently
they can be secure or not, which allows us to derive the wal{de.
that it is true and secure in all models) of a formula by refgitihat
it is false or insecure or both. We will use this observatiorour
resolution calculus below.

3 Resolution Calculus RPL)

In this section we present a resolution calcuRBL that is a gen-
eralisation of the resolution calculus for partial funad6], which
in turn is a joint generalisation of Weidenbach’s logicshwiynamic
sorts [8] with ideas from [1, 5]. There are two variants of sueted
calculus, we have generalised both for our purposes, bhispaper
we only present the first (simpler) version due to the lackpaice.

Definition 3.1 We will call a labelled atonL.” aliteral and a set of
literals {L]*,..., L5} aclause We say that &-model M sat-
isfiesa clauseC, iff it satisfies one of its literald.® € C, that is,

Z,(L*) = a. M satisfies a set of clauses iff it satisfies each clause

In order to conserve space, we employ the “,” as the operatdahé
disjoint union of sets, so th&t, L* meanC' U{L® } andL® is not a

member ofC'. Furthermore we adopt Hahnle's notion of multi-labels

in the formC, A%? to meanC, A%, AP,

Now we are in the position to give a set of transformations tha

take a set of labelled formulae to a refutationally equivalkget of
clauses.

Definition 3.2 (Transformations to Clause Normal Form)

C,(ANB)*" C,(AAB)"
c, A" o B c, AT B
C,(AAB)*
C,A* B* C,A* ,B* AT, BY

AT AT o La GGAT
c, AT c, A" c, C, At
O, (Vas. Alzs))*
C, Ales C.If(y's....y") /2]
O, (Vas. Alzs])*
CAF ...y O .y /a)S)
C, (Vzs. Alzs])t
C A ...y C(fy' sy 21
C.04T G car oA
c, AT oAt c c
C,(TA) ¢, (TA)*" C.(TAY  C.(TA)
c, AT oAt c c

where{zs,y',...,y"} = Free(A) andf is a new function symbol
of arity n. HereFree( A) denotes the set of free variablesAf

The transformations can be directly derived from the seivsuof
the connectives and quantifiers. Due to space restrictiertsawve not
presented all of them above. Note that the transformatimrtté uni-
versal quantifier have to associate the restricGonith the variable
z, that is, in the resolution setting, we assume variablestpdirs,
consisting of a symbol and a restriction. Furthermore Shdienc-
tions have to conserve security and insecurity. In pamic8kolem
constants are always secure.

Note that this set of transformations is confluent, theeefany
total reduction of a seb of labelled sentences results in a unique set
of clauses. We will denote this set WiENF(®).

Assumption 3.3 The clause normal form transformations as pre-
sented above are not complete, that is, they do not transfeary
given labelled formula into clause form, since the rulesdoanti-
fied formulae insist that the bound variable occurs in thgectn
fact the handling of degenerate quantifications poses sooidems

in the presence of possibly empty restrictions, as quaatifioc over
empty sets are vacuously true. In this situation we havesthossi-
bilities, either to forbid degenerate quantifications, impéy restric-
tions, or treat degenerate quantifications in the clausmaloform
transformations. For this paper we chose the first, sincergte
guantifications do not make much sense and do not appearriy eve
day language. See [7] for the other possibilities. Thus Wieassume
that in all formulae in this paper the bound variables of djifian-
tions occur in the scopes.

As usual the reduction to clause normal form conservediseility.

Theorem 3.4 Let ® be a set of labelled sentences, then the clause
normal formCNF(®) is satisfiable, iff® is.

Proof sketch: The assertion critically depends on the fact that the
notion of satisfiability employed there takes the resiitsi into ac-
count: A clause is valid in &-model M, iff for one literal L*
Z,(L) = « for all well-sorted assignmentg into M. With this
notion, the assertion can be reduced to the standard argatioen



about Skolemisation and a tedious calculation with thehttables
from 2.7. O

Definition 3.12 Let A be a sentence ar@NF(A) be the clause nor-
mal form of A, then we define thelerbrand set of clauseSNF  (A)

Now we proceed to give a simple resolution calculus, whichfor Aas{a(C) | C € CNF(A), o ground Dom(c) = Free(C)}

utilises standard (unsorted) unification. In [7], we haveher im-
proved a similar calculus by using a sorted unification atgor,
which delegates parts of the search into the unificationrithgno.
For unsorted substitutions a naive resolution rule is undotlihere-
fore we have to add a residual (the restriction constrdiat) énsures
the soundness (with respect to the restrictions on thehlagpof the
unifier.

Definition 3.5 (Restriction Constraints)
Leto = [t'/zs,],...,[t"/«%, ] be a substitution, then we define
therestriction constraint forr to be the clause

e

RC(o) = {([t" /219", ([t ) S) T}

These labelled formulae are residuated in&¥eL rules and have
to be refuted in order to guarantee théf (S,t) holds (cf. defini-
tion 2.7) for every instance instantiated for a variable with re-
striction S.

Definition 3.6 (Resolution Inference Rules®PL))

L, C
Res
o(C),o(D),RC(o)

M°?. D L* M*,C

o(L"),0(C), RC(o)

Fac

wherea # (8 ando is the most general unifier df and M. Here we
have assumed and 3 to be single truth values, naturally the rules
can be easily extended to sets of truth values.

Remark 3.7 Note that clauses containin‘gﬁf”*f* are tautolog-
ical and can therefore be deleted in the generation of theselaor-
mal form as well as in the deduction process. The calculusbean
extended by the usual subsumption rule, allowing to delleteses
that are subsumed (super-sets).

Definition 3.8 Let A be a sentence anilbe the clause normal form
of the set{ {A* * * 1} then we say thatl can beproven inRPL
(+ A), iff there is a derivation of the empty clausegfrom @ with the
inference rules above.

Theorem 3.9 (Soundness)RPL is sound.

Proof sketch: The soundness of the resolution and factoring rule

is established in the usual way taking into account that ésric-
tion constraints make the substitutions “well-sorted” dmas com-
patible with the semantics: The restriction constraints &eb liter-
als([t/z]S)t", ([t/=]S)* per component of the substitution, which

only can be refuted if indee@t/x}S)*Jr or ([t/x]S)* are valid.(]

Definition 3.10 Let C := {L{',..., L5} be a clause, then the
conditional instantiations | (C) of o to C is defined by
oL (C) = {o(L), ., o (La" )} URC(o| pregc)
The following result from [8] is independent of the numbetroth
values.

Lemma 3.11 Conditional instantiation is sound: for any claugg
substitutiono and X-model M we have thaiM = o/ (C), when-
everM = C.

A0 O B (A BT A (N

Definition 3.13 We will call two literalsL® andL® complementary

if o # 6.

Definition 3.14 (Herbrand Model) Let ® be a set of clauses, then
the Herbrand base#{(®) of @ is defined to be the set of all ground
atoms containing only function symbols that appear in tlaeists
of ®. If there is no individual constant i®, we add a new con-
stantc. A valuationv is a functionH(®) — {t*,£" t £ }.
Note that these literals are not complementary sincea function.
The 3-Herbrand model for ® andv is the setH := {L® ‘ a =
v(L),L € H(®)}.

We say that &-Herbrand mode} satisfies a clause sét iff for
all ground substitutions and clause§’ € ® we haves| (C)NH #
(0. A clause set is calleil-Herbrand-unsatisfiabléf there is no%-
Herbrand-model fo.

Theorem 3.15 (Herbrand Theorem) Let A be a formula, then the
clause normal formCNF(A) has aX-model iff CNFy (A) has a
X-Herbrand-model.

Proof: Let M = (A,Z) be aX-model for® := CNF(A). The set
H:={L"| L eH®), a=T, (L)}

is aX-Herbrand model folr := CNFx (A) if ¢ is an arbitraryX-
assignment, since obviousk, is a valuation. To show that indeed
H is aX-Herbrand model fol, we assume the opposite, that is,
there is a claus€ € ¥, such that N C = . SinceC € ¥
there is a substitution = [¢'/z’,] and a claus&) € @, such that
C=o0l(D)=0c(D)URC(c).

Without loss of generality we can assume thiés;)(Z, (t°)) €
{t*, 7}, since otherwis&, ([t' /=;]S") € {£T, £}, and therefore
([t'/2:]S")Y € H fory € {£T, £}, which contradicts the assump-
tion. Thus the mapping := ¢, [Z, (t') /] is aX-assignment.

Note that sinceM is a model of®, we have thatM = D
and therefore there is a literdl* € D, such thate = Z,(L) =
Z,(o(L)), hences(L) € H, which contradicts the assumption.

For the converse direction 16{ be aX-Herbrand model for
and.A the Herbrand base fdt. Furthermore le€(f") andZ(P")
be partial functions, such that

") e A
(P, ... t") :=a iff (P"(t',...,t")* eH
We proceed by convincing ourselves thlet = ®. LetC' € ¢ and

¢ = [t'/z’,] be an arbitrary well-sortell-assignment. Sincel is

a set of ground termg is also a ground substitution and moreover
([t /2:]S:)*" € Hor ([t /:]S:)* € H by construction off and
the fact thatp is well-sorted.

‘H is aX-Herbrand model fo# and thuspl (C)NH = (p(C)U
RC(p)) NH # 0. Becaused cannot contain complementary literals
we must already have a litergl L*) € ¢(C) N H. Now letv be
the valuation associated with. Sincep(L®) € H we havea =
v(¢(L)) = Z,(L), which impliesM =, L®. We have takerC
andy arbitrary, so we get the assertion. O

Corollary 3.16 A set® of ground unit clauses is unsatisfiable iff it
contains two complementary literals.



Theorem 3.17 (Ground Completeness).et ® be an unsatisfiable
set of ground clauses, then there exisRL derivation of the empty
clause fromd.

Theorem 3.18 (Completeness)RPL is complete.

Proof sketch: For the proof of this assertion we combine the com-

pleteness result from the ground case with a lifting argumeturns
out that the lifting property can be established by methoois 8],
since they are independent of the number of truth values. [

4 Example

At first we want to give an example for quantificational presog-
tions and then shortly discuss existential presupposition

ing unit (fires(TheCompany, John))er , whereby finally the empty
clause is derived.

Please note that in a direct first-order translation of thevaltext,
the essential information in C2 that John has a child canaalés
rived and hence no proof can be found.

The second form of presuppositions concern the fact thapaH
stants of classical logic exist just because of mentioniregrt For
instance, classical logic is not a good tool for a disputetbiist and
an atheist about the existence of God, since if the athelgtroan-
tions God, he would admit the existence of God.4, however,
the status of statements about constants can be insecuie pad
ticular no existence is assumed, unless otherwise spedbifiedrm
declarations.

Let us assume the following information. There is a companyd Conclusion

TheConpany which wants to fire people, but they have a social
wo

touch and don't fire any persons which have children. We ane
ried whether John will be fired, but then we hear that his chiicare
sleeping. Implicitly we can conclude from this informatitvat John
has children and hence will not be fired.

This can be encoded AL by the following statements:

A Vzop. fires(TheCompany, ) — —parent(z)
B Vzp. Jyp. child(y, x) — parent(x)
C v-Tchilal(as,John)- sleeps(z)

T —fires(TheCompany, John)

with the term dec|al’ati0nSD(TheCompany))t+ and(D(John))t+
In order to prove the theorem T, the following generaliseuisé set
has to be refuted:

A (Vzp. fires(TheCompany, z) — —parent (x))t+

B (Vzp. Jyp. child(y, x) — parent(x))t+

+

C (V-Tchild(z,John)- sleeps(.’[;))t

T (ﬂfires(TheCompany,John))ti’ﬁ’f?
By the rules for forming a clause normal form we get the clause

Al
A2
Bl
B2
B3
C1
c2
C3
T

(fires(TheCompany, a?D))f+ , (parent(aﬁp))f+
D(cr)*"

(child(f(zp),zp)) , (parent(z))*"
D(cs)*"

D(f(y")"
(Sleeps(mchild(z,.]ohn)))
(child(cs, John))t+
D(cs)t"

(fires(TheCompany, John))® |

s+

fires(TheCompany, John o
pany

fires(TheCompany, John))®
pany,

By resolution we get from Res(B1,C2):

R1 (parent(John))*", (D(cs))*", (D(cs))*
Two-times resolving with C3 results in:

R2 (parent(.]ohn))t+
which in turn can be resolved with Al:

R3 (fires(TheCompany, John))f+,
(D(John))*", (D(John))*
The last two literals can be resolved away using the termaelecl

ration (D(John))t+. T can be resolved three times with the result-

We have developed a four-valued logic for the formalisatibevery-
day reasoning with presuppositions. This system genegdie sys-
tem proposed by Bergmann in [3]. Furthermore we have predent
sound and complete resolution calculus for our system, lwhges
the sort mechanism to capture Bergmann’s restricted dicatibns.

Our calculus can be seen as an extension of classical logic th
combines methods from many-valued logics (cf. [1, 5]) fooerect
treatment of the secure and insecure information and croited
logics (see [8]) for an adequate treatment of restrictedadosa In
contrast to the partial function calculi in [6, AL does not identify
the insecure objects. However, just like in these logicsstrdefined-
ness preconditions can be taken care of in the unificatiokjnga
inferencing quite efficient.

Even though the research on presuppositions in linguistas
nowadays turned to dynamic and more pragmatically driveatyan
ses, and away from the multi-valued treatment, this is natenter-
argument to our system. In contrast to classical |d@ makes it
possible to specify (and reason with) presuppositionshabdnce
the linguistic analyses are used for reasoning, some sy#&eiour’s
will be indispensable.
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