
A Resolution Calculus for Presuppositions
Manfred Kerber 1 and Michael Kohlhase2

Abstract. The semantics of everyday language and the semantics
of its naive translation into classical first-order language consider-
ably differ. An important discrepancy that is addressed in this pa-
per is about the implicit assumption what exists. For instance, in the
case of universal quantification natural language uses restrictions and
presupposes that these restrictions are non-empty, while in classical
logic it is only assumed that the whole universe is non-empty. On
the other hand, all constants mentioned in classical logic are presup-
posed to exist, while it makes no problems to speak about hypothet-
ical objects in everyday language. These problems have beendis-
cussed in philosophical logic and some adequate many-valued logics
were developed to model these phenomena much better than clas-
sical first-order logic can do. An adequate calculus, however, has
not yet been given. Recent years have seen a thorough investigation
of the framework of many-valued truth-functional logics. Unfortu-
nately, restricted quantifications are not truth-functional, hence they
do not fit the framework directly. We solve this problem by applying
recent methods from sorted logics.

1 Introduction

¿From the first attempts of modelling everyday reasoning within the
framework of classical logic, it has been known that many relevant
aspects cannot be adequately expressed in classical first-order logic.
The attempts to cope with these have lead to a variety of logics.

In this paper we address one of these problems, namely that of
so-calledpresuppositions, where natural language allows to draw
conclusions that classical logic does not warrant (for instance im-
plicit consensus that universally quantified statements range over
non-empty domains). These phenomena have been widely studied in
the philosophy of language from a semantic point of view, butlack
an efficient mechanisation, which is a primary concern of artificial
intelligence. One of the more logic-oriented ways to cope with this
phenomenon is to use a four-valued logic [3]. We take this logic as a
starting point of a mechanisation by a resolution calculus.

There are two different kinds of presuppositions: thequantifica-
tional ones presuppose that the domain of quantifications is non-
empty and theexistential onesassume the existence of constants.
In natural language, the first ones are mandatory, whereas the second
kind is defeasible (it is possible to talk about non-existing entities
in natural language). Surprisingly enough, the standard semantics of
classical logic treats the two kinds almost the opposite way: constants
always must have denotations, that is, just speaking about an ob-
ject means that is must exist (for instance, speaking about adragon,
means that there is one), while quantifications are unrestricted and1 School of Computer Science, The University of Birmingham, Birmingham

B15 2TT, England, E-mail: M.Kerber@cs.bham.ac.uk2 Fachbereich Informatik, Universität des Saarlandes, 66041 Saarbrücken,
Germany, E-mail: kohlhase@cs.uni-sb.de

therefore always range over the whole (non-empty) universe. In clas-
sical logic the standard way to restrict a quantification is the use of
an implication, which may, however, have an antecedent withempty
domain.

A first attempt to overcome this problem is to employ three-valued
Kleene logic, where a third truth valueundefined is assumed which
is given to every atomic formula containing a non-determined object
like a dragon. This approach has been disputed since it does not allow
hypothetical reasoning of the kind “Let us assume that all dragons
can fly and that Tabaluga is a dragon, hence Tabaluga can fly.” If we
assume that Tabaluga does not exist, in a representation of Kleene
logic the last statementan fly(Tabaluga) would be evaluated toundefined and not to true at all.

In [3] Bergmann proposes a four-valued logic to cope with pre-
suppositions. She essentially argues that the semantical status of
a formula has two independent dimensions, first a classical truth
value, i.e.,t or f, and second a value, which tells whether the for-
mula is secure (i.e. talks about existing objects) or not. Inthe casean fly(Tabaluga), the formula should be true but insecure.

While the presupposition that all mentioned objects exist is ad-
equate unless the opposite is explicitly said, the quantificational
presuppositions of everyday languages differ from those inclas-
sical logic. For instance, an everyday sentence like “All chil-
dren of John are sleeping” presuppose that John really has chil-
dren. Therefore the representation in classical first-order logic8x hild of(x; John) ! sleeps(x) is not adequate, since this
sentence is true even when John has no children at all.

To overcome this problem Bergmann proposes a restricted quan-
tification of the syntactic form8xhild of(x;John) sleeps(x), where
the semantics of the quantifier is defined such that for a true and
secure universally quantified statement the restriction expression is
assumed to be non-empty.

Our mechanisation is based on the work of Carnielli [2],
Hähnle [5], Baaz and Fermüller [1], who have developed methods
for the operationalisation of many-valued first-order logics. How-
ever all of these approaches have in common that they aretruth-
functional, that is, composed formulae obtain their truth values from
their components and (for quantifiers) fromall instances of the scope.
Therefore a direct utilisation of these methods is impossible for
Bergmann’s logic, since the quantifiers range only over a restricted
domain.

2 Logic

The main feature of Bergmann’s logic for presuppositions [3] is a
two-dimensional set of truth values, where the classical two are re-
placed by four truth-values which are represented by pairs,where the
first component consists of the values true and false, and thesecond
of the values secure and insecure. In the following we denotethese
truth values byt+, f+, t�, andf�.

In this paper, we further formalise Bergmann’s logic and in par-
ticular present a resolution calculus for this logic. Starting from an
approach like that in [6] where we have presented a mechanisation
of three-valued Kleene logic, the main problem of this work is to
give a proper treatment of restricted quantification and their presup-
positions. The range of the quantifiers is restricted and assumed to be
non-empty.

In the following we present the logic systemPL, which is a variant
of Bergmann’s ideas from [3]. The treatment of the restriction part of
a quantification is very similar to the sort techniques developed in [8].

Definition 2.1 (Signature) A signature�:= (V;F ;P) consists of
the following disjoint sets:V is a countably infinite set ofvariable
symbols, F is a set offunction symbols, andP is a set ofpredicate
symbolsthat contains a special predicateD, called security predicate.
The setsF andP are subdivided into the setsFk of function symbols
of arityk andPk of predicate symbols of arityk. Note that individual
constants are just nullary functions.

Definition 2.2 (Terms and Formulae) We define the set oftermsto
be the set of variables together withcompound termsf(t1; : : : ; tk)
for termst1; : : : ; tk andf 2 Fk. The set offormulaeconsists of
atoms(P (t1; : : : ; tk), whereP 2 P) and of compound formulaeA ^ B, A _ B, A ! B, :A, !A,TA, 8xS A, and9xS A, whereA,B, andS are formulae.

The intended meaning of therestricted quantification8xS A is
thatA holds for the set of allx for whichS holds, and that further-
more this set is nonempty. The meaning of!A is thatA is secure, and
that ofTA is thatA holds, but may be insecure.

Note that the concept of restricted quantification is a generalisation
of sorted logics, where variables are restricted by so-called sorts, i.e.
unary predicates: For any unary predicateP 2 P the restricted quan-
tification8xPx A is equivalent to the sorted quantification8xP A
as it can be found in sorted logics.

For an intuitive treatment of presuppositions for terms (corre-
sponding to questions whether Pegasus exists, whether it isa horse,
or about the nature and existence of it’s left front hoof) we use a set
of so-called term declarations.

Definition 2.3 (Term Declarations) Let A be a formula, then we
call A� (the formulaA indexed with the intended truth value� 2ft+; f+; t�; f�g), a labelled formula. The setTD of term declara-
tions is a set of labelled formulae.

We now will define the four-valued, two-dimensional semantics
for PL by decorating the truth value of a formula with a “security
value”. Thus the set of truth values containst+ andf+ for secure
truth and falsity andt�; f� for the insecure ones.

Definition 2.4 (�-Algebra) Let� be a signature, then a pair(A; I)
is called a�-algebrawith carrier setA, iff the interpretation func-
tion I mapsF andP to functions and predicates of the appropriate
arity overA. The only restriction we pose is thatI(D) � ft+; f+g.

We call elementsa 2 A secure, if I(D)(a) = t+, elseinsecure,
and we subdivideA into subsetsA+ of secure andA� of insecure
elements. Our definition of semantics entails thatA = A+[A� andA+ \ A� = ;.

Note that our treatment of undefined elements differs from the
Kleene approach taken in [6], where all undefined elements are iden-
tified, since here we want to be able to reason about properties of
undefined objects instead of only stating undefinedness.

Definition 2.5 (�-assignment) Let (A; I) be a�-algebra, then we
call a total mapping':V �! A a�-assignment. We denote the�-
assignment that coincides with' away fromx and mapsx to a with'; [a=x℄.

Definition 2.6 Let ' be a�-assignment into a�-algebra(A; I)
then we define thevalue functionI' from formulae toA inductively
to be

1. I'(f) := I(f), if f is a function or a predicate.
2. I'(x) := '(x), if x is a variable.
3. I'(f(t1; : : : ; tk)) := I(f)(I'(t1); : : : ; I'(tk)), if f is a

function or predicate.

Note that this definition applies toP andF alike, thus we have given
the semantics of all atomic formulae.

Definition 2.7 The value of a formula dominated by a connective is
obtained from the value(s) of the subformula(e) in a truth-functional
way. Therefore it suffices to define the truth tables for the connec-
tives:^ t+ f+ t� f�t+ t+ f+ t� f�f+ f+ f+ f� f�t� t� f� t� f�f� f� f� f� f� _ t+ f+ t� f�t+ t+ t+ t� t�f+ t+ f+ t� f�t� t� t� t� t�f� t� f� t� f� :t+ f+f+ t+t� f�f� f�! t+ f+ t� f�t+ t+ f+ t� f�f+ t+ t+ t� t�t� t� f� t� f�f� t� t� t� t� Tt+ t+f+ f+t� t+f� f+ !t+ t+f+ t+t� f+f� f+
For formulaS and each variablex (we call the pair(x; S) a restric-
tion) letA�' (S; x) = fa 2 A �� I';[a=x℄S 2 ft+; t�ggA+' (S; x) = fa 2 A �� I';[a=x℄S = t+g
We call a restriction(x; S) empty, if A�' (S; x) is. With this we
can define the semantics of the universal quantifier by requiringI'(8xS A) to be� t+, if I';[a=x℄A = t+ for all a 2 A�' (S; x) andA+' (S; x) 6= ;� f+, if there is ana 2 A�' (S; x) with I';[a=x℄A = f+� t�, if I';[a=x℄A = ft+; t�g for all a 2 A�' (S; x),

butI';[a=x℄A = t� for somea 2 A�' (S; x).� f�, if there is ana 2 A�' (S; x) with I';[a=x℄A = f�
Note that with this definition, the condition that'(x) 2 A�' (S; x)
is conserved. We call this conditionwell-sortednessof assignments.
Consequently, all assignments in the construction of the semantics
of a sentence are well-sorted, if we start from the empty assignment
(which we can always do, since like in classical logic the value of a
formula only depends on those for it’s free variables). Thuswe will
restrict ourselves to well-sorted assignments.

With the specification of the behaviours of the connectives and
quantifiers we have completed the definition of the semanticsof
formulae. We say that a labelled formulaA� is satisfiedby ', iffI'(A) = � and valid, iff it is satisfied by all well-sorted assign-
ments.

Remark 2.8 Now we can further study the relation of restricted
quantification to sorted logics. Those usually define thecarrierAP � A for any sort (unary predicateP 2 P) asAP := fa 2A �� I(P)(a) = tg and use that to define sorted quantification asI'(8xP A) to be true, iffI';[a=x℄(A) is true for alla 2 AP . Note
that sorted logics usually assume that theAS are non-empty3 and3 The logics of Cohn and Weidenbach [4, 8] do away with this restriction that

has always been considered as a technical anomaly that has alleviated the
need of special treatments in the transformation to clause normal form and
for instantiations in the resolution calculus: A unifier that contains variables
of sorts that are empty does not lead to a correct refutation.

therefore lead to the same presuppositions asPL on the sorted frag-
ment.

We exploit this similarity in this paper by generalising sort tech-
niques for the mechanisation ofPL.

Definition 2.9 (�-Model) Let A be a formula, then we call a�-
algebraM := (A; I) a �-model forA (written M j= A), iffI'(A) = t+ for all �-assignments'. With this notion we can de-
fine the notions ofvalidity, (un)-satisfiability, andentailmentin the
usual way. For a setTD of term declarations, we say thatM is aTD-Model, iff all labelled formulae inTD are valid (cf. 2.7).

In the following we will only considerTD-models. From a purely
theoretical point of view, term declarations do not yield more expres-
sivity, since they can be axiomatised (any intended truth value can be
characterised by combinations of the connectives! andT). However,
from a practical point of view, the term declarations provide a con-
venient means of specifying the belief about existence and sortality
in the world. Furthermore, the term declarations can be usedfor op-
timisations of the calculus by sorted unification as in [7].

Remark 2.10 The “tertium non datur” principle of classical logic is
no longer valid, since formulae can be insecure, in which case they
are neither true nor false. We do however have a “quintum non datur”
principle, that is, formulae are either true or false, but independently
they can be secure or not, which allows us to derive the validity (i.e.
that it is true and secure in all models) of a formula by refuting that
it is false or insecure or both. We will use this observation in our
resolution calculus below.

3 Resolution Calculus (RPL)

In this section we present a resolution calculusRPL that is a gen-
eralisation of the resolution calculus for partial functions [6], which
in turn is a joint generalisation of Weidenbach’s logics with dynamic
sorts [8] with ideas from [1, 5]. There are two variants of thesorted
calculus, we have generalised both for our purposes, but in this paper
we only present the first (simpler) version due to the lack of space.

Definition 3.1 We will call a labelled atomL� a literal and a set of
literals fL�11 ; : : : ; L�nn g a clause. We say that a�-modelM sat-
isfiesa clauseC, iff it satisfies one of its literalsL� 2 C, that is,I'(L�) = �. M satisfies a set of clauses iff it satisfies each clause.
In order to conserve space, we employ the “,” as the operator for the
disjoint union of sets, so thatC;L� meansC[fL�g andL� is not a
member ofC. Furthermore we adopt Hähnle’s notion of multi-labels
in the formC;A�� to meanC;A�; A�.

Now we are in the position to give a set of transformations that
take a set of labelled formulae to a refutationally equivalent set of
clauses.

Definition 3.2 (Transformations to Clause Normal Form)C; (A ^B)t+C;At+ C;Bt+ C; (A ^B)f+C;Af+ ; Bf+C; (A ^B)t�C;At� ; Bt+ C;At� ; Bt� C;At+ ; Bt�

C; (:A)t+C;Af+ C; (:A)f+C;At+ C; (:A)t�C; C; (:A)f�C;At�;f�C; (8xS A[xS℄)t+C;A[xS℄t+ C; [f(y1; : : : ; yn)=x℄St+C; (8xS A[xS℄)f+C;A[f(y1; : : : ; yn)℄f+ C; ([f(y1; : : : ; yn)=x℄S)t+t�C; (8xS A[xS℄)f�C;A[f(y1; : : : ; yn)℄f� C; ([f(y1; : : : ; yn)=x℄S)t+t�C; (!A)t+C;At+f+ C; (!A)f+C;At�f� C; (!A)t�C C; (!A)f�CC; (TA)t+C;At+t� C; (TA)f+C;Af+f� C; (TA)t�C C; (TA)f�C
wherefxS; y1; : : : ; yng = Free(A) andf is a new function symbol
of arityn. HereFree(A) denotes the set of free variables ofA.

The transformations can be directly derived from the semantics of
the connectives and quantifiers. Due to space restrictions we have not
presented all of them above. Note that the transformations for the uni-
versal quantifier have to associate the restrictionS with the variablex, that is, in the resolution setting, we assume variables to be pairs,
consisting of a symbol and a restriction. Furthermore Skolem func-
tions have to conserve security and insecurity. In particular Skolem
constants are always secure.

Note that this set of transformations is confluent, therefore any
total reduction of a set� of labelled sentences results in a unique set
of clauses. We will denote this set withCNF(�).
Assumption 3.3 The clause normal form transformations as pre-
sented above are not complete, that is, they do not transformevery
given labelled formula into clause form, since the rules forquanti-
fied formulae insist that the bound variable occurs in the scope. In
fact the handling of degenerate quantifications poses some problems
in the presence of possibly empty restrictions, as quantification over
empty sets are vacuously true. In this situation we have three possi-
bilities, either to forbid degenerate quantifications, or empty restric-
tions, or treat degenerate quantifications in the clause normal form
transformations. For this paper we chose the first, since degenerate
quantifications do not make much sense and do not appear in every-
day language. See [7] for the other possibilities. Thus we will assume
that in all formulae in this paper the bound variables of quantifica-
tions occur in the scopes.

As usual the reduction to clause normal form conserves satisfiability.

Theorem 3.4 Let � be a set of labelled sentences, then the clause
normal formCNF(�) is satisfiable, iff� is.

Proof sketch: The assertion critically depends on the fact that the
notion of satisfiability employed there takes the restrictions into ac-
count: A clause is valid in a�-modelM, iff for one literal L�I'(L) = � for all well-sorted assignments' into M. With this
notion, the assertion can be reduced to the standard argumentation

about Skolemisation and a tedious calculation with the truth tables
from 2.7.

Now we proceed to give a simple resolution calculus, which
utilises standard (unsorted) unification. In [7], we have further im-
proved a similar calculus by using a sorted unification algorithm,
which delegates parts of the search into the unification algorithm.
For unsorted substitutions a naive resolution rule is unsound. There-
fore we have to add a residual (the restriction constraint) that ensures
the soundness (with respect to the restrictions on the variables) of the
unifier.

Definition 3.5 (Restriction Constraints)
Let � = [t1=x1S1 ℄; : : : ; [tn=xnSn ℄ be a substitution, then we define
therestriction constraint for� to be the clauseRC(�) := f([t1=x1℄S1)f+f� ; : : : ; ([tn=xn℄Sn)f+f�g

These labelled formulae are residuated in theRPL rules and have
to be refuted in order to guarantee thatA�' (S; t) holds (cf. defini-
tion 2.7) for every instancet instantiated for a variablex with re-
strictionS.

Definition 3.6 (Resolution Inference Rules (RPL))L�; C M� ; D Res�(C); �(D);RC(�) L�;M�; C Fa�(L�); �(C);RC(�)
where� 6= � and� is the most general unifier ofL andM . Here we
have assumed� and� to be single truth values, naturally the rules
can be easily extended to sets of truth values.

Remark 3.7 Note that clauses containingAt+f+t�f� are tautolog-
ical and can therefore be deleted in the generation of the clause nor-
mal form as well as in the deduction process. The calculus canbe
extended by the usual subsumption rule, allowing to delete clauses
that are subsumed (super-sets).

Definition 3.8 LetA be a sentence and� be the clause normal form
of the setffAf+;t�;f�gg then we say thatA can beproven inRPL
(` A), iff there is a derivation of the empty clause2 from� with the
inference rules above.

Theorem 3.9 (Soundness)RPL is sound.

Proof sketch: The soundness of the resolution and factoring rules
is established in the usual way taking into account that the restric-
tion constraints make the substitutions “well-sorted” andthus com-
patible with the semantics: The restriction constraints add two liter-

als([t=x℄S)f+ ; ([t=x℄S)f� per component of the substitution, which

only can be refuted if indeed([t=x℄S)t+ or ([t=x℄S)t� are valid.

Definition 3.10 Let C := fL�11 ; : : : ; L�nn g be a clause, then the
conditional instantiation�# (C) of � toC is defined by�# (C) := f�(L�11); : : : ; �(L�nn)g [RC(���Free(C))

The following result from [8] is independent of the number oftruth
values.

Lemma 3.11 Conditional instantiation is sound: for any clauseC,
substitution� and�-modelM we have thatM j= �# (C), when-
everM j= C.

Definition 3.12 LetA be a sentence andCNF(A) be the clause nor-
mal form ofA, then we define theHerbrand set of clausesCNFH(A)
for A asf�# (C) �� C 2 CNF(A); � ground;Dom(�) = Free(C)g
Definition 3.13 We will call two literalsL� andL� complementary,
if � 6= �.

Definition 3.14 (Herbrand Model) Let � be a set of clauses, then
theHerbrand baseH(�) of � is defined to be the set of all ground
atoms containing only function symbols that appear in the clauses
of �. If there is no individual constant in�, we add a new con-
stant. A valuation� is a functionH(�) �! ft+; f+; t�; f�g.
Note that these literals are not complementary since� is a function.
The�-Herbrand modelH for � and� is the setH := fL� �� � =�(L); L 2 H(�)g.

We say that a�-Herbrand modelH satisfies a clause set� iff for
all ground substitutions� and clausesC 2 � we have�# (C)\H 6=;. A clause set is called�-Herbrand-unsatisfiableiff there is no�-
Herbrand-model for�.

Theorem 3.15 (Herbrand Theorem) LetA be a formula, then the
clause normal formCNF(A) has a�-model iff CNFH(A) has a�-Herbrand-model.

Proof: LetM = (A; I) be a�-model for� := CNF(A). The setH := fL� �� L 2 H(�); � = I'(L)g
is a�-Herbrand model for	 := CNFH(A) if ' is an arbitrary�-
assignment, since obviouslyI' is a valuation. To show that indeedH is a�-Herbrand model for	, we assume the opposite, that is,
there is a clauseC 2 	, such thatH \ C = ;. SinceC 2 	
there is a substitution� = [ti=xiSi ℄ and a clauseD 2 �, such thatC = �# (D) = �(D) [RC(�).

Without loss of generality we can assume thatI(Si)(I'(ti)) 2ft+; t�g, since otherwiseI'([ti=xi℄Si) 2 ff+; f�g, and therefore([ti=xi℄Si) 2 H for 2 ff+; f�g, which contradicts the assump-
tion. Thus the mapping := '; [I'(ti)=xi℄ is a�-assignment.

Note that sinceM is a model of�, we have thatM j= D
and therefore there is a literalL� 2 D, such that� = I (L) =I'(�(L)), hence�(L) 2 H, which contradicts the assumption.

For the converse direction letH be a�-Herbrand model for	
andA the Herbrand base forH. Furthermore letI(fn) andI(Pn)
be partial functions, such thatI(fn)(t1; : : : ; tn) := fn(t1; : : : ; tn) i� fn(t1; : : : ; tn) 2 AI(Pn)(t1; : : : ; tn) := � i� (Pn(t1; : : : ; tn))� 2 H
We proceed by convincing ourselves thatM j= �. LetC 2 � and' := [ti=xiSi ℄ be an arbitrary well-sorted�-assignment. SinceA is
a set of ground terms' is also a ground substitution and moreover([ti=xi℄Si)t+ 2 H or ([ti=xi℄Si)t� 2 H by construction ofI and
the fact that' is well-sorted.H is a�-Herbrand model for	 and thus'# (C)\H = ('(C)[RC('))\H 6= ;. BecauseH cannot contain complementary literals
we must already have a literal'(L�) 2 '(C) \ H. Now let � be
the valuation associated withH. Since'(L�) 2 H we have� =�('(L)) = I'(L), which impliesM j=' L�. We have takenC
and' arbitrary, so we get the assertion.

Corollary 3.16 A set� of ground unit clauses is unsatisfiable iff it
contains two complementary literals.

Theorem 3.17 (Ground Completeness)Let � be an unsatisfiable
set of ground clauses, then there exists aRPL derivation of the empty
clause from�.

Theorem 3.18 (Completeness)RPL is complete.

Proof sketch: For the proof of this assertion we combine the com-
pleteness result from the ground case with a lifting argument. It turns
out that the lifting property can be established by methods from [8],
since they are independent of the number of truth values.

4 Example

At first we want to give an example for quantificational presupposi-
tions and then shortly discuss existential presuppositions.

Let us assume the following information. There is a company
TheCompany which wants to fire people, but they have a social
touch and don’t fire any persons which have children. We are wor-
ried whether John will be fired, but then we hear that his children are
sleeping. Implicitly we can conclude from this informationthat John
has children and hence will not be fired.

This can be encoded inPL by the following statements:

A 8xD fires(TheCompany; x)! :parent(x)
B 8xD 9yD hild(y; x) ! parent(x)
C 8xhild(x;John) sleeps(x)
T :fires(TheCompany; John)

with the term declarations(D(TheCompany))t+ and(D(John))t+ .
In order to prove the theorem T, the following generalised clause set
has to be refuted:

A (8xD fires(TheCompany; x)! :parent(x))t+
B (8xD 9yD hild(y; x) ! parent(x))t+
C (8xhild(x;John) sleeps(x))t+
T (:fires(TheCompany; John))t�;f+;f�

By the rules for forming a clause normal form we get the clauses:

A1 (fires(TheCompany; xD))f+ ; (parent(xD))f+
A2 D(1)t+
B1 (hild(f(xD); xD))f+ ; (parent(x))t+
B2 D(2)t+
B3 D(f(y1))t+
C1 (sleeps(xhild(x;John)))t+
C2 (hild(3; John))t+
C3 D(3)t+
T (fires(TheCompany; John))f� ;(fires(TheCompany; John))t+(fires(TheCompany; John))t�

By resolution we get from Res(B1,C2):

R1 (parent(John))t+ ; (D(3))f+ ; (D(3))f�
Two-times resolving with C3 results in:

R2 (parent(John))t+
which in turn can be resolved with A1:

R3 (fires(TheCompany; John))f+ ;(D(John))f+ ; (D(John))f�
The last two literals can be resolved away using the term decla-

ration (D(John))t+ . T can be resolved three times with the result-

ing unit (fires(TheCompany; John))f+ , whereby finally the empty
clause is derived.

Please note that in a direct first-order translation of the above text,
the essential information in C2 that John has a child cannot be de-
rived and hence no proof can be found.

The second form of presuppositions concern the fact that allcon-
stants of classical logic exist just because of mentioning them. For
instance, classical logic is not a good tool for a dispute of atheist and
an atheist about the existence of God, since if the atheist only men-
tions God, he would admit the existence of God. InPL, however,
the status of statements about constants can be insecure andin par-
ticular no existence is assumed, unless otherwise specifiedby term
declarations.

5 Conclusion

We have developed a four-valued logic for the formalisationof every-
day reasoning with presuppositions. This system generalises the sys-
tem proposed by Bergmann in [3]. Furthermore we have presented a
sound and complete resolution calculus for our system, which uses
the sort mechanism to capture Bergmann’s restricted quantifications.

Our calculus can be seen as an extension of classical logic that
combines methods from many-valued logics (cf. [1, 5]) for a correct
treatment of the secure and insecure information and order-sorted
logics (see [8]) for an adequate treatment of restricted domains. In
contrast to the partial function calculi in [6, 7]PL does not identify
the insecure objects. However, just like in these logics, most defined-
ness preconditions can be taken care of in the unification, making
inferencing quite efficient.

Even though the research on presuppositions in linguisticshas
nowadays turned to dynamic and more pragmatically driven analy-
ses, and away from the multi-valued treatment, this is not a counter-
argument to our system. In contrast to classical logicPL makes it
possible to specify (and reason with) presuppositions, so that once
the linguistic analyses are used for reasoning, some systemlike our’s
will be indispensable.

REFERENCES
[1] Matthias Baaz and Christian G. Fermüller, ‘Resolutionfor many-valued

logics’, in Proceedings of LPAR, ed., A. Voronkov, pp. 107–118, St. Pe-
tersburg, Russia, (1992). Springer LNAI 624.

[2] Walter A. Carnielli, ‘Systematization of finite many-valued logics
through the method of tableaux’,The Journal of Symbolic Logic, 52,
473–493, (1987).

[3] Merrie Bergmann, ‘Presupposition and two-dimensionallogic’, Journal
of Philosophical Logic, 10, 27-53, (1981).

[4] Anthony G. Cohn, ‘A more expressive formulation of many sorted log-
ics’, Journal of Automated Reasoning, 3, 113–200, (1987).

[5] Reiner Hähnle,Automated Theorem Proving in Multiple Valued Logics,
Oxford University Press, 1994.

[6] Manfred Kerber and Michael Kohlhase, ‘A mechanization of strong
Kleene logic for partial functions’, inProceedings of the 12th CADE,
ed., Alan Bundy, pp. 371–385, (1994). Springer LNAI 814.

[7] Manfred Kerber and Michael Kohlhase, ‘A tableau calculus for partial
functions’, inAnnals of the Kurt-Gödel-Society, Springer Verlag, (1996).
forthcoming.

[8] Christoph Weidenbach, ‘A sorted logic using dynamic sorts’, Technical
Report MPI-I-91-218, Max-Planck-Institut für Informatik, Im Stadtwald,
Saarbrücken, Germany, (1991). Short version in IJCAI’93,p. 60–65.

