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Abstract.
for DRT, which gives us aimcrementalapproach to discourse pro-
cessing in the presence of world knowledge. We show the ineesfsi
of such as system for several discourse phenomena.

1 Introduction

Natural Language Processing (NLP) is one of the core areagitf
cial Intelligence. While some of the subtasks of NLP, suchmech
recognition and syntactical analysis have made consitiepabgress
towards practical applicability, the area of natural laagg seman-
tics has so far mainly concentrated on representationag¢ssand on
the semantics construction process proper. The field ofdnya se-
mantics” studies logical systems that are well-suited épresenting
the meaning of discourses and in particular anaphoric bindt has
developed various “discourse logics”, e.g. Discourse Bsgmtation
Theory (DRT) [8] or Dynamic Predicate Logic (DPL) [6].

Semantic analysis, — inference on the basis of semanticniafo
tion and world knowledge — still is largely uncharted temtin dy-
namic semantics. It is needed, among other things, for tbenre
struction of linguistically unspecified parts of the discsrior for
restricting ambiguities introduced by prior analysis @sges, i.e.,
multiple syntactic readings or lexical ambiguities. Botred to take
into account the pragmatics of the discourse and backgriool-
edge about the specific situation.

For instance there are pragmatic principles that a disealreuld
be consistentandinformative that is, every contribution to the dis-
course should introduce new information which is not caittary
to previous parts. Thus a reading can be discarded if it Isreak of
these (or similar) requirements. The consistency of ararnteU

We present a tableaux-based model generation calculus

In this paper, we will study these phenomena in the context of
DRT. This is a dynamic variant of FOL, where so-called disseu
referents take the place of bound variables to account foamyc
phenomena in natural language. In contrast to bound vasalie
scope of referents is not governed by the subterm relatiéormu-

lae, but by the so-called accessibility relation inducethieydynamic
connectives—, seqmerge, and == .

Traditionally, DRT models discourse understanding as eqs® of
incrementallybuilding a Discourse Representation Structure (DRS;
the boxes in 3) for a discourse. The DRS representing theimgah
the full discourse is computed by first adjoining the DRS Far hew
sentence using the sequential merge operatdrahd then actually
merging the DRSes by so-calledreduction. E.g. discourse (2) is
represented and reduced in (3).

2) A man sleeps. He snores.
U V u,v
3) man(@) | : male(V) o rlnan(U)
sleep(D)) snore(V) sleep(U)
snore(V)

In a separate step, anaphoric bindings (in our exatrp)ere recon-
structed. In our example by adding the conditidn= V" to the last
DRS in (3) to the resulting DRS (see [8] for details).

This “dynamic” approach is certainly more natural than oasdul
on FOL, where the first sentence would have been represested a
JX.man(X)Asleep(X). Here the scope of the existential quantifiers
is closed, preventing the resolution of the anagti@rUnfortunately,
current dynamic interpretation procedures are purelyssybased

with respect to a prior discours@ can be checked by determining and fail to take into account world knowledge.

whether the logical form® /D of U/ D together with an axiomati-
zation W of the world knowledge arsatisfiable i.e. whether there
is a modelM for U A D A W. Informativity can be modeled by
entailment(U is informative forD iff W A D [~ U, see [22, 2] for
a linguistic account of the inference problems involved).

Thus, semantic analysis and automated reasoning in dsztag-
ics are a crucial necessity in NLP from the applicatigoint of

Recently, the inference technique mwiodel generatior(initially
developed for automated theorem proving [15]) has been secy
cessfully applied as a semantic analysis technique. Itiistagrated
logic-basedapproach to sentence understanding in the presence of
world knowledge (see e.g. [4, 1, 12]). In this paper, we prese
model generation calculus for DRT, that extends the reabitse to
DRT (section 4). We demonstrate the usefulness of such &asnsys

view. Thedynamicaspect is essential, since classical first-order logicOn several discourse processing examples in section 5.

(FOL) is incapable of expressing cross-sentential phenanii&e
anaphoric binding. Observe for instance that the conafusi@ log-
ical consequence may be interpreted only with (anaphcefeyence
to the premises, as in example (1) from [23]

If a man owns a house, then he owns a garden.
Suppose Socrates is a man who owns a house.

@

=
He owns a garden.
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2 Especially in discourse (or dialogue) processing apjitinat where the
numbers readings of the sentenaadltiply to that of the whole discourse.

2 Discourse Representation Theory

We use a variant DRT of DRT. As in classical DRT [8], we have
two syntactic categories of objects in DRT: DRSes and candit A
DRSis a paird X.C® wherex C 4 is a set ofdiscourse referents
(which we denote by/, V, W .. .) and acondition C, which can be
an atom, a negated DRS, a disjunction or an implication of &8RS

3 We take the liberty to write DRSes in this linear notationtéasl of
using boxes, since it makes the inference procedures sinplevrite
down. Furthermore, we will write{U',..., U"}.C as oUR or as

SULSU2.....6U™C or even asUL.D, whereD = §U?>.....0U".C.




Conditions: C = p(U4,,..., UL, ) | Ci ACo
|—HD‘D1WD2|D1=>$>D2
DRSes: D:= §{Ui,..., UL }C| Dy Dy

0X.Cr35 0.YCr —- 60X UY.C1 A Co

T-equality:

We assume that discourse referents in DRIre sorted, i.e. that
there is a sort hierarchy (a s&t= A, B, C... of sorts and a par-
tial ordering relation< on S) which is given a priory (see [19] for an
introduction to sorted FOL). We annotate the sorts of diss®uefer-
ents in the subscript, when they are not clear from the corlterur
examples, we will use the sod, F, N for genders “male, female”
and “neuter” and for humans (of course we haié < H, F < H).

Traditionally, the semantics of DRSes is given by the foltoyv
relativisation mapping into FOL:

o \°
C, —
. = 3JUZ (C{°An---ACE)
Cm
(U}, ..,Ugﬂ»;" = pUL ..., UL)
Up=W)° = Us=W
( A(ﬂ?ifo — pie
(C; wey)fe = cl°vcl
fo
Uy
C
. |==D| = VUp.(C{°A-- ACL = D)
Cn

An (equivalent) alternative is to give a direct denotatisemantics

of DRT. For this, we presuppose the notion of a sorted FO model

M = (U,T), whereld = |J, s Ua is theuniverse of discourse
such that4y C U, iff A < B andZ an interpretation of constants
such thatZ(ca) € Ua.

Definition 1 (State) Let M:= (U,Z) be a sorted FO model, then
we call a referent assignmept R — U astate, iff it is well-sorted
(p(Ua) € Un). We write p[ Xy, if o(U) = (U) forallU ¢ X.

Definition 2 (Dynamic Interpretation) Let M = (U,Z) be a
sorted FO model ang a state, then we call® a dynamic inter-
pretation® iff

LI (p(T) =T, iff (p(U™)) € Z(p).

. I3(AAB) =T,iff ZJ(A) = TandZ}(B) = T.

o (—D) =T, if m(Z5 (D)) = 6.

. I5(D WE) =T, if m2(Z5(D)) # 0 or m2(Z3(E)) # 0.

. I3(D = E) = T, if for every ¢ € m2(Z3(D)) there is g
TE ﬂz(Ii(E)) with ¢[m (I:Z(E))}T

6. Z5(6X.C]) = (X, {¢: p[X]¢y andZ5(C) = T}).

7. I5(D1; D2) =

(m(Z3(D)) Ui (Z2(E)), m2(Z3 (D)) N ma(Z (E)))

a > w N P

Conditions are evaluated to truth values; DRSes as fairsS),
whereX C fR is a set of discourse referents a@da set of states
(we denote pair-projections by andms).

We will call a DRSD valid in M, if 72 (Z3 (D)) # 0 andsatisfi-
able, iff there is a mode/M whereD is valid.

4 This is a variant of Zeevat's semantics [25] for DRT, see [fbi[details.

For instance the DRS (3 with anaphor resolutidn= V) trans-
lates to (4) and has the direct semantics given in (5), asgymi
sorted FO modeM = (U, 7) with a € Un.

4
®)

IXy, Yu.man(X) Asleep(X) Asnore(Y)AX =Y
<{UH, Vu}, {[a/U],[a/V]:a € Z(man) N Z(snore) ﬂI(sIeep)>

It is easy to verify that the FO formula in (4) is satisfiabl, i
there is a FO model, such that(5) # (. As a consequence, va-
lidity and satisfiability of DRSes can in principle be chedkey a
translation approach: we can obtain FO models for a DRS by firs
translating it into FOL, and then using a traditional modeilding
or refutation system (see [2] for an implementation andietiin of
this approach).

The main computational problem with this approach is tHatribt
incremental, since translation closes all dynamic costéiie main
difference between the semantical representations innd)(3) is
that in the FOL translatioh the scope of the existential quantifiers is
fixed and the only possibility to add new sentences (with hoeg)
is to adjoin them at the level of DRS representations andmetate.
Certainly, this is not practically feasible for larger discses even
though there are linear time translations [24].

3 (Automated) Deduction for Discourse Logics

There have been several attempts to mechanize dynamic|ogic
to develop calculi and inference procedures for the sadbiifig va-
lidity and entailment problems for dynamic logics. [20, 1g, 9,
23, 16] give deductive calculi that operate either on DRSesd-O
formulae with dynamic (DPL) semantics.

[20, 17, 9] present calculi for thealidity problemin DRT and [16]
for that in DPL. In FOL, it is sufficient to study the validitygblem,
since it subsumes the entailment problem: FOL admits a dietuc
theorem, s\, ..., A, = Ciff Ai1A...AA, = Cisvalid. Clas-
sical DRT [8] does not admit a deduction theorem, since thensgt-
ric merge operato which is the dynamic analogue of conjunction
does not have the necessary accessibility relation.

The sequential merge operatgrof DPL, doe§; and as a con-
sequence [16] is currently the only calculus that can be used
check for dynamic entailment. Unfortunately, it suffersrir the
same lack of incrementality as the translation approache3othat
a discourseA; ; ... ; A, does not entail a new utteran€e (e.g.
to check for informativity) Monz and De Rijke’s calculus miseto
transformA; A ... A A, = C to adynamicclause normal form
that can be refuted by a variant of the resolution calculirsceSdy-
namic conjunction is not symmetric, it is impossible to ke
computed clause normal form for subsequent informativitgoks
(CNF(=(A;A...AA,=C)) ANACNF (= (A1 A...AA,))UCNF (-C) differ).

Saurer’s natural deduction calculus for DRT [18] whiishin-
cremental is only sound for checking validity and staticadmtent
(which does not take into account anaphoric binding). JanBia
jck’s sequent-based approach [23] directly addressesrita@lment
problembut has not been developed for mechanization in an auto-
mated theorem prover. Therefore the incrementality issumid to
judge.

In this situation, we will generalize an inference techeidtom
FOL that is inherently incremental, namely thanoddel generation

5 Note that this only holds for classical FOL. In DPL [6] thasames a dy-
namic semantics similar to ours but keeps classical FO syttte scope
of quantifiers is governed by similar principles as the DR€easibility
relation. Therefore it is possible to simply adjoin the satita of new sen-
tences by (dynamic) conjunction (which corresponds Yo

6 This is the reason, why we usgefor sentence composition in DRT



This inference approach is dual to that of refutation theopeoving:
instead of trying to find a refutation showing unsatisfiapibf the
negation of the formula to be proven, model generation tdeshow
satisfiability by constructing a model.

In the next section, we will generalize the notion of Herlotarod-
els used in FO model generation to DRT and then generaliz@ e
model generation calculus [14, 13] accordingly. Then we stibw
in section 5 that the calculus can be used to account for atyasf
linguistic phenomena.

4 Model Generation for DRT

In this section, we will develop a “model generation calstiltor
DRT. In contrast to FOL, the scope of discourse referentstigov-
erned by the term structure, but by the DRT accessibilitgtianh.
The truth definition with respect t6° crucially depends on the cur-
rent statep, therefore, “model generation” for dynamic logics must
also generate states and dynamic interpretations alongaie

FO model generation relies on the well-known Herbrand theo-

rem that singles out Herbrand models as canonical repese of
models (if a FO theory is satisfiable at all, then it must bés§able
in a Herbrand model).

Definition 3 (First-Order Herbrand Model) Let £ be a (sorted)
FO language, then the stt“ = |J,. s #£ of closed terms (of sort
A) in L is called theHerbrand universe of £. Let M = (U, I)
be a (sorted) FO model, then we calf a Herbrand Model, iff
Us C Hf andZ(t) = t € U for all ground termsg € H~.

In a Herband model, only the interpretation of predicate lsyis
must be specified, e.g. by giving values on the closed lgev&l.
Thus any Herbrand modé\1 can be uniquely represented (under a
closed-world assumption) by the set of closed atoms it makes
(the so-calledHerbrand base AT (M)).

A Herbrand modeM is calledfinite if its universe of discours&
is finite andminimal if for all M’ the following holds AT (M') C
AT (M) = M' = M. Itis calleddomain minimal if [t/(M)| <
UM).

The tableaux-based model generation procetiynehich we will
introduce in this section constructs a Herbrand model tegewith
a state and a dynamic interpretation to verify that a giversDfR
satisfiable. DRT is ideal for model generation applicatisme it

does not contain function symbols, i%"" is a set of constants;
as a consequence it is possible to generate finite Herbraddlso

The 75 model generation calculus is based on &1 calculus
(see Definitions 4 and 5), which has been originally develoioe
a certain form of non-monotonic reasoning, called minimathg-
ment [14].

AT
270 e Ay
A A 1
BB ry By ey
A AT ‘ Bf [a1/X]AT
BT
(VXa.A)F
73)
[a1/X]AF ‘ oo | [an/ X]AT | [eh®” [ Xa]AT

Definition 4 (Static Model Generation) The static model genera-
tion calculus consists of the usual tableau rules for theneotives

and the model generation rules for the quantifiers. TH¥) rule
tests the scope on all members of the Herbrand univirsef the
current branch¥a = {a1,...,a,}); it must be applied exhaus-
tively to obtain a saturated branch. Tfig3) rule reuses constants
that occur in the current branch and alternatively intredua new
constant;°™. In this way, 7 (3) minimizes the size of the universe
and also avoids Skolem functions which would introduce (@b
atic function symbols into the Herbrand universe. When rediteg
the Herbrand universe of a branch B§*, all 7(V) must be re-
instantiated with respect «“".

To get a feeling for the model construction process, let usicer a
simple (static) sentend¢o man walksn a situation including a man
(say Peter). The logical form is(3X man(X)Awalk(X)) (obtained
e.g. as— (dU.man(U) A walk(U))?°) and we have the tableau

man(peter)’
(FX man(X) A walk(X))*
(man(peter) A walk(peter))*
man(peter)*
1

(6)

walk(peter)*

T (V) converts the negative existential (interpreted as a usaefia
Jz.A = -VX.-A) into a negative conjunction which is then split
into two branches by (A). The left one is contradictory with the
information already present in the model, so we obtain thamal
Herbrand mode{man(peter)”, walk(peter)*}.

This example gives us the opportunity to compare the infleenc
of sorts. If we had chosen to model the predicaien as a sort
Man, then the declaratiopeter: Man would be part of the signature
and we would have interpreted the second sentence as theifudl

tableau:
(3 X ptanwalk(X))F

walk(peter)F

@)

It is easy to see that the introduction of sorts yielded a Enali-
tial representation and a more guided computation (withdettile
branches for half the population). In particular, sorts entiie model
generation calculus less vulnerable to computationafigiefcy in-
duced by non-trivial but unstructured universes. Of cotingesim-
ple sort system employed for our examples has to be extendad t
more elaborate one for real-world applications, we will patsue
this here, and leave the integration of more expressivesystems
like terminological logics e.g. KL-ONE for future work.

RM is a refutation complete FO tableau calculus where each open
saturated branch is a Herbrand model. [12] proves/&et is com-
plete for finite satisfiability, i.eRM is a decision procedure for the-
ories that either are unsatisfiable or have a finite model.ithid
ally, RM is complete for finite minimal models that also are domain
minimal: if a theory is finitely satisfiable, then one of thedets gen-
erated byRM will be minimal with the smallest possible universe.
These properties are inherited by thecalculus defined below, mak-
ing it an ideal basis for the linguistic applications. Thegs are
straightforward, we cannot exhibit the proofs here for spastric-
tions.

Definition 5 (Dynamic Model Generation) The 7 calculus ex-
tends static model generation by the inference rules in thxebte-
low. Like 7 (3), the ruleT5(4) is existential in nature, it introduces a
witness constant™“* with the consequences for universal formulae
discussed above. Furthermore, it extends the state repeeday the
current branch in all possible ways biatenodes of the fornic/U].

In this way it captures the accessibility relation of DRTn&sce
composition ¢) is mechanized by adding the respective DRS at all
leaves (instantiated by the state represented in the maspbranch).



Conditions are mechanized by translation, since they dasirange
the current state, but only the Herbrand-representatidheo€urrent
model.

(5UA.AT HAZ{a1,...,an}
(d)
[a1/U] [a1/U] [c2™/Ua]
lan /UJAT| """ |an /UJAT| [cpe® /U] AT
ig(_n) Mﬁ(:ﬁ,) M%’(W)
(—D)° (D == D)/° (D wD')’°

The dynamic interpretation induced by a given branghin
the tableau is determined by the positive literalst™(B) and

that “men are not women” is hard-wired into the grammar. Whil
this is reasonable for syntactically marked properties ¢ignder, the
inference-based approach also generalizes to other sorts.

Let us now consider an example, where real world knowledge

comes into play. To resolve the pronouns and the implicérexice
in her husbandn (8), we need to know thata femaleX is married
to a maleY’, thenY is X’s only husbandwhich is encoded in (10).

(8) Mary is married to Jeff. Her husband is not in town.
) OUr, V.U = mary Ao(U, V) AV = jeff

5 OWy, Wghub(W, W) A =intn(W)
VXp, Yo (X,Y) =

(10) (hub(Y, X) A VZhub(Z, X) = Z = Y)

Model generation usings yields a (rather large) tableau, whose

the state ¢(B) induced by the state nodes. It is the pair branches all contain the interpretation

(Dom(yp), {¢: Lit’emtrue(B)}). Note that dynamic interpreta-

tion generalizes the induced Herbrand model by (dynamadg sh-
formation.

/ mary /U], [jeff/ V], [jeff /W], [mary/ W'
<{U’ v.w,w }’{ :[;(%/ar;,jheif){hjb[gje;ff/, m;})r}[/),a—dyn/tn(j}eff) }>

If we reconsider our example from above, we can see that we ob-and only differ in some additional negative facts that haserbcre-

tain the tableau in (6/7) resulting in the minimal dynamiaitand
interpretation(®, {#: man(peter)”, walk(peter)*}). This is plausi-
ble, since our little discourse is static (does not have araphoric
potential).

5 Linguistic Applications

We will now test the proposed model generation approachde di

course processing on some well-known examples from thatitee.

Anaphora resolution is just a simple consequence of thelséar
minimal models. Consider for instance the discourse (2gnTive
obtain the following tableau:

dUm.man(U) A sleep(U)"
[esa/Un]
man(cy)”
sleep(cy)”
dVMLsnore(V)"
[ca/Vad] [cin/Vad]
snore(cy)T | snore(ciy)”

which leads to the two dynamic interpretations
({Uwm, Van}, {[ew/Unm], [em/ Via]: man(cy), sleep(cy). snore(cy) })
({UM7 VM}7 {[cli’ll/UM]a [cli’ll/VM]: man(cli’ll)a SleeP(cli’ll)a Snore(cli’ll)})

ated by the world knowledge, for instane¢mary, mary)*.

The figure below shows one branch of the model generatitn
outusing the world knowledge (10). In the associated readiegget
a new discourse referent, that denotes Mary’s husband although
we already have given the information that Mary’s husbarifé

(0Ur, VuU = mary A@(U, V) AV = jeff)"
[mary/U]
(6V mary = mary A o(mary, V) AV = jeff)”
ljeff/V]
(mary = mary A @(mary, jeff) A jeff = jeff)”
mary = mary"
o (mary, jeff)”
jeff = jeff"
(OWnWghub(W, W') A =intn(W))"
/]
(SW' hub(cig, W) A —intn(cig))"
[mary /W]
(hub(cig, mary) A —intn(ciy))"
hub(cyy, mary)”
intn(cy)"

Let us now turn to a phenomenon, called bridging. Concretety

We can see that the anaphor resolution is a direct consegiaénc Wwill analyze the utterance

the 75 () rule. Both possible interpretations (one wheterefers to
the sleeping man introduced before, and also the deictiofisie
that does not need an antecedent or accommodates (infejd)are
been derived. However, only the first one is minimal, anddeadhe
preferred interpretation.

The particular computation in this example only relies o fict

The Boston office called.

0Uy, Vi, Wn.boston(U) A office(V) A called(W) A
rel(U, V) A rel(V, W)

(11)
(12)

introduced by Hobbs et al. in [7]. This sentence has at |daset

that there are no men in the context (more would have lead te Mo ragmatic problems that need world knowledge: resolviregreq-

interpretations). The number of e.g. women is irrelevarg tuthe

presence of sorts: in both applications of &) rule, the discourse

referents could only by assigned to constants of 8@rtEven if

we choose not to represent gender by sorts but by the unady pre

erence of “the Boston office”, expanding the metonymy to ffgo
person at] the Boston office called”, and determining thelictipe-
lation between Boston and the office.

We will do this model generation from roughly the same world

catesmale, female (say, since we are in a context, where genders Carknowledge asin [7]:

change), the interpretation process works, only that withomen

we would get2n additional closed branches as in the tableau (6)(13)

compared to the one in (7)

Traditional approaches to anaphora resolution would hawe o (14)

tained the same behavior, but on different grounds. Thaeejrt-
formation about gender would have been treated egraacticba-
sis, making the (reasonable) assumption that the world leuye

boston (b), office(o),
VXu, Yn.employed(X,Y) = rel(X,Y)

(15) VX, Yaintn(X,Y) = rel(X,Y)

Given this input, 7 will (among others) generate the following



tableau branch:
(12)
[b/U), [0/ V], [ca/W] 2]
called(cy)”
ofﬁce(o)TT 3]
boston(b)
intn(o,b)"
employed(cy;, 0)" [4]

This model is minimal, since the last five literals are alsepobsent
in any Herbrand model, since they are entailed by the wortahkn

edge. If we have additional knowledge, sucteasployed(harry, o), (3]

then we obtain additional minimal models, in this case ttes arhere

ciy is replaced byharry. (6]
Naturally, a more thorough analysis of the example would als

take into account the uniqueness presupposition inducatebyr [7]

the salience of relatedness. In [10], we have /& -like model gen-
eration calculus with saliences and a system for weightifeyénces (8]
like that the weighted abduction system introduced in [HjsTeads 9]
to a more flexible notion of minimality of interpretationsdathus

to better predictions about preferred interpretationgtienmore,

the possibility to to resource-bounded best-first seargpsheontrol  [10]
search spaces involved in model generation. It will be aclaigiext

step to transport these methodsJfipto combine the advantages.

[11]
6 Conclusion

We have presented a model-generation calculus for DRT anetpr [12]
it sound and (refutationally and minimal model) completéhwie-

spect to a natural dynamic (state-based) semantics for DRBn-  [13]
trast to other calculi for dynamic discourse logics, ourrapph of-
fers anincrementainference procedure that allows to integrate world
knowledge into the natural language understanding process

We have exhibited a variety of examples that suggest thatthe-
mental, dynamic model generation procedure can serve assiple 15
analysis for natural language understanding. The undeyiyiodel-
generation-based approach has been validated for the stest@ in
e.g. [4, 1, 12]. While our examples support this claim at &mézal
level, the psycholinguistic literature supports the meduseded anal-
ysis from a conceptual and scientific point:

Numerous psycholinguistic studies have shown that durieg d
course comprehension readers or listeners not only regréeelog-  [17]
ical form of a text but also construct a representation ofdtates
of affairs described by the text, i.e. a representationgtements of
which are mental tokens standing for the referents of listiziex- (18]
pressions (for an overview see [26]). These representatiosncon- [19]
structed on-line during discourse comprehension in arementally
manner (e.g. [3], they are enriched by a large amount of warddvl-
edge (cf. [21]) and their major function is to provide theibder  [20]
anaphor resolution (e.qg. [5])

An interesting question that remains to be answered is hewlyh
namics inherent in the model construction process (e.g.wievess
constants are introduced into the Herbrand universe) andytham-  [22]
ics explicit in discourse logics like DRT [8] or DPL [6] intect. The
analysis in this paper suggests that they can happily dpexid even  [23]
more that for inference purposes, model generation cantpe$sed

[14]

[16]

[21]

to implement an adequate inference procedure for dynaisooidrse [24]

logics. To determine whether this effect can be extendegtavhole

field of dynamic semantics we will leave to further research. [25]
[26]
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