
Software Citations, Information Systems, and Beyond

Michael Kohlhase1, Wolfram Sperber2

1 Friedrich-Alexander Universität Erlangen-Nürnberg, Martenstr. 3, 91058 Erlangen, Germany
2 FIZ Karlsruhe/zbMATH, Franklinstr. 11, 10587 Berlin, Germany

Abstract. Even though software plays an ever-increasing role in today’s research
and engineering processes, the scholarly publication process has not quite caught
up with this. In particular, referencing and citing software remains problematic.
Citations for publications are well-standardized but don’t immediately apply to
software as, for instance, a) software information is extremely heterogeneous,
b) software code is not persistent, and c) the level of software information is
often too coarse-granular.
Current initiatives try to solve a) by postulating “landing pages” for software
that aggregate standardized meta-data and can be used as targets for citations and
b) by version-specific sub-landing pages. However no information services that
provide such landing pages currently exist, making these proposals ineffective in
practice.
After an overview of the state-of-the-art, we propose to use swMATH’s infor-
mation system for mathematical software as a source of landing pages, show
an approach for version-specific sub-pages, and discuss approaches to cope with
problem c) (granularity).

1 Introduction

Today’s scientific digital libraries contain publications and (increasingly) the accompa-
nying research data to make results reproducible by the scientific community. As much
of the data and the results are created using scientific software, that is also increasingly
considered as “research data” worth conserving and referencing itself. Therefore, de-
tailed and persistent information about software is needed in scholarly processes and
the archival publication record. For the first, we need software information services, for
the latter, we need good practices for software citations. Citations for publications are
well-standardized but don’t immediately apply to software as, e.g.,
a) Software information is extremely heterogeneous: it is distributed over web pages,

manuals, scientific articles, generated system documentations, developer mailing
lists, etc. This creates problems for software citations as it is unclear – i.e. there
is no accepted best practice – which of the various information resources to cite as
a substitute for the software itself.

b) Software systems and code are not persistent: the software itself and the information
pertaining to it are usually released in discrete versions or are continuously updated
in revision control systems. Some citation-relevant information is version-specific,
other pertains to the software per se and is therefore static. Again, there are no estab-
lished standards for identifying software versions or revisions and how to integrate
this information into citations. Moreover, new versions often supersede the old ones,
so accessing old versions or revisions can be difficult.



c) The level of software information is often too coarse-granular: we need to know
which exact series of instructions or API functions were involved in producing a
certain result to be reproducible.

These problems are generally recognized by the scholarly community, and there are a
variety of initiatives that try to solve them. By and large, these initiatives have iden-
tified the problems and have proposed principles for dealing with them. For instance
by stipulating “landing pages” for software that aggregate standardized meta-data and
can be used as the targets for citations. While proposals abound of what (meta)-data
such landing pages should contain, no public resources that provide such landing pages
currently exist, making these proposals ineffective in practice.

In this paper we analyze the state of the art of and proposals for software citations
and information systems (for mathematical software), derive requirements, and show
how they can be met in existing systems, using our own swMATH system [swMath]
which automatically aggregates information on mathematical software systems from
the scientific literature and web information sources and the OpenDreamKit API theo-
ries [CICM1616] as examples.

In Section 2 the state of the art in software citations is previewed. In Section 3
we present the swMATH system and we show how it can be used to provide software
object identifiers (SOI) – akin to document object identifiers (DOI) – and aggregated
landing pages above; this addresses a). Section 3.2 presents an extension of swMATH
to include software versions (micro-archives of version-specific software information)
to address b). The pages in the micro-archives can be used to provide versioned SOIs
and landing pages. Finally, in Section 4 we sketch how we can extend the ideas before
to finer-grained citations of API functions to solve c). Section 5 concludes the paper.

2 Approaches and Principles for Referencing and Citing Software

We will now review the current discussion of software information and citations. We
will pay particular attention to math software, persistence/versions b), and granularity
c) issues.

2.1 Mathematical Software Information on the Web

The landscape of software and software information in the Web is heterogeneous. In-
formation on software exists in the following kinds of venues.

Websites The analogon of publications for software are their websites. For mathemat-
ical software we estimate that 2/3 of the software products run their own websites,
see [Chr+17]. The websites contain the software code (if it is open), manuals and doc-
umentations, APIs, information of legal rights, programming languages used, and con-
text information, e.g., programming languages, software dependencies, test data, etc.
Software websites are usually updated for new versions, and thus contain a mixture of
general information about the software product and the current version (code, manuals
and documentations, APIs, etc.). Distinguisthing both categories is not always possible,
but relevant for software citations. A further difficulty for processing information of the

2



websites is that the websites are designed individually and have no common structure
or meta-data. The visibility in the Web for small and non-prominent software packages
is a problem: finding new or specialized software is difficult for potential users.

Repositories have been established as community-driven focal points for accessing and
archiving of software products. Often they collect and contain software products in a
certain language or environment. Repositories trace back to activities of communities
and are more prominent than websites of a single software. Moreover, they define rules
and (proprietary) standards for the software listed in the repositories. Often they provide
also a version management, e.g., CRAN [CRAN] as well as links to the mathematical
background.

Portals and Directories restrict themselves to general information about a software,
sometimes they cover also information about the current version but manual updating
of the versions is expensive. Software portals and directories support the users finding
relevant software. Mathematical software portals are focused on the content and its
mathematical background, not on technical details.

Further relevant resources Services like the OEIS [Inc] or cloud computing are based
on mathematical software. Journals specialized to software play a pioneering role for
evaluating software. Programming languages and environments, e.g., R for statistics [CRAN],
define the base for software development in special mathematical domains, benchmarks
are essential for the evaluation of performance, web archives are relevant for long-term
storing.

2.2 The FORCE11 Software Citation Principles

The Software Citation Group of the FORCE11 Initiative [FORCE11] – a large com-
munity of scholars, librarians, archivists, publishers and research funders that aim to
help facilitate the change toward improved knowledge creation and sharing – has an-
alyzed the state of the art of software citations, has worked out the needs to software
information resulting from different use cases, and has discussed the basics of software
citations. It has formulated its findings as Software Citation Principles (SCPs) [SDK],
six requirements for citing of software:
SCP1. Importance of Software: Software is a legitimate and citable product of re-

search [. . . ]
SCP2. Credit and Attribution: Software citations should facilitate giving scholarly

credit and normative and legal attribution to all contributors to the software
[. . . ]

SCP3. Unique Identification: A software citation should include a method for identi-
fication that is machine actionable, globally unique, interoperable, [. . . ]

SCP4. Persistence: Unique identifiers and meta-data describing the software and its
disposition should persist [. . . ]

SCP5. Accessibility: Software citations should facilitate access to the software itself
and to its associated meta-data, documentation, data, and other materials neces-
sary for both humans and machines [. . . ]

3



SCP6. Specificity: Software citations should facilitate identification of, and access to,
the specific version of software that was used. [. . . ]

[SDK] goes on to point out that the development of a citation standard is not an iso-
lated problem but essentially connected with maintaining of software and cannot solved
without developing concepts for documentation and long-term archiving of software.

2.3 Some consequences: Persistent Identifiers and Landing Pages

The huge amount of distributed information on the Web requires methods for persis-
tent identification. There are many concepts and schemes for persistent identifiers, e.g.,
PURLs [PURL], URNs [URN], DOIs [DOI], and (for persons) ORCIDs [ORCID].
Moreover, publishers, libraries, and also the reviewing databases zbMATH [ZBM],
MathSciNet [Ame] have own unique identifiers for their data.

SCP6 (specificity) distinguishes between general information about software and
another for versions. So, SCP3 (unique identification), requires unique identifiers for
both the general information on software which we group to software product and on
versions. Of course, software products and versions are closely related and overlapping.
The relationship between software products and versions should be part of the meta-
information on software, especially if the general information and the information about
the versions are distributed.

SCP5 refers to the persistence of software information. The SCPs do not require
that the software code must be persistent. This is the role of software landing pages
introduced in [SDK] – i.e. web pages that contain meta-information about software. The
main idea is that meta-information about software should be persistently available and
citable – similar to bibliographic records of publications. Meta-data of publications are
more or less standardized. Meta-data of software are more complex, cover information
about software code but also about implementation, content, technical and legal data,
context, etc. Meta-data of software are also strongly influenced from different use cases,
for details see below.

So in a nutshell landing pages provide persistent meta-information about (changing)
software. But [SDK] does not define the content of the landing pages and the meta-data
on them. To remedy this shortcoming and make the idea practical we propose to use the
meta-data vocabulary of the CodeMeta project, see [CM], for software landing pages.

2.4 CodeMeta Meta-data for Landing Pages

Some aspects of meta-information of software have been discussed in the CodeMeta
project. Basing on analysis of the common information of big software archives, a set
of widely used meta-data fields for a machine-readable exchange format of software
meta-data has been selected. Currently CodeMeta lists more than 40 meta-data fields
encoded in JSON-LD describing relevant features of a software product and its versions
and the developing parties (persons and institutions, called agents in CodeMeta).

We use the concepts from the SCPs to give an overview over the fields in Figure 1:
The citation block on the left gives the meta-data that is specific to the citation, here
only the reference date of the software. The second block concentrates on the software

4



Fig. 1. CodeMeta Meta-Data and Extensions

product itself. The version block specializes the meta-data that may change between
versions (see SCP6), and finally the agent block is motivated by SCP2.

2.5 Software Citations

[SDK] also gives a recommendation for software citations in publications:

We recommend that all text citation styles support the following: a) a label
indicating that this is software, e.g., [Software], potentially with more informa-
tion such as [Software: Source Code], [Software: Executable], or [Software:
Container], and b) support for version information, e.g., Version 1.8.7.

This proposal – while somewhat unspecific – significantly improves current practice
of software citations in publications: The objects are uniquely defined as software and
information about the version is given. We note that all information except the software
type is already present in the CodeMeta meta-data set – which is the reason we propose
it as the basis for software citations and landing pages.

5



The mathematical community typically uses TEX [CTAN], its bibliography add-on
BibTEX, and increasingly BibLATEX [Leh10] for managing citations and creating refer-
ences. BibLATEX provides citations formats for different object types, but unfortunately
not for objects of type “software” or “software version” up to now.

To remedy this we have extended the BibLATEX version with the biber [Biber] back-
end by new entry types software and software version and corresponding meta-data schemes
(by introducing field, especially for the typing, the role of agents or the dates for up-
loading and downloading. Figure 2 shows the source and result of a BibLATEX software
citation. Note that we utilize the BibTEX/BibLATEX crossref directive to avoid duplicating
information. According to SCP2 we have special “author-type” keys for the various
agent roles in the CodeMeta meta-data set.

@softwareversion{MIPLIB10:5,
crossref = {MIPLIB10},
version = {5},
urldate = {2012−03−27}}

@software{MIPLIB10,
developers = {Bixby, Robert E. and Boyd, E.A. and

Koch, Thorsten and Rehfeld, Daniel},
title = {MIPLIB 2010 − the Mixed Integer Programming LIBrary},
swmath = {4067},
url = {http://miplib.zib.de}}

Fig. 2. An example for software citation

3 Persistent Identifiers, Landing Pages, and Versions in swMATH

The ideas formulated above can serve as a “requirement specification” for software
citation metadata, and the bibTEX extension is an implementation of those. The main
problem is that there are no public, comprehensive resources (software information sys-
tems) of landing pages that aggregate the kind of meta-information about software prod-
ucts and their versions either manually (software directories) or automatically (software
information systems). For mathematical software, the situation is better: we have the
swMATH [swMath] portal which supplies aggregated meta-data for more than 13,000
mathematical software systems. We will use swMATH in the following as an exemplar
for a software information system.

6



3.1 The swMATH Information System for Mathematical Software

swMATH contains more than 17,000 records, each representing a software product with
a unique identifier. swMATH is based on the more than 130,000 articles in the zbMATH
publications database referring to mathematical software. The biggest challenge for a
service like swMATH is to recognize these references. In many cases, only a name is
mentioned, while a version or an explicit label as software is missing. swMATH tackles
this with simple heuristics, by scanning titles, abstracts, as well as references of publi-
cations to detect typical terms – such as “solver”, “program”, or simply “software” – in
combination with a name. After new candidates have been detected, they are checked
manually to ensure high data quality. As part of this manual intervention step, additional
meta-data, such as the URL of a software is added. Later on, websites are periodically
checked and outdated URLs are removed or replaced. In case there is no permanent link
that points to a website, the URLs of a corresponding repository record or a publication
is used instead.

Another important feature for our analysis is the publication list for every software
on swMATH. Each article in this list is annotated with its publication year. The publica-
tions can be sorted chronologically or by the number of citations an article has received.
In swMATH, publications also serve as source for additional information, such as re-
lated software and the keyword cloud shown in every record (see Fig. 3).

Summarizing, the original approach of swMATH bases on an analysis of software
citations in the mathematical literature. This indirect method provides statements espe-
cially about the mathematical background, the acceptance and applications of a soft-
ware but not about versions, technical details and integrability of software. Therefore
swMATH tries to extend the information about software by integrating and linking fur-
ther resources.

3.2 The Wayback Machine and Micro-Archives for Software Versions

Web archives, e.g., the Internet Archive with the Wayback Machine [WB], periodically
scan trusted websites. The Wayback Machine gives users the opportunity to nominate
their websites for archiving and provides an overview page for each URL which doc-
uments the number of scans and the date of the scans. This is an interesting feature
especially for software. It helps to avoid the so-called “reference rot”, links leading
to nowhere or siginificantly modified resources. The problem of reference rot was ad-
dressed in the Hiberlink project [HL] which has created a macro-archive of scholarly
publications – also from sources like the WayBack Machine – and has defined versioned
links (hiberlinks), see [Kle+14].

The set of all scans provides a comprehensive – nearly complete – overview about
the development of a software product. Crucially, it provides also information about
different software versions.

7



Fig. 3. The swMATH (landing) page for MIPLIB

This allows to create micro-archives for a mathematical software based on the
timed scans of the websites by the Wayback Machine. This idea was developed into
an swMATH extension by Helge Holzmann [HSR16]. He used the swMATH sftoware

8



URLs as seed list and analyzed and grouped the stored scans of the websites in the
Internet Machine.

Fig. 4. The Wayback Machine page for the software MIPLIB

The information on each scan of a website representing the development stage of
the software at a certain date – in other words: a certain version – can be uniformly
classified, in particular with respect to

– Software name and version
– Documentation, manual
– Software code
– Developers
– Contact
– License information and legal rights
– Environment and programming languages, technical parameters
– Citation recommendation
– APIs
– Further data, e.g., publications or the development of a software, test data, bench-

marks, etc.

This classification scheme constitutes an additional uniform structure for software
metadata, which can be aggregated into a secondary link page for the software informa-
tion and represents a landing page for a particular version of the software product.
It contains links to meta-data descriptions for the objects – if existing – in the classes
and/or also direct links to the objects. The micro-archives are defined as the link pages
and the linked resources in the Wayback Machine.

The concept of micro-archives is flexible. Meta-data schemes can be involved but
they are not a necessary requirement. In a first attempt, the documents on the websites
are classified by their document formats. This simple method is only a first approach, we
plan to use more enhanced tools, e.g., machine learning, for classification. In essence,

9



the scans of a website together form a web archive for the software which can be an-
alyzed to distinguish the general from version-specific information. With this we can
create landing pages not only for the software product, but also for its versions.

Fig. 5. Cutout of a micro-archive for the software MIPLIB

One current handicap for software is the missing standardization, completeness,
specification, and semantification of information on the websites of software, e.g., miss-
ing information about APIs or the availability of source code. But this information is
relevant for the applicability, integrability, and further development of software. The
problem of enrichment of software information is addressed in Section 4.

3.3 Software Citations with swMATH Landing Pages

We observe that the swMATH pages and micro-archives are suitable candidates for
landing pages in software citations: they are
1. comprehensive: all mathematical software mentioned in the literature have a swMATH

page, even if they do not have a web page (recall, that is 1/3 of the systems). The
swMATH pages combine the direct information about a software resulting from
the micro-archives and the indirect information about a software coming from the
literature.

10



2. informative: they aggregate information even if the software website does not have
it (e.g. the publication lists, word clouds, and authors).

3. persistent and specific: they provide persistent identifiers and URLs (see also Sec-
tion 3.4 below).

4. low-maintenance: analyzing publications and websites can be processed widely
automated.
Therefore swMATH has added links to the overview page of a software in the Way-

back Machine and from each publication to the corresponding version of thoftware. If
the version is not explicitly referenced in a publication, the micro-archive is assigned to
a paper by comparing the publication dates of the paper and the software versions.

Their main shortcoming is that they are optimized to be human-readable and do not
currently offer access to the CodeMeta meta-data in a machine-oriented way. This can
be easily remedied by a suitable web service that does as the swMATH database has
(most of) the relevant information.

3.4 Persistent Identifiers for Software products and Software Versions in
swMATH

In analogy to the DOIs we propose to use the swMATH identifiers (natural numbers:
the mathematical software products are consecutively numbered as they become known
to the system) as principal components for Software Object Identifiers (SOI) for a
software product. Concretely, we propose to use identifiers of the form swMATH:4607 as
SOIs; this allows to add different collections of software landing pages under other
prefixes – e.g. for a software information system derived from a software directory; if
there are overlaps, a conflict resolution mechanism could be established.

For the respective versions of the software product we can define Software Version
Object Identifiers (SVOI) accordingly. As the general information about the software
product and a special version are closely related, the SVOIs reference the corresponding
SOI. Thus it seems to be natural to design the SOIVs as a two stage identifier which
concatenates the SOI and the notation of the version. As separator can be used for
example the ‘/’ symbol. So for version 5 of the MIPLIB package from Figure 2, we
would get the SVOI swMATH:4607/5; this would avoid separate identifiers for the software
product and software version.

Note that the swMATH SOI for a mathematical software product only needs to be
prefixed by http://swmath.org/software/ to obtain the URL of the landing
page. Thus swMATH directly acts as a catalogue service like http://doi.org that
is often used to hyperlink DOI-based citations. With the concept of publicly accessible
SOIs software citations could be simplified to

〈〈Agent〉〉 (〈〈role〉〉): 〈〈Software Title〉〉, 〈〈Version〉〉, [software], [〈〈SVOI〉〉], 〈〈date of the version〉〉

as all other information can be obtained from the software landing page (or the corre-
sponding meta-data web service).

We are currently experimenting with web services on top swMATH, which allow to
generate BibLATEX entries of the form described above directly for any SOI/SVOI in the
swMATH database.

11

http://swmath.org/software/
http://doi.org


Of course, other software information services could define also similar name con-
ventions for SOIs and SVOIs which could be maintained by a trusted institution, e.g.,
by the DOI service of TIB.

4 Fine-Grained References for Software Libraries and
Open-API-Systems

The discussion above concentrated on software products, i.e. software systems that can
be described adequately as a monolithical entity without discernable sub-systems. This
is inadequate for many mathematical software systems, including a) software libraries
like the NumPy library [NPy] in Python which supplies a set of interface functions to be
used for numerical computations in Python programs or b) computer algebra systems
like GAP [GAP], Sage [Sage], or Mathematica. Systems like the latter provide a pro-
gramming interface that gives access to a set of API functions. In the case of Sage, this is
the Python language, for GAP and Mathematica, these are system-specific languages.
Note that even proprietary libraries and systems make the specifications of the APIs
public, therefore we collectively speak of open-API systems. This class also contains
programs like Office suites and CAD programs.

For open-API systems, we often want to reference specific API functions rather than
the whole systems. Reasons range from reproducibility of scholarly results – e.g., how
exactly did we convert the input data in MatLab – to discussing unexpected behaviors
of particular API functions of open-API systems.

In analogy to the landing pages for software products we discussed above, we would
need landing pages with meta-data for individual API functions. The most immediate
way to do this is to reference a specific fragment of the manual, e.g., the documentation
of CharacteristicPolynomial in GAP (see Figure 6). But this approach does
not satisfy the SCP principles discussed above. The first problem is that for instance
SCP3 calls for unique identifiers. The most obvious choice for this would be the manual
and the function name but in software with method overloading (for instance GAP) this
is ambiguous. Moreover most manuals do not use the function name as document frag-
ment identifiers. In the case of the GAP manual the nearest anchor is https://www.
gap-system.org/Manuals/doc/ref/chap24.html#X87FA0A727CDB060B. One
wonders whether this generated anchor is persistent over versions.

Manual pages usually give the functional “meta-data” for API functions:
i) the function name,

ii) the call pattern; i.e. arguments, possibly argument and return type, and
iii) a natural language description of the result to be expected and – if applicable – any

side effects.
But there is no standardized and machine-actionable way of accessing these.

In the OpenDreamKit [ODK] project we have extended the idea of referencing
API functions to a machine-understandable level. The goal of the OpenDreamKit is
to develop a framework for virtual research environments for computational mathe-
matics building on existing open-source systems like GAP, Sage, LMFDB, PARI-GP,
and Jupyter. The integration of these systems requires a semantic description of their
APIs, so that the respective object constructors and functions can be related to each

12

https://www.gap-system.org/Manuals/doc/ref/chap24.html#X87FA0A727CDB060B
https://www.gap-system.org/Manuals/doc/ref/chap24.html#X87FA0A727CDB060B


Fig. 6. The documentation of CharacteristicFunction in GAP

other. Therefore we generate system-API-specfic OMDoc/MMT Content Dictionaries
that contain the functional API meta-data in form of i) symbol name, ii) type, and
iii) CMP (commented mathematical property; a natural language description of the
symbol meaning). We currently have ca. 350 generated CDs for the GAP system with an
order of magnitude more classes and methods, and have recently added about the same
amount of CDs for Sage. These CDs describe the system APIs in a uniform fashion and
are keyed by function/constructor/class/- and category name. From this we can not only
generate uniform human-oriented “landing pages” directly in the MMT system [Rab13],
but we can also develop machine-oriented services that export linked open data about
the system APIs, web services that generate BibTEX databases, and translation systems
that make systems interoperable by aligning their APIs.

5 Conclusion & Future Work

We have discussed the problem of software citations in the special case of mathemat-
ical software. Based on the six “software citation principles” and the idea of software
landing pages put forward by the FORCE11 group, we have proposed the CodeMeta
meta-data vocabulary for landing pages and shown that the information in the swMATH
software portal is sufficient to generate landing pages and persistent software iden-
tifiers for mathematical software. We have experimented with two extensions of this
swMATH-based approach.

i) micro-archives as collections of version-specific landing pages to combat the speci-
ficity requirement and

ii) generated content dictionaries for referencing the API functions to alleviate the
granularity restrictions of only dealing with whole software products.

Even though the swMATH portal limits itself to mathematical software, since it
mainly relies on the zbMATH corpus for aggregating, the document-based aggregation
method is not limited to mathematical software and could be extended given a suitably
complete corpus (e.g., the Cornell ePrint arXiv, NumDam, PubMed or the back files of

13



a large scientific publishing house). Given these considerations, we are confident that
the ideas exposed here can be ported to major parts of the scholarly literature. As so
often is the case (e.g., MathML was the first XML format standardized by the W3C)
Mathematics (and Mathematical Knowledge Management) can play the role of a front-
runner in scientific publication infrastructure.

Acknowledgements

We gratefully acknowledge fruitful discussions with Hagen Chrapary, Wolfgang Dalitz,
Helge Holzmann, Heinz Kröger, Fabian Müller, Winfried Neun, and Olaf Teschke on
software citations and the contributions of Paul-Olivier Dehaye, Alexander Konovalov,
Marcus Pfeiffer, Nicolas Thierry, in the generation of OpenDreamKit content dictio-
naries. Finally, we acknowledge funding the of the research campus MODAL for the
swMATH project and EU funding for the OpenDreamKit project in the Horizon 2020
framework under grant 676541.

References

[Biber] biber - A BibTeX replacement for users of BibLATEX. URL: https://
www.ctan.org/pkg/biber (visited on 03/29/2017).

[Chr+17] Hagen Chrapary et al. “Design, Concepts, and the State of the Art of
the swMATH Service”. In: Math.Comput.Sci (2017). DOI: 10.1007/
s11786-017-0305-5.

[CICM1616] Paul-Olivier Dehaye et al. “Interoperability in the OpenDreamKit Project:
The Math-in-the-Middle Approach”. In: Intelligent Computer Mathe-
matics 2016. Ed. by Michael Kohlhase et al. LNCS 9791. Springer,
2016. URL: https://github.com/OpenDreamKit/OpenDreamKit/
blob/master/WP6/CICM2016/published.pdf.

[CM] CodeMeta CodeMeta focuses on metadata and discovery systems for
software citation and attribution. URL: https://github.com/
codemeta/codemeta/blob/master/codemeta-concepts.
md (visited on 03/29/2017).

[CRAN] The Comprehensive R Archive Network. URL: https://cran.r-
project.org/ (visited on 03/29/2017).

[CTAN] CTAN the Comprehensive TEX Archive Network. URL: http://ctan.
org (visited on 12/11/2012).

[DOI] DOI. URL: https://www.doi.org/ (visited on 03/29/2017).
[FORCE11] FORCE11 — The future of research communications and e-scholarship.

URL: https://www.force11.org/ (visited on 03/29/2017).
[GAP] The GAP Group. GAP – Groups, Algorithms, and Programming. URL:

http://www.gap-system.org (visited on 08/30/2016).
[HL] hiberlink. URL: http://hiberlink.org (visited on 03/12/2017).
[HSR16] Helge Holzmann, Wolfram Sperber, and Mila Runnwerth. “Archiving

Software Surrogates on the Web for Future Reference”. In: LNCS 9819
(2016), pp. 215–226.

14

https://www.ctan.org/pkg/biber
https://www.ctan.org/pkg/biber
https://doi.org/10.1007/s11786-017-0305-5
https://doi.org/10.1007/s11786-017-0305-5
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/CICM2016/published.pdf
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/CICM2016/published.pdf
https://github.com/codemeta/codemeta/blob/master/codemeta-concepts.md
https://github.com/codemeta/codemeta/blob/master/codemeta-concepts.md
https://github.com/codemeta/codemeta/blob/master/codemeta-concepts.md
https://cran.r-project.org/
https://cran.r-project.org/
http://ctan.org
http://ctan.org
https://www.doi.org/
https://www.force11.org/
http://www.gap-system.org
http://hiberlink.org


[Inc] OEIS Foundation Inc., ed. The On-Line Encyclopedia of Integer Se-
quences. URL: http://oeis.org (visited on 05/28/2013).

[Kle+14] Martin Klein et al. “Scholarly Context Not Found: One in Five Articles
Suffers from Reference Rot”. In: PLOS One (2014). DOI: 10.1371/
journal.pone.0115253.

[Leh10] Philipp Lehmann. The biblatex Package. Tech. rep. CTAN: Com-
prehensive TEX Archive Network, 2010. URL: http://ctan.org/
pkg/biblatex.

[NPy] NumPy. URL: http://www.numpy.org/ (visited on 03/29/2017).
[ODK] OpenDreamKit Open Digital Research Environment Toolkit for the Ad-

vancement of Mathematics. URL: http://opendreamkit.org
(visited on 05/21/2015).

[ORCID] ORCID. URL: https://orcid.org/ (visited on 03/29/2017).
[PURL] PURL Administration. URL: https://archive.org/services/

purl/ (visited on 03/29/2017).
[Rab13] Florian Rabe. “The MMT API: A Generic MKM System”. In: Intelli-

gent Computer Mathematics. Ed. by Jacques Carette et al. Lecture Notes
in Computer Science 7961. Springer, 2013, pp. 339–343. ISBN: 978-3-
642-39319-8. DOI: 10.1007/978-3-642-39320-4.

[Sage] The Sage Developers. SageMath, the Sage Mathematics Software Sys-
tem. URL: ttp://www.sagemath.org (visited on 09/30/2016).

[SDK] AM Smith, Katz DS, and Niemeyer KE. FORCE11 Software Citation
Working Group. (2016) Software Citation Principles. URL: https:
//peerj.com/preprints/2169/.

[swMath] swMath an information system for mathemtical Software. URL: http:
//www.swmath.org (visited on 03/29/2017).

[URN] Persistent Identifier. URL: http://www.persistent-identifier.
de/ (visited on 03/29/2017).

[WB] Internet Archive WayBack Machine. URL: https : / / archive .
org/web/ (visited on 03/29/2017).

[ZBM] Zentralblatt MATH. URL: http://www.zentralblatt-math.
org/zbmath/ (visited on 06/12/2012).

[Ame] American Mathematical Society. MathSciNet Mathematical Reviews on
the Net. URL: http://www.ams.org/mathscinet/ (visited on
08/05/2010).

15

http://oeis.org
https://doi.org/10.1371/journal.pone.0115253
https://doi.org/10.1371/journal.pone.0115253
http://ctan.org/pkg/biblatex
http://ctan.org/pkg/biblatex
http://www.numpy.org/
http://opendreamkit.org
https://orcid.org/
https://archive.org/services/purl/
https://archive.org/services/purl/
https://doi.org/10.1007/978-3-642-39320-4
ttp://www.sagemath.org
https://peerj.com/preprints/2169/
https://peerj.com/preprints/2169/
http://www.swmath.org
http://www.swmath.org
http://www.persistent-identifier.de/
http://www.persistent-identifier.de/
https://archive.org/web/
https://archive.org/web/
http://www.zentralblatt-math.org/zbmath/
http://www.zentralblatt-math.org/zbmath/
http://www.ams.org/mathscinet/

