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Abstract. In the traditional knowledge dissemination process in math-
ematics and sciences, authors write semi-selfcontained articles which are
then published in journals, conference proceedings, preprint archives,
and/or given as talks. Other scientists read these, extract the new knowl-
edge, integrate it into their personal mental model of the field, and use
this as the basis for creating new knowledge which is disseminated in the
same form.

Somewhat surprisingly, this process has not been modeled from a formal
or content-based perspective even though it is at the heart of human
MKM and DML.

In this paper we tackle this problem starting from the practice of begin-
ning papers with a “recap”, which briefly introduces context, terminol-
ogy, and notations and thus ties the paper into the knowledge commons.
We propose a flexiformal model for knowledge dissemination and its ag-
gregation into a communal, shared knowledge commons based on theory
graphs and the newly introduced realms.

1 Introduction

Global mathematical knowledge grows – at least – at a rate 120,000 published
articles a year to a current crop of about 3.5 Million articles. Even though these
articles are scattered over several thousand journals they – together with papers
in conferences, preprints in online or local archives, and talks given in semi-
nars – function as a coherent scientific commons of communal knowledge about
the various domains of mathematics. Other scientists read these documents, ex-
tract the new knowledge, integrate this into their personal mental model of the
domain, and use this as the basis for creating new knowledge. This, in turn,
is disseminated again through articles, conference papers, preprints, and talks,
itself contributing to the knowledge commons.

In this process of knowledge dissemination and aggregation, scientific docu-
ments (articles, papers, preprints, and talks) play a great role: they have evolved
from printed pamphlets or books and from postal letters in which a mathemati-
cian described progress to a colleague – and were then passed around by the latter
among colleagues. Documents are assembled into topical journals and conference
proceedings volumes, which are in turn assembled into libraries (physical and



virtual ones), which give researchers and practitioners access to the scientific doc-
ument commons – modulo physical distribution methods like inter-library loan
and access right restrictions like membership or commercial constraints. Doc-
uments are even classified into a domain-based classification schemes like the
Math Subject Classification (MSC), and disseminated in information systems
like Math Reviews and Zentralblatt Math.

Today’s mathematical documents have a specific conventionalized structure
and metadata which not only supports the production/dissemination processes
outlined above, but also – we claim – the individual and communal aggregation
processes which turn the document collections into a (virtual) knowledge space
which mathematicians can operate on to find and apply existing knowledge and
create new insights and knowledge.

In formalized mathematics, the situation is very different. Even though col-
lections of formalized mathematics call themselves “libraries”, the concept of a
“formal document” does not exist or degenerates to a “file” which contains the
formal development and possibly includes other files. Explanations for humans
are generally relegated to comments or the informal literature described above
(publishing about formalizations).

Notable exceptions are the Mizar Mathematical Libary [MizLib] and the
Mizar-inspired ISAR format in Isabelle [Wen07]. Both of these contain enough
information to generate conventionally structured documents for publication,.
e.g. Mizar articles in the Journal of Formalized Mathematics [JFM]. Dissemi-
nation, quality control, and “marketing” of results and developments is usually
ad-hoc in formalized mathematics. Aggregation of developments into a knowl-
edge space is ephemeral and executed by loading files with formal developments
into the memory of a theorem prover or proof checker.

On the other hand, libraries of formalized mathematics directly represent the
structure of a mathematical knowledge commons, usually in graph of files and
file inclusions or a graph of theories and theory morphisms (see [RK13a] for a
survey). The respective graphs supply identifiers for knowledge items and detail
their relations to each other.

It stands to reason that the two dissemination and aggregation approaches
can profit from each other. The scientific publication process can profit from
a more explicitly represented knowledge commons, which enables added-value
services for finding, understanding, and applying relevant knowledge items – af-
ter all the document/knowledge space even in mathematics is much too large
and complex for a single human to process. Of course a prerequisite for this is
computer support in the aggregation of the knowledge space. Conversely, formal
libraries can profit from a dissemination process based on the publication of self-
contained documents to scale the secondary aspects (quality control, checkpoint-
ing, citation stability, persistence, attention management) of assembling large
bodies of knowledge. Even though formal developments are machine-checkable,
their authoring, maintenance, refactoring, . . . are processes that need at least
some human intervention.



To reap these benefits we need a joint generalization of the two approaches
to dissemination and aggregation that combines their advantages. But before
we design such a system, we need a content-oriented model of the informal
publication process. Somewhat surprisingly, such a model does not exist, even
though knowledge dissemination and next-generation publication systems are a
the heart of MKM and DML.

In this paper we propose a content-oriented model for knowledge dissemina-
tion and its aggregation into a communal, shared knowledge commons. As we
make use of our previous development of the flexiformal – i.e. supporting flexible
degrees of formality [Koh13] – OMDoc format [Koh06], which can represent for-
mal and informal mathematical documents and developments, we think of this
as a flexiformal model.

We use the practice of starting mathematical documents with a “recap”,
which briefly introduces context, terminology, and notations and thus ties the
paper into the knowledge commons as a starting point and model it based on
OMDoc/MMT theory graphs and the newly introduced realms [CFK14].

In Section 2 we briefly review the structure of mathematical documents and
build our intuitions about “recaps” by looking at some examples. We discuss
how to represent them using theory graphs in Section 3. Section 4 concludes the
paper and discusses future work.

2 Common Ground in Mathematical Documents

With dissemination we mean the process of assembling a mathematical doc-
ument for the purpose of publication. We use the term aggregation for the
process of an individual integrating the knowledge gained from reading or ex-
periencing the respective document into their mental model of the domain. For
now we will use these two concepts intuitively only, it is the purpose of this
paper to propose a more rigorous model for them. As a first step, we will now
have a closer look at the practices in formal and informal mathematics.

2.1 The Structure of Informal Mathematical Documents

Mathematical documents traditionally have:

1. A front/backmatter and page margins, which identify the scientific
metadata: i) author’s names, affiliations, and addresses, ii) publication
venue, date, and fragment identifiers (e.g. page numbers), iii) classification
data, e.g. keywords or MSC codes, iv) acknowledgements of contributions
of other researchers or funding agencies. v) access conditions, e.g. copyright,
confidentiality designations, or licenses.

2. An abstract that gives an executive overview over the document.
3. An introduction that leads the reader into the topic, discusses the problems

solved in the document and their relation to the “real world”, and generally
argues that reading the paper is worth the reader’s attention.



4. A preview, which outlines the structure of, the contributions in, and meth-
ods used in the document.

5. A discussion of the state of the art on the topic of document.
6. The establishment of a common ground between the reader and the au-

thor, which i) recapitulates or surveys concepts and results from the doc-
uments/knowledge commons to make the document self-contained (for its
intended audience) ii) identifies any assumptions and gives the ensuing con-
tributions a sound terminological basis.

7. The contributions part, which contains the development of new knowl-
edge in form of e.g. new insights, new interpretations of known concepts,
new theorems, new proofs, new applications/examples or new techniques of
achieving results.

8. An evaluation of the contributions in terms of applicability or usability.
9. A discussion of related work which reviews the contributions and their

relation to existing approaches and results from the literature.
10. A conclusion which summarizes the contribution with the benefit of hind-

sight and relates it to the claims made in the introduction.
11. Literature references, an index, a glossary, etc. and possibly appendices that

contain material deemed supplementary to the contributions.

Even though the form or order of the structural elements may vary over publi-
cation venues, and certain elements may be implicit or even missing altogether,
the overall structure is generally stable.

It may be surprising that only one in eleven parts of a mathematical docu-
ment – the “contributions” – arguably the largest – is fully dedicated to trans-
porting the payload of the paper. All other contribute to either the dissemina-
tion1, understanding2 and aggregation processes. We will see that the latter is
mainly driven by the common ground (point 6. above), which we will analyze in
more detail next.

2.2 Common Ground/Recapitulation in Mathematical Research

To get an overview over recaps in the literature, we randomly selected 30 papers
from the new submissions to http://arxiv.org/archive/math and analyzed
their structure. All had a significant common ground section that recapitulates
the central notions and fixes notations. We show two examples where the math-
ematics involved is relatively elementary.

Example 1. [HK15] discusses covers of the multiplicative group of an algebraically
closed field which are formally introduced in the beginning of the paper as fol-
lows:

1 1. for referencing, 2. for determining interest
2 3. and 10. for broader context, 5. and 9. for problem context, 4. for document navi-

gation, 8. for assessment of value, and 11. for further reading

http://arxiv.org/archive/math


Definition 1.1 Let V be a vector space over Q and let F be an
algebraically closed field of characteristic 0. A cover of the multi-
plicative group of F is a structure represented by an exact sequence
0 → K → V → F → 1 , where the map V → F ∗ is a surjective
group homomorphism from (V,+) onto (F , ·) with kernel K. We
will call this map exp.

(1)

However, later, the authors source the concept origin to an earlier paper (“[13]”)
and effectively import the terminology, definitions and theorems. For instance,
when establishing results, [HK15] mentions “Moreover, with an additional axiom
(in Lω1ω) stating K ∼= Z, the class is categorical in uncountable cardinalities. This
was originally proved in [13] but an error was later found in the proof and corrected
in [2]. Throughout this article, we will make the assumption K ∼= Z.”.

In the second example, the situation is a bit more complex, since the import
of the terminology and definitions is not direct, but involves a choice.

Example 2. [Bar15] studies the properties of multinets. In the preliminaries sec-
tion they are introduced with the following definition:

Definition 2.1 The union of all completely reducible fibers (with
a fixed partition into fibers, also called blocks) of a Ceva pencil of
degree d is called a (k, d) − multinet where k is the number of
the blocks. The base X of the pencil is determined by the multinet
structure and called the base of the multinet.

(2)

Later in that section some properties of multinets are introduced with the phrase
“Several important properties of multinets are listed below which have been col-
lected from [4,10,12].”. The referenced papers all use slightly different definitions
of multinets but they are assumed to be equivalent so that the properties hold.
In fact, in this paper ([Bar15]) the assumption is made explicit – although not
proved – from the start: “There are several equivalent ways to define multinets.
Here we present them using pencils of plane curves.”

The next example is not from our 30 examples, since we want to show an
even more complex situation.

Example 3. [CS09] studies the halting problem for accelerated Turing machines
and starts off the discussion with an informal introduction of the topic.

An accelerated Turing machine (sometimes called Zeno machine)
is a Turing machine that takes 2−n units of time (say seconds)
to perform its nth step; we assume that steps are in some sense
identical except for the time taken for their execution.

(3)

This is a telegraphic version of the full definition, which is given in the literature.
Actually [CS09] continues with an overview of the literature, citing no less than
12 papers, which address the topic of accelerated Turing machines. One of these
supposedly contains the formal definition, which involves generalizing Turing
machines to timed ones, introducing computational time structures, and singling
out accelerating ones, e.g. using (4).



Definition 1.3: An accelerated Turing machine is a
Turing machine M = 〈X,Γ, S, so,�, δ〉 working with with a
computational time structure T = 〈{ti}i, <,+〉 with T ⊆ Q+ (Q+

is the set of non-negative rationals) such that
∑

i∈N ti <∞.

(4)

Note that the definition of an ATM [CS09] is an instance of definition 1.3, which
allows arbitrary time structures.

2.3 Secondary Literature: Education/Survey

A similar effect can be observed with educational materials or survey articles,
whose concern is not to make an original contribution to the knowledge com-
mons, but to prepare a document that helps an individual or group study or
better understand a body of already established knowledge. Consider for in-
stance, slides and background materials (lecture notes, text books, encyclopae-
dias), where the slides often have telegraphic versions of the real statements,
which verbalize more rigorous definition.

This is illustrated in Example 4 which is inspired from the notes of a first year
computer science course taught by the first author. The example is a simplified
and self-contained version of the original which in itself is only one instance of
a commonly occurring pattern in the course notes.

Example 4 (A Course grounded in a Formal Library). A course which introduces
(naive) set theory informally, but grounds itself in a formal, modular definition.
In the cited source, we have a careful introduction in the form of a modular theory
graph starting at a theory that introduces membership relation and the axioms
of existence, extensionality, and separation and defines the set constructor {·|·}
from these axioms. In the course notes we have a theory that “adopts” the
symbols ∈ and {·|·} but not the associated axioms. Instead it “defines” them by
alluding to the intuitions of the students. Then the course notes continue with
introducing set operations ranging from set union to the power set.

We observe that course notes in Example 4 are self-contained in the sense
that they can be understood without knowing about the formal development.
This self-containedness is important intra-course didactics. But it also has the
problem that the courses become insular; how are students going to communicate
with mathematicians who have learned their maths from other courses? This is
where alluding to the literature comes in, by connecting the course notes with
it.

Example 5. The situation in mathematical textbooks is similar in structure to
that in research papers –perhaps more pronounced. Consider the following pas-
sage from Rudin’s classical introductory textbook to Functional Analysis [Rud73,
p. 6f].

1.5 Topological spaces A topological space is a set S in which a
collection τ of subsets (called open sets) has been specified, with
the following properties: S is open, ∅ is open, [. . . ] Such a collection
is called a topology on S. [. . . ]

(5)



This is continued later – vector spaces have been recapped earlier in section 1.4
– with:

1.6 Topological vector spaces Suppose τ is a topology on a vector
space X such that
(a) every point of X is a closed set, and
(b) the vector space operations are continuous with respect to τ
Under these conditions, τ is said to be a vector topology on X,
and X is a topological vector space.

(6)

Note that Rudin does not directly cite the literature in these quotes, but in the
preface he mentions the vast literature on function analysis and in Appendix
B he cites the original literature for each chapter. The situation in textbooks
is also different from research articles in that textbooks – like survey articles,
and by their very nature – do not add new knowledge or new results, but aggre-
gate and organize the already published ones, possibly reformulating them for a
more uniform exposition. But still, one can distinguish recap parts – as the ones
above – which are much more telegraphic in nature from the primary material
presented in the textbook.

2.4 Common Ground in Formal Mathematics

Where applicable, common ground in formal mathematics is typically estab-
lished via direct imports of symbols, theorems, notations, etc. Formal documents
emphasize correctness and do not focus on human readability so they do not re-
introduce concepts or provide, verbalizations of definitions.

For instance, In Isabelle and Coq knowledge is organized in Theories and
Modules which are effectively named sets of declarations. The incremental de-
velopment process is enabled via the imports and, respectively, Require Im-
port statements that effectively opens a library module by name and enables
its declarations to be used in the current development.

In Mizar, formal documents (called articles) can be exported as PDF files in a
human readable format. The narrative documents contain a part that verbalizes
the imports from the source documents and the notation reservations which can
be seen as a common ground section.

Example 6. The common ground part for [RK13b]

The notation and terminology used in this paper have been intro-
duced in the following papers: [4], [11], [12], [19], [9], [3], [5], [6],
[21], [22], [1], [2], [7], [18], [20], [24], [25], [23], [16], [13], [14], [10],
[15], and [8]. [. . . ] In this paper T , U are non empty topological
spaces, t is a point of T , and n is a natural number.

(7)

3 Publication and Dissemination in Theory Graphs

In this section we look more closely at the examples from Section 2 and how
each can be represented using theory graphs. But first, we look at the aspects



common to all examples to form an intuition of the theory graphs structures
that are needed.

The examples in Section 2 are each slightly different but they have funda-
mental common aspects. First, each paper starts with establishing a common
ground on which the results of the paper are built. This leverages the literature
in two ways.

– Firstly, concepts from the literature are used to conveniently build up the
local definitions. From the theory graphs perspective this functions as a
(possibly partial) import.

– Secondly, properties of locally introduced concepts are adopted from the
literature. Mathematically, this is justified by and (implicit or explicit) sub-
sumption between the local definition and that used by the referenced theo-
rem. From the theory graph perspective this function as a theory morphism
that induces the properties locally due to its truth-preserving semantics.

Therefore, a paper corresponds, not to a single theory, but to a theory pattern
that leads to a theory of the main contribution of the paper.

Secondly, the notion of “literature” and the existence of concepts beyond a
particular definition (so that equivalent definitions imply one is talking about
the same platonic concept) are common to all examples. We believe that what
happens in mathematical practice is that definition and foundational choices are
abstracted away as implementation details and the important concepts and their
properties are used as an interface to each theory (in the mathematical sense,
e.g. group theory). But this is precisely the situation that realms try to capture
in theory graphs. Therefore, we maintain that, from a theory graph perspec-
tive, informal mathematical papers refer (and contribute to) realms rather than
individual theories.

3.1 Realms

Intuitively, a realm [CFK14] is a theory structure in a theory graph G (i.e. a
subgraph of G) that abstracts from the development and provides practitioners
with the useful symbols and theorems via an interface theory.

We briefly introduce realms and the background concepts below and refer to
[CFK14] for details.

First, in the following, theories are named sets of declarations (i.e. sym-
bols, axioms or theorems). Additionally, theory morphisms (or views) are truth-
preserving mappings from a source theory to a target theory and formalize in-
heritance and applicability of theorems. Theories can access and use declarations
from other theories by importing them, either directly (plain includes), or via a
translation (structures).

An important concept for realms is that of a conservative extension which
usually occurs when a theory includes another and contains only theorems and
derived symbols (i.e. adds no axioms or primitive symbols). An essential property
of conservative extensions is that if S′ is a conservative extension of S then there



is view v between T and S iff there is a view between T and S′ in the same
direction. In fact, we will often talk about views modulo conservativity below.

Realm

Pillar1 Pillarn

>1

⊥1

>...

⊥...

>n

⊥n

F
I1

I...
In

C1 C... Cn

Fig. 1: The Architecture of a Realm

Figure 1 shows a prototypical realm
with F as its interface theory (also called a
face) and n pillars each representing a dif-
ferent (yet equivalent) development of the
concepts in the face. Common examples are
the different ways to define natural or real
numbers. Each pillar is a conservative de-
velopment in the sense that all theories in a
pillar are conservative extensions of a bot-
tom theory (denoted with ⊥). A top theory
(denoted with >) aggregates all symbols,
axioms and theorems declared within the
pillar. The view pairs at the bottom estab-
lish the equivalence of the pillars and the n
views Ik capture the relation of interface-
implementation between the face and each pillar.

3.2 Realms as a Model for Dissemination & Aggregation

Figure 2 shows the general case for the representation of a paper as part of a
theory graph. The “literature” for the mathematical theory to which the paper
contributes is represented as a realm with a face and several pillars. The paper
references a document within the field, that is naturally part of a pillar and
grounds the recap theory. The contribution of the paper is a theory in itself that
includes the recap theory and is a conservative extension of it. Again, the fact
that we are representing the contribution in a single theory is a simplification for
presentational simplicity which does not lead to a loss of generality. The view v
ensures that the paper can make use of concepts and theorems from the realm,
as they can be accessed via v.

In our analysis we first restrict ourselves to the case where there is a single
recap for simplicity and expositional clarity. This already covers the majority of
research papers we have analyzed; they mainly build on one earlier paper and
extend it. Indeed, all three examples from Section 2.2 fall into this category, they
import the definitions and terminology from a central cited paper, but call on
others from the same realm for results, context, and support.

We recognize four special cases for (single) recaps based on the nature of r
and discuss each individually below. First we have to decide the home theory
of the symbols that the recap introduces. If the home is the cited theory then r
is an import and we have a plain recap (3.3). Otherwise, we have new symbols
in the recap theory that are somehow related with the ones in the cited one. In
that situation we have three sub-cases depending on the relation between the
recap and cited theory: equivalence recap (3.4), specialization recap (3.5) and, in
the informal case, postulated recap (3.6).
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Fig. 2: General Case for Recaps

Finally, we have the case where the paper builds on several others and has
multiple recaps (3.7).

3.3 Special case: Plain Recaps

One situation is that of plain recaps where the relation r is an inclusion into the
recap from the cited paper. Typically the include r is a conservative extension
of the cited paper. For instance the “covers of the multiplicative group” from
Example 1 directly uses the concept from the cited paper (CPaper), but gives a
concise verbalization of its definition. This allows it to make use of the results in
two other papers higher up in the pillar of the cited paper. The situation is shown
in Figure 3a. Note that, if r is conservative, then we have a pillar extension for
the realm which justifies the new paper becoming part of the realm’s literature
(see Figure 3b). It also makes v exist as induced by v1 modulo conservativity.

Plain recaps can also model the formal examples (e.g. Example 6) but in that
situation it is not too interesting as we have the degenerate case for the realm
itself.

3.4 Special Case: Equivalence Recap

Another common situation is that of equivalence recaps where the relation r is
an equivalence (isomorphism) between the two theories. We can represent the
relation r, in this case, as two views vto and vfrom, one in each direction between
the recap and the cited paper that ensure their isomorphism. Then, the view v
is induced by vfrom ◦ v1 modulo conservativity. Moreover, the contribution of
the paper carries over to the realm via the view vto.

This occurs, for instance, in Example 2 where this intuition is explicitly writ-
ten down in the paper as “There are several equivalent ways to define multinets.”
(although not proved). In fact it is the most common situation in the sample
papers we studied.



Realm

Paper

Pillar1 Pillarn

CACF

MToCACF

>

CPaper

⊥

>

⊥

Realm Facev

v1 v2

r

(a) Publication Graph

Realm

Pillar1 Pillarn

CACF

MToCACF

>

· · ·

CPaper

⊥

>

⊥

Realm Face

v1 v2

r

(b) Aggregation Graph

Fig. 3: Plain Recaps (Example 1)

Note that adding an equivalent definition corresponds to a realm extension,
where the face is fixed, and the view from the face to the current theory can
be postulated. Therefore, in Figure 4a the paper effectively extends the realm
(or the current pillar) as introduced in Section 3.1. This corresponds to the
mathematical practice of “contributing to” a field (or mathematical theory).
This resulting realm after knowledge aggregation is shown in Figure 4b, where
the new paper contributes a new pillar to the realm. The equivalence is ensured
by vfrom and vto as we take into account conservativity to reduce them to the
⊥ theory.

3.5 Special Case: Specialization Recap

Thirdly, we have the case where r is a specialization relation that can be rep-
resented as a view vfrom from the cited theory to the recap. Same as in the
previous case, this ensures the existence of v as vfrom ◦ v1 modulo conservativ-
ity. However it does not directly contribute the results of the paper back to the
(same) realm as they concern only a special case of the concepts in the realm.

This is the case in Example 3 where the definition from the paper is a spe-
cialization of the one in the literature. In [CS09], the definition of the accelerated
Turing machine involves a concrete step size (2−n), whereas the definition it re-
caps allows arbitrary sequences of step sizes as long as their sum remains finite.
Thus we have the situation in Figure 5. Theory ATM contains the (opaque) sen-
tence (3), but there cannot be a view from ATM to atm as that is more general.
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Fig. 4: Equivalence Recaps (Example 2)

But we do have a view to atm(2−n), which naturally arises in treatments of accel-
erated Turing machines as an example. That special case can form a realm of its
own, namely the realm of accelerated Turing machines with step size 2n. Then
we can talk about aggregation with that realm (via the view vto) but we omit
that here for simplicity – the aggregation is similar as for equivalence recaps,
except with the specialization realm.

Realm1

Realm2

Paper

Pillar1 Pillarn

ATM

ATMhalt

atm(2−n)

vto

>

atm

⊥

>

⊥

Realm Facev

v1 v2

vfrom

Fig. 5: Publication Graph for Specialization Recaps (Example 3)

3.6 Postulated Recap/Adoption

Finally, we have the case for educational material such as the one in Example 4
where r cannot be directly modeled as either an include or a view. This is caused



by the constraint of self-containedness of such materials. Normally, in the case
where a more formal development is used we could represent it as an include and
be in the case for plain recaps. However, the home theory of the new symbols
must be the current development in order for it to be self-contained, so we
cannot use an include. Instead we envision a special kind of import that adopts
the included symbols effectively changing their home theory to the current one.
But, then the view v is not justified so we must also assert its existence. In that
case we call v a postulated view and the the relation r is an adoption (see Figure
6). We leave working out the precise details of postulated views and adoptions
in flexiformal theory graphs for future work.

This is the situation in Example 4 where the recap theory SET includes
only the symbols ∈ and {·, ·} from the formal development ZFset, but not their
axioms. Instead the symbols are “defined” by alluding to the literature (common
knowledge). We claim this verbalization effectively postulates the existence of v,
by implying that the semantics of the two symbols is compatible with that given
in the literature (which we represent as a realm).

Realm
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Pillar1 Pillarn

SET

SETOPS

>

ZFset

⊥

>

⊥

Realm Facev

v1 v2

r

Fig. 6: Publication Graph for Generalization/Unspecified Recaps (Example 4)

Note that we omit the aggregation part for this case as the purpose of such
educational or survey material is typically to provide a concise overview of a
realm rather than to contribute to it.

3.7 Multiple Recaps

Up to now we have only treated cases with single recaps to ease the exposition.
But papers and especially textbooks often recap from different realms and base
the rest of the exposition on them.

This is a the situation on the left of Figure 7; for the aggregation phase
this begs the question where the contribution should be placed. In the recap in
Rudin’s book mentioned in Section 2.3 we have separate recaps of vector spaces
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Fig. 7: Multiple Recaps (Example 5)

and topological spaces (5), and we analyze them as theory morphisms from their
respective realms. In this case, there is the realm of topological vector spaces (6)
which imports from both realms, this is the natural place for the contributions.
In the case such a realm does not exist yet, the paper can be used as the natural
starting point for (first pillar of) the realm. Actually, the “union realm” concept
in Figure 7 is a bit simplified. The contribution of the paper will usually add
some conditions – like conditions (a) and (b) in (6) – and use that for the base
theories of the realms. This does not invalidate our claim that there is always
a natural realm – which may have to be created – for the contribution of the
“paper”.

4 Conclusion and Future Work

We have presented a flexiformal model of the mechanics of paper-based dissem-
ination of research results and their aggregation into a structured knowledge
commons. We model the latter as an underlying theory graph structured by
inclusions and views that is further structured into a graph of realms to ab-
stract from details of the particular low-level developments of the mathematical
domains.

We identify the recap+contribution structure in mathematical papers as the
mechanism by which papers can at the same time be made self-contained for hu-
man readers and by which the contribution can be integrated into the knowledge
commons: the recap anchors the contribution in the commons. It is the realms
structure with its equivalent pillars and abstraction capabilities that gives the
recaps the necessary flexibility to adequately model the variety of anchors we
see in mathematical documents.

We have validated our model by identifying the recaps and their types in
30 recent papers randomly selected from a preprint archive. To obtain a more
scientific evaluation of the model, we need a much larger and more varied sample.
We are currently developing an annotation ontology for realms and recaps for
the KAT annotator [Dum+14] as a basis for a more principled and sustainable
analysis. This will also give us the data to develop our model further.



In the future we want to look into the communication-enabling partial iso-
morphisms postulated in Section 3.6 and see whether [KRSC11] is directly ap-
plicable.

We believe that the realms-based model can be extended to handle recaps
from multiple realms in one document. For the document model, this is not
a problem, since we would just have multiple bases for the conservative de-
velopment. For the aggregation things become more complex. Intuitively, the
contribution must be integrated into a realm that is the “union” of the realms,
and if that does not exist yet, the realm can be initialized with the paper at
hand.

An implementation of realms in the Mmt API [Rab13] is under way, this
will allow us to validate the model proposed in this paper from the synthetic
direction: If we have a realm-structured knowledge commons, then we may be
able to auto-generate recaps and common ground sections to obtain narrative
presentations of fragments that are more self-contained and readable to the hu-
man reader. This is particularly interesting for the concept of “guided tours” in
content-based eLearning systems: auto-generated explanatory narratives leading
to a given mathematical concept by topologically sorting the dependency rela-
tion given by the theory graph in the content commons. For the “early” parts
on the border to the estimated common ground, recaps might be more suitable
than direct copies of the definitions.
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