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Abstract. Mathematicians integrate acquired knowledge into a mental
model. For trained mathematicians, the mental model seems to include
not just the bare facts, but various induced forms of knowledge, and the
amount of this and the ability to perform all reasoning and knowledge
operations taking that into account can be seen as a measure of math-
ematical training and literacy. Current MKM systems only act on the
bare facts given to them; we contend that they – their users actually
– would profit from a good dose of mathematical literacy so that they
can better complement the abilities of human mathematicians and thus
enhance their productivity.
In this paper we discuss how we can model induced knowledge naturally
in highly modular, theory-graph based, mathematical libraries and estab-
lish how to access it to make it available for applications, creating a form
of mathematical literacy. We show two examples of math-literate MKM
systems – searching for induced statements and accessing a knowledge
via induced theories – to show the utility of the approach.

1 Introduction

There is an interesting duality between the forms and extents of mathemat-
ical knowledge that is verbally expressed (published in articles, scribbled on
blackboards, or presented in talks/discussions) and the forms that are needed
to successfully extend mathematical knowledge and/or apply it. To “do mathe-
matics”, we need to extract the relevant knowledge structures from documents
and reconcile them with the context of our existing knowledge – recognizing
parts as already known and identifying those that are new to us. In this process
we may abstract from syntactic differences, chain together known and acquired
facts, and even employ interpretations via non-trivial mappings as long as they
are meaning-preserving. We will call the ability to do all of this relatively ef-
fortlessly mathematical literacy as it is a prerequisite for doing mathematics
effectively. Mathematical literacy is a distinguishing characteristic of a trained
mathematician.

Current MKM systems are essentially illiterate mathematically as they only
act on the bare facts given to them; this may be one of the reasons why they are
not routinely used to support mathematics: mathematicians expect math literacy
in their discussion partners. For a query of “binomial coefficient” a math-literate



search engine would also find formulae of the form
(
3
5!

)
and C(n, k), instances of

the formula n!
(n−k)! , and even “choice without repetition” or “Pascal’s triangle”.

A math-literate proof checker would try to recognize an idempotent monoid
as Abelian and extend its repertoire of applicable theorems accordingly. And
finally, a math-literate eLearning system would pose the same exercises, but
generate different explanations for students who know groups as axiomatized
via an associative composition operation ◦ that admits units and inverses and
defined a division operation x/y := x ◦ y−1 and students to whom groups were
introduced by axioms for a division operation and composition, unit, and inverses
were defined from them. As these examples show, mathematical literacy would
make the interaction with MKM systems more natural and effective.

induced

rep.

Fig. 1. MKS

We contend that a large part of mathematical literacy is a func-
tion of having at our disposal – or being able to generate on de-
mand – a large space of knowledge that is induced in some way by
the explicitly represented knowledge we have acquired previously.
We call this the Mathematical Knowledge Space (MKS).

In this paper, we will show two ways of how knowledge items
can systematically be induced from existing representations to ar-
rive at more mathematically literate services. The first is based
on the mathematical practice of viewing an object of class A as one of class B
– which we call framing. Following [KK09] we model framing via theory mor-
phisms in modular theory graphs – which act as the MKS – and extend our
MathWebSearch engine [KMP12] so that it answer queries “modulo fram-
ing”. The second case study takes up the notion of realms that structure theory
graphs in a more human-oriented fashion. The various user roles identified in
[CFK14] allow us to induce special versions of the underlying theory graph for
different roles. Indeed, we show that the realm faces – which were assumed to be
hand-curated in [CFK14] – can be induced from the developments in the realms.
We regard these two systems as initial case studies that show what math liter-
ate MKM could look like only; more case studies are certainly needed and more
forms of induced knowledge need to be identified.

We will introduce the two forms of induced knowledge in the next two sec-
tions: Section 2 interprets the knowledge space as a Mmt [Rab08; RK13] theory
graph, the induced statements are computed by flattening (see Section 3). The
realms case study is presented in Section 4, where we discuss how realm faces
(induced theories) can be generated and pillars can be opened for inspection
from the faces. Section 5 shows an application of induced material: we can use
flattening to make a math search engine literate, and correspondingly, Section 6
discusses how realm-based access can be used in a library of formalizations.
Section 7 concludes the paper.

2 Induced Statements in Theory Graphs

To build math literate MKM services as defined in Section 1 we need to first
address the issues of generating (part of) the mathematical knowledge space and



then accessing the induced knowledge in order to make it available for MKM
applications.

We use the (theory-graph enabled) Mmt language and system as a basis of
discussion and we briefly introduce it below. Mmt [RK13] is a generic, formal
module system for mathematical knowledge. We will only give a brief introduc-
tion to Mmt here and then discuss the concepts using examples in the following
sections. We refer to [RK13] for further details.

The central notion is that of a theory graph containing theories and views.
Theories S are formed from a set of constant declarations which have a name and
an optional type and definition. Due to the Curry-Howard isomorphism, MMT
constants can be used to declare not only symbols but also axioms and theorems
describing their properties. Views v : S→ T are structure-preserving mappings
(morphisms) from the source to the target theory which are also truth-preserving
in the sense that they map axioms of the source theory to theorems in the target
theory. These properties ensure that all theorems of the source theory induce
theorems in the target theory. In addition to views, the module level structure
in Mmt theory graphs is given by theory inheritance. The most general kind
of inheritance in Mmt is represented by structures which are (possibly partial)
named imports (and defined using theory morphisms). We will use the term
includes to refer to the trivial structures which are unnamed and total.

Every Mmt declaration is identified by a canonical, globally unique URI.
Theories and views can be referenced relative to the URI G of the theory graph
(document) that contains them by G?〈〈theory-name〉〉 and G?〈〈view-name〉〉, re-
spectively. Constant declarations can be referenced relative to the URI of their
containing theory T by T?〈〈constant-name〉〉. Similarly, assignment declarations
can be referenced relative to the URI of their containing view v by v?〈〈constant-
name〉〉.

Note that the names of constants, theories and views can have multiple /-
separated fragments and are of the general form f1/. . . /fn. This makes Mmt
URIs much more expressive and, in particular, allows the following additional
access methods:

– if theory T contains structure s1, (the target of) s1 contains structure s2,
. . ., and sn contains constant const then we can use the constant name
s1/. . . /sn/const, to refer to const (as translated over the assignments from
the structures) from T.

– if there is a view v1 : T1 → T and a view v2 : T2 → T1, . . ., and a view
vn : Tn → Tn−1 where Tn contains constant const then we can use the con-
stant name [G?v1]/. . . /[G?vn]/const, to refer to const (as translated over the
assignments from the views) from T

– if T1 is a nested module in T, . . . , and Tn is a nested module in Tn−1 we can
use the theory name T/T1/. . . /Tn to refer to theory Tn.

The Mmt system provides an API to the Mmt data structures described
above and the Mmt implementation [Rab08; RK13] provides a Scala-based
[OSV07] open source implementation of the Mmt API.



Generating Induced Knowledge In the context of theory graphs we model the
process of generating the knowledge space as an operation on theory graphs.
Specifically, one that takes a theory graph G and return an enriched graph G
where a new part of the mathematical knowledge space is explicitly represented.
We call G the induced theory graph.

Accessing Induced Knowledge A key aspect of Mmt is that it’s URI language is
expressive enough to produce URIs for the induced statements that are not only
unique but also informative. Specifically, we can compute the induced knowledge
entities from the induced theory graph by their URI and the original graph alone,
and furthermore, we can generate explanations for the existence of each induced
statement in terms of the original theory graph. We call this property of Mmt
URIs information completeness.

3 Flattening Theory Graphs

To better understand the concept of framing in modular libraries, consider the
theory graph u in Figure 2. The right side of the graph introduces the elementary
algebraic hierarchy building up algebraic structures step by step up to rings; the
left side contains a construction of integer arithmetics. In this graph, the nodes
are theories1, the solid edges are structures (imports) and the wavy edges are
views.

As discussed in section 2, Mmt structures can carry a name, and inherited
constants can be disambiguated by the name of the structure that induced them.
An application of this is in the definition of the ring theory, which inherits all of
its operators (and their axioms) via the two structures m (for the multiplicative
operations) and a (for the additive operations). To complete the ring we only
need to add the two distributivity axioms in the inherited operators m/◦ and a/◦.

Furthermore, since structures are defined using morphisms (just like views)
they can carry an assignment which maps symbols and axioms from the source
theory to terms in the target theory. We see this in the view e from Monoid
to NatArith, which assigns N to the base set G, multiplication (·) to ◦ and
the number 1 to the unit e. To satisfy the obligations of the theory morphism
property, e also contains proofs for all Monoid axioms in NatArith. It is a special
feature of Mmt that assignments can also map morphisms into the source theory
to morphisms into the target theory. We use this to specify the morphism c
modularly (in particular, we can re-use the proofs from e and c).

Note that already in this small graph, there are a lot of induced statements.
For instance, the associativity axiom is inherited in seven times (via inclusions;
twice into Ring) and induced four times (via views; twice each into NatArith and
IntArith). All in all, we have more than an hundred induced statements from
the axioms alone. If we assume just 5 theorems proven per theory (a rather

1 We have left out the quantifiers for the variables x, y, and z from the axioms to reduce
visual complexity. The always range over the respective base set. Furthermore, all
axioms are named; but we only state the names we actually use in the examples.
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G, ◦
x◦y∈G
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assoc:(x◦y)◦z=x◦(y◦z)

Monoid

e
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}
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{
m 7→ e
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}
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Fig. 2. A Mmt Graph for Elementary Algebra

conservative estimation), then we obtain a number of induced statements that
is an order of magnitude higher.

Another important property of Mmt is that, as discussed in Section 2, Mmt
URIs are expressive enough to supply names for all induced statements. In fact,
we can already access the induced statements in Figure 2 in Mmt. For example,
the statement ∀x, y, z : Z.(x + y) + z = x + (y + z) induced by the view c in
IntArith has the Mmt URI u?IntArith?c/g/assoc. Still, for external applications,
it is essential to have the induced statements explicitly represented.

Generating Induced Statements We already hinted in Section 2 that generating
the induced statements is a theory graph operation i.e. it takes a theory graph as
input and returns a different one, specifically the induced theory graph. Below,
we define theory graph flattening as an instance of such a generation procedure
that produces those statements induced by framing.

Definition 1. Given a theory graph G the flattening of a theory T in G is a
theory T with the same URI as T containing:

– all constant declarations that are in T.



– all constant declarations that are imported into T.
– for every view v : S→ T the projection of every S-based declaration over

view v. Here, by S-based declaration we refer to the declarations in S and in
theories that import S.

The URIs of the induced declarations are based on the definition of Mmt
URIs from Section 2 (see also the assoc example above) and permit recovering the
origin of the induced declarations (i.e. are information complete as defined in 2).
Specifically, constant declarations from T or imported in T by an include preserve
their name. Meanwhile constant declarations imported in T by a structure or
induced by a view are additionally qualified with the name of that structure or
view.

Definition 2. The flattening of theory graph G is a theory graph G with the
same URI as G containing the following module declarations :

– for every theory T in G the theory T
– a copy of every view v : S→ T from G

Note that, since theory flattening preserves theory URIs and doesn’t add new
axioms (only new theorems), every view v in G is also a view in G.

4 Inducing Realm Faces/Flattening Realms
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Fig. 3. Realm Schema

In [CFK14] we introduce the concept of realms to con-
solidate knowledge about mathematical theories. This is
motivated by the intuition that users of a knowledge col-
lection can have different roles and therefore want to see
different kinds of materials. In a nutshell, a realm – pic-
tured schematically on the right – is super-structure of a
fragment of a theory graph that singles out a set of con-
servative developments called pillars and extends them
with a theory called the face of the realm that abstracts
from all development details in the pillars, which are re-
quired to be linked by a chain of views that makes them isomorphic.

The idea of [CFK14] is that practitioners only need access to the face that
supplies all the useful facts about a mathematical domain, whereas the student
also wants to know how these are established and needs to access the “develop-
ment history” in one (or more) pillar. The developer finally wants to develop the
knowledge about the domain by extending one (or more) pillar, the development
of the face is just regarded as a side effect.

In Figure 4, we have refined the schematic of Figure 3 by graying out the
parts of the realms the users in their respective roles will not be able to see.
We can see the restricted theory/realm graphs as induced material adapted to
particular users: i) the face graph – the faces inherit the graph structure of
the developments – for the practitioners, ii) the graph of faces with selectively
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Fig. 4. Realms and User Roles

opened developments for the student iii) the developments with their faces for
the developers, and iv) the original theory graph for the knowledge librarian – a
“user” of the library who maintains the library, e.g. refactoring theories, renam-
ing theorems to avoid name clashes, etc. For the developer and the librarian, the
realm faces are secondary objects which have to be maintained without being
the primary object of study. For them it would be very convenient to let them
be computed from the developments automatically as induced material. Indeed
this can be done, as we will show in the rest of this section.

4.1 Generating Realm Faces as Induced Theories

realm r = {
pillar p1 = {tp1

1 , t
p1

2 , . . . , t
p1

k1
}

pillar p2 = {tp2

1 , t
p2

2 , . . . , t
p2

k2
}

...
pillar pn = {tpn

1 , tpn

2 , . . . , tpn

kn
}

equivcyc = {v1, . . ., vn}}

Fig. 5. A Realm Specification

For realms we consider their face as inducible
from the pillars and discuss in the following
how that can be mechanized.

Firstly, if faces are induced, we can define
a realm by just giving it a name, specifying
the pillars, and listing the cycle of views that
shows that the pillars are equivalent. List-
ing 5 on the right gives the general form of
the specification.

For the induced face, the URI g of the file
with the realm specification induce the Mmt URI of the face, and the Mmt
URIs of the symbols inside are induced from the pillar names. To induce the
face we need to solve three main issues:
1. select which symbols from each pillar should be in the face
2. merge equivalent symbols (such as the e in Figure 6)
3. resolve naming conflicts (equivalent symbols with different names and dis-

tinguishable symbols with same name)
Before we formalize this in Definition 4 below, let us adapt the groups realm
from [CFK14] to the Mmt setting for intuitions.
Example 1. Figure 6 shows a realm with two pillars for the equivalent group
definitions based on composition ◦ and, respectively, division / in the usual way.
The corresponding realm specification is in Figure 1.1. We have added the unit
e with its axiom eax1 , eax2 to group/ even though it is mathematically redundant



group◦
G : type, ◦ : G→ G→ G
e : G, inv : G→ G

assoco, eleft, eright, invax

group/
G : type, / : G→ G→ G, e : G

eax1 , eax2 , /ax1 , /ax2

slash◦
/ : G→ G→ G = λa, b.a ◦ (inv b)

circ/
◦ : G→ G→ G = λa, b.a/(e/b)
inv : G→ G = λa.(e/a)

inv thm◦
inv thm : ` (inv e)

.
= e = trans eright invax

inv thm/

inv thm : ` (inv e)
.
= e = eax2 e

group

G : type, ◦ : G→ G→ G, e : G, inv : G→ G, / : G→ G→ G
circ/inv thm : ` (inv e)

.
= e, slash/inv thm : ` (inv e)

.
= e

assoco, eleft, eright, invax, eax1 , eax2 , /ax1 , /ax2

v/ v◦

i◦ i/

Fig. 6. A Realm of Groups

– e = x/x for all x in G – because that allows us to show all aspects of the face
generation algorithm below.

realm group = {
pillar circ = {group◦, slash◦}
pillar slash = {group/, circ/}
equivcyc = {v◦,v/}}

Fig. 7. A Group Realm Spec.

Theories slash◦ and inv thm◦ as well as circ/
and inv thm/ are each conservative developments
of group◦ and group/ respectively as they only
introduce defined symbols. The views v◦ and v/
ensure the equivalence of the two pillars with the
obvious assignments. The proofs that the axioms
hold (i.e. the assignments for them in the views)
are all straightforward and omitted for simplicity. The face for the realm is
shown in theory group and has the intuitive shape, containing all the important
concepts as primitive symbols and all their properties as axioms. We explain
how the face was produced below.

Definition 3. We define the following partial ordering on symbols in a realm
r. Let t and s be symbols in theories T and S respectively such T and S are in
different pillars. If there is an assignment s := t in one of the pillar equivalence
views then we write s ≤r t. If there is also an assignment t := s in such a view
then we write. s =r t, otherwise s <r t. We call a symbol essential in r if it is
<r-minimal.

The intuition behind Definition 3 is that if there is an assignment s := t then
there is an equivalence between s and t at the realm level and we need to decide
which should appear in the face. Then, the ordering captures the fact that s



is a primitive concept in its realm while t is derived, possibly only to give the
equivalence view. In Figure 6 the symbols inv and ◦ from theory circ/ are derived.

Definition 4. Let r be a realm as specified in Figure 5. Then, we generate a
face for r by adding copies of all essential symbols (with type but no defini-
tion – following the definition of a realm face from [CFK14]) with the following
provisions:
1. If two essential symbols in different pillars have the same name we prefix

them with the pillar name (to ensure unique URIs)
2. If n essential symbols s1, . . . , sn are equal (with respect to =r) we add the

later ones as aliases of the first (order is irrelevant but must be consistent).
An exception occurs when (some) of the equal symbols have the same name
in which case we only add them once and effectively merge them (instead of
prefixing the names with the pillar name as usual).

Example 2. The face group from Figure 6 is generated following Definition 4. The
essential symbols (omitting axioms for simplicity) are G, ◦, e, inv, inv thm for the
first pillar and G, /, e, inv thm for the second. We have two name clashing pairs:
group◦?e and group/?e as well as inv thm◦?inv thm and inv thm/?inv thm. For
the first pair (e) we have an equality since v◦ and v/ assign them to each other
so we merge. Then, for the second pair (inv thm) we prefix with the realm name
producing circ/inv thm and slash/inv thm to obtain the face shown in Figure 6.

4.2 Curating Realms through Alignments

The problem with Definition 4 is that we can have duplicate symbols that are
actually equivalent but appear as different because of slightly different formal-
izations. A common example is theorems with different proofs as is the case of
inv thm in Example 2.

In [CFK14] realm faces are meant to be manually generated and curated
to avoid such issues. However, we propose an alternative method of curating
faces by giving alignments between pillar theories to establish symbols as being
equivalent. This idea is inspired from [KRSC11], but has not been made formal
before.

Definition 5 (Alignment). An alignment is a view pair v1 : Ŝ → T and

v2 : T̂ → S, where Ŝ is the abstraction of S: Ŝ omits all definitions in S.

The abstraction operation ·̂ is needed to allow us to assign a new interpretation
for defined symbols which would otherwise be translated via definition expansion.
We will concentrate on the case where S and T are in different pillars here.

For instance, take the situation in Figure 6 where the (trivial) theorem
inv thm proving that e is its own inverse appears in each pillar. Still, the proofs
are different over the translation so that both symbols appear different at the
Mmt level. However, we can fix the problem by giving an alignment between
the two theories containing the theorem. Listing 1.1 below shows the alignment
and the resulting, curated face.



Listing 1.1. Alignment Example

view a/ : ̂inv thm◦ → inv thm/ = {inv thm := inv thm}
view a◦ : ̂inv thm/ → inv thm◦ ={inv thm := inv thm}
theory group = {G : type, e : G, . . ., / : G→G→G . . ., inv thm : ` (inv e)

.
= e}

4.3 Opening a Pillar

For the student/developer view described above we need the operation of opening
a pillar that allows the developer to access the internals of the symbols and
axioms in the face as formalized in one of the pillars. We model this by creating
a new theory for each pillar that combines the symbol aggregation and name
abstraction of the face theory with the implementation details of that pillar.

group◦ group/

slash◦ circ/

inv thm◦ inv thm/

group/circ group/slash

group

v/v◦

i◦ i/

f◦ f/

s◦ s/

Fig. 8. Opening a Pillar

Concretely, given a realm r and a pillar p we
induce a theory r/p that is generated following
the same procedure as the face (i.e. from Defi-
nition 4) but without omitting the definitions.
For symbols in a different pillar we generate
the definition by translating it over the view
from that pillar into p. Effectively, we obtain
the symbol definitions as seen from p which
corresponds to the intuition of opening a pil-
lar.

In the theory graph, we represent this as
1. a structure s from the pillar p that adds its
symbols to r/p but with the renamings used in
the face generation and, 2. a view v : r→ r/p

that formalizes the relation that r/p is an implementation for the face.

theory group/circ = {
G : type, ◦ : G → G → G, e : G, inv : G → G,
/ : G → G → G = λa,b.a ◦ (inv b),
circ/inv thm : ` (inv e)

.
= e = trans eright invax,

slash/inv thm : ` (inv e)
.
= e = eax2 e,

...
}

Fig. 9. Developer View Example

Listing 9 shows the the-
ory group/circ representing
the opening of pillar circ in the
realm of groups above. It has
the same symbols as the face
but with all symbols that are
non-primitive in circ having a
definition. For the two sym-
bols originating in the second
pillar (/ and slash/inv thm)
their definition is obtained by
translating over v◦.

The resulting theory graph is shown in Figure 8 where the content of each
theory is omitted. Note that the theories group, group/circ, group/slash as well
as the structures s◦ and s/ and the views i◦, i/, f◦ and f/ are all induced.



5 Searching the Knowledge Space of the LATIN Logic
Atlas

As a first application of the concepts described in this paper we build a system
for searching the knowledge space (i.e. flattened theory graph) of the highly
modular LATIN [Cod+11] library.

MathWebSearch For searching, we use our MathWebSearch system [KMP12],
which is a content-oriented search engine for mathematical expressions. that
indexes formula-URL pairs and provides a web interface querying the formula
index via unification. The implementation of a math-literate web service that
conducts such searches is very simple: instead of harvesting formulae from a
formal digital library directly as in [Ian+13], we flatten the library first, and then
harvest formulae. As discussed in section 2, Mmt flattening gives the induced
constants information complete Mmt URIs which we directly use for formula
harvests. Then, we need to replace the human-oriented search front-end of MWS,
i.e. the input of search queries and the presentation of search results. This can
be used for:
Instance Search e.g. to find all instance of associativity we can issue the query

∀x, y, z : S .(x op y) op z = x op (y op z), where the - are query variables

that can be instantiated in the query. In the library from Figure 2 we would
find the associativity axiom SemiGrp/assoc, its directly inherited versions in
Monoid, to Ring and in particular the version u?IntArith?c/g/assoc.

Applicable Theorem Search where universal variables in the index can be
instantiated as well; this was introduced for a non-modular formal library

in [Ian+13]. Here we could search for 3 + 4 = R and find the induced
statement u?IntArith?c/comm with the substitution R 7→ 4 + 3, which allows
the user to instantiate the query and obtain the equation 3 + 4 = 4 + 3
together with the justification u?IntArith?c/comm that can directly be used
in a proof.

Induced statements in the LATIN library The LATIN atlas is written in an
extension of the TWELF encoding [RS09] of LF [HHP93], so it is natural to
use an extension of LF notation with query variables for input. Therefore, we
use the Mmt notation language and interpretation service described in [IR12] to
transform LF-style input into Mmt objects and subsequently to MWS queries.

We implemented library flattening as described in Section 3 in Mmt and
applied it to the LATIN library. The flattening (once) of the LATIN library
increases the number of declarations from 2310 to 58847 (a factor of 25.4) and
the total size of the library from 123.9 MB to 1.8 GB (a factor of 14.8). As
expected, the multiplication factor depends on the level of modularity of the
library. For instance, the highly modular math sub-library containing mainly
algebraic structures increases from 2.3 MB to 79 MB thus having a multiplication
factor of 34.3, more than double the library average. The size of the MWS
harvests also increases considerably, from 25.2 MB to 539.0 MB.



Explaining URIs of induced statements The presentation of the Mmt URIs re-
quires some work as well: while the Mmt system can directly dereference the
Mmt URI and thus be used to present the induced statement, humans want
a justification that is more understandable than a Mmt URI. Fortunately, this
can be generated from the Mmt URI by a simple template-based algorithm. Let
us consider the search result u?IntArith?c/g/assoc from the instantiation search
above, where we take u to be http://cds.omdoc.org/cds/elal. The first step
is to localize the result in the theory u?IntArith with the sentence

Induced statement ∀x, y, z : Z.(x + y) + z = x + (y + z)
found in http://cds.omdoc.org/cds/elal?IntArith (subst,
justification).

(1)

Here the underlined fragments carry hyperlinks, the second pointing to the jus-
tification:

IntArith is a CGroup if we interpret ◦ as + and G as Z. (2)

which can be directly inferred from the information associated to the morphism
c in the Mmt URI. Then we skip over g, since its assignment is trivial and gen-
erate the sentence.

CGroups are SemiGrps by construction (3)

and finally we ground the explanation by the sentence

In SemiGrps we have the axiom
assoc : ∀x, y, z : G.(x ◦ y) ◦ z = x ◦ (y ◦ z) (4)

The sentences (1) to (4) can be generated from templates, since the Mmt system
gives access to the necessary information: source and target theory as well as the
assignment ψ′ for (2), the fact that the path from SemiGrp to CGroup2 only con-
sists of inclusion that triggers the template for (3) and the original formulation
of the axiom assoc.

The resulting search interface is shown in Figure 10 and is available at [FS].
Note that we make use of another peculiarity of the Mmt system in this expla-
nation: all constants in the theory graph carry notation declarations [KMR08],
which can be used to generate human-readable presentations of arbitrary formal
objects in the graph.

6 Future Work: Realm-Supported Workflows in the Open
Archive of Formalizations

A natural application area for induced realms as described in Section 4 is the
integration of formal libraries, so that results in any of them can be used to prove
new theorems in any other. This is the aim of the Open Archive of Formalizations
[OAF] which integrates several, large, formal mathematical libraries. It uses the

2 In fact these theory identifiers are not adequate for explanations. We conjecture
that verbalization of the primary symbol of the respective theory would be the right
choice here – see [Koh14] for these concepts – but leave studying this to future work.



Fig. 10. The FlatSearch Web Interface for LATIN

LATIN logic atlas [Cod+11] as a logical basis and imports the libraries as based
on a dedicated LATIN meta-logic. Views between the base logics relate the
libraries themselves at the foundational level but at a higher level, the important
mathematical concepts remain unassociated.

Even though the underlying domains should form realms straddling the li-
braries, in practice, different libraries define core concepts (e.g. real numbers,
functions, etc.) differently. Therefore, even after importing them to a common
foundation, libraries remain effectively segregated. To achieve genuine interop-
erability we need to associate the equivalent concepts from each library with
each other and establish a new library containing the merged concepts. This is
a direct application of the ideas from Section 4. First, we can associate concepts
by declaring realms. Then, we can generate the induced faces graph that pro-
vides the interface to the merged, integrated library. The operation of opening a
pillar described in Section 4.3 allows access to the implementation details of each
individual library where needed. Finally, the resulting interface can be refined
via alignments.

The different induced realm graphs in Figure 4 can be seen as special lenses
that allow users with different roles to see the underlying archive according to
their preferences and needs. This is similar to how an experienced human would
present the materials if she were aware of the user role; therefore we can see the
induced realms as a form of mathematical literacy.

Applying the above to the OAF is still future work but the challenges encoun-
tered during the project provided the main motivation for the work described in
this paper.

7 Conclusion and Future Work

One of the characteristic abilities and practices of trained mathematicians is the
ability to integrate new mathematical knowledge into their mental model, inter-
pret it via non-trivial semantic mappings, and take a conceptual and deductive
closure of the acquired knowledge in all the processes of “doing mathematics”.



Current MKM systems that want to support “doing mathematics” directly act
on the represented mathematical knowledge they are fed with and therefore fall
short of humans which make them less useful as tools and interaction counter-
part.

The main hypothesis of the work presented here is the idea that running
classical MKM algorithms on a suitably structured “mathematical knowledge
space” (MKS) which extends the represented knowledge by a class of “induced
knowledge items” will let them approximate mathematical literacy. We test this
hypothesis on two classes of knowledge items in the context of theory graphs

In a first case study we extend a theory graph with statements induced by
views in the theory graph of the formal LATIN library. Indexing this in the
math-specific, but otherwise illiterate MathWebSearch engine turns it into the
FlatSearch engine that gives us results that approximate mathematical liter-
acy. In the second case study, we build on a realm-structured knowledge collec-
tions and turn it into a MKS by inducing realm faces and into a personal MKS
by opening pillars as needed. Here the induced knowledge items are theories,
structures, and views in the theory graph.

In both cases much of the heavy lifting has been done by special URIs, that
serve as systematic identifiers of induced elements. In the case of FlatSearch,
these URIs are the Mmt URIs already introduced in [RK13]. They are all we
need to explain the results in terms of the original LATIN graph. In the realms
case study we took great care to introduce new URIs for all induced knowledge
items. It speaks for the strength and versatility of the Mmt design that the
realm-based URIs can be interpreted and justified in the Mmt framework.

In the future, we plan to extend the “math literacy via induced knowledge
structures” approach proposed in this paper with more facets and applications.
We conjecture that the crucial step in such extensions will be the availability
of some form of systematic naming scheme that uses the structural parts of the
original knowledge to name induced knowledge items.

One extension that seems immediately profitable is to extend flattening and
realms to flexiformal representations (representations of mathematical knowl-
edge at flexible levels of formality; see [Koh13]) and apply it to traditional
mathematical documents. [Lau07] revealed a theory graph of 51 theory nodes
and 107 theory morphisms of which 12 were views, but 63 had non-trivial as-
signments in the first 35 pages of Bourbaki’s Algebra. Applying FlatSearch
to this graph would solve of the problems readers face with the Bourbaki books
– which are otherwise well-liked for their structured approach: particular math-
ematical structures and objects can only be understood if one already knows all
the material they depend on. One author even said that

Bourbaki was a dinosaur, the head too far away from the tail. Explaining:
[. . . ] You could say “Dieudonné what is the result about so and so?” and
he would go to the shelf and take down the book and open it to the right
page. After Dieudonné retired no one was able to do this. So Bourbaki
lost awareness of his own body [Ric]



A flexiformalization of the Bourbaki books together with an extension of MMT
that can deal with flattening of informal texts would go a long way to alleviate
these problems.
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