
Flexary Operators for Formalized Mathematics

Fulya Horozal, Florian Rabe, and Michael Kohlhase

Computer Science, Jacobs University Bremen, Germany http://kwarc.info

Abstract. We study representation formats that allow formally defin-
ing what we call flexary operators: functions that take arbitrarily many
arguments, like

∑n
k=1 ak or binders that bind arbitrarily many variables,

like ∀x1, . . . xn. F . Concretely, we define a flexary logical framework based
on LF, and use it as a meta-language to define flexary first-order logic
and flexary simple type theory. We use these to formalize several flexary
mathematical concepts including arithmetical and logical operators, ma-
trices, and polynomials.

1 Introduction & Related Work

Ellipses (. . .) such as in a1, . . . , an are commonly and indispensably used in
mathematical texts. However, representation formats for formalized mathemat-
ics typically do not provide a structural analog for ellipses. This is problematic
because many common operators are naturally defined using a primitive ellipsis
operator, and formalizations have to work around the missing language infras-
tructure. We will now lay out the problem, survey and discuss the most com-
monly used workarounds and then present a solution which introduces sequences
as a language feature at the meta-level.

1.1 Flexary Operators and Ellipses

We say that an operator is of flexible arity or flexary if it can take arbitrarily
many arguments. Common examples are set-construction {a1, . . . , an} or addi-
tion a1 + . . .+ an. We speak of fixary operators if the number of arguments is
fixed.

Ellipses Flexary operators are closely related to the ellipsis operator For
presentation-oriented formats, ellipsis are no challenge. For example, LATEX of-
fers \ldots, and presentation MathML [Aus+03] marks up the corresponding
Unicode character as an operator via the mo element. However, the content-
oriented formats that we need for formalized mathematics have devoted much
less attention to ellipses. This is surprising considering how ubiquitous they are
in mathematical practice.

We can distinguish 4 kinds of ellipses. We speak of a sequence ellipsis if we
give a sequence of arguments to a flexary operators as in a1 + . . .+ an.

The nesting ellipsis uses a characteristic double-. . . pattern to compose a
sequence of functions as in f1(. . . fn(x) . . .). It corresponds to folding the function

http://kwarc.info

f over the list of arguments. In the presence of a flexary operator for function
composition, we can recover the nesting ellipsis as a special case of the sequence
ellipsis via f1(. . . fn(x) . . .) := (f1 ◦ . . . ◦ fn)(x).

En =

1 0 · · · 0
...

. . .
...

0 · · · 0 1

When working with matrices, we use 2-dimensional
ellipses as in the matrix on the right. If we define vectors
using a flexary constructor (a1, . . . , an) and matrices as
vectors of vectors, we can recover the 2-dimensional el-
lipses by combining two sequence ellipses. Of course, that would still leave the
problem of presenting vectors with ellipses.

Finally, we have the infinite ellipsis used mainly for infinite series as in
a1 + a2 +

Flexary Binders We can generalize the above concepts to binding operators. We
speak of a flexary binder if it can bind an arbitrary number of variables as in
∀x1, . . . , xn.F . Most unary binders such as quantifiers and λ are usually assumed
to be flexary in this sense.

1.2 Flexary Notations

A common approach is to use representation languages that are fixary at the
content level but flexary at the presentation level. The connection between the
two is performed by flexary notations. Typically, these use associativity con-
straints on binary infix operators.

For example, we can define flexary addition +(a1, a2, a3) as identical to
a1 + a2 + a3, which in turn is an abbreviation for (a1 + a2) + a3. Here
we use the logical property of associativity to justify a left-associative notation.

We can also use associative notations for logically non-associative operators.
For example, we can define flexary implication⇒ (a1, a2, a3) as a1 ⇒ (a2 ⇒ a3),
i.e., by using a right-associative notation for binary implication.

While there is no established terminology, we can apply similar notations
to binders. We call a flexary binder associative if Qx1.Qx2.F = Qx1, x2.F .
In that case, we can define the flexary version of the binder from the unary
version. This is very common because the important binders of universal and
existential quantifier are associative and (up to currying) so are λ, integral (e.g.∫
dx dy dz), sum (e.g.

∑
i,j∈N), and product (e.g.

∏
n+m<k). A notable exception

is the quantifier of unique existence.
Using flexary notations has the advantage that the content level remains

simpler: Flexary operators are always implicitly reduced to fixary ones. This is
important for language analysis and perfectly sufficient in informal mathematics.
However, in formalized mathematics, the implicit conversions must be explicitly
implemented. Usually, this is achieved by using the notation declarations to
direct the parser and printer to convert between the seemingly-flexary human-
facing syntax and the fixary official syntax.

This is unsatisfactory for several reasons. Firstly, for logically associative
operators, there is no canonical choice between using a left- or a right-associative

2

notation. In a flexary content representation both (a1+a2)+a3 and a1+(a2+a3)
would normalize to the canonical +(a1, a2, a3).

Secondly, this trick only works well if the domains and codomain of the op-
erator are equal. Consider the flexary set construction operator {a1, a2, a3}. We
can only approximate it using a left-associative notation for an adjoin operator
a&b := a ∪ {b} and then write ∅&a1&a2&a3.

Thirdly, the flexary representation is often the more natural one for imple-
mentation, e.g. for the left-associative application f@t in simple type theory. In
the usual fixary type theory, the n-ary functions f(x, y) are represented in the
curried form f@x@y, which internally expands to @(@(f, x), y). Thus, the head
f of the term is not available at the root of the syntax tree and has to be looked
up by traversing the tree. In practice, this traversal is so awkward that many
implementations of type theory, e.g., Twelf [PS99], internally use a flexary ap-
plication operator after all so that f(x, y) can be represented as @(f, x, y). This
leads to the strange situation that both the user and the developer effectively
use flexary operators, and only the official language definition uses fixary ones.

Finally, this approach only works in general for the case where the number
of arguments is constant: We cannot use it to represent a sequence ellipsis like
+(a1, . . . , an), where the number of arguments is a variable. For the special
case of conjunction and disjunction, notations for ellipses were realized in Mizar
[CICM1212]. For example, a special binary connective &. . .& is used for the
conjunction of a sequence ellipsis, and the parser expands F (m)&. . .&F (n) into
∀i.m ≤ i ≤ n⇒ F (i).

1.3 Flexary Representation Languages

Instead of simulating flexary operators through notations, we can use a repre-
sentation language that supports flexary operators at the content level. There
are several content features that can be used.

Lists We can represent flexary operators as unary operators that take a list
as an argument. In that case, we represent a1 + a2 + a3 as +(List(a1, a2, a3)).
Actually, this tacitly assumes that we have at least a flexary list constructor.
In a pure fixary language, we would have to represent it as
+(cons(a1, cons(a2, cons(a3, nil)))), which is quite different from the informal
mathematical object.

This approach permits using variables that quantify over sequences, and –
using map and fold – it is easy to represent ellipses. This is widely used in
programming languages, where lists are an accepted foundational data type.

In mathematics however, it is artificial to use lists since any formal mathe-
matical theory for flexary operators would depend on the theory of lists, which
itself is rarely used in informal mathematics. Another drawback is that all argu-
ments must have the same domain. To permit different argument domains, we
must allow lists whose elements have different types (or use sufficiently imprecise
types).

3

Sequences Sequence types use a monadic type constructor Seq : type → type like
lists and enjoy the same advantages. The difference is that sequences are always
flattened, i.e., the canonical functions Seq(Seq(A)) → SeqA and A → Seq(A)
are inclusions. For example, Seq(a, b,Seq(c, d), e, f) = Seq(a, b, c, d, e, f). This
makes sequence types closer to informal mathematics because they need less
representational artifacts. Variants of sequence types occur in some programming
languages but are rare in typed languages for formalized mathematics.

Sequences are more common in untyped languages. In the absence of a type
system and in the presence of flattening, there is no need to write f(Seq(a, b, c))
at all. Instead, we can simply write f(a, b, c) (even if one of the arguments is
another sequence).

This approach is used in Common Logic (CL [Com]), an untyped flexary
variant of first-order logic. There, every non-logical symbol is flexary and vari-
ables may quantify over sequences. This substantially complicates the semantics
because models must interpret every function symbol as a function that takes
an arbitrary sequence of arguments; incidentally a proof theoretical semantics is
not defined in CL.

[KB04] defines a flexary first-order logic and studies its semantics. The sig-
nature defines the arity of each non-logical symbol, and the arity can either be
fixed or flexible. Similarly, variables are divided into individual and sequence
variables.

Mathematica [Wol12] also uses untyped sequences, including sequence vari-
ables. Functions are fixary, but flexary functions can be defined by matching
arguments against sequence patterns. Because Mathematica focuses on compu-
tation rather than logic, this is less problematic than for CL.

The untyped approaches to sequences usually cannot represent ellipses well
because they tend to lack higher-order functions.

Indexed types Mixed-type lists can be represented concisely in Martin-Löf type
theory [ML74], calculus of constructions [CH88] and related languages. Example
implementations are Agda [Nor05] and Coq [The14]. If we write [n] for the
type containing 0, . . . , n − 1, we call objects of type T : [n] → type indexed
types. Mixed-type lists can be defined as indexed terms l : Πi : [n]. T (i). Then
flexary functions can be declared concisely as binary functions that take a natural
number n and term indexed by [n].

Ellipses can be represented very elegantly now, e.g., a1, . . . , an is simply
λi. ai. Moreover, contrary to all of the above, the length of a sequence is stat-
ically known, which permits static index-within-bounds checking when access-
ing an element of a sequence. Quantification only affects sequences of a cer-
tain length, e.g., ∀x : [n] → A.F ; to quantify over all sequences, we can use
∀n.∀x : [n]→ A.F .

A disadvantage is the substantial commitment at the language level, which
goes far beyond simply adding sequences: The language must be able to express
the types [n] and [n] → type (e.g. via inductive constructions and a universe
hierarchy in Coq).

4

Type sequences We introduce a novel approach: we use term sequences a1, . . . , an
that are typed component-wise by a type sequence A1, . . . , An. Importantly, type
sequences A1, . . . , An are not types themselves – they are simply sequences of
types.

Like sequences and contrary to indexed types and list types, this has the
advantage that we do not change the underlying type theory. No representational
artifacts are needed to flatten sequences or to apply a function to a sequence
of arguments. And like for indexed types, the length of a sequence is statically
known.

1.4 Flexary Meta-Languages

For content representations of flexary operators, the previous section discussed
which representational primitives to use. An orthogonal question is at which
language level they should be introduced.

Consider the first-order theory of monoids in which we want to define the
flexary version of the composition operator in the obvious way. This should also
include the power an = a ◦ . . . ◦ a for a natural number n as a special case.
We might do that by importing the theory of sequences and then using some
kind of induction. But this is awkward because the theory of monoids would
become much more complex. We might even say that it becomes polluted by the
imported operations.

We might try to move the definition to a special enriched theory, which
includes both sequences and monoids. But that would contradict mathematical
practice, where the definition of the flexary composition is likely to be found in
the same paragraph where the binary one is.

Thus, we should add sequences to the logic as a fixed interpreted sort. How-
ever, now a similar argument applies: The logic is complicated. Moreover, it does
not account for the fact that we would like to use sequences in any logic. There-
fore, our goal is to add sequences at the level of the logical framework. This
corresponds most closely to informal mathematics where sequences and ellipses
are assumed to be given at the informal meta-level and not explicitly defined at
the logical or set theoretical level.

The approach of type sequences is most suitable in this respect because it
is already orthogonal to the type theoretical and logical foundations. Thus, it
can be added easily as a framework feature. Once we go down that road, it also
becomes very easy and natural to add constructors for sequence and nesting
ellipses at the framework level.

1.5 Overview

Following the above analysis, we develop a logical framework with type se-
quences. We choose the logical framework LF [HHP93] as an example logical
framework since it has been used to represent a large variety of formalisms. But
our approach can be transfered to other frameworks (e.g. Isabelle [Pau94]) as
well, because it is orthogonal to the underlying type theory.

5

We briefly summarize LF in Sect. 2 and then extend it to LFS (LF with
sequences) in Sect. 3. Notably, our extension is minimally invasive, keeping the
essence of the LF type theory unchanged (and reusing the existing rules). We use
LFS in Sect. 4 to define flexary versions of first-order logic and simple type theory.
In both cases, we declare flexary versions of all operators (where reasonable) and
show that LFS can formally define the flexary versions in terms of the fixary
ones. Finally, we use our two flexary logics to formalize a collection of common
mathematical examples in Sect. 5.

2 The Edinburgh Logical Framework

In this section, we briefly revisit LF [HHP93], a dependently-typed λ-calculus
that can be used well as a logical framework [Pfe01]. We give the LF grammar in
Fig. 1. LF expressions are grouped into kinds K, kinded type-families U : K, and
typed terms S : U . The kinds are the base kind type and the dependent function
kinds Πx : U.K. The type families are the symbols a, the dependent function
type Πx : U. V , abstractions λx : U. V , applications U S ; type families of kind
type are called types. The terms are symbols x, abstractions λx : U. S, and
applications S T . Signatures Σ consist of typed or kinded symbols x : U [= S]
or a : K[= U] with optional definiens.

As usual, we write U → E instead of Πx : U.E if x does not occur free in
E, and we omit the types of bound variables if they can be inferred. Free vari-
ables are implicitly bound on the outside of the expression (implicit arguments).
Substitution of T for x in E is written [T/x]E.

Kinds K ::= type | Πx : U.K
Type Families U, V . . . ::= a | Πx : U. V | λx : U. V | U S
Terms S, T . . . ::= x | λx : U. S | S T
Signatures Σ ::= · | Σ, x : U [= S] | Σ, a : K[= U]

Fig. 1. LF Grammar

We use the signatures given in Fig. 2 as running examples throughout this
paper. The signature SFOL on the left defines the syntax and proof rules of
sorted first-order logic. The signature STT on the right defines the syntax and
β-conversion rule of simple type theory.

In order to emphasize the similarity between LF and LFS, we also give the
judgments for well-formed LF expressions in Fig. 3 and the inference rules in
Fig. 4. For brevity, we omit the equality judgement, whose rules consist of equiv-
alence, congruence, and αβη-conversion.

6

sort : type
tm : sort → type

form : type
ded : form → type

true : form
∧ : form → form → form
∀ : ΠS : sort . (tm S → form)→ form

trueI : ded true
∧I : ded F → ded G→ ded F ∧G
∧El : ded F ∧G→ ded F
∧Er : ded F ∧G→ ded G
∀I : (Πx : tm S. ded F x)→ ded ∀F
∀E : ded ∀F → Πx : tm S. ded F x

tp : type
tm : tp → type

=⇒ : tp → tp → tp
= : tm A→ tm A→ type

lam : tm A→ tm B → tm (A =⇒ B)
app : tm (A =⇒ B)→ tm A→ tm B
beta : app (lam(λx : tm A.T))X = (T X)

Fig. 2. LF Signatures for SFOL (left) and STT (right)

Judgment Meaning

Σ ` S : U S is a well-formed term of type U over Σ
Σ ` U :K U is a well-formed type family of kind K over Σ
Σ ` K Kind K is a well-formed kind over Σ.

Fig. 3. LF Judgments

baseKind
Σ ` typeKind

Σ ` U : type Σ, x : U ` V : type
depType

Σ ` Πx : U. V : type

Σ ` U : type Σ, x : U ` K Kind
depKind

Σ ` Πx : U.K Kind

Σ ` U : type Σ, x : U ` S : V
termAbstr

Σ ` λx : U. S :Πx : U. V

Σ ` U : type Σ, x : U ` V :K
typeAbstr

Σ ` λx : U. V :Πx : U.K

Σ ` S :Πx : U. V Σ ` T : U
termAppl

Σ ` S T : [T/x]V

Σ ` V :Πx : U.K Σ ` T : U
typeAppl

Σ ` V T : [T/x]K

Fig. 4. LF Inference Rules

7

3 A Flexary Logical Framework

3.1 Natural Numbers

In this section we extend LF to form our logical framework LFS (LF with Se-
quences). LFS adds type sequences and ellipsis constructors.

nat : type
≤ : nat→ nat→ type

= : nat→ nat→ type

0 : nat
1 : nat
+ : nat→ nat→ nat

− : Πn : nat. Πm : nat.m ≤ n→ nat

Therefore, we also need natural
numbers as indices to access ele-
ments of sequences and to form el-
lipses. We do this by assuming that
the LF signature on the right is al-
ways present. Moreover, we assume
declarations that formalize the usual
computation rules to normalize ex-
pressions of type nat.

Note that − is a partial subtraction operator: It takes as a third argument a
proof that n −m is defined. We will omit that argument whenever the needed
proof is straightforward. This restriction guarantees that we work with natural
numbers but not with negative integers. We additionally assume proof irrele-
vance, i.e., an axiom of type −(m,n, P) = −(m,n,Q). Moreover, we will use the
symbols ≤, =, +, and − in infix notation.

Here, for simplicity, we do not formally restrict the use of natural numbers
within LFS. However, we consider their status to be similar to that of types. In
particular, we assume that all terms of type nat refer only to the above signature
and free variables introduced in the toplevel context. Since we do also not use
multiplication, this keeps our language of natural numbers decidable.

3.2 Syntax

Kinds K ::= typeS | Πx : U.K

Type Seq. Families U, V ::= · | U, V | US | [U]Sx=1 | a | Πx : U. V | λx : U. V | U S

Term Sequences S, T ::= · | S, T | ST | [S]Tx=1 | ◦S | x | λx : U. S | S T

Fig. 5. LFS Grammar

We can now give the grammar of LFS in Fig. 5 by extending the grammar
of LF. All productions for LF are retained but generalized to sequences. All our
extensions are underlined: The singly underlined productions add sequences, the
doubly underlined ones add ellipses.

The term sequences S, T are formed by the empty term sequence ·
and concatenation S, T . If n : nat, then Sn accesses the n-th element of a
sequence S. Type sequences are formed in the same way. We write En for the
sequence [E]nx=1 if x does not occur free in E.

8

If a type family sequence has a length other than 1, all its elements will
be types. Consequently, the only kind sequences we need are type, . . . , type,
which we write as typeS for S : nat. We recover type as an abbreviation for
type1.

The term sequence ellipses constructor is [S(x)]nx=1. It takes an argument
n : nat and binds the symbol x : nat in S. Its intended meaning is that it reduces
to the term sequence S(1), . . . , S(n′) whenever n reduces to a natural number
n′. We use an analogous constructor [U(x)]nx=1 for type sequence ellipses.

The constructor for nesting ellipses is more complicated. After several ex-
periments, we opted for a flexary function composition operator as a primi-
tive concept. The intended meaning of ◦S is that it takes a sequence of functions
and returns their composition. Thus, ◦ (f1, . . . , fn) s reduces to fn (. . . (f1 s) . . .).
Notably, this is more general than a fold operator because the type of each fi
may depend on i.

|x| = |U | if x : U in Σ
|a| = |K| if a : K in Σ
|typen| = n
|Πx : E.F | = 1
|λx : E.F | = 1
|E F | = 1
| · | = 0
| E,F | = |E|+ |F |
|En| = 1
|[E]nx=1| = |n|
| ◦ S| = 1

Fig. 6. Length of a Sequence

Finally, we have to clarify the intuitions
of the now-flexary primitives of LF. Flexary
variable bindings x : U formalize variable
sequences, i.e., binding x : (U1, . . . , Un) cor-
responds to binding x1 : U1, . . . , xn : Un.
Thus, the type sequence ellipses immediately
induces a corresponding ellipses constructor
for variable bindings. Accordingly, a flexary
application f T applies a function f to an
argument sequence T .

Much of the intuition behind our gram-
mar becomes clear from the function |E| for
the length of a sequence defined in Fig. 6.
It maps LFS expressions to expressions of
type nat (where E and F range over any ex-
pression allowed by the grammar). We already mention that the type system
given below will respect length, i.e., S : U : typen only if |S|, |U |, and n are
provably equal.

Functions f and applications f T always have length 1 and so have the bodies
of the binders. This forbids computations that returns sequences. This restriction
could be lifted, but we find it is more reasonable to introduce such computations
in object languages defined within LFS.

Before giving the type system, we fortify our intuitions by defining a few
useful abbreviations that we will use later on. The reversal of a sequence is
defined by:

revertE = [E|E|+1−i]
|E|
i=1.

The generalized sequence ellipses an, . . . , a1 and am, . . . , an (if m ≤ n
for natural numbers m, n) are defined by

[E(x)]x=n
1 = revert [E(x)]nx=1 [E(x)]nx=m = [E(m+ x− 1)]n−m+1

x=1

9

We obtain the usual fold operator in terms of flexary composition:

foldl f S a = (◦ [λx : A. f xSi]
n
i=1) a

Thus, foldl f S a reduces to (f . . . (f (f aS1)S2) . . . Sn) for a folding function
f : A → B → A, a start element a : A, and a sequence S : Bn. foldr is
defined analogously.

3.3 Type System

LFS uses the same judgments as LF, i.e. the ones from Fig. 3. However, we
will write the typing judgment Σ ` S : U (where U : type is implied in LF) as
Σ ` S : U : typen to keep track of the length of S and U . This is redundant
because the length is statically known anyway, but it makes the notations much
simpler.

Most importantly, term sequences are typed by type sequences of the same
length, and type sequences are kinded by typen, where n is their length.

The inference rules essentially reuse the rules of LF from Fig. 4. We only make
two minor changes to the four rules for binders. Firstly, the four occurrences of
type are replaced with typen for Σ ` n : nat. This permits binders to bind
variables sequences x : U1, . . . , Un. The LF rules are recovered as the special
case n = 1. Secondly, we add a premise to each of the four rules that ensure that
the body of a binder always has length 1.

Then we add the rules of Fig. 7 for sequences and ellipses. kindSeq makes
typen a valid kind. The rules for the empty sequences and the concatenation
of sequences are obvious. The rules termIndex and typeIndex for taking an ele-
ment of a sequence implement the index-within-bounds check: Ei is only valid
if 1 ≤ i ≤ |E|.

The rules termSeqEll and typeSeqEll handle the sequence ellipsis. Note that
[E]nx=1 actually binds three variables in E: The index x and two assumptions x∗
and x∗ that guarantee that x is within 1 and n. These assumptions can be used
later on to discharge the proof obligations posited by the rules termIndex and
typeIndex and by the subtraction of natural numbers.

Finally, nestEll handles the nesting ellipsis ◦S by checking that the func-
tion in S are actually composable. This is easiest if we restrict attention to the
composition of simple functions.

We only sketch the conversion rules that we add to the ones of LF. Binders
distribute over sequences:

λx : U, V.E = λx1 : U. λx2 : V. [x1, x2/x]T λx : ·. T = [·/x]T

and similarly for Π. Sequence elements can be projected if the sequence is normal

(E1, . . . , En)x = Ex if |E1| = 1, . . . , |En| = 1

Ellipses are expanded if enough information is available:

[E]nx=1 = [1/x]E, . . . , [n/x]E if n = 1 + . . .+ 1

10

Σ ` n : nat : type
kindSeq

Σ ` type
n Kind

`Σ Sig
emptyType

Σ ` · : type0
Σ ` U : typem Σ ` V : typen

typeSeq
Σ ` U, V : typem+n

`Σ Sig
emptyTerm

Σ ` · : · : type0

Σ ` S : U : typem Σ ` T : V : typen

termSeq
Σ ` S, T : U, V : typem+n

Σ ` S : U : typen Σ ` x∗ : 1 ≤ x : type Σ ` x∗ : x ≤ |S| : type
termIndex

Σ ` Sx : Ux : type

Σ ` U : typen Σ ` x∗ : 1 ≤ x : type Σ ` x∗ : x ≤ n : type
typeIndex

Σ ` Ux : type

Σ ` n : nat : type Σ, x : nat, x∗ : 1 ≤ x, x∗ : x ≤ n ` S : U : type
termSeqEll

Σ ` [S]nx=1 : [U]nx=1 : typen

Σ ` n : nat : type Σ, x : nat, x∗ : 1 ≤ x, x∗ : x ≤ n ` U : type
typeSeqEll

Σ ` [U]nx=1 : typen

Σ ` U : typen+1 Σ ` S : [Ui → Ui+1]ni=1

nestEll
Σ ` ◦ S : U1 → Un+1

Fig. 7. Inferece Rules for Sequences and Ellipses

◦ · = λx. x ◦ (f, g) = λx. (◦ g) ((◦ f)x) ◦ f = f if |f | = 1

These conversions have the effect that LFS is conservative over LF in the fol-
lowing sense: If Σ ` S :U : typen and all terms of type nat reduce to 1 + . . . + 1,
then n reduces to m, and S and U reduce to S1, . . . Sm and U1, . . . , Um, and
Si : U i for i = 1, . . . ,m in the LF type theory. This means that if the involved
natural number expressions normalize, then LFS-expressions reduce to sequences
of LF-expressions, and LFS-judgments reduce to sequences of LF-judgments. Un-
der this condition, the canonical LFS expressions are sequences of canonical LF
expressions. Consequently, an adequate encoding of objects as LF-expressions,
yields an adequate encoding of sequences of objects as LFS-expressions.

11

Reducing full LFS to LF would require a formalization of sequences in LF
already, which is doable, but also very costly.

4 Flexary Logics

Now we use LFS to define the flexary analogues of two languages commonly used
for formalized mathematics.

We define flexary sorted first-order logic SFOL∗ by extending the syntax
of SFOL from Fig. 2 with flexary symbols ∧∗, ⇒∗ and ∀∗ along with their proof
rules. All are defined in terms of their fixary counterparts.

∧∗ : formn → form
= λF : formn. foldl ∧ F true

∧∗I : ΠF : formn. [ded Fx]nx=1 → ded ∧∗ F
= λn. λF. λD : [ded Fx]nx=1.

◦ [λx : ded (∧∗ [Fj]
i−1
j=1). ∧I (∧∗ [Fj]

i−1
j=1) Fi xDi]

n
i=1trueI

∧∗E : ΠF : formn. Πi : nat. Πi∗ : 1 ≤ i.Πi∗ : i ≤ n. ded ∧∗ F → ded Fi

= λF.λi. λi∗.λi
∗. λD. ∧Er (∧∗ [Fk]i−1k=1) Fi

◦ [λx. ∧El (∧∗ [Fk]n−j−1k=1) Fn−j x]n−ij=1D

abbreviation: Sb
a := [tm Sj]

b
j=a

∀∗ : ΠS : sortn. (Sn
1 → form)→ form

= λS. λF. ◦ [λf : Si
1 → form. λy : Si−1

1 .∀λx : tm Si. f (y, x)]i=n
1 F

∀∗I : (Πx : Sn
1 . ded F x)→ ded ∀∗ F

= λD. ◦ [λd :
(
Πy : Si

1. ded ∀∗λx : Sn
i+1. D (y, x)

)
.

λy : Si−1
1 .∀I λx : tm Si. d (y, x)

]i=n
1 D

∀∗E : ded ∀∗ F → Πx : Sn
1 . ded F x

= λD.λx. ◦ [λd : ded ∀∗λy : Sn
i . F ([xj]

i−1
j=1, y).∀E d xi]ni=1D

The flexary conjunction ∧∗ takes a natural number n and then a sequence of
n conjuncts. We have ∧∗F1 . . . , Fn = (. . . (true ∧ F1) . . .) ∧ Fn and ∧∗· = true.
The introduction rule uses essentially the same folding: Without implicit argu-
ments, it would simply read ∧∗I D1 . . . , Dn = ∧I (. . . (∧I trueI D1) . . .)Dn and
∧∗I · = trueI. However, to demonstrate that it is in fact definable, we also give
the implicit arguments in detail: They are underlined. That complicates the def-
inition because each occurrence of ∧I uses different implicit arguments, which
themselves need ellipses to write down. The elimination rule proceeds along the
same lines except that we have to take guards i∗ and i∗ to make sure the indices
Fi are within bounds.

For disjunction, we would use ∨∗ F = foldl ∨ F false accordingly. For im-
plication, which is not associative, we define ⇒∗: formn → form → form and
⇒∗ F G = foldr ⇒ F G.

The definition of flexary quantifiers is more involved. Intuitively, we want
∀∗ S F = ∀λx1 : S1. . . .∀λxn : Sn. F (x1, . . . , xn). Let [◦G(i)]i=n

1 be the ellipsis

12

in the definiens of ∀∗. Then the type of G(i) is (Si
1 → form)→ (Si−1

1 → form),
and when constructing G(n) (. . . (G(1)F) . . .), each G(i) introduces ∀xi. Note
that all variables are called x, the names xi are introduced when LFS α-renames
x during capture-avoiding substitution.

The definitions of the proof rules are conceptually straightforward but equally
subtle. The flexary existential quantifier can be defined in the same way.

Next, we define flexary simple type theory STT∗ by extending the syntax
of STT from Fig. 2. We define a flexary function type constructor, flexary λ-
abstraction, and flexary application in terms of the fixary ones. We omit the
proof of the flexary β-reduction.

=⇒∗ : tpn → tp → tp
= λA : tpn. λB : tp. foldr =⇒ AB

lam∗ : ([tm Ai]
n
i=1 → tm B)→ tm (A=⇒∗B)

= λF. ◦ [λf : [tm Aj]
i
j=1 → tm

(
[Aj]

n
j=i+1=⇒∗B

)
.

λy : [tm Aj]
i−1
j=1. lam λx : tm Ai. f (y, x)

]i=n
1 F

app∗ : tm (A=⇒∗B)→ [tm Ai]
n
i=1 → tm B

= λF. λa. ◦ [λf : An
i =⇒ B. app f xi]

n
i=1 F

beta∗ : app∗ (lam∗(λx : [tm Ai]
n
i=1.T))X = (T X) = . . .

5 Flexary Mathematics

Now we use SFOL∗ and STT∗ to formalize a collection of common mathematical
examples.

Monoid Operations Like we did for conjunction, we can define the flexary version
of any associative binary operator. Consider a monoid with carrier α : type,
binary operation ◦ : α → α → α and unit element e : α. Then we define the
flexary operation ◦∗ as follows:

◦∗ : Πn : nat. αn → α = λn. λx : αn. foldl ◦ x e

This immediately yields the power operator:

power : α→ nat→ α = λx. λn. ◦∗ xn

By specializing to the monoid of endofunctions on a type, we obtain the iteration
of functions as follows:

iter : (α→ α)→ nat→ (α→ α) = λf. λn. ◦ fn

Multi-relations Multi-relations like a ∈ b ⊆ c are routinely used in informal
mathematics but cannot be defined as single operators within a fixary logic.
They can only be defined as notations within an implementation of the logic.
Using SFOL∗, we can define it as a flexary operator elegantly:

13

multirel : ΠA : sortn. (tm A)n+1 → (tm A→ tm A→ form)n → form
= λx : (tm A)n+1. λr : (tm A→ tm A→ form)n.∧∗ [ri xi xi+1]ni=1

For example, we can now write the above multi-relation as
multirel (a, b, c) (∈,⊆). More generally, we can define multi-relations for relations
between different types:

multirel ′ : ΠA : sortn. [tm Ai]
n+1
i=1 → [tm Ai → tm Ai+1 → form]ni=1 → form

= λA. λx. λr.∧∗ [ri xi xi+1]ni=1

a′ : tp
a : type = tm a′

0a : a
1a : a
+ : a→ a→ a
× : a→ a→ a

Vectors and Matrices Now we formalize vectors in STT∗.
For simplicity, we assume a fixed base type a with the
structure of a ring as given on the right

Then we axiomatize a type constructor of fixed-length
vectors as follows, where n is an implicit argument every-
where:

Vec′ : nat→ tp
Vec : nat→ type = λn. tm (Vec′ n)
vec : an → Vec n
index : Πm : nat. Πm∗ : 1 ≤ m.Πm∗ : m ≤ n.Vec n→ a
compute : Πm : nat. Πm∗ : 1 ≤ m.Πm∗ : m ≤ n.Πx : an.

index mpq (vec x) = xm
complete : Πv : Vec n. v = vec [index i i∗ i∗ v]ni=1

It may appear strange that we call vec : nat → tp an
example in simple type theory. However, recall that nat

is not a type of the logic STT∗ but a feature of the framework. Thus, there
is no substantial structural difference between our vec and type operators like
list : tp → tp. Indeed, our treatment of implicit arguments of type nat is very
similar to the treatment of free type variables in higher-order logics.

We can now define the addition and scalar multiplication elegantly:

~+ : Vec n→ Vec n→ Vec n
= λv. λw. vec [(index i i∗ i

∗ v) + (index i i∗ i
∗ w)]ni=1

~× : a→ Vec n→ Vec n
= λx. λv. vec [x× (index i i∗ i

∗ v)]ni=1

In implementations, these definitions would resemble the ones in informal
mathematics even more: We would use appropriate notations for vec and index ,
and it is straightforward for a theorem prover to find the guard arguments of
index automatically.

More generally, we can formalize the type of vectors Vec : tp → nat→ tp over
an arbitrary base type and define matrices as vectors of vectors. Then matrix
addition and multiplication can be defined accordingly.

Polynomials Finally, we axiomatize a type of polynomials (over the same fixed
base type a : type as above) as follows:

14

Poly ′ : tp
Poly : type = tm Poly ′

poly : an+1 → Poly
deg : Poly → nat

coeff : Poly → nat→ a
comp deg : Πc : an+1. deg (poly c) = n
comp coeff 1 : Πc : an+1. Πm : nat.

1 ≤ m→ m ≤ n+ 1→ coeff (poly A)m = Am

comp coeff 2 : Πc : an+1. Πm : nat. n+ 2 ≤ m→ coeff (poly A)m = 0a
complete : Πp : Poly . p = poly [coeff p i]1+deg p

i=1

Here poly constructs a polynomial from coefficients, deg returns an upper
bound on the degree, and coeff returns a coeffiecient. comp deg , comp coeff 1,
and comp coeff 2 compute the degree and coefficients of an explicitly given poly-
nomial. And complete makes every polynomial equal to the one formed from its
coefficients.

We can now define the evaluation of a polynomial for a given x concisely:

eval : poly → a→ a = λp. λx.+∗ [(coeff p i)× (×∗ xi−1)]1+deg p
i=1

where +∗ and ×∗ are the flexary versions of + and ×, respectively.
The ring operations on polynomials can be defined accordingly.

6 Conclusion & Future Work

It is almost impossible to write about mathematical objects without using se-
quence ellipsis (. . .). This observation is independent of the language used, or
the formal system employed: if we eliminate ellipses, then expressions get more
complicated and communication can become quite awkward. This universality
strongly suggests that sequences and sequence ellipsis are a meta-level feature
of mathematical languages.

Guided by this realization, we present LFS, an extension of LF with a novel
feature of type sequences. Using the extended framework for logic development
enables us to specify flexary logics with flexary operators and calculi that deal
with them in proofs. We exemplify this ability with flexary sorted first-order logic
and flexary simple type theory. As they use LFS as their meta-language, both can
define flexary operators in terms of their fixary counterparts. A central theme
is that the type of a flexary operator depends on a natural number argument,
which instantiates the flexible arity: We call this arity polymorphism because
it is very similar to the well-known type polymorphism where the type of an
operator depends on a type argument.

Numerous examples from everyday mathematics show that the flexary lan-
guages allow more adequate formalizations of complex objects like vectors, ma-
trices, and polynomials.

In the future, we want to extend/complete MKM support for LFS. In par-
ticular, we want to i) look at additional examples, e.g. the complex matrix rep-
resentations in [SS06], ii) investigate type reconstruction of LFS and implement

15

it based on MMT [RK13; Rab13], which will in particular infer omitted nat-
ural number arguments, iii) extend the support for sequences and elisions to
flexiformal mathematics markup systems like LATEX and STEX, iv) integrate na-
tive support for argument sequences into OpenMath and content MathML
completing the work started in [HKR11], and finally v) develop semantics re-
construction techniques that transform 1, 2, . . . , n into [i]ni=1 or 1, 2, 4, 8, . . . into
[2i]∞i=1.

Acknowledgements Work on the concepts presented here has been partially sup-
ported by the German Research Foundation (DFG) under grant KO 2428/13-1.

References

[Aus+03] R. Ausbrooks et al. Mathematical Markup Language (MathML)
Version 2.0 (second edition). See http : / / www . w3 . org / TR /

MathML2. 2003.
[CH88] T. Coquand and G. Huet. “The Calculus of Constructions”. In:

Information and Computation 76.2/3 (1988), pp. 95–120.
[CICM1212] Artur Kornilowicz. “Tentative Experiments with Ellipsis in Mizar”.

In: Intelligent Computer Mathematics. Conferences on Intelligent
Computer Mathematics (CICM). (Bremen, Germany, July 9–14,
2012). Ed. by Johan Jeuring et al. LNAI 7362. Berlin and Heidel-
berg: Springer Verlag, 2012, pp. 453–457. isbn: 978-3-642-31373-8.

[Com] Information technology — Common Logic (CL): a framework for
a family of logic-based languages. Tech. rep. 24707:2007. ISO/IEC,
2007.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. “A framework for defining
logics”. In: Journal of the Association for Computing Machinery
40.1 (1993), pp. 143–184.

[HKR11] F. Horozal, M. Kohlhase, and F. Rabe. “Extending OpenMath
with Sequences”. In: Intelligent Computer Mathematics, Work-
in-Progress Proceedings. Ed. by A. Asperti et al. University of
Bologna, 2011, pp. 58–72.

[KB04] Temur Kutsia and Bruno Buchberger. “Predicate Logic with Se-
quence Variables and Sequence Function Symbols”. In: Mathemat-
ical Knowledge Management, MKM’04. Ed. by Andrea Asperti,
Grzegorz Bancerek, and Andrej Trybulec. LNAI 3119. Springer
Verlag, 2004, pp. 205–219.

[ML74] P. Martin-Löf. “An Intuitionistic Theory of Types: Predicative
Part”. In: Proceedings of the ’73 Logic Colloquium. North-Holland,
1974, pp. 73–118.

[Nor05] U. Norell. The Agda WiKi. http://wiki.portal.chalmers.se/
agda. 2005.

[Pau94] L. Paulson. Isabelle: A Generic Theorem Prover. Vol. 828. Lecture
Notes in Computer Science. Springer, 1994.

16

http://www.w3.org/TR/MathML2
http://www.w3.org/TR/MathML2
http://wiki.portal.chalmers.se/agda
http://wiki.portal.chalmers.se/agda

[Pfe01] F. Pfenning. “Logical frameworks”. In: Handbook of automated
reasoning. Elsevier, 2001, pp. 1063–1147.

[PS99] F. Pfenning and C. Schürmann. “System Description: Twelf -
A Meta-Logical Framework for Deductive Systems”. In: Lecture
Notes in Computer Science 1632 (1999), pp. 202–206.

[Rab13] F. Rabe. “The MMT API: A Generic MKM System”. In: Intel-
ligent Computer Mathematics. Ed. by J. Carette et al. Springer,
2013, pp. 339–343.

[RK13] F. Rabe and M. Kohlhase. “A Scalable Module System”. In: In-
formation and Computation 230.1 (2013), pp. 1–54.

[SS06] Alan Sexton and Volker Sorge. “Processing Textbook-Style Ma-
trices”. In: Mathematical Knowledge Management, MKM’05. Ed.
by Michael Kohlhase. LNAI 3863. Springer Verlag, 2006, pp. 111–
125.

[The14] The Coq Development Team. The Coq Proof Assistant: Reference
Manual. Tech. rep. INRIA, 2014.

[Wol12] Wolfram Research, Inc. Mathematica 9.0. 2012.

17

	1 Introduction & Related Work
	1.1 Flexary Operators and Ellipses
	1.2 Flexary Notations
	1.3 Flexary Representation Languages
	1.4 Flexary Meta-Languages
	1.5 Overview

	2 The Edinburgh Logical Framework
	3 A Flexary Logical Framework
	3.1 Natural Numbers
	3.2 Syntax
	3.3 Type System

	4 Flexary Logics
	5 Flexary Mathematics
	6 Conclusion & Future Work

