
intro.tex 621 2010-04-16 13:51:04Z vzholudev

Scripting Documents with XQuery:

Virtual Documents in TNTBase

Vyacheslav Zholudev, Michael Kohlhase
Jacobs University Bremen

{v.zholudev,m.kohlhase}@jacobs-university.de

April 16, 2010

Note for reviewers: With permission of Ms.Usdin, we are providing the paper in PDF for
reviewing. If our paper gets accepted, we commit ourselves to submit a final version in XML
following all instructions given at the Balisage web-page.

Abstract

This paper introduces the concept of Virtual Documents and its prototypical realiza-
tion in our TNTBase system, a versioned XML database. VDs integrate XQuery-based
computational facilities into documents like JSP/PHP do for relational queries. We view
the integration of computation in documents as an enabling technology and evaluate it on
a handfull of real-world use cases.

1 Introduction

One of the big promises of XML as a representation paradigm is that documents become
uniformly machine-processable. Indeed XSLT is widely used for pre/postprocessing XML-
encoded documents, and XQuery is poised to become for semi-structured data what SQL is
for relational data. But in both cases, traditional workflows have important features that
are largely missing from XML workflows. (i) Document authoring and management systems1

allow user-definable, in-document macros that allow the computation repetitive writing tasks
or processing of outside data. (ii) Relational databases support database views as first-
class citizens, i.e. computational devices that look like tables to the user, but internally
are embedded queries. Both in-text macros and views could in principle be externalized
from production workflows at the cost of losing locality and ease-of-use. And indeed their
integrated nature has brought levels of customization and functionality that have not been
achieved in practice without.

In this paper, we present a Virtual Documents (VDs), a general framework for integrating
XQueries into XML documents as computational devices and processing them efficiently. As
a rough approximation, VDs are “XML database views” analogous to views in relational
databases; these are tables that are virtual in the sense that they are the results of SQL
queries computed on demand from the explicitly represented database tables. Similarly,

1We take TEX/LATEX as the most prominent example from which we take our intuitions. Wikis usually also
allow in-text macros and arguably the VB/VBA extensions of Office suites also allow macros, even if they are
less extensively used.

1

state.tex 620 2010-04-16 13:44:42Z vzholudev

TNTBase Virtual Documents are the results of XQueries computed on demand from the
XML files explicitly represented in TNTBase, presented to the user as entities (files) in
the TNTBase file system. Like views in relational databases TNTBase VDs are editable,
and the TNTBase system transparently patches the differences into the original files in its
underlying versioning system. Thus a user does not have to know about the original source
of document parts and it allows him to focus only on relevant pieces of information. Again,
like relational database views, VDs become very useful abstractions in the interaction with
versioned XML storage.

We have already discussed VDs [ZKR10], concentrating on theoretical issues such as when
XML-based document formats admit virtual documents. Since then, our VDs implementation
has been extended and matured considerably, and we will concentrate on features and real
word use cases and practical issues. In the next section we recap the basics of our TNTBase
system, before we introduce the functionality of VDs in Section 3. Section 4 discusses some
high-profile use cases of VDs and Section 5 concludes the paper.

2 TNTBase, a Short Recap

The TNTBase system is a versioned XML-database with a client-server architecture. Es-
sentially, it consists of two parts: the core and the application-specific layer. Let us briefly
discuss them.

2.1 The Core

The core of TNTBase consists of the xSVN module, which integrates Berkeley DB XML [Ber09b]
into a Subversion server [SVN08]. DB XML stores HEAD revisions of XML files; non-XML
content like PDF, images or LATEX source files, differences between revisions, directory entry
lists and other repository information are retained in a usual SVN back-end storage (Berkeley
DB [Ber09a] in our case). It is worth mentioning here that TNTBase also supports branch-
ing as SVN does (see also Section 4.2 for a use-case of virtual documents with on this).
Keeping XML documents in DB XML allows us to access those files not only via any SVN
client, but also through the DB XML API that supports efficient querying of XML content
via XQuery [BCF+07] and modifying that content via XQuery Update [CDF+08]. As many
XML-native databases, DB XML (and hence TNTBase) supports indexing, which improves
performance of certain queries. TNTBase also adopted transactional support (atomicity,
consistency, isolation, durability) from DB XML.

The TNTBase system is realized as a web-application that provides two different in-
terfaces to communicate with: an xSVN interface and a RESTful interface (for details refer
to [Z+10]) for XML-related tasks. The xSVN interface behaves like the normal SVN interface
— the mod dav svn Apache module serves requests from remote SVN clients — with one
exception: If one of the committed XML files is ill-formed, then xSVN will abort the whole
transaction. The RESTful [JSR09] interface provides XML fragment access to the versioned
collection of documents:

Querying: As every XML-native database, TNTBase supports XQuery, but extends the
DB XML syntax by a notion of file system path and revision to address different versions
of path-based collections of documents.

2

state.tex 620 2010-04-16 13:44:42Z vzholudev

Modifying: Apart from modifying any kinds of documents via any SVN client, TNTBase
takes advantage of XQuery Update facilities, and, in contrast to pure DB XML, modified
documents are versioned, i.e., a new revision is committed to xSVN whenever some
changed are made to the documents stored in a TNTBase repository .

Querying of previous revisions: Although xSVN’s DB XML back-end by default holds
only HEAD (the last) revisions of XML documents, and others are stored as reverse
deltas against HEAD revisions, it is also possible to access and query previous versions
by additionally providing a revision number to the TNTBase XQuery extension func-
tions. It is necessary to note, that previous versions cannot be modified since once a
revision is committed to an xSVN repository, it becomes persistent.

Virtual Files: This is a precursor technology to the Virtual Documents discussed in this
paper. It has been described in detail in [ZK09]: a Virtual File is a TNTBase file
system entity whose content is defined by a single XQuery expression. For the end user
they are like normal files whose content are wrapped results of an associated query.
Virtual Files also can be queries and modified.

For more information about the TNTBase core refer to [ZK09]. Since then we have
significantly increased stability and performance that can be proved that TNTBase is being
used for the LATIN Project [LAT], for General Computer Science lectures repository (that
counts more than 2000 XML documents with over 2500 revisions) and Translation SUMO to
OMDoc Project [Mis10]. Moreover, we are mirroring some of TNTBase repositories to nor-
mal SVN repositories by replication functionality adopted from Subversion. This possibility
once more justifies the decision of combining the two systems. If something went wrong with
a TNTBase repository and the data got corrupted (actually, it never happened to us), then
we can easily restore them from a replicated SVN repository with all history preservation.

2.2 Application Layer of TNTBase

XML

xSVN

XML-layer

Web Application

XML(F)

xSVN

XML-layer

Web Application

F-specific layer

TNTBase TNTBase (F)

Figure 1: TNTBase

In our experiments it turned out that many
tasks specific to particular XML formats
can be done by TNTBase, and that was
a reason to derive a separate layer on
top of the TNTBase core and augment
this layer with format-specific functionali-
ties (see Figure 1). Although the detailed
information can be found in [ZKR10], let
us briefly describe the major features:

Validation, Presentation, Interface Extraction, Plugin Architecture TNTBase
provides facilities to integrate format-specific validation (e.g. for RelaxNG schemas) and
presentation (e.g. via XSL transformations). But sometimes a format requires more specific
functionality, e.g. extraction and caching RDF information upon commit or retrieval of
rendered MathML. Such functionality can be supplied as additional modules and injected
into the application layer via the TNTBase plugin API. Configuration files are also stored
in a TNTBase repository, so a user do not have to have an access to a server: for instance,
commit-time behavior is defined by an SVN tntbase:validate property that can be assigned to

3

state.tex 620 2010-04-16 13:44:42Z vzholudev

files as well as to whole directories. Pre-commit or post-commit hooks that are automatically
generated take care of processing committed information based on the configuration files.
In case of pre-commit processing a corresponding plugin has access to the documents that
are about to be committed, and may reject a transaction if the collection of committed
documents is format-inconsistent, or clashes with existing documents in the repository. Last
but not least, TNTBase RESTful URLs that are used to perform validation or presentation
are dynamically changed once configuration files are modified.

Custom XQuery modules A user can write his own XQuery extensions and store them
in the repository. Thus it is not necessary to have modules located in the server’s file system
or remotely. XQuery modules can be referenced inside repository itself, which might happen
to be useful if the development of XQuery modules is still in progress.

Virtual Documents Virtual Documents are also a part of an application layer, but we
will focus on them in the next sections.

TNTBase also gained number of features that have been requested by TNTBase users.
To name just a few of them: integration with JOBAD framework [JOB08], extracting RDF
from OMDoc [Koh10] documents upon commit and storing it in TNTBase, integration with
LaTeXML [Mil10] and Virtuoso [Ope] (for more details refer to [DKL+10]). Those features
are pluggable, so a new TNTBase installation does not have to include them.

3 Virtual Documents

This section introduces practical aspects and technical details of Virtual Documents (for the
theory we refer to [ZKR10]) using a simple running example to fortify our intuitions. Section 4
will tackle the real-world scenarios and justify VDs in TNTBase.

Figure 2: VD workflow

VDs are the first class citizens in the
TNTBase file system. Whereas internally
they are quite different from usual docu-
ments in the repository, for a user they
look like normal files: one can browse them,
validate, apply stylesheets, query and even
modify. VDs are essentially a tight mix
of static XML parts with XQuery queries
and instructions in XML form that prompt
TNTBase how to organize the XQuery re-
sults inside a VD. Let us start with a sim-
ple example. Assume that we want to have
a joined list of mathematical exercises to-
gether with authors contributed to them.
We might want to have the root element
and the elements that embrace authors and
exercises (we will refer to Figure 2 through-
out this section). XQueries that select nec-
essary data will augment our document. The way we describe the VD is the subject of the
next subsection.

4

state.tex 620 2010-04-16 13:44:42Z vzholudev

3.1 VD Specifications and Skeletons

VD Specification (VD Spec) is the most important part of any VD. Basically, it is a document
template with XQuery inclusions and some other auxiliary elements helping TNTBase to
figure out how to execute a particular XQuery and how to populate query results. It must be
XML. In Listing 1 one can see a simple example of a VD Spec that is supposed to define a VD
that would contain thematic lecture exercises together with their authors. For the complete
RelaxNG [Rel] schema refer to [ZK].

Listing 1: Example of a VD Spec

1 <tnt:virtualdocument xmlns:tnt=”http://tntbase.mathweb.org/ns”>
<tnt:skeleton xml:id=”exercises”>
<omdoc xmlns:dc=”http://purl.org/dc/elements/1.1/”>
<dc:title>Exercises for Computer Science lectures</dc:title>
<dc:creator>Michael Kohlhase</dc:creator>

6 <omdoc>
<dc:title>Acknowledgements</dc:title>
<omtext>
The following individuals have contributed material to this document:
<tnt:xqinclude query=”tnt:collection(’/exercises//∗.omdoc’)//dc:creator”>

11 <tnt:return><tnt:result/></tnt:return>
</tnt:xqinclude>

</omtext>
</omdoc>
<omdoc>

16 <dc:title>Exercises</dc:title>
<tnt:xqinclude>
<tnt:query name=”exercises.xq”/>
<tnt:return><tnt:result/></tnt:return>

</tnt:xqinclude>
21 </omdoc>

</omdoc>
</tnt:skeleton>

<tnt:query name=”exercises.xq”>
26 for $t in $topics return

tnt:collection(concat(’/exercises/’ , $t, ’ /∗.omdoc’))//exercise[position() le $max]
</tnt:query>

<tnt:params>
31 <tnt:param name=”max”>

<tnt:value>10</tnt:value>
</tnt:param>
<tnt:param name = ”topics”>
<tnt:value>search</tnt:value>

36 <tnt:value>graphs</tnt:value>
</tnt:param>

</tnt:params>
</tnt:virtualdocument>

A VD Spec consists of a VD Skeleton (VD Skel), number of named queries that are
referenced from VD Skel and arbitrary parameters that are used in XQueries. Let us consider
these elements in order:

VD Skeletons contain a mixture between any XML nodes and tnt:xqinclude elements. The
latter ones specify a single XQuery query and “the rules” how results of that query will be
mixed with other elements in a VD. The rules are enclosed into a single tnt:return child element
that, in turn, contains a mixture of any XML elements with empty tnt:result elements. In
order to understand how VD content is produced let us consider the following sequence of

5

state.tex 620 2010-04-16 13:44:42Z vzholudev

actions:
1. We take a tnt:xqinclude element and obtain an XQuery associated with it
2. We get the results of that query and iterate over them
3. For every result we get children of the tnt:return element and substitute any tnt:result

element with a considered query result
4. We concatenate all children obtained from step 3) in order
5. The result of concatenation replaces the considered tnt:xqinclude element
6. Repeat steps 1)-5) for all tnt:xqinclude elements in a VD Spec

Although this workflow might seem complicated, the logics behind it is quite intuitive which
is observed in the following example. The part of a VD:

<tnt:xqinclude query=”tnt:collection(’/exercises//∗.omdoc’)//dc:creator/text()”>
<tnt:return><omtext><tnt:result/></omtext></tnt:return>

</tnt:xqinclude>

assuming for the sake of simplicity that results of the query

tnt:collection(’/exercises//∗.omdoc’)//dc:creator/text()

are “Paul” and “John”, will be substituted by:

<omtext>Paul</omtext>
<omtext>John</omtext>

VDs allow an arbitrary number of tnt:xqinclude elements in the VD Skel (not nested,
though) with different XQueries. XQueries can be defined in 4 ways: in the attribute, in
the child element as text, as a reference to outside defined queries (see next bullet) and as
a reference to another file in a TNTBase repository that contains the implied query. It is
worth mentioning that VD Specs may contain only references to skeletons in other VD Specs
and differ just in queries or parameters. This approach becomes very handy when we want
to leverage from the same skeleton but tweak another parts of a VD Spec, i.e. queries or
parameters (see below for examples).

Queries Apart from being defined in tnt:xqinclude elements, XQueries can also be described
in separate tnt:query elements, again as a text or as a reference to another file in the repository.
Query should contain a name that serves as a link point from a VD Skel. There are no
constraints on a query: it may reference older revisions of documents (that justifies a temporal
aspect of TNTBase), other VDs or auxiliary information associated with documents, e.g.
RDF (see [ZKR10] for more details). Such “external” query definition may be handy when we
want to override the queries for a particular VD Skel. Getting back to our example, assume
that we want to embed only statements of assignments in our VD preserving the common
structure. We do not need to modify a VD Skel. Instead we create a new VD Spec that
references the existing one with an overriding XQuery:

<tnt:virtualdocument xmlns:tnt=”http://tntbase.mathweb.org/ns”>
<tnt:skeleton href=”/basic−spec.xml”/>
<tnt:query name=”exercises.xq”>

for $t in $topics return
5 tnt:collection(concat(’/exercises/’ , $t, ’ /∗.omdoc’))//exercise/statement

</tnt:query>
</tnt:virtualdocument>

Here we assume that the full-fledged VD Skel can be found in the VD Spec under the
path /basic−spec.xml. Thus we can ”inherit” VD Skels recursively and override XQueries in any

6

state.tex 620 2010-04-16 13:44:42Z vzholudev

combination that comprised quite a flexible mechanism to reuse existing VD Skels and queries
and override only parts when needed. Also it is possible to create VD Specs whose skeletons
reference queries that are not present in the same VD Spec. This feature is comparable to
e.g. Java abstract classes, i.e. such a VD Spec cannot be used as such, but can be referenced
from another VD Specs that defines the missing queries.

Parameters XQueries can reference variables that are not defined in the current context.
Those can be externally defined in the tnt:param elements outside the query. This approach
separates logics from the input. Similarly to queries, parameters can also be overridden or
be absent in a particular VD Spec. In the latter case, VD Specs that inherit the current
VD Spec should define absent parameters. In our example in Listing 1 we are using two
parameters: a list of topics for which we retrieve exercises ($topics) and a maximum number of
returned exercises for each topic ($max). Such a mechanism considerably improves reusability
and flexibility of VDs.

In this subsection we described the VD Specs — means to define the structure of VDs.
In Figure 2 a VD Spec is denoted as the left bottom picture in the life cycle of VDs. But how
do we handle and consume VD content?

3.2 VDs as TNTBase FS Entities and Their Materializing

In order to make VDs as a part of a TNTBase file system and expose them to users, one
has to utilize the RESTful API of TNTBase [Z+10]. When creating a VD, a user has to
provide a path and a name of a VD, a VD Spec and its revision which a VD will be linked
to and, optionally, a set of parameters, analogously to those that a VD Spec has (thus, one
can override VD Spec parameters or define new ones). Note that it is possible to associate a
VD with a VD Spec of a particular revision, not only with the HEAD revision. Parameters
associated with VD file system entities make VD Spec even more reusable. When retrieving
content of a VD (i.e. the expanded version of a VD Spec), a user might also provide parameters
that will override those defined in a VD Spec and in a VD itself. It might be very useful
for dynamic alternation of a VD or during debugging. In Figure 2 the content of a VD is
presented in the second picture at the bottom. We see how data are aggregated and mashed
up with the static parts of a VD Spec.

The TNTBase RESTful interface also provides a related feature of dealing with VDs:
we can turn the content of a VD into a regular file in a repository. We call such a process
as VD materializing. It is convenient when VD computation takes considerable amount
of time whereas the content of a repository is changed rarely, or a user intends to fix the
content and make it versioned: in our example when a user is satisfied with exercises list he
got through a VD, he might want to make it persistent by putting it into a repository under
certain path (i.e. by materializing a VD). If there is already a document under provided
path, materializing results in a new revision of that file. Thus we can version even VDs with
a possibility to roll back in case of necessity.

3.3 Querying VDs

The contents of a VD can be addressed in a query via the TNTBase XQuery extension
function tnt:vdoc($path as xs:string), where $path is a path of a VD in a TNTBase repository.
Thus one may combine querying of usual repository files together with multiple VDs. It is

7

state.tex 620 2010-04-16 13:44:42Z vzholudev

also possible to retrieve just the expanded version of a VD Spec (not the content of a VD
which might be different due to additionally defined parameters). The XQuery extension
function looks similar - tnt:vd−spec($path as xs:string), but instead of a VD path, we provide a
path to a VD Spec. As an example, assume that we want to get a number of authors that
contributed to exercises in a VD. The query will be simple:

count(tnt:vdoc(’/path/to/vd’)//dc:author)

3.4 VD Editing

One of the strongest features of VDs is that they can be edited and committed to TNTBase
via the RESTful interface: changed parts of a VD that came from files in a repository will be
transparently propagated back to the sources with repository history preservation, i.e. a new
revision will appear in TNTBase. In Figure 2 on the bottom right picture we can see the
final phase of a VD workflow: editing and submitting it back: the modified parts (marked
with red) are populated back to their “home”. All changes are performed in a single xSVN
transaction and only those files will be part of it that were implicitly affected by VD editing.

In a VD we distinguish static parts (i.e. those that come from the VD Spec) from generated
ones (i.e. those parts that are results of a particular VD Spec query). Currently, static parts
are not editable in a VD – TNTBase will abort a commit, if they have been changed,
however, static parts can be modified by changing VD Spec file directly in a repository.
From the generated part, only the XML elements that come from the repository are editable;
TNTBase annotates them with tnt:doc and tnt:xpath attributes that cache information about
the element source needed for the commit. In our exercise example an editable part might
look like:

<exercise topic=”algebra” tnt:xpath=”/omdoc[1]/theory[3]/exercise[2]”
tnt:doc=”/exercises/algebra/isomorphic−sets.omdoc”>

. . .
</exercise>

5 . . .
<exercise topic=”algebra” tnt:xpath=”/omdoc[1]/theory[2]/exercise[1]”

tnt:doc=”/exercises/algebra/relations.omdoc”>
. . .

</exercise>

A user may add attributes, text, comments, new elements or delete the old ones, but he
is not allowed to modify tnt:doc and tnt:xpath attributes, otherwise TNTBase will abort
committing.

So far we have considered only editable parts of the generated part. There could be,
however, non-editable, generated nodes (e.g. dates or average of some values), which we call
constructed . In some cases, we can even partially modify these and propagate changes back to
a repository: If XQueries wrap some of DB XML elements into some other elements, making
these constructed. For example, the query associated with some tnt:xqinclude element could be:

<author>{tnt:collection(’/exercises//∗.omdoc’)//dc:creator}</author>

So the results might be:

<author>
<dc:creator>Paul</dc:creator>
<dc:creator>John</dc:creator>

4 </author>

8

state.tex 620 2010-04-16 13:44:42Z vzholudev

In such cases we can make these elements editable via the XQuery wrapper function tnt:make−editable
supplied by TNTBase for this purpose. This function adds tnt:doc and tnt:xpath attributes
to the wrapped elements if possible (i.e. if the input sequence of elements are nodes in DB
XML) to mark them as editable. So in our example the query should really be:

<author>{tnt:make−editable(tnt:collection(’/exercises//∗.omdoc’)//dc:creator)}</author>

This leads to the following result which parts are editable:

<author>
<dc:creator tnt:doc=’...’ tnt:xpath=’...’>Paul</dc:creator>
<dc:creator tnt:doc=’...’ tnt:xpath=’...’>John</dc:creator>

4 </author>

The editing approach has a number of natural limitations:
1. If VD content contains multiple results that are the same document node in a repository,

then TNTBase will not allow committing this VD either, since in this case it is not
clear which of modified nodes should be propagated to a source document. In future,
this behavior might be changed so that e.g. the first or the last change of the same
node wins and is sent to a repository.

2. If VD dynamic parts came from older revisions of repository files, then such parts can
not be editable as well, since once revision is committed to a repository it becomes
unchangeable.

3. From a dynamic part only XML elements2 are editable. This limitation stem from the
fact that e.g. text may be produced by concatenation of multiple strings inside some
element and TNTBase will not be able to determine how to propagate changes back
and there is no place to put source information inside a VD (the latter holds for all
remained types of XML nodes as well). However, it is possible to work around this
limitation by embedding XQueries that return those nodes together with their parent
element.

Last but not least, TNTBase follows the “update-modify-commit-merge” cycle from
the underlying version control system in this process, so if another user modified repository
contents while we were editing a VD, submitting of the latter will fail, since our VD is “out-
of-date” and we have to get the VD content again and merge our changes. This mechanism
guarantees that we will not overwrite somebody else’s changes.

3.5 VD Schema Validation

The obvious well-formedness constraints for a VD Spec can easily be expressed in a RelaxNG
schema, which we supply as [ZK]. But schema-validity of the VD Spec does not ensure validity
of the resulting VD, since it does not take the constraints of the target format into account.
Fortunately, we can easily integrate the VD Spec schema with the target schema, if the latter
meets (or is extended to meet) some modularity requirements. As an example we provide
such a combination for OMDoc language in Listing 2.

Listing 2: A RelaxNG Schema for Virtual OMDoc Specifications

include ”tnt−vd−spec.rnc” {
skeleton .model = grammar {include ”omdoc/omdoc.rnc”

{ss |= parent xq?}}
return. internal . el = grammar {include ”omdoc/omdoc.rnc”

2i.e. that are of XML Schema type xs:element

9

usecases.tex 624 2010-04-16 14:30:35Z kohlhase

5 {start= omdoc.class|CMP|FMP
ss |= parent result . el}}}

Here we made use of the fact that the OMDoc schema has a hook (the ss schema macro)
that allows replacement of elements in the declarations: all element declarations are of the
form

CMP = (ss | element CMP {CMP.attribs & CMP.model})

In this situation, we only had to replace the content and attribute model of the tnt:skeleton

element3 with the OMDoc document model, which is upgraded to allow an tnt:xqinclude

element in place of all “ss-replaceable” elements. The content model of the tnt:return element
is instantiated to the model of OMDoc “ss-replaceable” fragments, updated to allow tnt:result

element in place of “ss-replaceable” elements. When VD format-aware schema is ready, we
can associate it with a VD Spec via tntbase:validate xSVN property (details in [ZKR10]), and
thus ensure that TNTBase allows committing only those VD Specs which would always
produce content that is valid against our format schema.

3.6 Implementation Details

VDs are realized4 in XQuery with help of XQuery external functions written in Java. Exter-
nal function are used, for instance, for dynamic query execution from another XQuery (for
expansion of a VD Spec), getting the revision information from a repository (to control that
no other revisions have been committed while editing a VD) or committing changes under
certain path (to propagate changes to original files one edited VD has been submitted back).
In order to support VD editing workflow, there is a simple XQuery implementation of XML
differencing, that
• controls that VD static parts were not modified,
• controls that tnt:doc and tnt:path attributes of editable parts were not modified,
• aggregates information about changed editable parts and groups them by source file,
• checks that there are no more than one editable part that corresponds to the same node

in the same XML document.

4 Use Cases

In this section we discuss four real-world use cases of the VD technology. The discussion here
is complemented with an evolving5 TNTBase sandbox installation [Zho] that supplies Relax
NG schemas and shows VD queries and VD Specs of our use cases in action.

4.1 Automated Exam Generation

This is a dogfood use case from our academic practice, and is (partially) used in day-to-day
operation: The second author teaches a first-year, two-semester Introduction to Computer

3which allowed arbitrary elements that contain tnt:xqinclude queries
4Due to some problems in DB XML concerning multiple imported modules or support of XQuery external

functions written in different languages, VD functionality cannot yet be fully integrated, we expect to have a
fix for this by the conference.

5At the time of the submission, the sandbox is not fully operational yet, but we expect it to be the base of
our system demos at the conference

10

usecases.tex 624 2010-04-16 14:30:35Z kohlhase

Science a Jacobs university and – over the last six years – has accumulated a collection
of about 1000 homework, quiz, and exam problems encoded into the XML-based OMDoc
format [Koh]. For the courses we need to prepare regular four exams, four “grand tutorial
test exams” and two make-up exams per year. While the homework problems are typically
new (and add to the corpus of well-tested problems), we assemble the exams from it semi-
automatically with a VD Spec that generates random exam sheet based on the input list of
topics we intend to cover throughout an exam.

There are two kind of proper exams: midterms and finals. Midterms usually are meant
to be for 1 hour, although sometimes it takes 75 minutes or so, whereas finals are designed
for 2 hours. Thus we also provide an exam duration as an input parameter for our exam VD.
Changing only this parameter together with the topic list allows us to get different exam sheets
that do not exceed the certain time and cover desired topics. All necessary information is
encoded into the problems as RDFa metadata annotations. Our XQuery for a VD Spec takes
care about adjusting the timing closely to the provided limit. When VD content is generated,
it can be rendered by utilizing XSLTs and developed in our JOMDoc library [JOM10] for
rendering MathML[W3C07]. Everything is embedded into TNTBase, and once an exam
VD is installed it is a matter of one click in the TNTBase web interface to get the unique
human-readable exam sheet for the students.

VD Editing facilities also find an application in our use case. Before giving generated exam
to students we test it on our teaching assistants that may express some of the comments or
suggestions how to improve particular problems. Then we edit the contents of an exam VD
and commit it back – all modifications are automatically patched into original XML sources:
easily and painlessly. If one does not like a particular problem to be included into exam, we
can adjust a VD parameter that excludes them from the exam.

The biggest advantage of current exam generation approach is that we write a VD Spec
once and reuse it next semester by simply adjusting few parameters to a VD. When one
is satisfied with the exam presented, it can be materialized and saved in a repository as a
normal file that can be referenced in future to keep track how students performed on different
assignment and figure out what their weaknesses are.

Although a presented approach already meets our requirements, there are some issues that
could be improved. For instance, we might want to take total exam difficulty into account
to generate exams that do not exceed a certain duration and that have difficulty in a certain
range (again difficulty information is embedded into problems XML). That will lead to a more
complicated queries for a VD Spec, but is still feasible. Apart from generating exams, this
use cases might be used by students that are willing to sharpen their knowledge: they could
generate practice sheets starting from easy tasks and end up with the complex ones. Some
parameters in e.g. cookies may keep track of what exercises already appeared in the practice
sheet, and a VD will never show them again. It could easily be done by providing dynamic
parameters to a VD retrieval method as was described in the previous section.

4.2 Multiple Versions of Documents

In most scenarios with long-lived documents, we encounter the problem of document ver-
sions. Let us consider the case of W3C specifications like XQuery 1.0/1.1, XPath 1/2, XML
1.0/1.1., or even MathML1.0/1.0.1/2.0/2.0(2e)/3.0. They are encoded in XML format XML-
Spec [XML09], so TNTBase and VDs apply. Usually some parts of specification remained
the same, while other parts change between the version, and it is an important task to track

11

usecases.tex 624 2010-04-16 14:30:35Z kohlhase

the differences. For this use case we are experimenting with XML 1.0 and 1.1 specifications
to supply the user with a view that will show only the relevant changes in the formal parts
of specification branches. It is rather simple to provide an Diff VD via an XQuery that
summarize changes in formal parts (the rules of the XML grammar are marked up by special
elements in XMLSpec), ignores document order (grammars are sets, not lists of rules), and
presents them as a document XMLSpec documents upgraded with difference alternatives.
Note that our XQuery-based XML-diff comes in handy here. This VD gives a user better
understanding in which direction the development is going and what changes are intended
ones and which are made by mistake. Our Diff VD is also editable that allows a user to fix
obvious bugs right on spot, without navigating to the source file. Once Diff VD is settled in
TNTBase it can be reused to filter only relevant differences as well as transparently editing
them, all in one place. Currently W3C stores specifications in a CVS repository, but does
not make use of its differencing facilities for version tracking as diff is text-based and outputs
even less and least relevant differences.

Note that the Diff VD encapsulates a particular notion of relevance in the filtering part,
which may need to be explained in a document preamble. Thus the representational form of
a VD which mixes document parts and queries is beneficial. Moreover, there can be multiple
Diff VDs for tracking (and editing) various aspects of the differences in the specifications.
Such Diff VDs may even take over the role of conflict editors we currently have in version
control aware IDEs.

4.3 Managing Document Collections

The exam generation use case described above can be seen as a special case of managing
(here extracting custom documents from) a collection of primary (content) documents and
creating secondary documents from them that aggregate parts of the content. These secondary
documents can either be used for communication to the outside (payload documents) or for
management of the document collections. In this terminology, the exams above can be seen as
the payload documents derived from the content documents in the problem collection. That
is where VDs may naturally come into play as we have seen above.

A very simple application of VDs in payload documents are queries for a table of contents
(collecting all sectioning elements in a narrative document), the references (collecting all cita-
tions, sorting them, and completing them with information from a bibliographic database), or
an index. In DocBook [WM08] these aggreated document parts generated by XSLT stylesheets
in the presentation phase, which may incur performance bottlenecks in practice, since this is
not supported by indexing and caching. Moreover, VDs make separate the conceptually issue
of auto-aggregation and presentation, which allows to support workflows like previews/editing
of aggregated document parts and materialization (e.g. of branches and tags) for archiving.

Another simple application of VDs in technical payload documents is in XML-based lit-
erate programming [Knu92], where program text is intermingled with its documentation and
explanation in a single tocument. Here a VD can be used to extract the program text (with
comments that cross-link to) from the literate source. As a concrete XML-based example
take the XMLSpec-based source of the MathML3 Recommendation [ABC+09] from which
we generate the MathML3 RelaxNG Schema. A VD would have considerably simplified this
process.

We have already seen Diff VDs as examples of managment VDs for version management
in the last section. But VDs can also support proofreading, a very important task in the

12

concl.tex 625 2010-04-16 14:51:42Z kohlhase

document life cycle. Often one wants to proofread special aspects of a document, e.g. whether
certain technical terms are used consistently. For this we can quickly specify these terms as
parameter to an XQuery that assembles all paragraphs that contain them. Then we can
proofread (and edit) the text passages, commit them back to the collection, and move on to
other proofreading tasks.

4.4 Refactoring Ontologies

Finally, VDs can be used for refactoring OWL [SWM04] Ontologies that are written in XML
Syntax, e.g. OWL 2 XML [MPPS09]. VDs becomes very handy when making changes to a
small subsets of multiple large ontologies. In the first phase we can preview ontologies changes
in a VD using XQuery transform functions. In the second phase, when we are satisfied with
results we can materialize a VD thus obtaining a refactored ontology as a usual document in a
repository. Refactorings that can be done using VDs include renaming entities, factoring out
or merging modules, rewriting axioms, lowering expressivity or stripping axiom annotations.
For more detailed information concerning ontology refactoring using VDs refer to [LZ10].

5 Conclusion & Further Work

In this paper, we have presented the concept of Virtual Documents and its prototypical
realization in our TNTBase system. VDs integrate computational facilities into documents
like JSP/PHP or TEX/LATEX, only that VDs use the versatile and XML-optimized XQuery
processing as a computational process instead of relational database lookup (PHP) or general
macro expansion in the latter case. We view the integration of computation in documents
as an enabling technology that explains much of the success and usefulness of the respective
approaches, and contend that our VDs are one way of introducing this to the XML world.
We feel that we have just skimmed the practical possibilities induced by VDs in the use cases
discussed in Section 4.

For instance, we envision that VDs can serve as a basis for news generation that are tailored
to a particular user and keep track of the news that have been read already. Thus a reader
would receive only those topics that are interested for him and has not been explored so far.
The targeted VD would contain an XQuery that takes specific to a particular user parameters
like interested sections or ids of read items. The only part still missing to realize this is a
user model for preferences and explored news, but it is a separate problem. The important
thing that a single VD can satisfy needs of multiple users at the same time. Consider for
instance the following situation: If the content collection contains information conceptual
dependencies, then we can use VDs to generate guided tours [?], i.e. self-contained sub-
documents introduce the necessary pre-requisites of a concept. As VDs allow to re-use the
parametric XQueries that operationalize e.g. the topological sorting of concept descriptions,
populating a file system with guided tours over a content collection becomes a mechanical
exercise. In fact, we conjecture that much of the functionality of advaced e-learning systems
like ActiveMath [?] can be externalized into VDs.

Note that the viability of virtual documents is intertwined with the targeted document
formats in an interesting way as our discussion of validation in Section 3.5 shows. In [ZKR10]
we have begun an exploration on a theoretical level; from our practical work reported in this
paper it seems that more theoretical investigations are necessary. Note furthermore that our
realization of VDs is not tied to the TNTBase system – even though version management

13

concl.tex 625 2010-04-16 14:51:42Z kohlhase

can profit from VDs, it is not a prerequisite; instead of an SVN commit we could just as well
write to an XML database. In particular, as our implementation is based on XQuery in its
core, it should be possible to port it to other XML databases if they supply a notion of a file
system interface.

In our use cases, the ability to re-use XQueries6 for different situations and over time
has been a crucial ingredient for practical use of VDs. We therefore anticipate that common
XQueries will be rolled into extensions7 for document formats much like macro packages in
TEX/LATEX and thus will create an avenue for user-driven format extensions that may well
drive evolution of XML-based formats in the future.

An enabling technology must of course also have enabling tools, which we want to develop
on top of our TNTBase system. One such tool is an editing framework for VDs. Note that
this is non-trivial, since — like their underlying XML formats — VDs need to be presented
to a user in a human-oriented format for reading and editing . Let us consider XHTML as a
presentation format. JavaScript frameworks like JOBAD [JOB08] could be extended in order
to inject JavaScript into XHTML that marks up the editable parts of a transformed VD with
help of auxiliary TNTBase attributes (like tnt:doc and tnt:xpath). Special markup will allow
that framework to figure out what parts of a presentational document correspond to what
parts of the sources from which VD content was comprised. The result could be that every
“editable” part of rendered XHTML contains a small button or a link for editing pressing
which results in some popup that shows an editable fragment of an XML document. Pressing
submit button will modify the original content of a VD and commit it back to TNTBase.
XML sources will be transparently patched that will lead to an updated XHTML version of a
considered VD. Such an approach will allow a typical user to understand better the meaning
of a VD (with help of human-oriented presentations) as well as provide interactive means for
utilizing the powerful concept of VD editing.

References

[ABC+09] Ron Ausbrooks, Stephen Buswell, David Carlisle, Giorgi Chavchanidze, Stéphane
Dalmas, Stan Devitt, Angel Diaz, Sam Dooley, Roger Hunter, Patrick Ion, Michael
Kohlhase, Azzeddine Lazrek, Paul Libbrecht, Bruce Miller, Robert Miner, Murray
Sargent, Bruce Smith, Neil Soiffer, Robert Sutor, and Stephen Watt. Mathematical
Markup Language (MathML) version 3.0. W3C Candidate Recommendation of 15
December 2009, World Wide Web Consortium, 2009.

[BCF+07] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan
Robie, and Jérôme Siméon. XQuery: An XML Query Language. W3C rec-
ommendation, World Wide Web Consortium (W3C), January 2007. available at
http://www.w3.org/TR/xquery/.

[Ber09a] Berkeley DB. available at http://www.oracle.com/technology/products/

berkeley-db/index.html, seen January 2009.

[Ber09b] Berkeley DB XML. available at http://www.oracle.com/database/

berkeley-db/xml/index.html, seen January 2009.

6which require specialized expertise and therefore constitute a significant investment
7Think e.g. of tableofcontents, references , or index elements that abbreviate a respective XQueries.

14

concl.tex 625 2010-04-16 14:51:42Z kohlhase

[CDF+08] Don Chamberlin, Michael Dyck, Daniela Florescu, Jim Melton, Jonathan Robie,
and Jérôme Siméon. XQUpdate: XQuery Update Facility 1.0. W3C Candidate
Recommendation, World Wide Web Consortium (W3C), seen February 2008.

[DKL+10] Catalin David, Michael Kohlhase, Christoph Lange, Florian Rabe, Nikita Zhiltsov,
and Vyacheslav Zholudev. Publishing math lecture notes as linked data. In Lora
Aroyo, Grigoris Antoniou, and Eero Hyvönen, editors, ESWC, Lecture Notes in
Computer Science. Springer, June 2010. In press.

[JOB08] JOBAD framework – JavaScript API for OMDoc-based active documents. http:

//jomdoc.omdoc.org/wiki/JOBAD, 2008.

[JOM10] JOMDoc project — Java library for OMDoc documents. http://jomdoc.omdoc.

org, 2010. seen Feb.

[JSR09] JSR 311: JAX-RS: The Java API for RESTful Web Services, seen April 2009.
available at https://jsr311.dev.java.net/nonav/releases/1.0/index.html.

[Knu92] Donald E. Knuth. Literate Programming. The University of Chicago Press, 1992.

[Koh] Michael Kohlhase. OMDoc: An open markup format for mathematical documents
(latest released version). Specification, http://www.omdoc.org/pubs/spec.pdf.

[Koh10] Michael Kohlhase. An open markup format for mathematical documents OMDoc
[version 1.6 (pre-2.0)]. Draft Specification, 2010.

[LAT] Latin: Logic atlas and integrator. https://trac.omdoc.org/latin/.

[LZ10] Christoph Lange and Vyacheslav Zholudev. Previewing OWL changes and refactor-
ings using a flexible XML database. In Mathieu d’Aquin, Alexander Garćıa Castro,
Christoph Lange, and Kim Viljanen, editors, submitted to 1st Workshop on Ontology
Repositories and Editors, number 464 in CEUR Workshop Proceedings, Hersonis-
sos, Greece, May 2010.

[Mil10] Bruce Miller. LaTeXML: A LATEX to XML converter. Web Manual at http://dlmf.
nist.gov/LaTeXML/, seen March 2010.

[Mis10] Dimitar Misev. Integrating SUMO and OMDoc. Bachelor’s thesis, Computer Sci-
ence, Jacobs University, Bremen, 2010.

[MPPS09] Boris Motik, Bijan Parsia, and Peter F. Patel-Schneider. OWL 2 web ontology
language: XML serialization. W3C recommendation, World Wide Web Consortium
(W3C), 10 2009.

[Ope] OpenLink Software. OpenLink universal integration middleware – Virtuoso product
family. web page at http://virtuoso.openlinksw.com.

[Rel] A schema language for XML. available at http://www.relaxng.org/.

[SVN08] Subversion, seen June 2008. available at http://subversion.tigris.org/.

15

concl.tex 625 2010-04-16 14:51:42Z kohlhase

[SWM04] Michael K. Smith, Chris Welty, and Deborah L. McGuinness. OWL web ontology
language guide. W3C Recommendation, World Wide Web Consortium (W3C),
February 2004.

[W3C07] W3C. Mathematical Markup Language (MathML) Version 3.0 (Third Edition).
http://www.w3.org/TR/MathML3/, 2007. Seen November 2007.

[WM08] Norman Walsh and Leonard Muellner. DocBook 5.0: The Definitive Guide. O’Reilly,
2008.

[XML09] The XML Spec schema and stylesheets. http://www.w3.org/2002/xmlspec/, seen
March 2009.

[Z+10] Vyacheslav Zholudev et al. TNTBase – restful api. https://tntbase.org/wiki/

restful, 2010.

[Zho] Vyacheslav Zholudev. Sandbox for Balisage 2010 – Virtual Documents. https:

//tntbase.org/wiki/balisage2010.

[ZK] Vyacheslav Zholudev and Michael Kohlhase. The RelaxNG schema for vd
skeletons. https://svn.tntbase.org/repos/tntbase/trunk/DbXmlAccessLib/

resources/tnt-vd-spec.rnc.

[ZK09] Vyacheslav Zholudev and Michael Kohlhase. TNTBase: a versioned storage for
XML. In Proceedings of Balisage: The Markup Conference 2009, volume 3 of Bal-
isage Series on Markup Technologies. Mulberry Technologies, Inc., 2009.

[ZKR10] Vyacheslav Zholudev, Michael Kohlhase, and Florian Rabe. A [insert xml format]
database for [insert cool application]. In Proceedings of XML Prague 2010, 2010.

16

	Introduction
	TNTBase, a Short Recap
	The Core
	Application Layer of TNTBase

	Virtual Documents
	VD Specifications and Skeletons
	VDs as TNTBase FS Entities and Their Materializing
	Querying VDs
	VD Editing
	VD Schema Validation
	Implementation Details

	Use Cases
	Automated Exam Generation
	Multiple Versions of Documents
	Managing Document Collections
	Refactoring Ontologies

	Conclusion & Further Work

