
Chapter 6
Mashups using Mathematical Knowledge
Why Formulae are Different

Christoph Lange and Michael Kohlhase

Abstract Mashups offer new functionality by combining, aggregating and trans-
forming resources and services available on the Web. This chapter deals with math-
ematical mashups and focuses on those that process mathematical knowledge rather
than, e.g., huge amounts of numeric data, as it is the structure of knowledge that
distinguishes mathematics from other application domains.

The resources that mathematical mashups process primarily include formulae
and the services they offer involve computation. In knowledge-rich mashups, the
formulae are not hard-coded into the implementation but represented as explicit data
structures, and often also presented to the user. These structures are different from
the (re)presentations mashups usually process. To allow for automated processing,
formulae need to be represented neither as plain text nor as images, but in a sym-
bolic way. The representation of choice is, for compatibility and scalability reasons
discussed in this chapter, usually not JSON or RDF, but semantic XML markup.
Besides tables or graphs, mathematical mashups may also require formulae to be
presented to the end user. The highest degree of interaction with formulae is offered
by MathML – in those browsers that fully support it.

After introducing typical education and engineering use cases that benefit from
mathematical mashups, this chapter reviews the conceptual and technical founda-
tions for representing and presenting mathematical formulae, discussing MathML
as well as alternatives. We continue with a review of mathematical web services
and collections of mathematical knowledge that provide suitable building blocks
for mathematical mashups. We then present the Planetarysystem, a math-enabled
social semantic web portal that provides an environment for executable papers, and
the SAlly framework that mashes up user interfaces of software applications with
mathematical web services. Both environments mash up assistive services by hook-
ing them into document structures, which have been annotated with terms from
a mathematical background ontology. We conclude with an outlook towards con-
tributing collections of mathematical knowledge to the Web of Data, and outline
how such linked open datasets can drive further mathematical mashups in the near
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6.1 Mathematical Knowledge and its Management

Mathematics is a ubiquitous foundation of science, technology, and engineering.
These fields share mathematics as a common foundation and consequently use the
same rigorous style of argumentation and the same symbolic formula language. The
process of understanding results is similar, too. For example, a software engineer
can hardly understand a piece of software from its source code and the brief embed-
ded documentation alone – i.e. the counterpart to rigorous mathematical notation –,
but will usually have to consult external manuals – compare mathematical textbooks
– and records of developers’ communication about the code, such as discussions in
mailing lists and bug trackers. The latter resemble transcribed dialogs about mathe-
matical proofs (think “software features”) and their refutations (think “bug reports”),
as IMRE LAKATOS studied them [99].

While the work presented in this chapter is mainly motivated from a mathemati-
cal perspective, we point out connections to other STEM fields (science, technology,
engineering, mathematics) wherever appropriate.

This chapter focuses on mashups that deal with mathematical knowledge. These
are not the only mashups in the mathematical domain, but we argue that they are
the most interesting ones, because the structure of mathematical knowledge – most
prominently the structure of formulae – distinguishes them from other mashups,
which we call “data mashups” for the purpose of distinction. The Developer Apps
showcase of Data.gov, the open data site of the US government, shows a selection
of typical data mashups [5]: DataMasher [4], for example, accesses data sets that
contain various kinds of statistical figures per US state, such as population, crime
rate, government spending figures, or unemployment; it allows to combine two such
data sets, to choose an arithmetic operator (e.g. sum or division) and computes the
result of applying this operator to the respective data points for each state (cf. fig-
ure 6.1). The result is displayed on a map (with different color shades per state) or
as a table. Now, we are interested in mashups that handle potentially arbitrary math-
ematical functions, and that know the types of their data well enough to tell that it
does not make sense to subtract the total tax revenue per capita from the percentage
of population covered by health insurance.

Where do knowledge-rich mathematical mashups help? – Recently, an “in-
dustrialization” of mathematical research has been observed, exhibiting patterns
such as big teams of authors, instant communication, more fluid collaboration,
de-centralized modes of publication and knowledge authentication, and the usage
of big computer systems [54, 60]; ANDREA ASPERTI et al. similarly argued that
“mathematics is destined to assimilate some practices of software development”
[45]. Nowadays, computers assist with all steps of “doing mathematics”: numeric
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Fig. 6.1: DataMasher [4], a data mashup

as well as symbolic computation (the original purpose of computers!), verification
and even generation of proofs [125] (these are subsumed under symbolic com-
putation in the following), gaining intuition by experiment and generating coun-
terexamples [81, p. 154], high-quality publishing (e.g. using the LATEX typesetting
system), and education (cf. e.g. [38, 114, 110, 64]). The proceedings of the previ-
ous conferences on intelligent computer mathematics (CICM) provide some further
overview [1, 49, 58, 48, 67, 87].

Those aspects of computer mathematics that are not immediately concerned
with numeric and symbolic computation are commonly referred to as mathemati-
cal knowledge management (MKM). The interdisciplinary MKM community con-
sists of computer scientists, computer-savvy mathematicians, and digital library re-
searchers, whose objective is “to develop new and better ways of managing mathe-
matical knowledge using sophisticated software tools” [72]1, or, more specifically,
“to serve (i) mathematicians, scientists, and engineers who produce and use math-
ematical knowledge; (ii) educators and students who teach and learn mathematics;
(iii) publishers who offer mathematical textbooks and disseminate new mathemati-
cal results; and (iv) librarians and mathematicians who catalog and organize math-

1 This notion of the term “knowledge management” is wider than that of its traditional definition
as “a range of practices used [. . . ] to identify, create, represent, distribute and enable adoption of
insights and experiences. Such insights and experiences comprise knowledge, either embodied in
individuals or embedded in organizational processes or practice.” [140]
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ematical knowledge” [72]2. Knowledge-rich mathematical mashups are needed in
such application settings, but MKM research also provides the know-how to build
them: As soon as a mathematical mashup performs computations beyond standard
library functions, or accesses structured data beyond arrays of numbers, it needs
an explicit representation of knowledge in order to know where to get its data (e.g.
numbers) from, what these data mean, and how to publish the results to its end users.

The rest of this chapter is structured as follows: Section 6.2 introduces the spe-
cific conditions of mathematical knowledge on the Web with a brief historical ex-
cursion. Section 6.3 provides an overview of existing mathematical mashups – or,
rather, as very few of them exist to date, of possible use cases for mathematical
mashups and of existing technology that helps building them. Section 6.4 intro-
duces the Planetary system and the SAlly framework, two approaches to mashing
up web or office documents with mathematical services. Section 8.5 concludes the
chapter with an outlook towards a mathematical Web of Data.

6.2 Mathematical Knowledge on the Web

A lot of mathematical knowledge has been created and published on the Web3,
both by practitioners doing mathematical research, education, or applications, and
in research projects that investigated the applicability of web technology to math-
ematics. This section reviews the state of the art, focusing on systems and projects
that could use mashup technology. We first review traditional web 1.0 applications,
as they are still widely in use. Web 2.0 applications, enabling better communication
and collaboration, are becoming more and more commonplace also among mathe-
maticians, whereas semantic web technology is barely on the verge of achieving a
breakthrough in the mathematical domain.

6.2.1 Web 1.0 – Digital Libraries for Humans and Tools

Virtually all mathematicians nowadays use digital libraries. For example, Zentral-
blatt MATH [33] and MathSciNet [41] are the largest services that provide reviews
and abstracts of mathematical publications. The knowledge base is searchable on-
line, by full text and by metadata, such as author, title, and the Mathematics Subject
Classification (MSC [34]; see also section 6.3.2.4).

Many of the libraries used by computer-based mathematics tools, such as com-
puter algebra systems (CAS), proof assistants, and program verification systems,
have also been published on the Web – while still being edited and maintained off

2 numbering added by the authors
3 To reduce eye strain, we only capitalize this term, as well as the terms “Web 2.0” and “Semantic
Web”, when they denote the Web as a whole, but not when they are in an adjective position, as in
“semantic web services”.
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the Web. Consider, for example, the Journal of Formalized Mathematics, publishing
machine-verified proofs from the Mizar Mathematical Library (MML [18]).

Finally, there are educational or general-purpose reference works, such as the
Digital Library of Mathematical Functions (DLMF) and Wolfram MathWorld. The
DLMF is a centrally edited reference of special functions [6]. MathWorld collects
about 13,000 entries on mathematical topics, including downloadable files (“note-
books”) for the Mathematica CAS [13].
Easy Access, but Poor Collaboration and Retrieval: Besides facilitating access
to mathematical knowledge, these sites (i) offer limited internal interaction and do
not facilitate collaboration other than sharing links with collaborators, and (ii) the
means of automatically retrieving, using, and adaptively presenting knowledge, e.g.
in mashups, are restricted. Web 2.0 technology addresses problem (i), and semantic
web technology addresses problem (ii). The following subsections review to what
extent these developments have been adopted for mathematical applications.

6.2.2 How Working Mathematicians have Embraced the Web 2.0

Working mathematicians, both researchers and instructors, are increasingly using
the Web 2.0 for collaboratively developing new ideas, but also as a new publication
channel for established knowledge. Research blogs, wiki encyclopedias, and open
educational repositories are typical representatives.

Blogging about established mathematical knowledge follows the traditional prac-
tice of publishing short reviews and abstracts of previously published material (cf.
section 6.2.1). Researchers have also found blogs useful to gather early feedback
about preliminary findings. Successful collaborations among mathematicians have
started in blogs and converged into conventional articles [50]. In the Polymath initia-
tive, blogs are the exclusive communication medium for proving theorems in a mas-
sive collaborative effort [23, 51]. Compared to research blogs, the MathOverflow
forum [16], where users can post their problems and solutions to others’ problems,
offers more instant help with smaller problems. Its reputation mechanism simulates
the traditional scientific publication and peer review process in an agile way.

For ideas emerging from a blog discussion, or for creating permanent, short, in-
terlinked descriptions of topics, wikis have been found more appropriate. The nLab
wiki [20], a companion to the n-Category Café blog [19], is a prominent example.
Where MathOverflow focuses on concrete problems and solutions, the Tricki [27]
is a wiki repository of general mathematical techniques – reminiscent of a web 2.0
remake of GEORGE PÓLYA’s classic “How to Solve It” [124].

Wikis that collect existing mathematical knowledge, for educational and general
purposes, are more widely known. The PlanetMath encyclopedia [122] counts more
than 8,000 entries at the time of this writing. The general-purpose Wikipedia with
over 21 million articles in over 280 languages also covers mathematics [141]. Tar-
geting a general audience, it omits most formal proofs but embeds the pure mathe-
matical knowledge into a wider context, including, e.g., the history of mathematics,
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biographies of mathematicians, and information about application areas. The lack
of proofs is partly compensated by linking to the technically similar ProofWiki [25]
with over 2,500 proofs, or to PlanetMath.

Similarly, open educational resources (OER) about mathematics can be found
on general-purpose as well as mathematics-specific sites, some of them driven by
wikis. For example, the Connexions [62] open courseware repository, having the
more traditional ownership model of a content management system. It promotes the
contribution of small, reusable course modules – more than 20,000, about 4,000
from mathematics and statistics, and about 7,000 from science and technology – to
its content commons, so that the original author, but also others can flexibly combine
them into collections, such as the notes for a particular course. i2geo [10, 106] is an
example of a wiki dedicated to educational interactive geometry constructions.

Finally, established mathematical knowledge bases are starting to employ web
2.0 front ends to simplify and crowd-source maintenance – for example the re-
cently developed prototypical wiki frontend for the Mizar Mathematical Library
(MML) [39, 135] mentioned in section 6.2.1.
Little Reuse, Lack of Services: Web 2.0 sites facilitate collaboration but still re-
quire a massive investment of manpower for compiling a knowledge collection.
Machine-supported intelligent knowledge reuse, e.g. from other knowledge collec-
tions on the Web, does not take place. Different knowledge bases are technically
separated from each other by using document formats that are merely suitable for
knowledge presentation but not for representation, such as XHTML with LATEX for-
mulae. The only way of referring to other knowledge bases is by untyped hyper-
links. The proof techniques collected in the Tricki cannot be automatically applied
to a problem developed in a research blog, as neither of them is sufficiently formal-
ized. Conversely, the Polymath community does not have any automated verification
tools at hand.4

Intelligent information retrieval, a prerequisite for finding knowledge to reuse
and to apply, is restricted to regular text search even though crucial parts of mathe-
matical knowledge are only conveyed in formulae.

Finally, the integration of mathematical web 2.0 sites with automated reasoning
and computation services is scarce. Interactive computation is available in math-
ematical eLearning systems, such as ActiveMath [38] or MathDox [110] – where
document authors have sufficiently formalized the underlying mathematics in sepa-
rate editing tools before publishing –, but less so in general-purpose digital libraries
and collaboration environments. Mashups, which have otherwise been a driving
force of Web 2.0 development, scarcely exist for mathematical tasks, as detailed
in section 6.3.

4 Other than the above-mentioned wiki frontend to the Mizar Mathematical Library and a similar
one for the library of the Coq theorem prover, none of which are the primary entry points to these
libraries yet, we are not aware of mathematical web 2.0 sites that integrate formal verification.
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6.2.3 Adoption of the Semantic Web in MKM

In the early 2000s, when XML was increasingly used for mathematics, particularly
for formulae (cf. section 6.3.2), the first building blocks of the Semantic Web vision
approached standardization. This sparked interest in the emerging MKM commu-
nity (cf. section 6.1), whose members hoped that semantic web technology would
help to address their challenges. This seemed technically feasible, particularly as
both communities made use of XML as a serialization format and URIs for identify-
ing things [108]. The two main lines of applying semantic web technology to MKM
focused on digital libraries – improving information retrieval and giving readers
access to automated reasoning and computation services –, and web services – pro-
viding self-describing interfaces to automated reasoning and computation on the
Web, so that they could solve problems sent to them by humans or other agents. We
refer the reader to [102] for a survey of these (largely frustrated) early attempts of
using Semantic Web techniques for MKM. Important systems of this time are the
“Hypertextual Electronic Library of Mathematics” HELM [8, 46], the MathServe
distribution architecture for automated reasoning [148], and the MONET project,
which pioneered an architecture for mathematical semantic web services [117, 57].
The problems encountered by these systems can be attributed to (i) semantic web
technologies were adopted before they were mature (which benefitted the Semantic
Web, but not MKM), and (ii) a fundamental mismatch between RDF-based tech-
nologies and the requirements for dealing with mathematical formulae.

The combination of the Web 2.0 and the Semantic Web, sometimes called “Web
3.0”, started to emerge in 2006 (cf. [42]) and is now conquering mainstream applica-
tions via incremental enhancement of successful Web 2.0 applications with semantic
technology, as can be seen from general-purpose social semantic web engines such
as Semantic MediaWiki [26] or Drupal 7 [65]. In 2007, STEFANO ZACCHIROLI
suggested jumping on this train as a way of retrying the application of semantic web
technology to mathematics after the initial failure: Web 2.0 technology would allow
for interactively editing mathematical content in the web browser, and Social Web
initiatives such as PlanetMath had already proven that there is “a community of peo-
ple interested in collaboratively authoring rigorous mathematics on the web” [144].5
Moreover, both HELM and MONET would now benefit from the wide support for
SPARQL, the standard query language for RDF.

We are now witnessing a resurgence of mathematical applications on the Web
3.0. The emerging HTML5 [83] includes MathML without requiring the strict XML
conformance that authors and UI widget toolkits often fail to achieve; soon, more
browsers can be expected to support MathML. PlanetMath is being ported to the
Drupal-based Planetary engine (cf. section 6.4.2) and is currently being deployed
for beta testing [123, 95]. The Mathematics Subject Classification scheme (MSC),
widely used in paper-based and digital libraries, has recently been officially pub-
lished as a linked open dataset (cf. section 6.3.3.5), which enables easier access for

5 Similarly, BAEZ suggests that the release of a TEX formula editor plugin for the popular Word-
Press blog engine was a major incentive for mathematicians to start blogging [50].
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web services, as well as an easier construction of links between mathematics and re-
lated fields. We are even seeing first commercial systems like “truenumbers” [131]
a system for supporting the representation, management and copy/pasting of engi-
neering values as semantically enhanced data.

6.3 Mathematical Knowledge Mashups

Few mathematical knowledge mashups or mashup-based mathematical knowledge
management systems exist to date. The ProgrammableWeb [24] mashup directory
lists 3 mashups and 3 APIs tagged with “math”, out of more than 6,000 mashups
and more than 5,000 APIs overall – an observation that suggests that the mashups
we classified as “data mashups” in section 6.1 are not commonly considered proper
mathematical mashups. This can, however, be expected to change soon: In 2010,
Wolfram, who had already released the Wolfram Alpha “computational knowl-
edge engine” (cf. section 6.3.3.1), released an online development environment for
building custom “widgets” as front-ends to Wolfram Alpha [30]. These widgets are
mini-applications with a custom user interface. They perform simple computations
backed by Wolfram Alpha and can be embedded into web pages. So far, users have
developed several thousand widgets. However, these widgets only give a foretaste of
the potential of mathematical mashups: (i) Most of them are rather trivial front-ends
to Wolfram Alpha, merely offering input forms for information that one would oth-
erwise include in a query to Wolfram Alpha, such as an amount of money, a source
and a target currency, (ii) they are limited to acting as front-ends to Wolfram Alpha,
and (iii) they can only be created within Wolfram’s development environment.

Thus, as very few actual mathematical mashups exist to date, this section focuses
on possible use cases for them, and on existing technology that helps building them.

6.3.1 Characterization and Purpose

The general purpose of mathematical mashups (including data mashups) can be
subclassified into providing a user-friendly frontend to computation tasks (such as
computing the derivative of a given function and plotting its graph), or retrieving
and aggregating mathematics-related information (such as finding existing theorems
applicable to a given formula). Both can occur in combination; Wolfram Alpha,
for example, first retrieves functions related to the user’s query and then evaluates
them for some common values. Mathematical mashups can be further classified by
their input and output interfaces. Possibilities for providing input include entering
a mathematical expression (visually such as 4pr3

3 or in a linear text form such as
(4*PI*rˆ3)/3) or a sequence of data points (e.g. to apply a statistical function
to). Instead of manually entering such information, one may also select existing
information – e.g. an existing expression in a document, or existing data points in a
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table or chart. Mashups may provide their output as a mathematical expression (e.g.
an expression representing the derivative of the input expression, or a plain number
representing the result of a numeric computation) or as a chart or graph (e.g. for
visualizing large amounts of numbers, or functions, or geometric shapes having
a given property). If the input was provided by selecting existing information, a
mashup may also provide its output by rewriting or redrawing, e.g., the selected
expression or graph.

6.3.2 Technical Background

Data mashups that compute a straightforward result from some given numbers do
not require any mathematics-specific mashup technology. This section focuses on
handling mathematical formulae, a feature unique to mathematical web applica-
tions.

The symbolic language of mathematical formulae is non-trivial for its extensi-
bility; particularly in mathematical research it is common practice to define new
concepts and introduce new notation for them. Mathematics is not the only domain
that employs its own symbolic notation: Formulae are also used in chemistry to ex-
press the structure of atoms forming a compound. An interesting aspect of musical
notation is its multimodal combination with text in vocals. The notation of art music
has been largely standardized until the 20th century6 and then diversified. However,
we argue that mathematics is distinct in that new notation can be introduced within
the language of mathematics itself: Besides symbolic language, mathematics em-
ploys a conventionalized natural language (also called “mathematical vernacular”).
In this language, the notation of a symbol is usually introduced with its first decla-
ration, typical phrases being “We will denote by Z the set . . . ”, “The notation aRb
means that . . . ”, etc. [132].

On the user interface, formulae are often entered and rendered in textbook style;
the data formats for this are called presentation markup (section 6.3.2.1). For ex-
changing formulae with tools that perform computation or reasoning, they must
not be encoded by their layout but by their meaning; this is called content markup
(section 6.3.2.2). MathML, the most common language for both presentation and
content markup of mathematical formulae, also allows for interacting with math-
ematical formulae in the browser – an important feature of the user interface of a
mathematical knowledge mashup (section 6.3.2.3). Finally, mathematical mashups
may draw on mathematical data, such as number series or mathematical background
knowledge such as definitions or theorems. Section 6.3.2.4 explains how to publish
such data on the Web.

6 But see DONALD BYRD’s documentation of “extremes of conventional music notation” [56].
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Listing 6.1: The formula a1 +
1
2 in Presentation MathML (namespace declarations

omitted)
<math> <!-- Presentation MathML -->
<msub> <!-- subscript -->
<mi>a</mi> <!-- identifier -->
<mn>1</mn> <!-- number -->

</msub>
<mo>+</mo> <!-- operator -->
<mfrac> <!-- fraction -->
<mn>1</mn>
<mn>2</mn>

</mfrac>
</math>

6.3.2.1 Mathematical Formulae on the User Interface: Presentation Markup

Possibilities to present mathematical formulae in a human-readable textbook style
include plain text, images, and MathML.

Plain text rendering is sufficient for simple mathematical formulae. The fol-
lowing Unicode blocks are of particular relevance [134]: Mathematical Operators,
Miscellaneous Mathematical Symbols-A, Miscellaneous Mathematical Symbols-B,
Supplemental Mathematical Operators, Letterlike Symbols, Miscellaneous Techni-
cal, Arrows, Miscellaneous Symbols and Arrows, and Mathematical Alphanumeric
Symbols.

More complex mathematical formulae cannot be rendered within a line of text
as they have a two-dimensional layout; consider operators embellished with sub-
/superscripts, expressions in sub-/superscripts, fractions, or matrices. On the Web,
they have traditionally been published as images (generated, e.g., with the LATEX
typesetting system). Images are, however, limited w.r.t. rendering quality, accessi-
bility, reuse (e.g. copy/paste), and interaction possibilities.

Therefore, the preferred method for rendering complex mathematical formulae
is the XML-based MathML (Mathematical Markup Language [47]) format. It was
originally conceived for embedding mathematical objects into (X)HTML and is now
part of HTML5. Besides a presentation-oriented sublanguage (unofficially called
“Presentation MathML”), it features a content-oriented one (Content MathML).
Listing 6.1 shows a formula in Presentation MathML.

As of 2012, Presentation MathML is natively supported by Mozilla’s Gecko
browser rendering engine used by Firefox. Safari supports it from version 5.1;
Chrome, another browser using the WebKit engine, supports it from version 24.
Opera has limited MathML support in that it treats MathML like generic XML but
applies a custom built-in CSS stylesheet to it. Internet Explorer supports MathML
via the MathPlayer plugin, which offers additional accessibility support by speech
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Listing 6.2: The formula a1 +
1
2 in non-strict Content MathML (namespace declara-

tions omitted)
<math> <!-- non-strict Content MathML -->
<apply> <!-- application of an operator to arguments -->
<plus/> <!-- short name for a common operator -->
<!-- mixed presentation and content markup -->
<ci> <!-- identifier -->
<msub><mi>a</mi><mn>1</mn></msub></ci>

<!-- built-in constructor for a common type -->
<cn type="rational">1<sep/>2</cn> <!-- rational number -->

</apply>
</math>

output and magnification [17].7 Independently, any browser with CSS and JavaScript
support can display MathML via MathJax [111], which replaces MathML subtrees
in the DOM with CSS layouts and special fonts at display time.

6.3.2.2 Mathematical Formulae in Computation: Content Markup

In applications that go beyond high school mathematics, presentation markup leaves
too many ambiguities to be useful as an input format for numeric or symbolic com-
putation. This problem is addressed by content markup, which represents formulae
(then usually called “mathematical objects”) by their functional/operator structure,
similar to an abstract syntax tree.

As an example for the ambiguity of presentation markup, consider three possible
meanings of the8 formula O(n2 +1):

Landau symbol (a.k.a. big-O notation): the set of all functions that asymptotically
grow at most as fast as n2, where the +1 is actually superfluous

Function application: the application of some function named O – which needs
not be the Landau set constructor function – to n2 +1

Invisible times: O (e.g. some variable) multiplied with n2+1, where the multipli-
cation operator is invisible9

Important building blocks of mathematical objects as supported by Content
MathML [47, chapter 4] are numbers, variables, symbols (operators, functions, sets,
constants), and applications of mathematical objects to other mathematical objects.

7 The information on browser support has been taken from Wikipedia [142], “When can I
use. . . ” [37], and a review by TIMOTHY VISMOR [136].
8 If we do not have the information that this is a single formula, then additional readings appear.
9 Even in Presentation MathML, it is, however, best practice to mark up the distinction between
multiplication and function application explicit using the special Unicode characters FUNCTION
APPLICATION (U+2061) and INVISIBLE TIMES (U+2062). Both characters occupy no space on
the screen and are thus invisible.
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Listing 6.3: The formula a1 +
1
2 in strict Content MathML (namespace declarations

omitted)
<math> <!-- strict Content MathML -->
<apply>

<!-- a symbol referenced by CD and name; the actual URI of

this symbol is http://www.openmath.org/cd/arith1#plus -->
<csymbol cd="arith1">plus</csymbol>
<semantics>
<ci>a1</ci>
<!-- annotation ("parallel markup") -->
<annotation-xml
encoding="application/mathml-presentation+xml">
<msub><mi>a</mi><mn>1</mn></msub>

</annotation-xml>
</semantics>
<apply> <!-- constructor for rational numbers -->
<csymbol cd="nums1">rational</csymbol>
<cn type="integer">1</cn>
<cn type="integer">2</cn>

</apply>
</apply>

</math>

Content MathML comes with a default supply of symbols that cover high school and
introductory university education. The non-strict sublanguage of Content MathML
offers pragmatic shorthands for referring to these symbols (listing 6.2), whereas the
strict sublanguage references all symbols by URI (listing 6.3). Their semantics is
described in external vocabularies called Content Dictionaries (CDs); authors can
create and use additional CDs as needed. MathML delegates the task of writing CDs
to other languages, such as OpenMath [55].

OpenMath has originally been invented to facilitate data exchange between com-
puter algebra systems (CAS). It comprises a sublanguage for mathematical objects
and a language for CDs. This chapter does not cover OpenMath’s object language,
for three reasons: (i) HTML5 only supports MathML, but not arbitrary other XML
namespaces (such as OpenMath’s), (ii) OpenMath is isomorphic to strict Content
MathML, and (iii) XSLT stylesheets for a bidirectional conversion exist [22]. Open-
Math CDs usually do not fully specify the semantics of mathematical operators;
instead, developers of CAS and other systems for numeric and symbolic compu-
tation are supposed to use the CDs as specification manuals when implementing
phrasebooks, which translate OpenMath objects into the native languages of such
systems.

Several CAS support a subset of the CDs built into Content MathML. Note, how-
ever, that (i) developers of mathematical software do not always use the OpenMath
terminology of “CDs” and “phrasebooks” (instead, they may simply refer to the
ability to import and export OpenMath or Content MathML), and that (ii) few sys-
tems support OpenMath or Content MathML as a part of their core functionality. In
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Listing 6.4: The formula a1 +
1
2 in Popcorn (namespace declarations omitted)

a1{ /* Popcorn */
mathmlkeys.alternate-representation
-> ‘application/mathml-presentation+xml<msub>

<mi>a</mi><mn>1</mn></msub>‘
} + 1 // 2

many cases, plugins particularly for OpenMath have been developed in academic re-
search projects and are no longer maintained now. Systems offering varying degrees
of OpenMath or Content MathML support include (in alphabetical order) GAP [66],
Mathematica [35], MuPAD (now known as the Symbolic Toolbox of Matlab) [84],
and Yacas [32].

Content MathML is encoded as XML; OpenMath additionally specifies a binary
encoding. No JSON encoding has been developed so far,but with Popcorn [127, 85]
there is a de facto standard text encoding for OpenMath objects (listing 6.4). RDF
encodings for Content MathML have been suggested, but none has been imple-
mented so far [102, section 4.3.2] as they are considered space-inefficient.

6.3.2.3 Prerequisites for Interacting with Formulae in the Browser

There are two important prerequisites for interacting with mathematical formulae in
the browser: (i) their presentation markup should carry semantic annotations, which
the client side of a mashup can use to interact with a server-side web service, and
(ii) the browser must be able to redisplay them, completely or partly, according to
the action the user performed.

Parallel markup is the most comprehensive solution satisfying requirement (i):
MathML allows to combine the presentation and content markup of a (sub)-formula
in one expression tree and identify corresponding sub-formulae by cross-references
(see figure 6.2). This correspondence supports interactions with computational ser-
vices where the user must identify sub-expressions of formulae. For instance, if we
want to export a subexpression for evaluation in a CAS, then we could make use
of the parallel markup in figure 6.2, there the light gray range is the user’s selec-
tion, with the start and end node in bold face. As the CAS only accepts well-formed
content expressions, we first look up their closest common ancestor that points to
content markup via the xref attribute – here: E.2. Now, we can pass the target content
markup tree to the CAS.

HELM [8, 46] was an early system that satisfied the interaction requirements
listed under (ii) above. In HELM, one could perform actions on MathML formu-
lae, e.g. simplifying a selected (sub)expression using an automated reasoning back-
end attached to the library. In modern MathML-aware browsers, the maction ele-
ment [47, chapter 3.7.1] serves as a generic container for one or more Presentation
MathML expressions, with which the user can interact. The @actiontype attribute
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<semantics>

<!-- a+ b 2 c -->
<mrow xref="#E">
<mi xref="#E.1">a</mi>
<mo xref="#E.0">+</mo>
<mrow xref="#E.2">

<msup xref="#E.2.1">

<mi xref="#E.2.1.1">b</mi>

<mn xref="#E.2.1.2">2</mn>

</msup>

<mo xref="#E.2.0">&#x2062;

<!-- INVISIBLE TIMES -->

</mo>

<mi xref="#E.2.2">c</mi>

</mrow>
<mo xref="#E.0">+</mo>
<mi xref="#E.3">d</mi>
</mrow>

<annotation-xml>
<apply id="E">
<csymbol cd="arith1" id="E.0">
plus</csymbol>

<ci id="E.1">a</ci>
<apply id="E.2">

<csymbol cd="arith1" id="E.2.0">

times</csymbol>

<apply id="E.2.1">

<csymbol cd="arith1" id=

"E.2.1.0">power</csymbol>

<ci id="E.2.1.1">b</ci>

<cn type="integer"

id="E.2.1.2">2</cn>

</apply>

<ci id="E.2.2">c</ci>

</apply>
<ci id="E.3">d</ci>

</apply>
</annotation-xml>

</semantics>

Fig. 6.2: Parallel markup with Presentation MathML elements (left column) point-
ing to Content MathML elements (right column).

allows for defining the type of interaction. The MathML recommendation suggests
some (cycling through multiple alternative children, displaying a tooltip, requesting
user input that can replace the current expression, etc.), but generally the interpre-
tation @actiontype is up to applications. MathPlayer [17] supports those suggested
by the MathML recommendation. No other browser has built-in support for specific
action types, but the Gecko rendering engine allows for choosing the expression to
be displayed from multiple alternative child expressions by changing the value of
the @selection integer attribute (which is possible from JavaScript via the DOM).

6.3.2.4 Publishing Mathematical Data for Mashups

Mathematical knowledge is more than just formulae. Formulae occur in mathemat-
ical statements such as definitions, axioms, theorems, proofs, and examples. Like
entries of CDs (cf. section 6.3.2.2), definitions and axioms may fix the semantics
of new mathematical symbols; theorems assert additional properties of symbols,
proofs validate theorems, and examples demonstrate the usage of symbols, defini-
tions, axioms or theorems in practical settings, e.g. for symbolically simplifying
an equation that describes the behavior of a technical system, or for numerically
approximating a solution of such an equation. Publishing such knowledge in a suit-
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able way for mashups requires implementing it in a data format that mashups can
process, and making the data accessible on the Web. This section briefly reviews
existing possibilities, whereas section 6.3.3.5 points to concrete datasets published
on the Web.

The traditional format of choice for exchanging mathematical knowledge beyond
formulae has been XML, RDF encodings have appeared more recently, whereas
JSON is practically unknown. XML is the primary way of encoding OpenMath CDs,
which have been introduced in section 6.3.2.2. OMDoc is an XML language that
extends CDs by textbook-style statements and a notion of modular theories [21, 93].
Both the OpenMath CD language and OMDoc have unofficial RDF encodings [102,
section 4.3.2].

Publishing knowledge as linked data [80] allows mashups to access it with lit-
tle effort: They can download information about any resource (e.g. a mathemati-
cal theorem) by dereferencing its identifier (i.e. treating its URI as a URL), and
these information records usually provide links to further relevant resources (e.g.
examples in which the theorem is applied). Most commonly, such information
is provided as RDF, but actually the client (here: the mashup) indicates its pre-
ferred format in the HTTP request header. The dominance of XML for mathe-
matical formulae and the existence of both XML and RDF encodings for knowl-
edge beyond formulae suggest a dual XML and RDF publishing approach; one
way to achieve this is to maintain the knowledge primarily in XML and trans-
late it to RDF (cf. [102, section 5.1]). A major complication to publishing math-
ematical knowledge that declares custom symbols is the OpenMath scheme of
identifying symbols with URIs of the form base-URI/cd#symbol (consider, e.g.,
http://www.openmath.org/cd/arith1#plus used in listing 6.3), which
Content MathML also relies on. The need to use “hash” URIs limits the possibility
of publishing and may impair performance in the case of CDs that declare many
symbols; see [102, section 5.2] for a detailed discussion of this and other related
problems.

Finally note that the openness of the RDF data model allows for combining
purely mathematical knowledge with related non-mathematical knowledge, such as
knowledge about real-world application scenarios. Or, conversely, seen from the
point of such application scenarios, linked data mechanisms allow for enriching
existing datasets with mathematical semantics, as we have previously shown for
governmental statistics datasets, which we enriched with pointers to OpenMath def-
initions of mathematical operators used to derive values from original data [137].

6.3.3 Tools

Tools useful for mathematical mashups can roughly be classified into: services per-
forming computation, including verification (section 6.3.3.1), services for publish-
ing mathematical content in web-compliant formats (section 6.3.3.2), user interface
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components for input (section 6.3.3.3) and output (section 6.3.3.4), and useful data
published for reuse (section 6.3.3.5).

We mainly focus on tools supporting content markup, as this is the most versa-
tile format for communicating with computational tools. Beyond the tools reviewed
here, mathematical mashups may employ further components, such as user models
for recording knowledge items read or exercises mastered by the user (e.g. in the
ActiveMath eLearning system [38, 113]), course generators that arrange learning
objects into a sequence (e.g. PAIGOS [133], used in ActiveMath), or facilities that
enable communication between users or between users and instructors. However,
besides the possibility to parameterize them with a mathematical domain ontology
(cf. PAIGOS [133] or the discussion facility of the SWiM wiki [100, chapter 6.6]),
such tools work independently from a particular application domain.

6.3.3.1 Services for Computation

Tools that perform numeric and symbolic computation, including formal verifica-
tion, have existed as standalone command-line or desktop applications for a long
time. Few of them have a web service interface, and hardly any such tool is freely
accessible on the Web.

Fig. 6.3: Wolfram Alpha’s results for Sqrt[x]
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Wolfram Alpha [29], based on the webMathematica web frontend to the Math-
ematica CAS (which itself has a natural language input interface), offers publicly
accessible computation facilities. Wolfram Alpha is primarily designed for interac-
tive use via its web interface: users enter a mathematical expression (or a natural
language phrase), and Wolfram Alpha tries to return everything that it can find out
about this expression and that it deems relevant, such as a factorization, its roots,
or a plot. Additionally, there is an API for non-interactive use, which allows for re-
questing output in different formats, but the Mathematica syntax is the only content
markup supported; for details and possible workarounds see [69]. Using the API
requires, depending on the feature, free registration or buying a license.

HIROSHI NAKANO et al. have developed a non-public mashup that integrates
formulae resulting from symbolic computation, as well as plots of functions, into
web pages [119]. On the server side, they obtain Presentation MathML formulae or
gnuplot data from the Maxima CAS and wrap it into JSON-P.

Web service interfaces for exchanging content markup with computational soft-
ware exist, e.g. as front-ends for CAS that support OpenMath (cf. section 6.3.2.2),
but have not generally been made available for public use, e.g. by mashups. For de-
veloping a mathematical mashup, one would have to install one’s own instance of
any such system.

The MONET project pioneered an OpenMath-aware semantic web service archi-
tecture [117, 57]; some MONET services are still used internally in the MathDox
eLearning system [110, 64] in a mashup-like architecture. The SCIEnce project
(Symbolic Computation Infrastructure for Europe [126]), a more recent driving
force of research on symbolic computation web services, developed SCSCP (Sym-
bolic Computation Software Composability Protocol [79]), a lightweight XML re-
mote procedure call protocol, which transfers OpenMath objects and whose com-
munication semantics heavily relies on a custom OpenMath vocabulary. SCSCP
front-ends have been developed for a number of CAS [126]. We are not aware of
JavaScript clients libraries for MONET or SCSCP, which would facilitate the inte-
gration of such services into mashups.

6.3.3.2 Services for Publishing

Basic possibilities for publishing mathematical formulae on Web pages have been
mentioned in section 6.3.2.1. This section focuses on Presentation MathML, the
most advanced solution for this, and how to obtain it from content markup, as,
e.g., returned by a computational service. Conceived as a function r : content !
presentation, this translation is usually achieved by recursing over the abstract syn-
tax tree represented by the content markup and applying different rules for different
mathematical symbols, so that, e.g. r(plus(a,b)) would result in r(a)+r(b). An
individual per-symbol or per-symbol-pattern rule is also called a notation definition
for this symbol.

Traditionally, the content!presentation translation has been studied on the XML
level and implemented as XSLT stylesheets. The probably largest collections of
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notations natively defined in XSLT translates Content MathML to Presentation
MathML and accompanies the MathML 3 specification as non-normative “exam-
ple XSLT code” [138], and a related collection that defines 143 notations for the
symbols of the official OpenMath 2 CDs [120].

To see why these are cautiously declared “examples”, realize that mathemati-
cal notation depends on multiple dimensions of context. Consider, for example, the
French/Russian notation of the binomial coefficient Ck

n vs. the German/English no-
tation

�n
k
�
, and see [114, 118] for systematic surveys.

XSLT as a low-level XML!XML translation language has been found inade-
quate for modeling notation definitions with contextual information. The rendering
component of the ActiveMath eLearning system and the JOMDoc library developed
in our research group offer high-level XML languages for defining context-sensitive
notations. ActiveMath generates low-level XSLT stylesheets from the XML nota-
tion definitions [107], whereas JOMDoc implements a rendering algorithm inter-
nally [89, 96]. JOMDoc is particularly notable for producing cross-linked parallel
markup of the presentation markup annotated with the original content markup.

Formula rendering engines are typically not ready for use in mashups; one would
have to install them on the server and wrap them into a web service interface. Both
ActiveMath [38] and TNTBase [146] – a document database that integrates JOM-
Doc, albeit without the presentation context features – provide such HTTP interfaces
(cf. [147] for TNTBase). One can store content markup documents in the database
and have them published as presentation markup, or POST an arbitrary content
markup expression to the server and have it rendered to presentation markup on
the fly (ActiveMath only).

As an alternative, Mozilla’s Gecko browser rendering engine and Internet Ex-
plorer are capable of processing XSLT on the client, albeit with different APIs
and limited to version 1.0. The above-mentioned MathML and OpenMath XSLT
stylesheets are implemented in XSLT 1.0. The Sentido formula editor mentioned
in the following section also comes bundled with client-side XSLT stylesheets for
rendering a preview of the formula being edited.

6.3.3.3 User Interface Input Components

Input components for mathematical formulae can be subdivided as follows: lin-
ear text input vs. visual composition (also referred to as direct manipulation) of
a formula, presentation markup vs. content markup generation, and client-side vs.
server-side production of the resulting markup. Separately, this section addresses
interaction with existing formulae.

A large number of visual formula editors, offering visual selection of mathe-
matical symbols as well as visual cursor navigation, supports Presentation MathML
[15]. Fewer visual editors exist for content markup. Visual editors for OpenMath
objects – with a restricted set of supported CDs – have been developed by WIRIS
[143, 109] and for the MathDox eLearning system [110]. The Connexions MathML
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Table 6.1: Classification of formula input tools

Name Input Output Site of execution Ref.

WIRIS OpenMath
Input editor

fully
visuala

OpenMath client (Java applet) [143,
109]

MathDox
formula editor

fully
visual

OpenMath client (HTML canvas) [110]

Connexions
MathML editor

fully
visual

Content
MathML

client (Presentation MathML) [3]

Popcorn linear OpenMath server (no interface provided) [127,
85]

QMath linear OpenMath client [77]
Sentido linear +

visualb
OpenMath client (Presentation MathML) [78]

LATEXML
Daemon

linear
(LATEX)

Presentation
MathML

server (HTTP POST) [74,
76]

a visual symbol selection plus visual navigation
b just visual symbol selection

editor supports the built-in symbol vocabulary of Content MathML 2, including em-
bedded Presentation MathML [3].

As a means of facilitating the implementation of content markup input inter-
faces, particularly when the supply of symbols/CDs is unlimited, one-dimensional
(“linear”) text input syntaxes have been developed. The Popcorn text encoding for
OpenMath objects [127, 85] has been introduced in section 6.3.2.2. For a restricted
set of symbols from the official OpenMath/MathML CDs, Popcorn supports intu-
itive infix notations such as a+ b instead of arith1.plus(a,b). QMath [77]
has originally been created as an extensible linear input syntax for OpenMath ob-
jects, with built-in support for the official CDs but the possibility to support arbitrary
other CDs as well. In addition to QMath’s own syntax, the QMath processor sup-
ports alternative syntaxes resembling the syntaxes of various CAS (Maxima, Yacas,
Mathematica, Maple). The Sentido formula editor [78] combines linear input using
QMath with a tool palette for visual selection of symbols.

The preferred linear input format for presentation-oriented formulae is LATEX, as
most users in academic mathematics and science are familiar with it. There is a large
number of converters from LATEX to Presentation MathML [14]. LATEXML [116] in
particular has a high output quality, as it reimplements the original TEX parser. The
LATEXML daemon [76] wraps LATEXML into an HTTP POST interface publicly ac-
cessible at [74]. Content representations can be extracted from restricted subsets
of LATEX, e.g. by the above-mentioned QMath and LATEXML tools. For unrestricted
LATEX this is a hard problem, due to the inherent ambiguity of mathematical nota-
tion. In a medium to long term perspective, linguistic techniques taking into account
contextual information can be expected to solve this problem [75].
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It is not always necessary that the author inputs a formula from scratch. Formu-
lae may already exist in a mashup – embedded into a document that the mashup
enriches, or resulting from an earlier step of computation. For sufficiently anno-
tated formulae, as specified in section 6.3.2.3, the JOBAD toolkit developed in our
research group (see section 6.4.1 for details) offers functions that determine the
content markup associated to the range of presentation markup selected by the user.
With cross-linked parallel markup this even works for subterms, as shown in fig-
ure 6.2.

6.3.3.4 User Interface Output Components

The output of a mathematical mashup can consist of structured text, formulae, or
graphics. Structured text output, e.g. tabulating numerical results of a computation,
does not work differently from non-mathematical mashups and is therefore not de-
tailed here. Formula output has been covered in section 6.3.3.2.

Plots are an important and well-supported kind of mathematical and statistical
graphics. For example, Flot [7] is a JavaScript library for producing graphical plots
of arbitrary datasets, using the HTML canvas element. The mashup by NAKANO
et al., mentioned in section 6.3.3.1, employs Flot for plotting graphs of functions.
However, implementations that plot a sequence of data points do not generally live
up to the complexity of mathematical functions, as they may have poles or other
discontinuities. JSXGraph [12] is a library that does; in addition to function plot-
ting, it supports interactive geometry, charting, and data visualization. Both Flot and
JSXGraph allow the user to interact with their drawings; JSXGraph even supports
multi-touch.

6.3.3.5 Data Published for Reuse

Huge amounts of mathematical data have been published on the Web, but only a
small fraction in a machine-friendly form. This section first explains why many
collections of mathematical data are not suitable for reuse in mashups, and then
points out the few ones that are.

Most of the large existing collections of mathematical knowledge either target
human end-users, or, when they are machine-comprehensible, their representation is
specialized to a single system. Of the collections mentioned in section 6.2, Zentral-
blatt MATH [33], MathSciNet [41], DLMF [6], MathWorld [28], PlanetMath [122],
Wikipedia [141] and the other wikis completely target human end-users. Some of
them have machine-friendly APIs (cf. MathSciNet’s “MR Lookup” [40], or the web
service API of the MediaWiki engine that drives Wikipedia [112]), but these APIs
are not uniform and thus not interoperable. Similarly, existing libraries of formalized
mathematics, such as the MML [18], have been designed for automated processing
but are only understood by one system. Some of the systems allow to produce repre-
sentations of the libraries in a custom XML format. Since there are (to the best of our
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knowledge) no publicly hosted versions, these libraries cannot be considered read-
ily available for mashup purposes, but establishing a hosting service would be rather
simple. While we have suggested OMDoc (cf. section 6.3.2.4) as a common inter-
change format among such systems [93, chapter 25.2], it has not yet been adopted on
a large scale. Another knowledge collection that aims at machine-comprehensibility
via XML but largely uses its own XML vocabulary is Connexions [62]. It uses Con-
tent MathML for the formulae, but the course documents (with explicit markup of
definitions, rules, examples and exercises) and modules (including links and meta-
data) are written in a custom XML language [2], even though – at least for some
aspects of the knowledge represented – more common vocabularies would exist (cf.
the review in [102, section 4.1.5]). There are of course other educational reposito-
ries, but to the best of the authors’ knowledge these do not expose the mathematical
knowledge in a reusable way, but just the educational/pedagogical metadata; for ex-
ample, i2geo (cf. section 6.2.2) exposes a LOM record (Learning Object Metadata)
for each resource [9], which follows the LOM standard [86] with i2geo-specific
extensions [82].

Linked data (cf. section 6.3.2.4) is an approach to publishing data in a uniform
way for reusability. Major linked open datasets contain information that could be
relevant in a mathematical context, but it not made sufficiently explicit. For exam-
ple, DBpedia [70], the linked open dataset derived from Wikipedia, is not capable
of making any mathematically relevant information explicit beyond a rough catego-
rization by topic, as the Wikipedia sources only contain presentation-oriented LATEX
formulae. Statistical datasets as, e.g., published by governments, usually contain a
lot of numbers (statistical data points), but hardly any information of how they have
been derived (e.g. by direct observation, or by mathematical computation from other
data points; see [137] for a problem statement).

As of 2012, linked open datasets with relevant mathematical knowledge are in
their infancy. We have published the OpenMath CDs (cf. section 6.3.2.2), containing
peer-reviewed semiformal descriptions of 260 mathematical symbols – those built
into non-strict Content MathML and some more – as linked open data in 2011 [101].
In 2012, we published the Mathematics Subject Classification (MSC) as a linked
open dataset [36, 103]. While these datasets provide two fundamental aspects of
mathematical knowledge on the Web in a machine-comprehensible way – descrip-
tions of the most commonly used mathematical operations, and a classification of
all subjects of mathematical research and application –, further work needs to be
done towards interlinking them among each other and with other existing linked
datasets (such as those mentioned above), and towards annotating legacy collec-
tions of mathematical knowledge (such as those mentioned initially in this section)
with pointers to these datasets. We refer to [102, section 6.1] for a detailed agenda.
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6.3.4 Issues and Open Points

The foundational representation issues for enabling mashups with mathematical for-
mulae and mathematical knowledge have been solved, and the web standards have
been largely been established. There are some minor issues in the integration of
the technologies into hybrid document markup systems like HTML5, but they are
mostly being addressed in the ongoing standardization process.

The main remaining issue is the prevalence of presentation markup in mathemat-
ical practice, and our difficulties in semantics extraction, i.e. transforming it into
content markup that can be used as a basis for mashup technologies. The semantics
extraction problem is essentially equivalent to the information extraction problems
from natural language, but in the case of mathematical/technical documents it is ag-
gravated by the fact that mathematics (i) uses custom notation definitions that are
particular to the respective community of practice, (ii) cannot be covered fully by
standard concept and operator dictionaries (such as those of OpenMath/MathML),
but introduces (and discharges) concepts, symbols, and notations dynamically (us-
ing the paradigmatic definition/theorem/proof forms), (iii) and tries to avoid du-
plication and redundancy of content, which allows to use information extraction
algorithms with lower precision and recall.

Given that automated semantic annotation of legacy document collections us-
ing information extraction techniques is still in its infancy, we are missing large
linked open datasets like DBpedia that could kick-start the explosion of mashup
services we are seeing in other areas. First technologies that allow authors to input
content-marked up formulae – and more generally semantically annotated mathe-
matical documents – have been developed, but engender additional effort on the
part of the authors, which would only be justifiable, if more services and mashup
system were available. Thus the lack of semantics extraction techniques raises a
prisoner’s dilemma for the individual author and a chicken-and-egg problem for
MKM; see [91] for additional discussion.

6.3.5 Evaluations

Evaluation criteria in the MKM domain often differ from those commonly applied
to mashups. This section first explains the difference and then mentions a few known
examples of evaluations that are relevant to the development of mathematical knowl-
edge mashups.

MKM research has so far been biased towards formalized representations and
applications in symbolic computation – less so towards web applications with a hu-
man user interface [59]. For MKM tools with a formal background, such as proof
assistants or computer algebra systems, it is common to formally verify the correct-
ness of their operation, as far as possible, on paper or using machine support. There
is hardly any track record of systematic performance or usability evaluations, which
would be useful for mashups. Performance evaluation has been restricted to the
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evaluation of systems that do symbolic or numeric computation; see, e.g., the world
championship for automated theorem proving [129, 130] or the ISSAC conference
series (International Symposium on Symbolic and Algebraic Computation [11]).
Performance evaluation of actual MKM technologies may not have been necessary
so far, as large-scale deployment of advanced MKM technology is still in its infancy
(cf. [97]).

Among the tools from which mathematical knowledge mashups can be built, for-
mula editors have most frequently been evaluated for usability [43, 109, 90, 98].
Evaluation methods included performance testing – for example how many key
presses or clicks users need for creating a given formula – and questionnaires assess-
ing subjective usability. WILLIAM H. BILLINGSLEY has evaluated the usability of
a graphical notation for mathematical objects and proofs, consisting of composable
tiles, for students submitting solutions to exercises [52]. Test subjects were asked to
prove a given set of theorems; BILLINGSLEY analyzed their solution attempts and
classified the mostly unstructured feedback they had given by features of the soft-
ware and aspects of the mathematical domain studied. Furthermore, he evaluated
the notation against a Cognitive Dimensions of notations10 questionnaire.

The pedagogical support of the ActiveMath integrated eLearning environment
has been evaluated for usability [115]. However, that publication focuses on the
qualitative results, not on the method of evaluation, and the mashup-like integration
of different services in ActiveMath was not in the focus of that evaluation. In previ-
ous work, we have evaluated the usability of a wiki that integrates browsing, editing,
publication, and discussion services for collaboratively maintaining OpenMath Con-
tent Dictionaries [100, chapter 10] in three steps: analyzing user-generated content,
surveying the target community about the perceived utility of the wiki and their sat-
isfaction with it, and conducting supervised experiments to assess learnability and
effectiveness.

Where usability evaluations are commonly conducted via experiments with test
users, mathematical applications have also been subject to conceptual analyses; cf.,
e.g., a structured comparison of the behaviors of visual formula editors [121], or an
added-value analysis of a formula search engine [92].

6.4 Applications with Math Mashup Techniques

This section presents mathematical knowledge mashups that have been developed in
our research group. As we have argued above, any mathematical mashup system has
to combine semantic annotations with formula support – where we can interpret par-
allel markup as semantic annotations of formula presentations. As this is a rather big
investment, there are few systems that are capable of managing mathematical con-
tent in a way that enables mashups. These include computer algebra systems with
document-oriented interfaces (such as the notebooks of Mathematica, a commercial

10 “an approach to analysing the usability of information artefacts” [53], which has also been
applied to mashups [71, 104]
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system with an open API but a proprietary content representation format [13]) and
the technology stack based on our own open, web standards compliant OMDoc for-
mat, including our own tools, presented in the following subsections, but also the
ActiveMath eLearning system and its authoring tools [105].

Rather than solving individual specific problems using mashup technology, we
aim at designing general, open, and extensible architectures. While our reference
implementations do provide services for specific problems, such as looking up the
definition of a symbol that occurs in a formula, we also envision that third parties
extend and customize them with their own services.

JOBAD (section 6.4.1) is an architecture for integrating assistive services into
semantically annotated HTML5 documents. Planetary (section 6.4.2) integrates
JOBAD plus further frontend and backend components into a web-based content
management system. The SAlly framework generalizes this approach to a mashup
enabler for arbitrary document-oriented interfaces, including desktop applications.

6.4.1 JOBAD, a Toolkit for Integrating Assistive Services into
Interactive Documents

Fig. 6.4: The JOBAD architecture (concrete implementation systems/languages in
italics)

JOBAD [88, 73] is an architecture for integrating interactive services into docu-
ments – services that assist readers in adapting the document’s appearance to their
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preferences or in looking up additional information and displaying it right in place,
i.e. without forcing them to switch their attention away from the document.

The JOBAD architecture assumes documents that have been sufficiently prepared
for interaction; section 6.3.2.3 states the particular requirements for the markup of
mathematical formulae.11 These annotations serve as hooks for assistive services,
whose client side runs within the document. The level of interaction afforded by
JOBAD depends on the service plugins loaded and on the depth of annotations in
the documents; the set of functions applicable to a mathematical expression selected
by the user – either by clicking on it or selecting a range as shown in figure 6.2 –
depends on the structure of the selection and its annotations. For example, if a unit
conversion service is available, it is only applicable to expressions that consist of a
unit symbol applied to a quantity (cf. [61] for further background). If a concept defi-
nition lookup service is available, it is only applicable to symbols in a mathematical
object, or to technical terms in a text, either of which is a concrete occurrence of that
concept. Our JOBAD implementation makes the functions registered by its service
plugins accessible in a context menu, at each time only showing those that claim to
be applicable to the current selection. We have designed and implemented
1. client services that rely exclusively on annotations given in the rendered docu-

ment – mostly for customizing its appearance, such as folding away subexpres-
sions of long formulae, or document sections (as shown in figure 6.6) – and thus
also work offline,

2. client services that retrieve additional information from background ontologies
on the primary server backend that has also generated the document – such as
definition lookup from a CD collection on the server, or in-place unit conversion
using conversion rules given for unit symbols in such CDs –, and

3. client services that retrieve information from arbitrary external sources, with
the primary server backend serving as a proxy due to the “same origin pol-
icy” [145, part 2]. This is the case for information lookup from Wolfram Alpha
[69]; similarly, definition lookup could be extended to arbitrary external content
dictionaries.

The client’s communication with a web source may be as simple as downloading
some data, e.g. the rendering of the definition of a symbol, from a URL, but it
may also involve POSTing an expression to a web service and receiving a rewritten
expression, as in the case of unit conversion. Information retrieved from the Web
may be displayed in a tooltip-like popup – as for definition lookup and Wolfram
Alpha lookup – or result in a part of the document, usually the selected mathematical
expression, being rewritten – as for unit conversion.

11 The original abbreviation means “JavaScript API for OMDoc-based Interactive Documents”,
but JOBAD-enabled documents do not have to be generated from an OMDoc source.
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6.4.2 The Planetary eMath 3.0 System

Planetary is a comprehensive framework for semantic publishing and knowledge
management, which has been instantiated prototypically in a variety of settings to
validate the framework and to support communities. The portals realized with Plan-
etary range from eLearning systems over scientific archives to theorem prover in-
terfaces. All share a common basic architecture (see figure 6.5), which integrates
previously developed components and interfaces into a central content management
system (CMS; here: Drupal) that mediates all user interaction:
1. the TNTBase document database (cf. section 6.3.3.2) for storage and rendering,
2. the LATEXML daemon (cf. section 6.3.3.3) for transforming TEX/LATEX docu-

ment fragments – not just formulae – to HTML5, including MathML formulae,
SVG diagrams, and RDFa metadata,

3. STEX [128, 94], a semantic variant of LATEX that can be transformed to the OM-
Doc XML language (cf. section 6.3.3.5) and further to semantically annotated
HTML (also covered by the JOMDoc library introduced in section 6.3.3.2),

4. and the JOBAD toolkit (see section 6.4.1) for embedding semantic services into
web documents.

user Browser CMS TNTBaseHTML5

LaTeXML

RDF Store

REST

HTML5
SPARQL

STEX
OMDoc

RDFJOBAD

Content
Management

System

Fig. 6.5: Architecture of the Planetary System

The Planetary system
is mashup-based at the
heart: The CMS supplies
management and interac-
tion at the “container level”,
i.e., without ever looking
into the documents it man-
ages, which is why we ac-
tually interpret the abbrevi-
ation “CMS” as container
management system here.
All other services are based
on structured document content and background ontologies (providing, e.g., sym-
bol definitions), which are provisioned by the TNTBase document database and the
RDF triple store in Planetary. These subsystems, which are accessed via RESTful
HTTP interfaces and may therefore be installed on different hosts, also perform se-
mantic services, which are integrated (mashed up) into the mathematical documents
via the JOBAD toolkit.

Our different instances of the Planetary system have documents with different
levels of annotation, and thus afford different levels of interaction, as explained in
section 6.4.1: from simple folding and localized commenting services in a front-
end system for the arXiv.org preprint library (see figure 6.6) to an in-place type
reconstruction and elision of arguments and brackets for the fully formal LATIN
atlas of logical theories [63].
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Fig. 6.6: Mashing up Semantic Services into arXiv.org Documents in Planetary

6.4.3 Semantic Allies: Mashing up User Interfaces

The basic mechanism behind the Planetary system introduced in the previous sec-
tion is the mashup of semantic mathematical services in a web-based system. Plan-
etary acts as a document player that presents documents to the user for interaction,
where annotations in the documents provide hooks for JOBAD services. From this
general perspective, we observe that document players for mathematical documents
are ubiquitous not only on the Web, but also on the desktop and mobile devices. Fur-
thermore, almost all documents with mathematical content are supported by some
of these document players. Examples include spreadsheets, word processors, sym-
bolic and numerical software, and even slide presenters. Users (readers as well as
authors of documents) have usually invested heavily into becoming efficient in in-
teracting with their preferred document players, and are therefore unlikely to leave
them. Therefore, such document players are interesting candidates for integrating
mathematical services beyond the built-in ones via mashup technology.

The SAlly framework [68] provides a mashup enabler for such situations. It
builds on the observation that a service feels embedded into an application if it occu-
pies a screen-area that is part of the area originally claimed by the application itself.
This perception is amplified, if a service and its request refer to the local semantic
objects. In particular, the service does not need to be implemented as application-
specific invasive technology, and can be provided as a mashup service by a semantic
ally, which in the SAlly framework has three components (see figure 6.7):
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Fig. 6.7: SAlly as a Mashup Enabler for Semantic Allies

• a platform-independent semantic interaction manager “SAlly” (as a semantic
ally), that has access to semantic services, and that

• partners with a set of invasive, thin, application-specific API Alex, that essen-
tially only manages user interface events in the application, and that

• has access to a set of application-independent screen area managers Theo that
can render the available services.

We have implemented the SAlly framework with Alexes for OO Calc, MS Excel,
and a Theo based on XULRunner [31] – the layout and communication engine
behind Mozilla Firefox and Thunderbird. Figure 6.8 shows the result of mashing up
the JOBAD service for looking up definitions from a Planetary backend into an
MS Excel spreadsheet using the SAlly framework.

Fig. 6.8: Definition Lookup via SAlly in a Spreadsheet
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6.5 Conclusion, Lessons Learned, and Future Prospects

As of summer 2012, proper mathematical knowledge mashups hardly exist (in con-
trast to data mashups that perform simple numeric computations), but, as this chap-
ter proves, the technology to build them is there and waiting to be applied. In fact it
is is already being applied in mashup-like settings, as our Planetary system demon-
strates. Compared to other mashup application domains, the technology for math-
ematical knowledge mashups just took a few more years to consolidate. This is
mainly due to the inherent complexity of mathematical formulae, which are a char-
acteristic feature of mathematical applications and distinguish them from other ap-
plications.

But the added complexity of the application domain, which has delayed the pro-
vision of mashup services, will in our opinion also lead to added usefulness of the
mashup systems when they eventually arrive. Math is generally considered hard –
partly because of the embedded special-purpose sublanguage of formulae, and we
claim that readers can reasonably expect more help in interacting with formulae.
This is just what mathematical knowledge mashup services can offer. Indeed, math-
ematical formulae are often more semantic than mere language, and therefore afford
more semantic services that can be mashed up.

Acknowledgements. The authors would like to thank Paul Libbrecht for his thor-
ough review and constructive feedback.
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61. Cı̂rlănaru, M., Ginev, D., Lange, C.: Authoring and publishing of units and quantities in
semantic documents. In: R. Garcı́a Castro, D. Fensel, G. Antoniou (eds.) The Semantic
Web: ESWC 2011 Workshops, no. 7117 in Lecture Notes in Computer Science, pp. 202–
216. Springer Verlag, Heidelberg (2011). URL http://kwarc.info/clange/pubs/
eswc2011-units.pdf

62. Connexions. URL http://cnx.org
63. Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe, F.: Project abstract: Logic

atlas and integrator (latin). In: Davenport et al. [67], pp. 289–291
64. Cohen, A.M., Cuypers, H., Verrijzer, R.: Mathematical context in interactive documents.

Mathematics in Computer Science 3(3), 331–347 (2010)
65. Corlosquet, S., Delbru, R., Clark, T., Polleres, A., Decker, S.: Produce and Consume Linked

Data with Drupal! In: A. Bernstein, D.R. Karger, T. Heath, L. Feigenbaum, D. Maynard,
E. Motta, K. Thirunarayan (eds.) The Semantic Web – ISWC 2009, no. 5823 in LNCS, pp.
763–778. Springer Verlag (2009)

66. Costantini, M., Konovalov, A., Nicosia, M., Solomon, A.: GAP package OpenMath (2011).
URL http://www.gap-system.org/Packages/openmath.html

67. Davenport, J., Farmer, W., Rabe, F., Urban, J. (eds.): Intelligent Computer Mathematics, no.
6824 in LNAI. Springer Verlag (2011)

68. David, C., Jucovschi, C., Kohlhase, A., Kohlhase, M.: Semantic Alliance: A frame-
work for semantic allies. In: Jeuring et al. [87], pp. 49–64. URL http://kwarc.info/
kohlhase/submit/mkm12-SAlly.pdf

69. David, C., Lange, C., Rabe, F.: Interactive documents as interfaces to computer algebra
systems: JOBAD and Wolfram—Alpha. In: D. Delahaye, R. Rioboo (eds.) CALCULE-
MUS (Emerging Trends), pp. 13–30. Centre d’Étude et de Recherche en Informatique du
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