
UNIVERSIT� ATDE
SSAARLANDES

FACHBEREICHIN
FORMATIK

D-66041SAARBR� U
CKEN

GERMANY WWW:http://js-sfbsun.cs.u
ni-sb.de/pub/www/

KEIM: A Toolkit forAutomated DeductionXiaorong Huang Manfred Kerber MichaelKohlhase Erica MelisDan Nesmith J�orn Richts J�org SiekmannPublished as: KEIM: A Toolkit for Automated Deduction. In AlanBundy, ed., Automated Deduction | CADE-12, Proceed-ings of the 12th International Conference on AutomatedDeduction, pages 807{810, Nancy, France, 1994. Springer-Verlag LNAI 814, Berlin, Germany.



KEIM: A Toolkit for Automated DeductionXiaorong Huang Manfred Kerber Michael Kohlhase Erica MelisDan Nesmith J�orn Richts J�org SiekmannFachbereich Informatik, Universit�at des Saarlandes66041 Saarbr�ucken, Germanykeim@cs.uni-sb.deTelephone: (49) 681-302-4627Abstract. KEIM is a collection of software modules, written in Com-mon Lisp with CLOS, designed to be used in the implementation ofautomated reasoning systems. KEIM is intended to be used by thosewho want to build or use deduction systems (such as resolution theoremprovers) without having to write the entire framework. KEIM is also suit-able for embedding a reasoning component into another Common Lispprogram. It o�ers a range of datatypes implementing a logical languageof type theory (higher order logic), in which �rst order logic can be easilyembedded. KEIM's datatypes and algorithms include: types; terms (sym-bols, applications, abstractions); uni�cation and substitutions; proofs,including resolution and natural deduction styles.1 MotivationThough automated reasoning systems are among the earliest AI programs, themethods developed and implemented by the theorem-proving community arelittle-used outside of it. This phenomenon may be explained to some extentby the computational complexity of the programs involved (often NP-completeor undecidable), but an even larger share of the blame may be assigned to thecognitive complexity involved in the implementation of the programs themselves.It is easy to describe a proof process such as resolution, but actually writing afairly-e�cient resolution prover is far from trivial. In addition, a prover requiressubcomponents, such as formula parsing and pretty-printing, which add to themagnitude of the job. The work and experience required to build a good theoremprover from scratch can be daunting for an outsider. Especially when the theoremprover is not the main object of study, but rather intended to be used as acomponent in some larger system, the foreseen di�culties will discourage manyfrom beginning.One may of course decide to use a prover that is already available. This hasthe advantage that its reliability is relatively assured and, being o�-the-shelf,requires no implementation. Unfortunately, it is rare that the needs of a newapplication exactly �t the strengths of an existing theorem prover. Even if thatwere the case, one would probably have to build some kind of bridge between thetwo programs in order to exchange data, because the basic data structures used(terms, formulas, etc.), not to mention input syntax, are probably incompatible.



One may try to modify the source code directly, but this is a very di�cult taskfor the nonexpert.In addition, most theorem provers are sui generis; they are designed to in-vestigate a particular paradigm or approach and are not intended to be usefulfor all types of reasoning problems. This limits their applicability among a wideaudience. And trying to get two provers to cooperate without greatly changingat least one of them is not a task for the faint of heart.Because of these di�culties, those who wish to apply techniques developedby the theorem-proving community face the choice of either learning this `blackart' themselves by developing their own prover from scratch, or jury-riggingavailable provers to get some kind of result. Hardly an encouraging prospect.Even automated reasoning experts may wish to make a theoretical study of justa minor aspect (say, a comparison of term indexing schemes), and not want togo to the trouble of implementing the whole environment normally required.We feel that what is needed to make theorem-proving technology widelyavailable in a useful way is a framework that provides the essential tools (datastructures and algorithms) to allow a theorem prover to be assembled by a non-expert. Such a framework must be modular, to allow data structure or algorithmvariants to be swapped in or out, and extensible, to permit customization, aswell as the addition of new modules, with relatively modest e�ort.2 An Open ArchitectureDespite the diversity of theorem provers currently in use and in development,there are many aspects that they share. They must support basic data structuressuch as terms, formulas and, often, more complex objects such as clauses andsubstitutions. There must be a way to parse user input into a usable form, andto pretty-print the internal format in a human-readable way. Uni�cation and/ormatching are also common components.There are well-known algorithms and techniques for each of these areas. Theircurrent implementations, however, are not suited for generic use, often relying onvarying idiosyncratic data structures which cannot be reconciled. It is certainlynecessary to continue research in the optimization of techniques such as uni�ca-tion, but for many applications, choosing one of the currently-known variants isgood enough. Most users of theorem-proving technology do not want to reinventthe wheel, and even the best-known algorithms may be di�cult to implementcorrectly and e�ciently.KEIM provides a framework, through documented interface functions, whichallows such techniques to be implemented in a generic way, so that later im-provements or customizations can be carried out without requiring changes toother modules. Just as a toolbox holds several similar tools which do roughlythe same thing, KEIM will contain di�ering implementations of data structuresand algorithms. These will be provided in a modular form that will allow unne-cessary components to be left out and improved components to be swapped in.



KEIM is like a cafeteria of theorem-proving tools, providing wholesome optionsthat can be appetizingly combined.This modularity of KEIM is essential for three reasons. First, the state ofknowledge in theorem proving is always expanding; there will always be newideas and techniques worthy of sharing. Second, the resources of any one groupare limited. There is no way a single group can be expert in all the aspects oftheorem proving that KEIM should o�er. The cooperation and contributions ofothers must be possible if KEIM is to be truly useful. We wish KEIM to be atoolbox, not a toybox with only sketchy or incomplete implementations of certaintechniques. Last but not least, it will be the rare case that a user will want touse exactly what is provided without any customizations. This is especially truewhen a theorem prover is to be embedded in an existing system, with its owndata structures. Tools that solve the wrong problem would be of little use.3 The KEIM ToolboxKEIM version 1.2 [3] is implemented in Common Lisp, using the Common LispObject System (CLOS) [5]. CLOS allows great exibility in the integration ofnew classes of objects. The generic function paradigm allows one to specializethe behavior of a function on a new type of object without changing its behavioron existing objects and without having to rewrite or copy existing and unrelatedcode, thus making it well-quali�ed for the implementation of modular, extensibletoolboxes.KEIM o�ers a range of datatypes implementing a logical language of typetheory (higher order logic) called POST [3], in which �rst order logic can beeasily embedded. KEIM's datatypes and algorithms include: types; terms (sym-bols, applications, abstractions); uni�cation and substitutions; proofs, includingresolution and natural deduction styles.KEIM also provides functionality for the pretty-printing, error handling, for-mula parsing and user interface facilities which form a large part of the code ofany theorem prover. These facilities are all easily customizable.KEIM serves as the basis for the 
-mkrp [2] proof development environment(successor to the mkrp project), and is developed as part of the German De-duction E�ort, which is sponsored by the Deutsche Forschungsgemeinschaft as\Schwerpunkt Deduktion".Cooperation with other research groups is underway, and a KEIM imple-mentation of the ACID [1] term indexing software has been made available.3.1 A ScenarioSuppose a user wishes to build a small resolution prover. She must �rst decidewhat logical language the prover will allow by selecting the KEIM modulesthat contain the corresponding CLOS class de�nitions. She may want to makesome minor adjustments|to the pretty-printing functions, for example. Anotherchange may be to specialize a class, e.g., she may want to add a slot to the clause



class which counts the number of times it was used. This will then require addinga method to the generic function that actually does the resolution, so that themethod updates the slot.Modules will be chosen for the desired types of resolution, factoring, etc.If the prover is to be interactive, commands can be de�ned in Lisp using theKEIM primitives. Some Lisp ability will be required to sew things together. Themodules are loaded in the proper order into a Lisp environment, and the proveris ready for action. An example of a simple tableau prover and resolution proverwritten in KEIM are described in [4].4 Summary and Future DirectionsKEIM is a software project that intends to o�er, through its software library, away for the general AI community, as well as the theorem-proving community,to take advantage of the many developments that have been made in automatedreasoning. KEIM will provide standard implementations of many techniques andalgorithms, making it useful not only for building reasoning systems, but alsofor pedagogical purposes. KEIM is available for anonymous FTP from variouslocations; send e-mail to keim@cs.uni-sb.de for instructions.We intend to extend KEIM in both breadth and depth, that is, both toimprove the current implementations, as well as to add new variants (e.g., variousuni�cation algorithms, equality-handling mechanisms). Another goal is to makeKEIM even easier for nonexperts to use by providing a better user interface.Because of the amount of KEIM code, it can be intimidating for those who arejust starting. We want to make getting started with KEIM a painless process.We intend to explore cooperation with other groups who have expertise inparticular areas, and welcome collaboration and suggestions. Currently we aresetting up a KEIM user group consisting of those who do some implementationon the basis of KEIM.KEIM's extensibility and customizability is intended to make it an open ar-chitecture for (Lisp-based) reasoning systems. We hope that KEIM, by providingthe building blocks of a reasoning system, will allow others to concentrate onthe research areas which are of principal interest to them.References1. P. Graf: Path Indexing for Term Retrieval. Technical Report MPI-I-92-237, Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany, 1992.2. X. Huang et al.: 
-MKRP, A Proof Development Environment. In these proceed-ings.3. D. Nesmith, editor: KEIM-Manual version 1.2. Universit�at des Saarlandes, ImStadtwald, Saarbr�ucken, Germany, 1994.4. J. Richts and D. Nesmith: Implementing Simple Theorem Provers in KEIM: CaseStudies. To appear as a SEKI Report, Universit�at des Saarlandes, Im Stadtwald,Saarbr�ucken, Germany.5. G. Steele: Common Lisp, second edition. Digital Press, Boston, 1990.


