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a natural topi of investigation. In this paper, we develop preisely suh a alulus| an order-sorted lambda alulus supporting funtional base sorts and onstantoverloading | as well as a omplete uni�ation algorithm for this alulus, whihis suitable for use in an automated dedution setting. Caluli intended for atualmathematial dedution will no doubt support onstant | if not arbitrary term| delarations (see Example 37); by inorporating onstant delarations into ouralulus, we treat dedution issues ommon to all mathematially useful extensionalorder-sorted higher-order logis supporting funtional base sorts.Although Huet proposed the study of a simple sorted lambda alulus in anappendix to [Hue72℄, the development of order-sorted higher-order aluli for use indedution systems has only in reent years been pursued ([Koh92℄, [NQ92℄, [Pfe92℄).There has, however, been onsiderable interest in order-sorted higher-order logi fromthe point of view of higher-order algebrai spei�ations, the theory of funtionalprogramming languages, and objet-oriented programming ([Car88℄, [BL90℄, [Qia90℄,[CG91℄, [Pie91℄).In unsorted logis, the knowledge that an objet is a member of a ertain lass ofobjets is expressed using unary prediates. This leads to a multitude of unit lausesin dedutions, eah of whih arries only taxonomi information and ontributes toa severe explosion of the searh spae. In sorted logis, prediates are replaed bysorts arrying preisely the same taxonomi information, so that their attendantunit lauses are also eliminated and the searh spae is orrespondingly pruned.The inorporation of sort information is perhaps even more natural for higher-orderthan for �rst-order logis: type information in higher-order logis an be regardedas oding very oarse distintions between disjoint lasses of objets, so that sortsmerely re�ne an already present struture. But more importantly, the bene�ts ofsorts for restriting searh spaes in higher-order dedution will neessarily be morepronouned than in �rst-order systems, sine the sort hierarhy propagates into thehigher-order struture of the logis.Sorting the universe of individuals in higher-order logis gives rise to new lassesof funtions, namely those whose domains and odomains are (denoted by) thesorts. But in addition to sorting funtion universes in suh a �rst-order manner,lasses of funtions de�ned by domains and odomains an themselves be dividedinto sublasses sine funtions are expliit objets of higher-order logis. Funtionalbase sorts, i.e., base sorts that denote lasses of funtions, are thus permitted.Syntatially, eah sort A omes with a type, a odomain sort (A), and | if offuntional type | also with a domain sort Æ(A). Partial orders on the set of sorts,apturing inlusion relations among the various lasses of objets, are indued byovariane in the odomain sort via subsort delarations. But in the presene offuntional base sorts an additional mehanism for induing subsort information isneeded: sine any funtion of sort A is a funtion with domain Æ(A) and odomain(A), a funtional sort A must always be a subsort of the sort Æ(A)! (A).The alulus presented here supports onstruts for restriting the ranges ofvariables to, and assigning onstants membership in, ertain lasses of objets.Depending on the partial order indued on the sorts, ertain lasses of terms builtfrom these atoms then beome the objets of study | the partial order restrits thelass of models for the alulus, so that terms must meet ertain onditions to denotemeaningful objets, i.e., to be well-sorted. Notions of �- and �-redution generalizing



the orresponding redutions in the simply typed lambda alulus are de�ned on thelass of well-sorted terms. The former is a straightforward adaptation of typed �-redution, but the deliate interation between extensionality and partially orderedsorts neessitates are in de�ning the latter. If X is a term of funtional sort A,for example, and x is a variable whose range is restrited to the subsort B of Æ(A),then �x:Xx denotes the restrition of the funtion (denoted by) X to the domain(spei�ed by) B. In order to properly model extentionality by �-redution, B musttherefore be preisely the (maximal) domain of X in order for �x:Xx to �-redue toX | otherwise X would be equal to a proper restrition of itself.A similar subtle interplay between extensionality and funtional base sortsrenders the natural generalization of Huet's ([Hue75℄) lassial method for uni�ationof simply typed lambda terms inadequate in our setting. Nevertheless, a more liberalnotion of partial binding, whih in partiular does not require the bindings to be�-expanded, does suÆe for inrementally approximating answer substitutions forarbitrary uni�ation problems modulo ��-equality on well-sorted terms.As in the simply typed lambda alulus, the need for \guessing" partial bindingsfor pairs so alled ex-ex pairs gives rise to a serious explosion of the searhspae, but unfortunately, this annot be avoided without sari�ing the uni�ationompleteness of our algorithm. Huet resolved this diÆulty in the simply typedlambda alulus by rede�ning the higher-order uni�ation problem to a formsuÆient for refutation purposes: ex-ex pairs are onsidered to pre-uni�ed, oralready solved. We onjeture that it is possible to de�ne an appropriate notion ofpre-uni�ation in our setting as well, but warn that a naive modi�ation of thestandard methods is evidently insuÆient for aluli supporting funtional basesorts. Spei�ally, pre-uni�ation only makes sense under regular signatures, andthe existene of uni�ers for ex-ex pairs depends heavily on the partial order onsorts under whih uni�ation is being onsidered.Uni�ation in an extensional order-sorted lambda alulus with funtional basesorts was �rst investigated in [Koh92℄. A alulus supporting funtional base sortsand arbitrary term, rather than only onstant, delarations is proposed there, but itspresentation is awed in serveral plaes. Our alulus an be seen as a subalulusof the one proposed in [Koh92℄ whih has been orreted to be well-de�ned and toproperly inorporate extensionality (see the problemati lauses 4 and 5 of De�nition2.5, and Remark 2.10, there). The notion of partial binding developed here paves theway for remedying both the ill-de�ned uni�ation transformations and the awedompleteness proof of [Koh92℄. For a detailed treatment of our results and the issuessurrounding them, the reader is referred to the full paper [JK93℄.2 The CalulusThe set of types T is obtained by indutively losing a set of base types T0 underthe operation � ! �; assuming right-assoiativity of !, the length of a type� � �1 ! �2 ! ::: ! �n, denoted length(�), is n � 1. Types are denotedby lower ase Greek letters. In theorem proving appliations we might have onlytwo base types, o denoting truth-values and � denoting the universe of individuals,with all other subdivisions of the universe being oded into sort distintions amongindividuals, as desribed in the next subsetion.



For eah type � 2 T , �x a ountably in�nite set of variables x�; y�; z�; ::: of type� and a ountably in�nite set of onstants a�; b�; �; ::: of type �. We assume thatno two distint variables or onstants have the same type-erasure.LC is the set of expliitly simply typed lambda terms over the variables andonstants. We omit referene to the type ofX when this will not lead to onfusion. OnLC, ��-equality is generated by ��-redution, denoted by ���! and determined by theusual rules (�x:X)Y ��!X [x := Y ℄ and �x:Xx ��!X . ��-redution is terminatingand onuent (i.e., onvergent) on LC-terms.The reexive, transitive losure of a redution relation ��! is denoted ��!�! , andwe write =� for the symmetri losure of ��!�! . We write X � Y to indiate that twoLC-terms X and Y are idential up to renaming of bound variables. As is ustomary,we onsider LC-terms idential up to renaming of bound variables to be the same.2.1 Order-sorted StruturesAs desribed in the introdution, we apitalize on the fat that funtions are expliitobjets of higher-order logi by allowing lasses of funtions de�ned by domainsand odomains to themselves be divided into sublasses. We thus postulate bothfuntional base sorts | i.e., base sorts that denote lasses of funtions | as well asnon-funtional base sorts.De�nition 21 A sort system is a quintuple (S0;S; �; Æ; ) suh that:{ S0 is a set of base sorts distint from the set of type symbols. The set of sortsobtained by losing S0 under the operation A! B omprises S.{ The type funtion � is a mapping � : S0 ! T . If �(A) 2 T0, then A is saidto be non-funtional, and A is said to be funtional otherwise; the set of non-funtional (resp., funtional) sorts is denoted by Snf (resp., Sf ). For all A 2 Sf ,we require that �(A) = �(Æ(A)) ! �((A)), where the domain sort funtion Æis a map Æ : Sf0 ! S, the odomain sort funtion  is a map  : S0 ! S with jSnf the identity map, and the mappings Æ and  are extended to S by de�ningÆ(A) = B and (A) = C for A � B ! C 2 S.Sorts are denoted by upper ase Roman letters. If the ontext is lear, weabbreviate by S the sort system (S0;S; �; Æ; ). Sine we are ultimately interested insorted terms and their typed ounterparts, we only onsider sort systems for whih� is surjetive. We further assume that for eah � 2 T there exist only �nitely manyA 2 S0 with �(A) = �.It will be useful to have some notational onventions for domain and odomainsorts. For any A 2 S, de�ne the following notation: Æ0(A) � A, 0(A) � A, and fori � 1, i(A) � (i�1(A)), and Æi(A) � Æ(i�1(A)). Write length(A) for the lengthof the sort A.Example 22 Funtional base sorts are useful in the study of elementary analysis,where we might postulate a non-funtional base sort R denoting the reals and afuntional base sort C with Æ(C) = R and (C) = R denoting the lass of real-valuedontinuous funtions on the reals. Sine it is not possible to distinguish syntatiallysuh ontinuous funtions solely in terms of their domains and odomains, permittingfuntional base sorts indeed inreases the expressiveness of a alulus.



While types represent disjoint lasses of objets, ertain kinds of orderings onsorts reet permissible inlusion relations among lasses of objets sorts denote.We apture a onsisteny ondition whih suh orderings are required to satisfyby de�ning, for a sort system S and a pair of sorts A and B in S suh that�(A) = �(B), the set Con(A;B) of subsort delarations (for S) to be the setf[A � B℄g if A;B 2 Snf , andCon(Æ(A); Æ(B)) [ Con(Æ(B); Æ(A)) [ Con((A); (B)) [ f[A � B℄gif A;B 2 Sf . A sort struture (for S) is any set of subsort delarations obtainedby indutively adding sets of the form Con(A;B) to the empty set. Sine eah setCon(A;B) of subsort delarations is �nite, sort strutures are neessarily �nite. Forany sort struture �, we have [A � B℄ 2 � i� Con(A;B) � �.Any sort struture � indues an inlusion ordering �� (or simply \�") on S,indutively de�ned by the rules of De�nition 23.De�nition 23 For any sort struture �, the inlusion ordering determined by �ontains all judgements of the form � ` A � B provable by the following alulus:[A � B℄ 2 �� ` A � B A 2 Sf� ` A � Æ(A)! (A)� ` A � A � ` A � B� ` C ! A � C ! B� ` A � B � ` B � C� ` A � CClearly we annot insist that � ` A � B hold for any sorts A and B with aommon domain sort C and odomain sorts satisfying � ` (A) � (B) (assuming,for example, a standard semantis). But if � is a sort struture for S, and �is the equivalene relation indued by �, then A;B 2 Sf , � ` A � B implies� ` Æ(A) � Æ(B) and � ` (A) � (B). In addition, for all A;B 2 S, � ` A � Bimplies �(A) = �(B), so that any sort system S is the disjoint union of in�nitelymany subsets S� = fA 2 S j �(A) = �g of sorts suh that if A 2 S� and B 2 S� with� 6� �, then A and B are inomparable with respet to �. Sine S has only �nitelymany base sorts per type, eah subset S� is �nite. Deidability of the inlusionordering determined by any sort struture thus follows from the next lemma, whihis proved by indution on length(�).Lemma 24 For any type � 2 T and any sort struture �, if � is the inlusionordering determined by �, then the restrition �� of � to sorts of type � is e�etivelyomputable.Theorem 25 The inlusion ordering determined by any sort struture � isdeidable.It will be important that the signatures over whih our well-sorted terms are built\respet funtion domains," i.e., that for any term X and any sorts A and B suh



that X has sort A and also sort B, Æ(A) � Æ(B) holds. The proof that signaturesindeed satisfy this property (see Lemma 211) depends in part on the onsistenyonditions for sort strutures and in part on the fat that onstant delarationsmeet the sort ondition of the �fth lause of De�nition 27 below, given in terms ofthe equivalene relation Rdom, whih we now de�ne.De�nition 26 Given a sort struture � for S and a pair of sorts A and B inS, A Rdom� B holds if either A;B 2 Snf and �(A) = �(B), or if A;B 2 Sf ,� ` Æ(A) � Æ(B), and (A) Rdom� (B).We write \Rdom" for Rdom� when � an be diserned from the ontext. ThenA Rdom B implies �(A) = �(B), and � ` A � B implies A Rdom B.De�nition 27 A signature � omprises i) a sort system S = (S0;S; Æ; ; �), ii) asort struture � (for S), iii) a ountably in�nite set V arsA of variables xA; yA; zA; :::for eah A 2 S, iv) a set C of typed onstant symbols, and v) a set of onstantdelarations of the form [� :: A℄ for  2 C suh that �(A) = �. We assume that if[ :: A℄ and [ :: B℄ are onstant delarations, then A Rdom B.The requirement that �(A) = � for a onstant delaration [� :: A℄ insures thatsort assignments respet the types of onstants. In a theorem proving ontext, anysignature would have, for eah � 2 T , only �nitely many onstant delarationsinvolving onstants of type �. We will assume this restrition on signatures.Any sorted variable an naturally be regarded as a typed variable by \forgetting"its sort information. Denoting the forgetful funtor by , we may regard the sortedvariable xA as the typed variable xA, i.e., as x�(A). By prudently naming thevariables, we an arrange that the forgetful funtor is bijetive on variables, therebyavoiding merely tehnial ompliations that ould otherwise arise.2.2 Term StrutureDe�nition 28 Let � be a signature with sort struture �. The set of well-sortedLC-terms for � is determined indutively by the following inferene rules:x 2 V arsA (var)� ` x : A � ` X : A � ` Y : B � ` B � Æ(A) (app)� ` XY : (A)[ :: A℄ 2 � (onst)� `  : A x 2 V arsB � ` X : A (abs)� ` �x:X : B ! A� ` X : A � ` Æ(A) � B (�)� ` �xB :Xx : A � ` X : B � ` B � A (weaken)� ` X : ALet LCA(�) = fX j � ` X : Ag and LC(�) = SA2S LCA(�). For anyX 2 LC(�) write S�(X) for fA 2 S j X 2 LCA(�)g. Sine the inlusion orderingdetermined by any sort struture� is transitive, we need never follow one appliationof the rule (weaken) by another in onstruting sort derivations for well-sorted LC-terms (heneforth alled LC(�)-terms). We onsiderLC(�)-terms whih are identialup to renaming of (sorted) variables to be the same, and omit sort informationwhenever possible.



If � is a signature with sort system S and sort struture �, and if � is theequivalene relation determined by �, then LCA(�) = LCB(�) whenever A � B.Passing to the quotient signature�0 with respet to �, i.e., to the signature with sortsystem S 0 equal to S= � obtained by replaing sorts in S by anonial �-equivalenelass representatives, we arrive at a signature whose equivalene relation is trivialand suh that LCA(�0) = LCA(�) for all sorts A. We may therefore assume that� is a partial ordering for all signatures in the remainder of this paper. We alsoassume that we have ridded our sort strutures of redundant subsort delarationsof the form [A � A℄, and that whenever � ` B � A for a sort struture �,length(B) � length(A) holds. The latter assumption is without loss of generalityunder a standard semantis, and implies that length(B) � length(A) if � ` B � A.A routine indution on sort derivations establishes that signatures are subtermlosed, i.e., that eah subterm of a well-sorted term is again well-sorted.In any signature �, if x 2 V arsA, then x has least sort A in �. But beause ofonstant overloading, not every term will neessarily have a unique least sort. Foran arbitrary term X , however, if � ` X : A and � ` X : B then �(A) = �(B).As a result, the fat that � has only �nitely many sorts per type implies that, forX 2 LC(�), the set of sorts S�(X) is �nite. It also follows that if we onsider theforgetful funtor to be the identity on typed onstants, then it an be extended toan injetion (but not neessarily a bijetion) from LC(�) into LC. And if � is asignature with empty sort struture and exatly one sort A suh that �(A) = � foreah � 2 T0, then LC(�) is isomorphi to the fragment of LC ontaining only the�nitely many onstants per type appearing in onstant delarations in �.To prove omputability of sort assignment for LC(�), we extend the funtionS�(�) on LC(�) to all of LC. For X 2 LC and � a signature, de�ne S�(X) =fS�(Y ) j Y 2 LC(�) and Y � Xg. Then X 2 LC n LC(�) i� S�(X) = ;. If thereexists a Y 2 LC(�) with Y � X , then it is unique; in this ase, we say that X 2 LCis well-sorted with respet to �.Theorem 29 For X 2 LC and any signature �, S�(X) is e�etively omputable.Proof: We will later observe that �-redution on LC(�) is sort-preserving, and,assuming this, we take X to be in �-normal form. Indution on the struture of Xompletes the proof.Corollary 210 For X 2 LC and any signature �, it is deidable whether or not Xis well-sorted with respet to �.As promised, we an prove (by indution aording to the various ases for thederivations of � ` X : A and � ` X : B) thatLemma 211 If � ` X : A and � ` X : B, then A Rdom B. That is, any signature� respets funtion domains.Lemma 211 guarantees that for any term X and any sorts A;B 2 S�(X) wemust have Æ(A) = Æ(B). This unique domain sort for X is alled its supporting sortand is denoted supp(X). At �rst glane, requiring signatures to respet funtiondomains appears to be a grave restrition on the expressiveness of a alulus, but



funtional extensionality itself relies heavily on the notion of impliitly spei�eddomains of funtions, whih unique supporting sorts syntatially apture. Indeed,in mathematis, funtions are assumed to have unique (impliitly spei�ed) domains,and must therefore be distinguished from restritions to subdomains: funtions f andg are the same only if fa = ga for all a in the ommon (impliitly spei�ed) domainof f and g.2.3 Order-sorted RedutionAs per the above disussion, �-expansion of the term XA to �xB :Xx, whihorresponds to restriting the funtion denoted by X to the sort denoted by B,should only again yield the original funtion if B represents the domain of thefuntion denoted by X . This restrition is embodied in the order-sorted �-rule.De�nition 212 Let � be any signature. The following order-sorted redutions arede�ned for LC(�)-terms:{ (�x:X)Y ��!X [x := Y ℄, and{ �xB :Xx ��!X if xB 62 FV (X) and B � supp(X).The �rst rule above, assumed to happen without free variable apture, is alled(order-sorted) �-redution; the seond is alled (order-sorted) �-redution. Sineorder-sorted ��-redution generalizes ordinary typed ��-redution, we write ���!for order-sorted ��-redution as well as for its typed version.It is important to our program that the fundamental operations of our alulus donot allow the formation of ill-sorted terms from well-sorted ones. This ensures thatour uni�ation algorithm never has to handle ill-sorted terms. In fat, if X ��!�! Y ,then S�(X) � S�(Y ). A similar although slightly stronger result holds for �-redution: if X ��!�! Y , then S�(X) = S�(Y ).Order-sorted ��-redution is onvergent. Termination is a diret onsequeneof the orresponding well-known result for the simply typed lambda alulus, andweak onuene | and, in light of termination, therefore onuene | follows fromweak onuene of ��-redution on LC together with the fat that X ���!Y impliessupp(X) � supp(Y ). It thus makes sense to refer to the order-sorted ��-normal formof an LC(�)-term, and the order-sorted long (i.e., �-expanded) �-normal form of X ,denoted l�nf(X).3 Order-sorted Higher-order Uni�ationWhen onsidering uni�ation in the simply typed lambda alulus, it is ustomaryto work modulo �-equality. We expliitly keep trak of order-sorted �-equality, sinethe interation between extensionality and sorts an be unexpetedly subtle. Fix anarbitrary signature � for use throughout the remainder of this paper.3.1 Systems and SubstitutionsWe will represent uni�ation problems by equational systems omprising the pairs ofLC(�)-terms to be simultaneously uni�ed, and use transformations of suh systemsas our main tool for solving the uni�ation problems they represent.



A pair is a two-element multiset of LC(�)-terms. A system is a �nite set � ofpairs. A pair is �-trivial (or simply trivial) if its elements are �-equal, and �-validif its elements are ��-equal; a system is �-valid if eah of its pairs is �-valid. Asusual, we write �; hX;Y i instead of � [ fhX;Y ig, but sine � may or may not alsoontain hX;Y i, suh a deomposition is ambiguous. We use the notation � ; hX;Y ito abbreviate � [ fhX;Y ig when hX;Y i is not a pair in � . A pair hX;Y i is solvedin � if it is either trivial, or for some x 2 V arsA, X ��!�! x, A 2 S�(Y ) and thereare no ourrenes of x in � other than the one indiated. In this ase, x is said tobe solved in � . If eah pair in � is solved in � , then � is a solved system.A substitution is a �nitely supported map from variables to LC(�); a substitution� indues a mapping on terms, whih we also denote by �. We write substitutionappliation as juxtaposition, so that �X is the appliation of the substitution � tothe term X , and by D(�) and I(�) we denote the set of variables in the domain of �and the set of variables introdued by �, respetively. A substitution � is well-sortedif for every x 2 V arsA, A 2 S�(�x). It follows that if X 2 LCA(�) and � is well-sorted, then �X 2 LCA(�) as well. That the set of well-sorted substitutions is losedunder omposition is not hard to prove.We an extend equalities on LC(�) to (well-sorted) substitutions in the usualmanner: Let =� be an equational theory on LC(�), W be a set of variables, and �and �0 be substitutions. Then � =� �0[W ℄ means that for every variable in x 2 W ,�x =� �0x. The subsumption relation �0 �� �[W ℄ holds provided there exists asubstitution � suh that � =� ��0[W ℄. If W is the set of all variables, we drop thenotation \[W ℄." If =� is the empty equational theory we write \�" and \�" for theindued equality and subsumption ordering on substitutions.We an extend substitutions on LC(�) to mappings on systems � � fhXi; Yii ji � ng by de�ning �� to be the system fh�Xi; �Yii j i � ng. The normal forml�nf(� ), all of whose unsolved pairs omprise terms in long �-normal form, is de�nedsi milarly. If all terms in the unsolved pairs of � are in long �-normal form, we saythat � is in long �-normal form. We write FV (X) for the set of free variablesourring in the LC(�)-term X and FV (� ) for the free variables ourring in theterms in the system � .A well-sorted substitution � is a �-uni�er of a system � if �� is �-valid. If �is a �-uni�er of � with the properties that D(�) � FV (� ) and that for any �-uni�er � of � , � ��� � holds, then � is said to be a most general �-uni�er of � .A system � is �-uni�able if there exists some �-uni�er of � . An idempotent well-sorted substitution � is a normalized �-uni�er of a system � if i) D(�) � FV (� ),ii) � is a �-uni�er of � , and iii) for all unsolved variables x in � , �x is in long�-normal form. Write U�(� ) for the set of all normalized �-uni�ers of � . It is learthat every well-sorted substitution � is ��-equal to a well-sorted substitution �0 withD(�) = D(�0) and �0x in long �-normal form for eah x 2 D(�). Suh a substitution�0 is said to be in long �-normal form. Thus for any �-uni�er � of a system � , thereexists a �0 2 U�(� ) suh that �0 =�� �[FV (� )℄. In partiular, every �-uni�ablesystem has a normalized �-uni�er. For tehnial reasons, normalized �-uni�erswill be important in what follows. Note that we relax the standard requirementthat normalized substitutions map all variables to normal forms, and allow solvedvariables to be bound arbitrarily. This is justi�ed in Lemma 32 below.



The remainder of this setion explores the relationship between systems and theiruni�ers. If � is a solved system whose non-trivial pairs are hX1; Y1i; :::; hXn; Yniwith Xi ��!�! xi for i = 1; :::; n, then these pairs determine an idempotent well-sorted substitution �� = fx1 7! Y1; :::; xn 7! Yng, although suh a pair hX;Y iwith X ��!�! x 2 V arsA and Y ��!�! y 2 V arsA requires a hoie as to whih of x andy is to be in the domain of the substitution. We assume that a uniform way existsfor making this hoie, and so refer to the well-sorted substitution determined by asolved system. Conversely, idempotent well-sorted substitutions an be representedby solved systems without trivial pairs. If � is suh a substitution, write [�℄ for anysolved system whih represents it. Any system � an be written as � 0; [�℄ where [�℄is the set of solved pairs in � . We all [�℄ the solved part of � .Transformation-based uni�ation methods attempt to redue systems to beuni�ed to solved systems whih represent their uni�ers. The fundamental onnetionbetween solved systems and �-uni�ers is that solved systems represent their ownsolutions:Lemma 31 If � � hX1; Y1i; :::; hXn; Yni is a solved system, then �� is a mostgeneral �-uni�er for � . In fat, for any �-uni�er � of � , � =�� ��� .In general, however, a system � will not have a single most general�-uni�er. Thenext lemma shows that we need not be onerned with solved pairs when omputing�-uni�ers. This is onsistent with the intuition that the solved part of a system ismerely a reord of an answer substitution being onstruted.Lemma 32 Suppose � is a �-uni�able system with solved part [�℄ and unsolved part� 0. If � is a �-uni�er of � , then for every �-uni�er � of � 0 suh that D(�) � FV (� 0)and � ��� �[FV (� 0)℄, �� is a �-uni�er of � and �� ��� �[FV (� )℄.3.2 The Uni�ation AlgorithmOne of the key steps for sorted higher-order uni�ation is solving the followingproblem: given a term X � �x1:::xk :hU1:::Un 2 LCA(�) in long �-normal form, �nda term G 2 LCA(�) with head h whih an be instantiated to yield X . This is ageneralization of a problem in LC whih Huet ([Hue75℄) resolved by desribing a setof partial bindings in long �-normal form apable of approximating any LC-term byinstantiation. While Huet-style partial bindings suÆe for approximating arbitraryLC(�)-terms | although not neessarily with bindings of the appropriate sorts| in our setting, we annot require that partial bindings be �-expanded withoutsari�ing ompleteness of our �-uni�ation algorithm (see Example 36). Below, avariable will be alled fresh if it does not appear in any term in the urrent ontext.De�nition 33 If h is an atom suh that either h 2 V arsC or [h :: C℄ isa onstant delaration in �, then a partial binding of sort A for head h isany term of the form G � �y1:::yl:hV1:::Vm, where i) l = length(A), ii)m = l + length(�(C)) � length(�(A)) � 0, iii) � ` m(C) � l(A), iv)yj 2 V arsÆj (A) for j = 1; :::; l, and v) Vi � ziy1:::yl for 1 � i � m, wherezi 2 V arsÆ1(A)!:::!Æl(A)!Æi(C) is fresh.



For a given sort A and head h partial bindings need not exist due to onditionsii) and iii) of De�nition 33, but beause signatures respet funtion domains, whenthey do exist they are unique up to renaming of the variables zi. If � is a signaturewithout funtional base sorts, then the partial bindings are �-expanded; in partiular,if � is a signature with exatly one sort per (base) type, then the partial bindingsare preisely those obtained for LC. Writing GhA(�) for the set of partial bindings ofsort A for head h, the fat that � ` G : A for G 2 GhA(�) justi�es our terminology.Call a partial binding G � �y1:::yl:hV1:::Vm a jth projetion binding if h � yjand an imitation binding if h 2 FV (G)[ C. The following transformations on whihour algorithm is based are adapted from those of [Sny91℄.De�nition 34 The set �T omprises the following transformations on systems inlong �-normal form (it is possible that k = 0 below).{ deompose: For any atom h,� ; h�x1:::xk:hX1:::Xn; �x1:::xk :hU1:::Uni=)�; h�x1:::xk :X1; �x1:::xk:U1i; :::; h�x1:::xk :Xn; �x1:::xk:Uni:{ eliminate: If x 2 V arsA, x 62 fx1; :::; xkg, x 62 FV (�x1:::xk :X), and� = fx 7! �x1:::xk:Xg is well-sorted, then� ; h�x1:::xk :xx1:::xk; �x1:::xk:Xi=)hx; �x1:::xk:Xi; ��:{ imitate: If x 2 V arsA, h 2 C or h 2 FV (�x1:::xk :hU1:::Um), h 6� x, andG 2 GhA(�) is an imitation binding, then� ; h�x1:::xk:xX1:::Xn; �x1:::xk :hU1:::Umi=)�; hx;Gi; h�x1 :::xk :xX1:::Xn; �x1:::xk :hU1:::Umi:{ j-projet: If x 2 V arsA, h is a (possibly bound) atom and G 2 GhA(�) is ajth projetion binding for some j 2 f1; :::; ng suh that head(Xj) 2 C implieshead(Xj) � h, then� ; h�x1:::xk:xX1:::Xn; �x1:::xk :hU1:::Umi=)�; hx;Gi; h�x1 :::xk :xX1:::Xn; �x1:::xk :hU1:::Umi:{ guess: If h is any atom, and x and y are free variables in V arsA and V arsB ,respetively, both distint from h, and G 2 GhA(�), then� ; h�x1:::xk :xX1:::Xn; �x1:::xk :yU1:::Umi=)�; hx;Gi; h�x1 :::xk :xX1:::Xn; �x1:::xk :yU1:::Umi:As part of the transformations imitate, j-projet, and guess, we immediatelyapply eliminate to the new pair hx;Gi.Our sort mehanism insures that appliations of the transformations are suh thatall terms involved are well-sorted. We adopt the onvention that no transformationsmay be done out of solved or trivial pairs, whih aords with the intuition thatthe solved pairs in a system are merely reording an answer substitution as it isinrementally built up.



We emphasize that there is no deletion of trivial pairs in this presentation. Thisguarantees that if � =)� 0, then FV (� ) � FV (� 0), so that when a fresh variable ishosen during a omputation it is guaranteed to be new to the entire omputation.This prevents us from having to manipulate the \proteted sets of variables" typiallyfound in ompleteness proofs in the literature, and respets the fundamental ideabehind the use of transformations for desribing algorithms, namely that the logiof the problem being onsidered an be abstrated from implementational issues.De�nition 35 The non-deterministi algorithm �U is the proess of repeatedly1. reduing all terms of the unsolved pairs in the system to long �-normal formand then applying some transformation in �T to an unsolved pair, and2. returning a most general �-uni�er if at any point in the omputation the systembeomes solved.The hoie of pair upon whih Algorithm �U is to at, and the rule from �T tobe applied, are non-deterministi. We illustrate use of Algorithm �U :Example 36 Let [b :: Æ(A)℄ and [ :: A℄ omprise the set of onstant delarationsin a signature � with a funtional base sort A. Let f 2 V arsA, x 2 V arsÆ(A),and w 2 V arsA!Æ(A), and onsider the �-uni�able long �-normal form system� � hfx; bi; hw; bi. Applying imitate with partial binding  to the �rstpair of � yields hf; i; hx; bi; hw; bi. An appliation of deompose resultsin hf; i; hx; bi; hw; bi, and an appliation of imitate with binding �y:b fory 2 V arsA to the third pair, followed by some �-redutions give the solvedsystem � 0 � hf; i; hx; bi; hw; �y:bi; hb; bi. We extrat the well-sorted substitution� = ff 7! ; x 7! b; w 7! �y:bg, and antiipating Theorem 38, onlude that � is a�-uni�er of � 0 and hene of � . If we instead allow only �-expanded partial bindings,then the only possible imitate step binds f to a term of the form �y:(zy) for avariable y and a fresh variable z of appropriate sorts. But then eliminate annotbe performed on the pair hf; �y:(zy)i (as is required to omplete the imitate step),sine � 6` �y:(zy) : A.While uni�ation in LC(�) is apparently more deliate than uni�ation in LC, theextra are pays o� when sort information disallows ertain undesirable uni�ationsthat would be possible in an unsorted alulus.Example 37 Let � be a signature with base sorts D, I , and R, where the non-funtional sort R denotes the real numbers, and the funtional sorts D and I denotethe stritly dereasing and stritly inreasing funtions on the reals, respetively.Suppose further that Æ(D) = Æ(I) = R and (D) = (I) = R. Finally, let[n :: D ! I ℄ and [4 :: R℄ omprise the set of onstant delarations of �, wheren denotes the \negation funtor" mapping eah funtion F to �F , and 4 denotesthe real number four.Let x 2 V arsR, f 2 V arsI , and g 2 V arsD , and onsider the uni�ation problemgiven by the pairs hf4; ngxi; hgx; 4i. It is not hard to see that an appliation ofimitate to the pair hf4; ngxi is the only possibility for omputation. Letting zbe fresh from V arsD , we have that nz 2 GnI (�), and so an apply imitate withthis binding for f to get hf; nzi; hnz4; ngxi; hgx; 4i. Similarly, we onlude that only



deompose applies here, resulting in hf; nzi; hz; gi; hx; 4i; hgx; 4i. Two appliationsof eliminate yield hf; ngi; hz; gi; hx; 4i; hg4; 4i, all of whose pairs, save the last| unsolvable | one, are solved. The only alternative to eliminating z above isapplying guess to hz; gi in the seond derived system, but this makes no progresstoward a solution. Antiipating Theorem 313, we onlude that the original systemis unsolvable, in aordane with the fats that neither the identity funtion nor thefuntion whih is onstantly four is stritly dereasing.Of ourse, if D were to denote the (not stritly) dereasing real-valued funtionson the reals, then we would expet hg4; 4i to be solvable by binding g to �y:4.A alulus allowing arbitrary term delarations �nds a middle road between thetyped alulus, whih permits too many bindings, and one supporting only onstantdelarations, whih permits too few: delaring �y:4 to be of sort D when y 2 V arsR,� yields preisely the desired solutions.3.3 Soundness and Completeness of the AlgorithmThe proof that our transformations are sound is not appreiably di�erent from theproof for the orresponding transformations for uni�ation in LC.Theorem 38 (Soundness) If � =)� 0, then for any well-sorted substitution �, � isa �-uni�er of � if it is a �-uni�er of � 0.Thus if Algorithm �U is run on initial system � and returns a well-sortedsubstitution �, then � is indeed a �-uni�er of � . Our main result (Theorem 313)is a onverse. We require a few tehnial lemmas, the �rst of whih is proved byindution on the derivation of � ` Y : A.Lemma 39 If Y � �x1:::xp:hU1:::Uq 2 LCA(�) is in ��-normal form, then eitherh 2 V arsC or [h :: C℄ is a onstant delaration in � for some sort C suh thatlength(A) + length(�(C))� length(�(A)) � 0 and � ` q(C) � p(A).Lemma 310 If X � �x1:::xk:hU1:::Un 2 LCA(�) is in long �-normal form, thenthere exist a partial binding G 2 GhA(�) and a well-sorted substitution � in long�-normal form suh that D(�) is preisely the set of fresh variables in G, �z hassmaller depth than X for eah z 2 D(�), and �G =�� X.Proof: Let Y � �x1:::xp:hU 01:::U 0q be the ��-normal form of X , where Ui ��!�! U 0ifor i = 1; :::; q; p � k, and n = q + (k � p). Let C be the sort whose existene isguaranteed by Lemma 39, m = length(A) + length(�(C)) � length(�(A)) � 0,and G � �x1:::xl:hV1:::Vm 2 GhA(�), where Vi = zix1:::xl for fresh variableszi, i = 1; :::;m. Then l � length(�(A)) = k and n = length(�(C)), so thatm = l + n � k = l + q � p. Sine � ` Y : A, we must have p � l � k. Thesubstitution � mapping zi to �x1:::xl:Ui for i = 1; :::; q, and zi to �x1:::xl:xp�q+ifor i = q + 1; :::;m is well-sorted, has domain onsisting preisely of the set offresh variables in G, and has the property that �z has smaller depth than Xfor eah z 2 D(�). It is well-de�ned beause m � q = l � p � 0, and indeed�(G) =� �x1:::xl:hU1:::Uqxp+1:::xl =� �x1:::xp:hU 01:::U 0q =� X .Note that with the Huet-style partial bindings, it would not neessarily bepossible to �nd G of sort A and a substitution � as required:



Example 311 If � is a signature with a onstant delaration [ :: A℄ for a funtionalbase sort A, then � ` �x:x : A using (onst) followed by an appliation of (�). AnyHuet-style partial binding that might approximate the long �-normal form �x:xmust be of the form �x:(zx) where z is a fresh variable of an appropriate sort, butthere is no derivation of � ` �x:(zx) : A. Under our de�nition, however, G �  isitself a partial binding of sort A for head h, and � an be taken to be the identitysubstitution.The measure � de�ned by �(�; �) = h�1(�; �); �2(� )i, where �1(�; �) is themultiset of the depths of the �-bindings of unsolved variables in � whih are also inD(�), and �2(� ) is the multiset of depths of terms in � , will provide the basis forproving termination of Algorithm �U .Lemma 312 Let � 2 U�(� ) and let hX;Y i be an unsolved pair in a system � inlong �-normal form. Then there exist a system � 0 and a substitution �0 suh that� =)� 0, � � �0[FV (� )℄, �0 2 U�(� 0), and �(� 0; �0) < �(�; �).Proof: If head(X) � head(Y ) 62 D(�), then sine hX;Y i is not trivial, deomposemust apply and we must have � 2 U�(� 0). Also, �(� 0; �) < �(�; �) sine�1(� 0; �) � �1(�; �) and �2(� 0) < �2(� ).Otherwise, at least one of X and Y has an unsolved variable x 2 D(�) \ V arsAof � as its head; assume X does. Then sine � is well-sorted, � ` �x : A, and �xis in long �-normal form sine � is normalized. Suppose �x � �x1:::xk :hU1:::Un.By Lemma 310, there exist G 2 GhA(�) and a well-sorted substitution � in long�-normal form satisfying the onlusions of that lemma. Thus if head(Y ) 62 D(�)and h � head(Y ), then imitate applies, if head(Y ) 62 D(�) and h 6� head(Y ), thenj-projet applies for some j, and if head(Y ) 2 D(�), then guess applies. Taking�0 = � [ �, we have that � � �0[FV (� )℄, � 2 U�(� 0) sine � 2 U�(� ) and � is inlong �-normal form, and D(�) is exatly the set of fresh variables in G. Moreover,�1(� 0; �0) < �1(�; �): x is removed from the set of unsolved variables in � whihappear in D(�), and is replaed by the set of fresh variables of G, but for eah suhvariable z, �0z � �z is smaller than �x. Thus �(� 0; �0) < �(�; �).Observe that if head(X) � head(Y ) 62 D(�) does not hold, but X ��!�! x 2V arsA, x is not free in Y , and � ` Y : A, then eliminate applies. In this ase, wean take �0 to be � by noting that �1(� 0; �) < �1(�; �).The proof of Lemma 312 shows that it is possible to restrit deomposeto apply only when head(X) � head(Y ) 62 D(�), although there is no wayof enoding this restrition into the transformations. If we all a transformationpresribed by Lemma 312 a �-presribed transformation, then eah appliation ofa �-presribed transformation dereases the well-founded measure �. The previouslemma guarantees that if � is a �-uni�able system in long �-normal form to whihno �-presribed transformation in �T applies, then � is solved.Theorem 313 Let � be a �-uni�er of � . Then there exists a omputation ofAlgorithm �U on � produing a �-uni�er � of � suh that � ��� �[FV (� )℄.Proof: Sine every �-uni�er of � is pointwise ��-equal on FV (� ) to some�0 2 U�(� ), we prove the theorem under the added hypothesis that � 2 U�(� ).
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