Unification in an Extensional Lambda Calculus
with Ordered Function Sorts and Constant
Overloading

Patricia Johann* and Michael Kohlhase**
Fachbereich Informatik
Universitit des Saarlandes
66123 Saarbriicken, Germany
{pjohann, kohlhase} @cs.uni-sb.de

No Institute Given

Abstract. We develop an order-sorted higher-order calculus suitable for
automatic theorem proving applications by extending the extensional simply
typed lambda calculus with a higher-order ordered sort concept and constant
overloading. Huet’s well-known techniques for unifying simply typed lambda
terms are generalized to arrive at a complete transformation-based unification
algorithm for this sorted calculus. Consideration of an order-sorted logic
with functional base sorts and arbitrary term declarations was originally
proposed by the second author in a 1991 paper; we give here a corrected
calculus which supports constant rather than arbitrary term declarations, as
well as a corrected unification algorithm, and prove in this setting results
corresponding to those claimed there.

1 Introduction

In the quest for calculi best suited for automating logic, the introduction of sorts
has been one of the most promising developments. Sorts, which are intended
to capture for automated deduction purposes the kinds of meta-level taxonomic
distinctions that humans naturally assume structure the universe, can be employed
to syntactically distinguish objects of different classes. The essential idea behind
sorted logics is to assign sorts to objects and to restrict the ranges of variables to
particular sorts, so that unintended inferences, which then violate the constraints
imposed by this sort information, are disallowed. These techniques have been seen to
dramatically reduce the search space associated with deduction in first-order systems
([Wal88], [Coh89], [Sch89]).

On the other hand, the inherently higher-order nature of many problems whose
solutions one would like to deduce automatically has sparked an increasing interest in
higher-order deduction. The behavior of sorted higher-order calculi, which boast both
the expressiveness of higher-order logics and the efficiency of sorted calculi, is thus

* On leave from the Department of Mathematics and Computer Science, Hobart and
William Smith Colleges, Geneva, NY 14456, johann@hws.bitnet. This material is based
on work supported by the National Science Foundation, Grant No. INT-9224443.

** Supported by the Deutsche Forschungsgemeinschaft (SFB 314).

a natural topic of investigation. In this paper, we develop precisely such a calculus
— an order-sorted lambda calculus supporting functional base sorts and constant
overloading as well as a complete unification algorithm for this calculus, which
is suitable for use in an automated deduction setting. Calculi intended for actual
mathematical deduction will no doubt support constant — if not arbitrary term
— declarations (see Example 37); by incorporating constant declarations into our
calculus, we treat deduction issues common to all mathematically useful extensional
order-sorted higher-order logics supporting functional base sorts.

Although Huet proposed the study of a simple sorted lambda calculus in an
appendix to [Hue72], the development of order-sorted higher-order calculi for use in

deduction systems has only in recent years been pursued ([Koh92], [NQ92], [Pfe92]).
There has, however, been considerable interest in order-sorted higher-order logic from
the point of view of higher-order algebraic specifications, the theory of functional
programming languages, and object-oriented programming ([Car88], [BLI0], [Qia90],
[CGI1], [Pie9l]).

In unsorted logics, the knowledge that an object is a member of a certain class of
objects is expressed using unary predicates. This leads to a multitude of unit clauses
in deductions, each of which carries only taxonomic information and contributes to
a severe explosion of the search space. In sorted logics, predicates are replaced by
sorts carrying precisely the same taxonomic information, so that their attendant
unit clauses are also eliminated and the search space is correspondingly pruned.
The incorporation of sort information is perhaps even more natural for higher-order
than for first-order logics: type information in higher-order logics can be regarded
as coding very coarse distinctions between disjoint classes of objects, so that sorts
merely refine an already present structure. But more importantly, the benefits of
sorts for restricting search spaces in higher-order deduction will necessarily be more
pronounced than in first-order systems, since the sort hierarchy propagates into the
higher-order structure of the logics.

Sorting the universe of individuals in higher-order logics gives rise to new classes
of functions, namely those whose domains and codomains are (denoted by) the
sorts. But in addition to sorting function universes in such a first-order manner,
classes of functions defined by domains and codomains can themselves be divided
into subclasses since functions are explicit objects of higher-order logics. Functional
base sorts, i.e., base sorts that denote classes of functions, are thus permitted.
Syntactically, each sort A comes with a type, a codomain sort v(A), and — if of
functional type also with a domain sort §(A). Partial orders on the set of sorts,
capturing inclusion relations among the various classes of objects, are induced by
covariance in the codomain sort via subsort declarations. But in the presence of
functional base sorts an additional mechanism for inducing subsort information is
needed: since any function of sort A is a function with domain §(A4) and codomain
v(A), a functional sort A must always be a subsort of the sort §(4) — v(A4).

The calculus presented here supports constructs for restricting the ranges of
variables to, and assigning constants membership in, certain classes of objects.
Depending on the partial order induced on the sorts, certain classes of terms built
from these atoms then become the objects of study the partial order restricts the
class of models for the calculus, so that terms must meet certain conditions to denote
meaningful objects, i.e., to be well-sorted. Notions of - and n-reduction generalizing

the corresponding reductions in the simply typed lambda calculus are defined on the
class of well-sorted terms. The former is a straightforward adaptation of typed (-
reduction, but the delicate interaction between extensionality and partially ordered
sorts necessitates care in defining the latter. If X is a term of functional sort A,
for example, and z is a variable whose range is restricted to the subsort B of §(A),
then A\z.Xz denotes the restriction of the function (denoted by) X to the domain
(specified by) B. In order to properly model extentionality by n-reduction, B must
therefore be precisely the (maximal) domain of X in order for Az. Xz to n-reduce to
X otherwise X would be equal to a proper restriction of itself.

A similar subtle interplay between extensionality and functional base sorts
renders the natural generalization of Huet’s ([Hue75]) classical method for unification
of simply typed lambda terms inadequate in our setting. Nevertheless, a more liberal
notion of partial binding, which in particular does not require the bindings to be
n-expanded, does suffice for incrementally approximating answer substitutions for
arbitrary unification problems modulo gn-equality on well-sorted terms.

As in the simply typed lambda calculus, the need for “guessing” partial bindings
for pairs so called flex-flex pairs gives rise to a serious explosion of the search
space, but unfortunately, this cannot be avoided without sacrificing the unification
completeness of our algorithm. Huet resolved this difficulty in the simply typed
lambda calculus by redefining the higher-order unification problem to a form
sufficient for refutation purposes: flex-flex pairs are considered to pre-unified, or
already solved. We conjecture that it is possible to define an appropriate notion of
pre-unification in our setting as well, but warn that a naive modification of the
standard methods is evidently insufficient for calculi supporting functional base
sorts. Specifically, pre-unification only makes sense under regular signatures, and
the existence of unifiers for flex-flex pairs depends heavily on the partial order on
sorts under which unification is being considered.

Unification in an extensional order-sorted lambda calculus with functional base
sorts was first investigated in [Koh92]. A calculus supporting functional base sorts
and arbitrary term, rather than only constant, declarations is proposed there, but its
presentation is flawed in serveral places. Our calculus can be seen as a subcalculus
of the one proposed in [Koh92] which has been corrected to be well-defined and to
properly incorporate extensionality (see the problematic clauses 4 and 5 of Definition
2.5, and Remark 2.10, there). The notion of partial binding developed here paves the
way for remedying both the ill-defined unification transformations and the flawed
completeness proof of [Koh92]. For a detailed treatment of our results and the issues
surrounding them, the reader is referred to the full paper [JK93].

2 The Calculus

The set of types T is obtained by inductively closing a set of base types Ty under
the operation a — [; assuming right-associativity of —, the length of a type
a = a1 = ay = ... = ap, denoted length(a), is n — 1. Types are denoted
by lower case Greek letters. In theorem proving applications we might have only
two base types, o denoting truth-values and ¢ denoting the universe of individuals,
with all other subdivisions of the universe being coded into sort distinctions among
individuals, as described in the next subsection.

For each type a € T, fix a countably infinite set of variables x4, yq, Zqa, --- Of type
a and a countably infinite set of constants aq, by, Cqa, ... Of type a. We assume that
no two distinct variables or constants have the same type-erasure.

LC is the set of explicitly simply typed lambda terms over the variables and
constants. We omit reference to the type of X when this will not lead to confusion. On

LC, Bn-equality is generated by #n-reduction, denoted by 51, and determined by the

usual rules (Az.X)Y i)X[r := Y] and Az. Xz —5 X. Bn-reduction is terminating
and confluent (i.e., convergent) on LC-terms.

The reflexive, transitive closure of a reduction relation —» is denoted —» , and
we write =, for the symmetric closure of —» . We write X =Y to indicate that two
LC-terms X and Y are identical up to renaming of bound variables. As is customary,
we consider L£C-terms identical up to renaming of bound variables to be the same.

2.1 Order-sorted Structures

As described in the introduction, we capitalize on the fact that functions are explicit
objects of higher-order logic by allowing classes of functions defined by domains
and codomains to themselves be divided into subclasses. We thus postulate both
functional base sorts — i.e., base sorts that denote classes of functions — as well as
non-functional base sorts.

Definition 21 A sort system is a quintuple (Sg, S, 7,4d,7) such that:

— &g is a set of base sorts distinct from the set of type symbols. The set of sorts
obtained by closing Sy under the operation A — B comprises S.

— The type function T is a mapping 7 : So — T. If 7(A) € To, then A is said
to be non-functional, and A is said to be functional otherwise; the set of non-
functional (resp., functional) sorts is denoted by S™f (resp., S7). For all A4 € S,
we require that 7(A) = 7(0(A)) — 7(y(A4)), where the domain sort function §
is a map 9 : Sg — 8§, the codomain sort function v is a map v : S — § with
v |gns the identity map, and the mappings d and are extended to S by defining
d(A)=Band y(A)=Cfor A=B - Ce€S.

Sorts are denoted by upper case Roman letters. If the context is clear, we
abbreviate by S the sort system (Sg, S, 7,9, 7). Since we are ultimately interested in
sorted terms and their typed counterparts, we only consider sort systems for which
7 is surjective. We further assume that for each o € T there exist only finitely many
A€ Sy with 7(4) = .

It will be useful to have some notational conventions for domain and codomain
sorts. For any A € S, define the following notation: §Y(A) = A, 4°(A) = A, and for
i>1,9(A) = vy(y"1(A4)), and 6°(A4) = §(y"~1(A)). Write length(A) for the length
of the sort A.

Example 22 Functional base sorts are useful in the study of elementary analysis,
where we might postulate a non-functional base sort R denoting the reals and a
functional base sort C with 6(C) = R and v(C') = R denoting the class of real-valued
continuous functions on the reals. Since it is not possible to distinguish syntactically
such continuous functions solely in terms of their domains and codomains, permitting
functional base sorts indeed increases the expressiveness of a calculus.

While types represent disjoint classes of objects, certain kinds of orderings on
sorts reflect permissible inclusion relations among classes of objects sorts denote.
We capture a consistency condition which such orderings are required to satisfy
by defining, for a sort system S and a pair of sorts A and B in S such that
7(A) = 7(B), the set Con(A, B) of subsort declarations (for S) to be the set
{[A< B]}if A,B € 8"/, and

Con(6(4),4(B)) U Con(6(B),d(A)) U Con(y(A),~(B)) U {[A < Bl}
if A,B € 8. A sort structure (for S) is any set of subsort declarations obtained
by inductively adding sets of the form Con(A, B) to the empty set. Since each set
Con(A, B) of subsort declarations is finite, sort structures are necessarily finite. For
any sort structure A, we have [A < B] € A iff Con(A4, B) C A.

Any sort structure A induces an inclusion ordering < (or simply “<”) on S,
inductively defined by the rules of Definition 23.

Definition 23 For any sort structure A, the inclusion ordering determined by A
contains all judgements of the form A+ A < B provable by the following calculus:

[A<B]eA AeSt
AFA<B AR A<H(A) = y(4)
AFA<B
AFA<A AFC—->A<C-—>B
AFALB AFB<LC
AFALC

Clearly we cannot insist that A - A < B hold for any sorts A and B with a
common domain sort C' and codomain sorts satisfying A F y(A) < y(B) (assuming,
for example, a standard semantics). But if A is a sort structure for S, and ~
is the equivalence relation induced by <, then A,B € S¥, A + A < B implies
AFJ(A) ~§(B) and A+ v(A) < 4(B). In addition, for all A, Be S, Ar A<B
implies 7(A) = 7(B), so that any sort system S is the disjoint union of infinitely
many subsets S, = {A € S| 7(A) = a} of sorts such that if A € S, and B € Sg with
a # B, then A and B are incomparable with respect to <. Since S has only finitely
many base sorts per type, each subset S, is finite. Decidability of the inclusion
ordering determined by any sort structure thus follows from the next lemma, which
is proved by induction on length(a).

Lemma 24 For any type o € T and any sort structure A, if < is the inclusion
ordering determined by A, then the restriction <, of < to sorts of type «a is effectively
computable.

Theorem 25 The inclusion ordering determined by any sort structure A is
decidable.

It will be important that the signatures over which our well-sorted terms are built
“respect function domains,” i.e., that for any term X and any sorts A and B such

that X has sort A and also sort B, §(4) ~ &(B) holds. The proof that signatures
indeed satisfy this property (see Lemma 211) depends in part on the consistency
conditions for sort structures and in part on the fact that constant declarations
meet the sort condition of the fifth clause of Definition 27 below, given in terms of
the equivalence relation Rdom, which we now define.

Definition 26 Given a sort structure A for S and a pair of sorts A and B in
S, A Rdoma B holds if either A,B € 8" and 7(4) = 7(B), or if A,B € S/,
AF §(A) ~d6(B), and y(A4) Rdoma v(B).

We write “Rdom” for Rdoma when A can be discerned from the context. Then
A Rdom B implies 7(4) = 7(B), and A+ A < B implies A Rdom B.

Definition 27 A signature ¥ comprises i) a sort system S = (Sy,S,0,7,7), i) a
sort structure A (for S), éit) a countably infinite set Varsa of variables xa,y4, 24, ...
for each A € S,) a set C of typed constant symbols, and v) a set of constant
declarations of the form [c, 2 A] for ¢ € C such that 7(A) = a. We assume that if
[c:: A] and [c :: B] are constant declarations, then A Rdom B.

The requirement that 7(A) = a for a constant declaration [c, :: A] insures that
sort, assignments respect the types of constants. In a theorem proving context, any
signature would have, for each o« € T, only finitely many constant declarations
involving constants of type «. We will assume this restriction on signatures.

Any sorted variable can naturally be regarded as a typed variable by “forgetting”
its sort information. Denoting the forgetful functor by ~, we may regard the sorted
variable w4 as the typed variable T, i.e., as (). By prudently naming the
variables, we can arrange that the forgetful functor is bijective on variables, thereby
avoiding merely technical complications that could otherwise arise.

2.2 Term Structure

Definition 28 Let X be a signature with sort structure A. The set of well-sorted
LC-terms for X is determined inductively by the following inference rules:

v € Varsa SFX:A SFY:B AFB~§(A)
—— (var) (app)
Yhaz:A Y XY :y(A)

[c::Ale ¥ x € Varsp YEX:A
—— (const) (abs)
YhEc: A YEXX:B—> A
YEX A AF§(A)~B YFX:B AFB<A
n) (weaken)
YEFXpXz: A YFEFX A

Let LCA(Y) = {X | ¥ F X : A} and LC(X) = Jyes £Ca(X). For any
X € LC(X) write Sy;(X) for {4 € S| X € LCa(X)}. Since the inclusion ordering
determined by any sort structure A is transitive, we need never follow one application
of the rule (weaken) by another in constructing sort derivations for well-sorted £C-
terms (henceforth called £C(+)-terms). We consider £C(X)-terms which are identical
up to renaming of (sorted) variables to be the same, and omit sort information
whenever possible.

If X is a signature with sort system S and sort structure A, and if ~ is the
equivalence relation determined by A, then LC4(X) = LCp(X) whenever A ~ B.
Passing to the quotient signature X’ with respect to ~, i.e., to the signature with sort
system S’ equal to §/ ~ obtained by replacing sorts in S by canonical ~-equivalence
class representatives, we arrive at a signature whose equivalence relation is trivial
and such that LC4(X") = LCA(X) for all sorts A. We may therefore assume that
< is a partial ordering for all signatures in the remainder of this paper. We also
assume that we have ridded our sort structures of redundant subsort declarations
of the form [A < A], and that whenever A - B < A for a sort structure A,
length(B) < length(A) holds. The latter assumption is without loss of generality
under a standard semantics, and implies that length(B) < length(A) if A+ B < A.

A routine induction on sort derivations establishes that signatures are subterm
closed, i.e., that each subterm of a well-sorted term is again well-sorted.

In any signature X' if x € Varsy, then = has least sort A in Y. But because of
constant overloading, not every term will necessarily have a unique least sort. For
an arbitrary term X, however, if ¥ - X : A and ¥ - X : B then 7(4) = 7(B).
As a result, the fact that X has only finitely many sorts per type implies that, for
X € LC(X), the set of sorts Sy (X) is finite. It also follows that if we consider the
forgetful functor to be the identity on typed constants, then it can be extended to
an injection (but not necessarily a bijection) from L£C(X) into £C. And if ¥ is a
signature with empty sort structure and exactly one sort A such that 7(A4) = « for
each a € Ty, then LC(X) is isomorphic to the fragment of £C containing only the
finitely many constants per type appearing in constant declarations in Y.

To prove computability of sort assignment for £C(X), we extend the function
Sx(+) on LC(X) to all of LC. For X € LC and ¥ a signature, define Sy (X) =
{Sx(Y)|Y € LC(X) and Y = X}. Then X € LC \ LC(X) iff Sx:(X) = . If there
exists a Y € LC(X) with Y = X, then it is unique; in this case, we say that X € £LC
is well-sorted with respect to X.

Theorem 29 For X € LC and any signature X, Sy (X) is effectively computable.

Proof: We will later observe that n-reduction on £C(X) is sort-preserving, and,
assuming this, we take X to be in n-normal form. Induction on the structure of X
completes the proof. O

Corollary 210 For X € LC and any signature X, it is decidable whether or not X
is well-sorted with respect to X.

As promised, we can prove (by induction according to the various cases for the
derivations of ¥ - X : A and ¥+ X : B) that

Lemma 211 If ¥+ X : A and ¥+ X : B, then A Rdom B. That is, any signature
X respects function domains.

Lemma 211 guarantees that for any term X and any sorts A, B € Sy (X) we
must have §(A4) = §(B). This unique domain sort for X is called its supporting sort
and is denoted supp(X). At first glance, requiring signatures to respect function
domains appears to be a grave restriction on the expressiveness of a calculus, but

functional extensionality itself relies heavily on the notion of implicitly specified
domains of functions, which unique supporting sorts syntactically capture. Indeed,
in mathematics, functions are assumed to have unique (implicitly specified) domains,
and must therefore be distinguished from restrictions to subdomains: functions f and
g are the same only if fa = ga for all @ in the common (implicitly specified) domain
of f and g.

2.3 Order-sorted Reduction

As per the above discussion, n-expansion of the term X4 to Axzp.Xz, which
corresponds to restricting the function denoted by X to the sort denoted by B,
should only again yield the original function if B represents the domain of the
function denoted by X. This restriction is embodied in the order-sorted n-rule.

Definition 212 Let X be any signature. The following order-sorted reductions are
defined for £C(X)-terms:

— M2.X)V L X[z = V], and
~ Mg Xz L X ifzp ¢ FV(X) and B = supp(X).

The first rule above, assumed to happen without free variable capture, is called
(order-sorted) (-reduction; the second is called (order-sorted) n-reduction. Since

order-sorted (n-reduction generalizes ordinary typed (n-reduction, we write LN
for order-sorted Bn-reduction as well as for its typed version.

It is important to our program that the fundamental operations of our calculus do
not allow the formation of ill-sorted terms from well-sorted ones. This ensures that
our unification algorithm never has to handle ill-sorted terms. In fact, if X N Y,
then Sy (X) € Sx(Y). A similar although slightly stronger result holds for n-
reduction: if X —1» Y, then Sx(X) = Sx(Y).

Order-sorted Bn-reduction is convergent. Termination is a direct consequence
of the corresponding well-known result for the simply typed lambda calculus, and
weak confluence — and, in light of termination, therefore confluence — follows from

weak confluence of Bn-reduction on LC together with the fact that X by implies
supp(X) = supp(Y'). It thus makes sense to refer to the order-sorted Sn-normal form
of an LC(X)-term, and the order-sorted long (i.e., n-expanded) S-normal form of X,
denoted I8nf(X).

3 Order-sorted Higher-order Unification

When considering unification in the simply typed lambda calculus, it is customary
to work modulo n-equality. We explicitly keep track of order-sorted n-equality, since
the interaction between extensionality and sorts can be unexpectedly subtle. Fix an
arbitrary signature X for use throughout the remainder of this paper.

3.1 Systems and Substitutions

We will represent unification problems by equational systems comprising the pairs of
LC(X)-terms to be simultaneously unified, and use transformations of such systems
as our main tool for solving the unification problems they represent.

A pair is a two-element multiset of £LC(X)-terms. A system is a finite set I" of
pairs. A pair is n-trivial (or simply trivial) if its elements are n-equal, and X'-valid
if its elements are fn-equal; a system is X-valid if each of its pairs is X-valid. As
usual, we write I, (X,Y) instead of I"U {{X,Y)}, but since I may or may not also
contain (X,Y), such a decomposition is ambiguous. We use the notation I'; (X, Y)
to abbreviate I' U {(X,Y)} when (X,Y’) is not a pair in I'. A pair (X,Y) is solved
in I if it is either trivial, or for some = € Varsy, X —»z, A € Sg(Y) and there
are no occurrences of z in I" other than the one indicated. In this case, = is said to
be solved in I'. If each pair in I is solved in I', then I" is a solved system.

A substitution is a finitely supported map from variables to £C(X'); a substitution
0 induces a mapping on terms, which we also denote by 6. We write substitution
application as juxtaposition, so that X is the application of the substitution 6 to
the term X, and by D(6) and I(6) we denote the set of variables in the domain of 6
and the set of variables introduced by 6, respectively. A substitution 6 is well-sorted
if for every x € Varsa, A € Sg(fx). It follows that if X € LC4(X) and 6§ is well-
sorted, then X € LC 4(X) as well. That the set of well-sorted substitutions is closed
under composition is not hard to prove.

We can extend equalities on LC(X) to (well-sorted) substitutions in the usual
manner: Let =, be an equational theory on LC(X), W be a set of variables, and 6
and 6’ be substitutions. Then § =, §'[W] means that for every variable in x € W,
fx =, 0'z. The subsumption relation §' <, 6[W] holds provided there exists a
substitution p such that 8 =, pf'[W]. If W is the set of all variables, we drop the
notation “[W].” If =, is the empty equational theory we write “=” and “<” for the
induced equality and subsumption ordering on substitutions.

We can extend substitutions on £C(X) to mappings on systems I' = {(X;,Y}) |
i < n} by defining oI" to be the system {{(cX;,0Y;) | i < n}. The normal form
[Bnf(I), all of whose unsolved pairs comprise terms in long S-normal form, is defined
si milarly. If all terms in the unsolved pairs of I" are in long B-normal form, we say
that I' is in long B-normal form. We write FV(X) for the set of free variables
occurring in the LC(X)-term X and FV (I") for the free variables occurring in the
terms in the system I'.

A well-sorted substitution 6 is a X-unifier of a system I if 01" is X-valid. If o
is a Y-unifier of I with the properties that D(o) C FV(I') and that for any X-
unifier 6 of I', 0 <g, 6 holds, then o is said to be a most general X -unifier of I'.
A system I is X -unifiable if there exists some X-unifier of I'. An idempotent well-
sorted substitution 6 is a normalized X-unifier of a system I" if) D(8) C FV(I'),
i) 0 is a Y-unifier of I', and i) for all unsolved variables = in I', fz is in long
B-normal form. Write Us(I") for the set of all normalized X-unifiers of I'. It is clear
that every well-sorted substitution 6 is n-equal to a well-sorted substitution 6’ with
D(#) = D(¢') and @'z in long B-normal form for each € D(#). Such a substitution
0’ is said to be in long 8-normal form. Thus for any Y-unifier 6 of a system I", there
exists a 8 € Ux(I") such that ' =g, 6[FV(I")]. In particular, every X-unifiable
system has a normalized X-unifier. For technical reasons, normalized X-unifiers
will be important in what follows. Note that we relax the standard requirement
that normalized substitutions map all variables to normal forms, and allow solved
variables to be bound arbitrarily. This is justified in Lemma 32 below.

The remainder of this section explores the relationship between systems and their
unifiers. If I" is a solved system whose non-trivial pairs are (X1,Y1),...,(X,,Y,)
with X; —Zs z; for i = 1,...,n, then these pairs determine an idempotent well-
sorted substitution op = {z1 — Yi,...,z, — Y,}, although such a pair (X,Y)
with X —s z € Varss and Y Ty y € Varsy, requires a choice as to which of z and
y is to be in the domain of the substitution. We assume that a uniform way exists
for making this choice, and so refer to the well-sorted substitution determined by a
solved system. Conversely, idempotent well-sorted substitutions can be represented
by solved systems without trivial pairs. If o is such a substitution, write [o] for any
solved system which represents it. Any system I" can be written as I''; [o] where [o]
is the set of solved pairs in I". We call [o] the solved part of I

Transformation-based unification methods attempt to reduce systems to be
unified to solved systems which represent their unifiers. The fundamental connection
between solved systems and X-unifiers is that solved systems represent their own
solutions:

Lemma 31 If I' = (X1, Y1),,(Xn,Ys) is a solved system, then op is a most
general X -unifier for I'. In fact, for any X -unifier 6 of I', 8 =g, for.

In general, however, a system I" will not have a single most general X'-unifier. The
next lemma shows that we need not be concerned with solved pairs when computing
Y -unifiers. This is consistent with the intuition that the solved part of a system is
merely a record of an answer substitution being constructed.

Lemma 32 Suppose I is a X-unifiable system with solved part [c] and unsolved part
I'". If 0 is a X-unifier of ', then for every X-unifier p of I'" such that D(p) C FV (I")
and p <g, O[FV (I")], po is a Y-unifier of I' and po <g, 0[FV (I)].

3.2 The Unlification Algorithm

One of the key steps for sorted higher-order unification is solving the following
problem: given a term X = Azy...xx.hU;...U, € LC4(X) in long S-normal form, find
a term G € LC4(X) with head h which can be instantiated to yield X. This is a
generalization of a problem in £C which Huet ([Hue75]) resolved by describing a set
of partial bindings in long (B-normal form capable of approximating any £C-term by
instantiation. While Huet-style partial bindings suffice for approximating arbitrary
LC(X)-terms — although not necessarily with bindings of the appropriate sorts

in our setting, we cannot require that partial bindings be n-expanded without
sacrificing completeness of our X-unification algorithm (see Example 36). Below, a
variable will be called fresh if it does not appear in any term in the current context.

Definition 33 If h is an atom such that either h € Varsg or [h = C] is
a constant declaration in Y, then a partial binding of sort A for head h is
any term of the form G = Ayi..y.hVi...Vy,, where i) | = length(A), i)
m = 1 + length(t(C)) — length(r(4)) > 0, iii) A F 4y™(C) < ~(4), iv)
y; € Varssiay for j = 1,1, and v) V; = zigr..yp for 1 < i < m, where
Z; € Va’I“S(gl(A)_>____>51(A)_>(;i(c) is fresh.

For a given sort A and head h partial bindings need not exist due to conditions
i) and 1) of Definition 33, but because signatures respect function domains, when
they do exist they are unique up to renaming of the variables z;. If X is a signature
without functional base sorts, then the partial bindings are n-expanded; in particular,
if X' is a signature with exactly one sort per (base) type, then the partial bindings
are precisely those obtained for £C. Writing G% (X) for the set of partial bindings of
sort A for head h, the fact that ¥ F G : A for G € G%(X) justifies our terminology.

Call a partial binding G = Ay;...y;.hV1 ..V a j'* projection binding if h = Yj
and an imitation binding if h € FV(G)UC. The following transformations on which
our algorithm is based are adapted from those of [Sny91].

Definition 34 The set X7 comprises the following transformations on systems in
long B-normal form (it is possible that k = 0 below).

DECOMPOSE: For any atom h,

Iy Mz oo h Xy X, Ay oxp WU U, =
I{(Azy..wp. X1, ey ...xp, . Uy) (Axy.oxp.Xn, Axy .z Uy).

PREET

— ELIMINATE: If © € Varsa, # ¢ {z1,..,z1}, © ¢ FV(Ary..2,.X), and

o ={z— Ary..xx. X} is well-sorted, then

3

'y (Azy..op.xxy g, Az oz X)) = (2, Az ...z, X)), o T

— IMITATE: If z € Varsa, h € C or h € FV(\xy...xy.hU,..Uy), h # z, and
G € G"(Y) is an imitation binding, then

'y Aey .o Xy X, Ay oz WU Upy)) =
Iz, Gy, (Axy..xp.xX1... Xp, Apy..x hU, . Up,).

— j-PROJECT: If z € Varsa, h is a (possibly bound) atom and G € G2 (X) is a
j'" projection binding for some j € {1,...,n} such that head(X;) € C implies
head(X;) = h, then

Iy (Azy..xp.xXy.. . Xp, Az ..z WU, Up,) =
I'{z,Gy,(\zy..xp.xX1... X, Azq ..z RUL U).

— GQUESS: If h is any atom, and z and y are free variables in Vars4 and Varsg,
respectively, both distinct from h, and G € G%(X), then

'y (Azqoxp.x Xy X, Ay ey Uy U =
I'{z,G),(Ax1..xp.xX1.. Xp, Az1 ..o yUs . .Upy).

As part of the transformations IMITATE, j-PROJECT, and GUESS, we immediately
apply ELIMINATE to the new pair (z, G).

Our sort mechanism insures that applications of the transformations are such that
all terms involved are well-sorted. We adopt the convention that no transformations
may be done out of solved or trivial pairs, which accords with the intuition that
the solved pairs in a system are merely recording an answer substitution as it is
incrementally built up.

We emphasize that there is no deletion of trivial pairs in this presentation. This
guarantees that if I'=TI", then FV(I") C FV(I""), so that when a fresh variable is
chosen during a computation it is guaranteed to be new to the entire computation.
This prevents us from having to manipulate the “protected sets of variables” typically
found in completeness proofs in the literature, and respects the fundamental idea
behind the use of transformations for describing algorithms, namely that the logic
of the problem being considered can be abstracted from implementational issues.

Definition 35 The non-deterministic algorithm X/ is the process of repeatedly

1. reducing all terms of the unsolved pairs in the system to long B-normal form
and then applying some transformation in X7 to an unsolved pair, and

2. returning a most general X-unifier if at any point in the computation the system
becomes solved.

The choice of pair upon which Algorithm X/ is to act, and the rule from X7 to
be applied, are non-deterministic. We illustrate use of Algorithm X/:

Example 36 Let [b :: §(A)] and [c :: A] comprise the set of constant declarations
in a signature X with a functional base sort A. Let f € Varsa, x € Varssa,
and w € Varsasa), and consider the Y-unifiable long S-normal form system
I' = (fx,cb),{we,b). Applying IMITATE with partial binding ¢ to the first
pair of I' yields (f,¢),{cz,cb),(wc,b). An application of DECOMPOSE results
in (f, c),{(x,b), (we,b), and an application of IMITATE with binding Ay.b for
y € Varsy to the third pair, followed by some [B-reductions give the solved
system ' = (f,c), (x,b), {w, Ay.b), (b,b). We extract the well-sorted substitution
o={fw ¢,z — bww— Ay.b}, and anticipating Theorem 38, conclude that o is a
X -unifier of I and hence of I'. If we instead allow only n-expanded partial bindings,
then the only possible IMITATE step binds f to a term of the form Ay.c(zy) for a
variable y and a fresh variable z of appropriate sorts. But then ELIMINATE cannot
be performed on the pair (f, A\y.c(zy)) (as is required to complete the IMITATE step),
since X I Ay.c(zy) : A.

While unification in £C(X') is apparently more delicate than unification in £C, the
extra care pays off when sort information disallows certain undesirable unifications
that would be possible in an unsorted calculus.

Example 37 Let X be a signature with base sorts D, I, and R, where the non-
functional sort R denotes the real numbers, and the functional sorts D and I denote
the strictly decreasing and strictly increasing functions on the reals, respectively.
Suppose further that (D) = 6(I) = R and (D) = ~(I) = R. Finally, let
[n 2 D — I] and [4 :: R] comprise the set of constant declarations of X', where
n denotes the “negation functor” mapping each function F' to —F, and 4 denotes
the real number four.

Let z € Varsg, f € Varsy,and g € Varsp, and consider the unification problem
given by the pairs (f4,ngz), (gz,4). It is not hard to see that an application of
IMITATE to the pair (f4,ngz) is the only possibility for computation. Letting z
be fresh from Varsp, we have that nz € G} (X), and so can apply IMITATE with
this binding for f to get (f,nz), (nz4,ngx), (gx,4). Similarly, we conclude that only

DECOMPOSE applies here, resulting in (f, nz), (z, g), (z,4), {9z, 4). Two applications

of ELIMINATE yield (f,ng),(z,g), (z,4),{g4,4), all of whose pairs, save the last

unsolvable one, are solved. The only alternative to eliminating z above is
applying GUESS to (z,g) in the second derived system, but this makes no progress
toward a solution. Anticipating Theorem 313, we conclude that the original system
is unsolvable, in accordance with the facts that neither the identity function nor the
function which is constantly four is strictly decreasing.

Of course, if D were to denote the (not strictly) decreasing real-valued functions
on the reals, then we would expect (g4,4) to be solvable by binding g to Ay.4.
A calculus allowing arbitrary term declarations finds a middle road between the
typed calculus, which permits too many bindings, and one supporting only constant
declarations, which permits too few: declaring Ay.4 to be of sort D when y € Varsg,
I' yields precisely the desired solutions.

3.3 Soundness and Completeness of the Algorithm

The proof that our transformations are sound is not appreciably different from the
proof for the corresponding transformations for unification in LC.

Theorem 38 (Soundness) If ' = I"', then for any well-sorted substitution 6, 6 is
a X-unifier of I' if it is a X -unifier of T".

Thus if Algorithm XU is run on initial system I and returns a well-sorted
substitution 6, then 6 is indeed a X-unifier of I". Our main result (Theorem 313)
is a converse. We require a few technical lemmas, the first of which is proved by
induction on the derivation of ¥ Y : A.

Lemma 39 IfY = Azy..zp.hU, ..U, € LCA(X) is in fn-normal form, then either
h € Varsc or [h = C] is a constant declaration in X for some sort C such that
length(A) + length(1(C)) — length(t(A)) > 0 and A F ~v9(C) < 4P(A4).

Lemma 310 If X = Azy...xy.hU,..U, € LCa(X) is in long S-normal form, then
there exist a partial binding G € G%(X) and a well-sorted substitution p in long
B-normal form such that D(p) is precisely the set of fresh variables in G, pz has
smaller depth than X for each z € D(p), and pG =g, X.

Proof: Let Y = Az;...z,.hU;...U, be the Bnp-normal form of X, where U; L U!
fori =1,...,q, p < k,and n = g+ (k — p). Let C be the sort whose existence is
guaranteed by Lemma 39, m = length(A) + length(r(C)) — length(r(A)) > 0,
and G = Azy..z;.hVi..Vy € GR(Y), where V; = zzy..x; for fresh variables
zi, i = 1,...,m. Then | < length(r(A)) = k and n = length(r(C)), so that
m=14+n—-—k =14+¢q—p. Since ¥ Y : A we must have p < [< k. The
substitution p mapping z; to Az;..z;.U; for i = 1,...,q, and 2; to Azy..21.2p g4
for i = ¢+ 1,...,m is well-sorted, has domain consisting precisely of the set of
fresh variables in G, and has the property that pz has smaller depth than X
for each z € D(p). It is well-defined because m — ¢ = I — p > 0, and indeed
p(G) = Azy..v.hU .. Uympyy...mp =y Axy..p. hUL. Uy =, X. O

Note that with the Huet-style partial bindings, it would not necessarily be
possible to find G of sort A and a substitution p as required:

Example 311 If X' is a signature with a constant declaration [c :: A] for a functional
base sort A, then X' F Az.cz : A using (const) followed by an application of (n). Any
Huet-style partial binding that might approximate the long S-normal form Az.cz
must be of the form Az.c(zz) where z is a fresh variable of an appropriate sort, but
there is no derivation of X'+ Az.c(zz) : A. Under our definition, however, G = ¢ is
itself a partial binding of sort A for head h, and p can be taken to be the identity
substitution.

The measure p defined by w(l,0) = (ui(L,0),u2(I)), where uy(I,6) is the
multiset of the depths of the #-bindings of unsolved variables in I" which are also in
D(6), and po(I") is the multiset of depths of terms in I', will provide the basis for
proving termination of Algorithm XU/.

Lemma 312 Let 6 € Ux,(I") and let (X,Y) be an unsolved pair in a system I in
long B-normal form. Then there exist a system I and a substitution 6' such that

r=1",0=0FVI)], 0 cUs(I"), and u(I",8') < u(I,6).

Proof: If head(X) = head(Y) ¢ D(8), then since (X,Y) is not trivial, DECOMPOSE
must apply and we must have 8 € Ux(I"). Also, pu(I",0) < wp(I,0) since
pi (I, 0) < pa(I7,6) and po (1) < po(I).

Otherwise, at least one of X and Y has an unsolved variable € D(0) N Varsx
of I' as its head; assume X does. Then since 6 is well-sorted, X' F 0z : A, and 6z
is in long @-normal form since 6 is normalized. Suppose 0x = Azy...xy.hU;...U,.
By Lemma 310, there exist G € GR(X) and a well-sorted substitution p in long
B-normal form satisfying the conclusions of that lemma. Thus if head(Y) ¢ D(6)
and h = head(Y), then IMITATE applies, if head(Y') ¢ D() and h # head(Y'), then
J-PROJECT applies for some j, and if head(Y) € D(8), then GUESS applies. Taking
6" = 6 U p, we have that § = §'[FV(I')], 0§ € Usg(I") since §# € Ux(I') and p is in
long B-normal form, and D(p) is exactly the set of fresh variables in G. Moreover,
ur (I',0") < p(I,0): x is removed from the set of unsolved variables in I" which
appear in D(f), and is replaced by the set of fresh variables of G, but for each such
variable z, §'z = pz is smaller than 6z. Thus u(I",0') < u(I,6).

Observe that if head(X) = head(Y) ¢ D(8) does not hold, but X —»z €
Varsy, x is not free in Y, and X Y : A, then ELIMINATE applies. In this case, we
can take 6’ to be 8 by noting that u; (I'",0) < ui (I, 6). O

The proof of Lemma 312 shows that it is possible to restrict DECOMPOSE
to apply only when head(X) = head(Y) ¢ D(f), although there is no way
of encoding this restriction into the transformations. If we call a transformation
prescribed by Lemma 312 a p-prescribed transformation, then each application of
a p-prescribed transformation decreases the well-founded measure u. The previous
lemma guarantees that if I" is a Y-unifiable system in long S-normal form to which
no p-prescribed transformation in X7 applies, then I is solved.

Theorem 313 Let 0 be a X-unifier of I'. Then there exists a computation of
Algorithm XU on I' producing a X-unifier o of I such that o <g, 0[FV (I')].

Proof: Since every XY-unifier of I' is pointwise (Bn-equal on FV(I') to some
0" € Ux(I'), we prove the theorem under the added hypothesis that 6 € U (I").

If I" is not in long B-normal form, then perform reductions until a system in long
B-normal form results. Note that if § Y-unifies I", then 8 also X-unifies [Bn f(I"), and
that this reduction is a XU/ step. We may therefore assume without loss of generality
in the remainder of this proof that I" is in long f-normal form. We induct on the
length of the longest sequence of p-prescribed sequence of transformations available
out of I'.

If no p-prescribed transformation from X7 applies to I', then I is solved so
we may return a most general Y-unifier o of I" whose existence is guaranteed by
Lemma 31. This action is a step of Algorithm XU/, and o <g, 6. If some y-prescribed
transformation from X7 applies to I" yielding a system I"' and a substitution 6’
satisfying the conclusion of Lemma 312, then applying this transformation is a XU/
step. By the induction hypothesis, there is a computation of XU on I'" producing a
XY-unifier § of I'" such that § <g, 68'[FV (I")]. It follows from Lemma 38 that ¢ is a
X-unifier of I', and since FV(I") C FV(I"), § <g, 0'|[FV(I')]. But §' = §[FV(I')],
so that § <g, 8[FV (I)]. O

Since we have not made any assumption about the order in which transformations
from XT are performed, and since any application of ELIMINATE to a system reduces
the measure u, we infer that the strategy of eager variable elimination is complete
for unification in our calculus. It is unknown whether eager variable elimination is
complete for an arbitrary calculus and equational theory, even if both are first-order.

References

[BL90] K. B. Bruce and G. Longo. A Modest Model of Records, Inheritance, and Bounded
Quantification. Information and Computation 87, pp. 196 — 240, 1990.

[Car88] L. Cardelli. A Semantics of Multiple Inheritance. Information and Computation
76, pp. 138 164, 1988.

[CG91] P.-L. Curien and G. Ghelli. Subtyping + Extensionality: Confluence of [ntop
Reduction in F<. In Proc. TACS ‘91, Springer-Verlag LNCS 526, pp. 731 — 749,
1991.

[Coh89] A. G. Cohn. Taxonomic Reasoning with Many-sorted Logics. Artificial Intelligence
Review 3, pp- 89 — 128, 1989.

[Hue72] G. Huet. Constrained Resolution: A Complete Method for Higher Order Logic.
Dissertation, Case Western Reserve University, 1972.

[Hue75] G. Huet. A Unification Algorithm for Typed A-Calculus. Theoretical Computer
Science 1, pp. 27 — 57, 1975.

[JK93] P. Johann and M. Kohlhase. Unification in an Extensional Lambda Calculus with
Ordered Function Sorts and Constant Overloading. Technical Report SR-93-14,
Universitat des Saarlandes, 1993.

[Koh92] M. Kohlhase. An Order-sorted Version of Type Theory. In Proc. LPAR ‘92,
Springer-Verlag LNAT 624, pp. 421 — 432, 1992.

[NQ92] T. Nipkow and Z. Qian. Reduction and Unification in Lambda Calculi with
Subtypes. In Proc. CADE ‘92, Springer-Verlag LNAI 607, pp. 66 78, 1992.

[Pfe92] F. Pfenning. Intersection Types for a Logical Framework. POP-Report, Carnegie-
Mellon University, 1992.

[Pie91] B. C. Pierce. Programming with Intersection Types and Bounded Polymorphism.
Dissertation, Carnegie Mellon University, 1991.

[Qia90] Z. Qian. Higher-order Order-sorted Algebras. In Proc. Algebraic & Logic
Programming ‘90, Springer-Verlag LNCS 463, pp. 86 — 100, 1990.

[Sch89] M. Schmidt-Schaufl. Computational Aspects of an Order-sorted Logic with Term
Declarations. Springer-Verlag LNATI 395, 1989.

[Sny91] W. Snyder. A Proof Theory for General Unification. Birkhduser Boston, 1991.

[Wal88] C. Walther. Many-sorted Unification. Journal of the ACM 35, pp. 1 — 17, 1988.

