
Uni�
ation in an Extensional Lambda Cal
uluswith Ordered Fun
tion Sorts and ConstantOverloadingPatri
ia Johann? and Mi
hael Kohlhase??Fa
hberei
h InformatikUniversit�at des Saarlandes66123 Saarbr�u
ken, Germanyfpjohann, kohlhaseg�
s.uni-sb.deNo Institute GivenAbstra
t. We develop an order-sorted higher-order
al
ulus suitable forautomati
 theorem proving appli
ations by extending the extensional simplytyped lambda
al
ulus with a higher-order ordered sort
on
ept and
onstantoverloading. Huet's well-known te
hniques for unifying simply typed lambdaterms are generalized to arrive at a
omplete transformation-based uni�
ationalgorithm for this sorted
al
ulus. Consideration of an order-sorted logi
with fun
tional base sorts and arbitrary term de
larations was originallyproposed by the se
ond author in a 1991 paper; we give here a
orre
ted
al
ulus whi
h supports
onstant rather than arbitrary term de
larations, aswell as a
orre
ted uni�
ation algorithm, and prove in this setting results
orresponding to those
laimed there.1 Introdu
tionIn the quest for
al
uli best suited for automating logi
, the introdu
tion of sortshas been one of the most promising developments. Sorts, whi
h are intendedto
apture for automated dedu
tion purposes the kinds of meta-level taxonomi
distin
tions that humans naturally assume stru
ture the universe,
an be employedto synta
ti
ally distinguish obje
ts of di�erent
lasses. The essential idea behindsorted logi
s is to assign sorts to obje
ts and to restri
t the ranges of variables toparti
ular sorts, so that unintended inferen
es, whi
h then violate the
onstraintsimposed by this sort information, are disallowed. These te
hniques have been seen todramati
ally redu
e the sear
h spa
e asso
iated with dedu
tion in �rst-order systems([Wal88℄, [Coh89℄, [S
h89℄).On the other hand, the inherently higher-order nature of many problems whosesolutions one would like to dedu
e automati
ally has sparked an in
reasing interest inhigher-order dedu
tion. The behavior of sorted higher-order
al
uli, whi
h boast boththe expressiveness of higher-order logi
s and the eÆ
ien
y of sorted
al
uli, is thus? On leave from the Department of Mathemati
s and Computer S
ien
e, Hobart andWilliam Smith Colleges, Geneva, NY 14456, johann�hws.bitnet. This material is basedon work supported by the National S
ien
e Foundation, Grant No. INT-9224443.?? Supported by the Deuts
he Fors
hungsgemeins
haft (SFB 314).

a natural topi
 of investigation. In this paper, we develop pre
isely su
h a
al
ulus| an order-sorted lambda
al
ulus supporting fun
tional base sorts and
onstantoverloading | as well as a
omplete uni�
ation algorithm for this
al
ulus, whi
his suitable for use in an automated dedu
tion setting. Cal
uli intended for a
tualmathemati
al dedu
tion will no doubt support
onstant | if not arbitrary term| de
larations (see Example 37); by in
orporating
onstant de
larations into our
al
ulus, we treat dedu
tion issues
ommon to all mathemati
ally useful extensionalorder-sorted higher-order logi
s supporting fun
tional base sorts.Although Huet proposed the study of a simple sorted lambda
al
ulus in anappendix to [Hue72℄, the development of order-sorted higher-order
al
uli for use indedu
tion systems has only in re
ent years been pursued ([Koh92℄, [NQ92℄, [Pfe92℄).There has, however, been
onsiderable interest in order-sorted higher-order logi
 fromthe point of view of higher-order algebrai
 spe
i�
ations, the theory of fun
tionalprogramming languages, and obje
t-oriented programming ([Car88℄, [BL90℄, [Qia90℄,[CG91℄, [Pie91℄).In unsorted logi
s, the knowledge that an obje
t is a member of a
ertain
lass ofobje
ts is expressed using unary predi
ates. This leads to a multitude of unit
lausesin dedu
tions, ea
h of whi
h
arries only taxonomi
 information and
ontributes toa severe explosion of the sear
h spa
e. In sorted logi
s, predi
ates are repla
ed bysorts
arrying pre
isely the same taxonomi
 information, so that their attendantunit
lauses are also eliminated and the sear
h spa
e is
orrespondingly pruned.The in
orporation of sort information is perhaps even more natural for higher-orderthan for �rst-order logi
s: type information in higher-order logi
s
an be regardedas
oding very
oarse distin
tions between disjoint
lasses of obje
ts, so that sortsmerely re�ne an already present stru
ture. But more importantly, the bene�ts ofsorts for restri
ting sear
h spa
es in higher-order dedu
tion will ne
essarily be morepronoun
ed than in �rst-order systems, sin
e the sort hierar
hy propagates into thehigher-order stru
ture of the logi
s.Sorting the universe of individuals in higher-order logi
s gives rise to new
lassesof fun
tions, namely those whose domains and
odomains are (denoted by) thesorts. But in addition to sorting fun
tion universes in su
h a �rst-order manner,
lasses of fun
tions de�ned by domains and
odomains
an themselves be dividedinto sub
lasses sin
e fun
tions are expli
it obje
ts of higher-order logi
s. Fun
tionalbase sorts, i.e., base sorts that denote
lasses of fun
tions, are thus permitted.Synta
ti
ally, ea
h sort A
omes with a type, a
odomain sort
(A), and | if offun
tional type | also with a domain sort Æ(A). Partial orders on the set of sorts,
apturing in
lusion relations among the various
lasses of obje
ts, are indu
ed by
ovarian
e in the
odomain sort via subsort de
larations. But in the presen
e offun
tional base sorts an additional me
hanism for indu
ing subsort information isneeded: sin
e any fun
tion of sort A is a fun
tion with domain Æ(A) and
odomain
(A), a fun
tional sort A must always be a subsort of the sort Æ(A)!
(A).The
al
ulus presented here supports
onstru
ts for restri
ting the ranges ofvariables to, and assigning
onstants membership in,
ertain
lasses of obje
ts.Depending on the partial order indu
ed on the sorts,
ertain
lasses of terms builtfrom these atoms then be
ome the obje
ts of study | the partial order restri
ts the
lass of models for the
al
ulus, so that terms must meet
ertain
onditions to denotemeaningful obje
ts, i.e., to be well-sorted. Notions of �- and �-redu
tion generalizing

the
orresponding redu
tions in the simply typed lambda
al
ulus are de�ned on the
lass of well-sorted terms. The former is a straightforward adaptation of typed �-redu
tion, but the deli
ate intera
tion between extensionality and partially orderedsorts ne
essitates
are in de�ning the latter. If X is a term of fun
tional sort A,for example, and x is a variable whose range is restri
ted to the subsort B of Æ(A),then �x:Xx denotes the restri
tion of the fun
tion (denoted by) X to the domain(spe
i�ed by) B. In order to properly model extentionality by �-redu
tion, B musttherefore be pre
isely the (maximal) domain of X in order for �x:Xx to �-redu
e toX | otherwise X would be equal to a proper restri
tion of itself.A similar subtle interplay between extensionality and fun
tional base sortsrenders the natural generalization of Huet's ([Hue75℄)
lassi
al method for uni�
ationof simply typed lambda terms inadequate in our setting. Nevertheless, a more liberalnotion of partial binding, whi
h in parti
ular does not require the bindings to be�-expanded, does suÆ
e for in
rementally approximating answer substitutions forarbitrary uni�
ation problems modulo ��-equality on well-sorted terms.As in the simply typed lambda
al
ulus, the need for \guessing" partial bindingsfor pairs so
alled
ex-
ex pairs gives rise to a serious explosion of the sear
hspa
e, but unfortunately, this
annot be avoided without sa
ri�
ing the uni�
ation
ompleteness of our algorithm. Huet resolved this diÆ
ulty in the simply typedlambda
al
ulus by rede�ning the higher-order uni�
ation problem to a formsuÆ
ient for refutation purposes:
ex-
ex pairs are
onsidered to pre-uni�ed, oralready solved. We
onje
ture that it is possible to de�ne an appropriate notion ofpre-uni�
ation in our setting as well, but warn that a naive modi�
ation of thestandard methods is evidently insuÆ
ient for
al
uli supporting fun
tional basesorts. Spe
i�
ally, pre-uni�
ation only makes sense under regular signatures, andthe existen
e of uni�ers for
ex-
ex pairs depends heavily on the partial order onsorts under whi
h uni�
ation is being
onsidered.Uni�
ation in an extensional order-sorted lambda
al
ulus with fun
tional basesorts was �rst investigated in [Koh92℄. A
al
ulus supporting fun
tional base sortsand arbitrary term, rather than only
onstant, de
larations is proposed there, but itspresentation is
awed in serveral pla
es. Our
al
ulus
an be seen as a sub
al
ulusof the one proposed in [Koh92℄ whi
h has been
orre
ted to be well-de�ned and toproperly in
orporate extensionality (see the problemati

lauses 4 and 5 of De�nition2.5, and Remark 2.10, there). The notion of partial binding developed here paves theway for remedying both the ill-de�ned uni�
ation transformations and the
awed
ompleteness proof of [Koh92℄. For a detailed treatment of our results and the issuessurrounding them, the reader is referred to the full paper [JK93℄.2 The Cal
ulusThe set of types T is obtained by indu
tively
losing a set of base types T0 underthe operation � ! �; assuming right-asso
iativity of !, the length of a type� � �1 ! �2 ! ::: ! �n, denoted length(�), is n � 1. Types are denotedby lower
ase Greek letters. In theorem proving appli
ations we might have onlytwo base types, o denoting truth-values and � denoting the universe of individuals,with all other subdivisions of the universe being
oded into sort distin
tions amongindividuals, as des
ribed in the next subse
tion.

For ea
h type � 2 T , �x a
ountably in�nite set of variables x�; y�; z�; ::: of type� and a
ountably in�nite set of
onstants a�; b�;
�; ::: of type �. We assume thatno two distin
t variables or
onstants have the same type-erasure.LC is the set of expli
itly simply typed lambda terms over the variables and
onstants. We omit referen
e to the type ofX when this will not lead to
onfusion. OnLC, ��-equality is generated by ��-redu
tion, denoted by ���! and determined by theusual rules (�x:X)Y ��!X [x := Y ℄ and �x:Xx ��!X . ��-redu
tion is terminatingand
on
uent (i.e.,
onvergent) on LC-terms.The re
exive, transitive
losure of a redu
tion relation ��! is denoted ��!�! , andwe write =� for the symmetri

losure of ��!�! . We write X � Y to indi
ate that twoLC-terms X and Y are identi
al up to renaming of bound variables. As is
ustomary,we
onsider LC-terms identi
al up to renaming of bound variables to be the same.2.1 Order-sorted Stru
turesAs des
ribed in the introdu
tion, we
apitalize on the fa
t that fun
tions are expli
itobje
ts of higher-order logi
 by allowing
lasses of fun
tions de�ned by domainsand
odomains to themselves be divided into sub
lasses. We thus postulate bothfun
tional base sorts | i.e., base sorts that denote
lasses of fun
tions | as well asnon-fun
tional base sorts.De�nition 21 A sort system is a quintuple (S0;S; �; Æ;
) su
h that:{ S0 is a set of base sorts distin
t from the set of type symbols. The set of sortsobtained by
losing S0 under the operation A! B
omprises S.{ The type fun
tion � is a mapping � : S0 ! T . If �(A) 2 T0, then A is saidto be non-fun
tional, and A is said to be fun
tional otherwise; the set of non-fun
tional (resp., fun
tional) sorts is denoted by Snf (resp., Sf). For all A 2 Sf ,we require that �(A) = �(Æ(A)) ! �(
(A)), where the domain sort fun
tion Æis a map Æ : Sf0 ! S, the
odomain sort fun
tion
 is a map
 : S0 ! S with
 jSnf the identity map, and the mappings Æ and
 are extended to S by de�ningÆ(A) = B and
(A) = C for A � B ! C 2 S.Sorts are denoted by upper
ase Roman letters. If the
ontext is
lear, weabbreviate by S the sort system (S0;S; �; Æ;
). Sin
e we are ultimately interested insorted terms and their typed
ounterparts, we only
onsider sort systems for whi
h� is surje
tive. We further assume that for ea
h � 2 T there exist only �nitely manyA 2 S0 with �(A) = �.It will be useful to have some notational
onventions for domain and
odomainsorts. For any A 2 S, de�ne the following notation: Æ0(A) � A,
0(A) � A, and fori � 1,
i(A) �
(
i�1(A)), and Æi(A) � Æ(
i�1(A)). Write length(A) for the lengthof the sort A.Example 22 Fun
tional base sorts are useful in the study of elementary analysis,where we might postulate a non-fun
tional base sort R denoting the reals and afun
tional base sort C with Æ(C) = R and
(C) = R denoting the
lass of real-valued
ontinuous fun
tions on the reals. Sin
e it is not possible to distinguish synta
ti
allysu
h
ontinuous fun
tions solely in terms of their domains and
odomains, permittingfun
tional base sorts indeed in
reases the expressiveness of a
al
ulus.

While types represent disjoint
lasses of obje
ts,
ertain kinds of orderings onsorts re
e
t permissible in
lusion relations among
lasses of obje
ts sorts denote.We
apture a
onsisten
y
ondition whi
h su
h orderings are required to satisfyby de�ning, for a sort system S and a pair of sorts A and B in S su
h that�(A) = �(B), the set Con(A;B) of subsort de
larations (for S) to be the setf[A � B℄g if A;B 2 Snf , andCon(Æ(A); Æ(B)) [Con(Æ(B); Æ(A)) [Con(
(A);
(B)) [f[A � B℄gif A;B 2 Sf . A sort stru
ture (for S) is any set of subsort de
larations obtainedby indu
tively adding sets of the form Con(A;B) to the empty set. Sin
e ea
h setCon(A;B) of subsort de
larations is �nite, sort stru
tures are ne
essarily �nite. Forany sort stru
ture �, we have [A � B℄ 2 � i� Con(A;B) � �.Any sort stru
ture � indu
es an in
lusion ordering �� (or simply \�") on S,indu
tively de�ned by the rules of De�nition 23.De�nition 23 For any sort stru
ture �, the in
lusion ordering determined by �
ontains all judgements of the form � ` A � B provable by the following
al
ulus:[A � B℄ 2 �� ` A � B A 2 Sf� ` A � Æ(A)!
(A)� ` A � A � ` A � B� ` C ! A � C ! B� ` A � B � ` B � C� ` A � CClearly we
annot insist that � ` A � B hold for any sorts A and B with a
ommon domain sort C and
odomain sorts satisfying � `
(A) �
(B) (assuming,for example, a standard semanti
s). But if � is a sort stru
ture for S, and �is the equivalen
e relation indu
ed by �, then A;B 2 Sf , � ` A � B implies� ` Æ(A) � Æ(B) and � `
(A) �
(B). In addition, for all A;B 2 S, � ` A � Bimplies �(A) = �(B), so that any sort system S is the disjoint union of in�nitelymany subsets S� = fA 2 S j �(A) = �g of sorts su
h that if A 2 S� and B 2 S� with� 6� �, then A and B are in
omparable with respe
t to �. Sin
e S has only �nitelymany base sorts per type, ea
h subset S� is �nite. De
idability of the in
lusionordering determined by any sort stru
ture thus follows from the next lemma, whi
his proved by indu
tion on length(�).Lemma 24 For any type � 2 T and any sort stru
ture �, if � is the in
lusionordering determined by �, then the restri
tion �� of � to sorts of type � is e�e
tively
omputable.Theorem 25 The in
lusion ordering determined by any sort stru
ture � isde
idable.It will be important that the signatures over whi
h our well-sorted terms are built\respe
t fun
tion domains," i.e., that for any term X and any sorts A and B su
h

that X has sort A and also sort B, Æ(A) � Æ(B) holds. The proof that signaturesindeed satisfy this property (see Lemma 211) depends in part on the
onsisten
y
onditions for sort stru
tures and in part on the fa
t that
onstant de
larationsmeet the sort
ondition of the �fth
lause of De�nition 27 below, given in terms ofthe equivalen
e relation Rdom, whi
h we now de�ne.De�nition 26 Given a sort stru
ture � for S and a pair of sorts A and B inS, A Rdom� B holds if either A;B 2 Snf and �(A) = �(B), or if A;B 2 Sf ,� ` Æ(A) � Æ(B), and
(A) Rdom�
(B).We write \Rdom" for Rdom� when �
an be dis
erned from the
ontext. ThenA Rdom B implies �(A) = �(B), and � ` A � B implies A Rdom B.De�nition 27 A signature �
omprises i) a sort system S = (S0;S; Æ;
; �), ii) asort stru
ture � (for S), iii) a
ountably in�nite set V arsA of variables xA; yA; zA; :::for ea
h A 2 S, iv) a set C of typed
onstant symbols, and v) a set of
onstantde
larations of the form [
� :: A℄ for
 2 C su
h that �(A) = �. We assume that if[
 :: A℄ and [
 :: B℄ are
onstant de
larations, then A Rdom B.The requirement that �(A) = � for a
onstant de
laration [
� :: A℄ insures thatsort assignments respe
t the types of
onstants. In a theorem proving
ontext, anysignature would have, for ea
h � 2 T , only �nitely many
onstant de
larationsinvolving
onstants of type �. We will assume this restri
tion on signatures.Any sorted variable
an naturally be regarded as a typed variable by \forgetting"its sort information. Denoting the forgetful fun
tor by , we may regard the sortedvariable xA as the typed variable xA, i.e., as x�(A). By prudently naming thevariables, we
an arrange that the forgetful fun
tor is bije
tive on variables, therebyavoiding merely te
hni
al
ompli
ations that
ould otherwise arise.2.2 Term Stru
tureDe�nition 28 Let � be a signature with sort stru
ture �. The set of well-sortedLC-terms for � is determined indu
tively by the following inferen
e rules:x 2 V arsA (var)� ` x : A � ` X : A � ` Y : B � ` B � Æ(A) (app)� ` XY :
(A)[
 :: A℄ 2 � (
onst)� `
 : A x 2 V arsB � ` X : A (abs)� ` �x:X : B ! A� ` X : A � ` Æ(A) � B (�)� ` �xB :Xx : A � ` X : B � ` B � A (weaken)� ` X : ALet LCA(�) = fX j � ` X : Ag and LC(�) = SA2S LCA(�). For anyX 2 LC(�) write S�(X) for fA 2 S j X 2 LCA(�)g. Sin
e the in
lusion orderingdetermined by any sort stru
ture� is transitive, we need never follow one appli
ationof the rule (weaken) by another in
onstru
ting sort derivations for well-sorted LC-terms (hen
eforth
alled LC(�)-terms). We
onsiderLC(�)-terms whi
h are identi
alup to renaming of (sorted) variables to be the same, and omit sort informationwhenever possible.

If � is a signature with sort system S and sort stru
ture �, and if � is theequivalen
e relation determined by �, then LCA(�) = LCB(�) whenever A � B.Passing to the quotient signature�0 with respe
t to �, i.e., to the signature with sortsystem S 0 equal to S= � obtained by repla
ing sorts in S by
anoni
al �-equivalen
e
lass representatives, we arrive at a signature whose equivalen
e relation is trivialand su
h that LCA(�0) = LCA(�) for all sorts A. We may therefore assume that� is a partial ordering for all signatures in the remainder of this paper. We alsoassume that we have ridded our sort stru
tures of redundant subsort de
larationsof the form [A � A℄, and that whenever � ` B � A for a sort stru
ture �,length(B) � length(A) holds. The latter assumption is without loss of generalityunder a standard semanti
s, and implies that length(B) � length(A) if � ` B � A.A routine indu
tion on sort derivations establishes that signatures are subterm
losed, i.e., that ea
h subterm of a well-sorted term is again well-sorted.In any signature �, if x 2 V arsA, then x has least sort A in �. But be
ause of
onstant overloading, not every term will ne
essarily have a unique least sort. Foran arbitrary term X , however, if � ` X : A and � ` X : B then �(A) = �(B).As a result, the fa
t that � has only �nitely many sorts per type implies that, forX 2 LC(�), the set of sorts S�(X) is �nite. It also follows that if we
onsider theforgetful fun
tor to be the identity on typed
onstants, then it
an be extended toan inje
tion (but not ne
essarily a bije
tion) from LC(�) into LC. And if � is asignature with empty sort stru
ture and exa
tly one sort A su
h that �(A) = � forea
h � 2 T0, then LC(�) is isomorphi
 to the fragment of LC
ontaining only the�nitely many
onstants per type appearing in
onstant de
larations in �.To prove
omputability of sort assignment for LC(�), we extend the fun
tionS�(�) on LC(�) to all of LC. For X 2 LC and � a signature, de�ne S�(X) =fS�(Y) j Y 2 LC(�) and Y � Xg. Then X 2 LC n LC(�) i� S�(X) = ;. If thereexists a Y 2 LC(�) with Y � X , then it is unique; in this
ase, we say that X 2 LCis well-sorted with respe
t to �.Theorem 29 For X 2 LC and any signature �, S�(X) is e�e
tively
omputable.Proof: We will later observe that �-redu
tion on LC(�) is sort-preserving, and,assuming this, we take X to be in �-normal form. Indu
tion on the stru
ture of X
ompletes the proof.Corollary 210 For X 2 LC and any signature �, it is de
idable whether or not Xis well-sorted with respe
t to �.As promised, we
an prove (by indu
tion a

ording to the various
ases for thederivations of � ` X : A and � ` X : B) thatLemma 211 If � ` X : A and � ` X : B, then A Rdom B. That is, any signature� respe
ts fun
tion domains.Lemma 211 guarantees that for any term X and any sorts A;B 2 S�(X) wemust have Æ(A) = Æ(B). This unique domain sort for X is
alled its supporting sortand is denoted supp(X). At �rst glan
e, requiring signatures to respe
t fun
tiondomains appears to be a grave restri
tion on the expressiveness of a
al
ulus, but

fun
tional extensionality itself relies heavily on the notion of impli
itly spe
i�eddomains of fun
tions, whi
h unique supporting sorts synta
ti
ally
apture. Indeed,in mathemati
s, fun
tions are assumed to have unique (impli
itly spe
i�ed) domains,and must therefore be distinguished from restri
tions to subdomains: fun
tions f andg are the same only if fa = ga for all a in the
ommon (impli
itly spe
i�ed) domainof f and g.2.3 Order-sorted Redu
tionAs per the above dis
ussion, �-expansion of the term XA to �xB :Xx, whi
h
orresponds to restri
ting the fun
tion denoted by X to the sort denoted by B,should only again yield the original fun
tion if B represents the domain of thefun
tion denoted by X . This restri
tion is embodied in the order-sorted �-rule.De�nition 212 Let � be any signature. The following order-sorted redu
tions arede�ned for LC(�)-terms:{ (�x:X)Y ��!X [x := Y ℄, and{ �xB :Xx ��!X if xB 62 FV (X) and B � supp(X).The �rst rule above, assumed to happen without free variable
apture, is
alled(order-sorted) �-redu
tion; the se
ond is
alled (order-sorted) �-redu
tion. Sin
eorder-sorted ��-redu
tion generalizes ordinary typed ��-redu
tion, we write ���!for order-sorted ��-redu
tion as well as for its typed version.It is important to our program that the fundamental operations of our
al
ulus donot allow the formation of ill-sorted terms from well-sorted ones. This ensures thatour uni�
ation algorithm never has to handle ill-sorted terms. In fa
t, if X ��!�! Y ,then S�(X) � S�(Y). A similar although slightly stronger result holds for �-redu
tion: if X ��!�! Y , then S�(X) = S�(Y).Order-sorted ��-redu
tion is
onvergent. Termination is a dire
t
onsequen
eof the
orresponding well-known result for the simply typed lambda
al
ulus, andweak
on
uen
e | and, in light of termination, therefore
on
uen
e | follows fromweak
on
uen
e of ��-redu
tion on LC together with the fa
t that X ���!Y impliessupp(X) � supp(Y). It thus makes sense to refer to the order-sorted ��-normal formof an LC(�)-term, and the order-sorted long (i.e., �-expanded) �-normal form of X ,denoted l�nf(X).3 Order-sorted Higher-order Uni�
ationWhen
onsidering uni�
ation in the simply typed lambda
al
ulus, it is
ustomaryto work modulo �-equality. We expli
itly keep tra
k of order-sorted �-equality, sin
ethe intera
tion between extensionality and sorts
an be unexpe
tedly subtle. Fix anarbitrary signature � for use throughout the remainder of this paper.3.1 Systems and SubstitutionsWe will represent uni�
ation problems by equational systems
omprising the pairs ofLC(�)-terms to be simultaneously uni�ed, and use transformations of su
h systemsas our main tool for solving the uni�
ation problems they represent.

A pair is a two-element multiset of LC(�)-terms. A system is a �nite set � ofpairs. A pair is �-trivial (or simply trivial) if its elements are �-equal, and �-validif its elements are ��-equal; a system is �-valid if ea
h of its pairs is �-valid. Asusual, we write �; hX;Y i instead of � [fhX;Y ig, but sin
e � may or may not also
ontain hX;Y i, su
h a de
omposition is ambiguous. We use the notation � ; hX;Y ito abbreviate � [fhX;Y ig when hX;Y i is not a pair in � . A pair hX;Y i is solvedin � if it is either trivial, or for some x 2 V arsA, X ��!�! x, A 2 S�(Y) and thereare no o

urren
es of x in � other than the one indi
ated. In this
ase, x is said tobe solved in � . If ea
h pair in � is solved in � , then � is a solved system.A substitution is a �nitely supported map from variables to LC(�); a substitution� indu
es a mapping on terms, whi
h we also denote by �. We write substitutionappli
ation as juxtaposition, so that �X is the appli
ation of the substitution � tothe term X , and by D(�) and I(�) we denote the set of variables in the domain of �and the set of variables introdu
ed by �, respe
tively. A substitution � is well-sortedif for every x 2 V arsA, A 2 S�(�x). It follows that if X 2 LCA(�) and � is well-sorted, then �X 2 LCA(�) as well. That the set of well-sorted substitutions is
losedunder
omposition is not hard to prove.We
an extend equalities on LC(�) to (well-sorted) substitutions in the usualmanner: Let =� be an equational theory on LC(�), W be a set of variables, and �and �0 be substitutions. Then � =� �0[W ℄ means that for every variable in x 2 W ,�x =� �0x. The subsumption relation �0 �� �[W ℄ holds provided there exists asubstitution � su
h that � =� ��0[W ℄. If W is the set of all variables, we drop thenotation \[W ℄." If =� is the empty equational theory we write \�" and \�" for theindu
ed equality and subsumption ordering on substitutions.We
an extend substitutions on LC(�) to mappings on systems � � fhXi; Yii ji � ng by de�ning �� to be the system fh�Xi; �Yii j i � ng. The normal forml�nf(�), all of whose unsolved pairs
omprise terms in long �-normal form, is de�nedsi milarly. If all terms in the unsolved pairs of � are in long �-normal form, we saythat � is in long �-normal form. We write FV (X) for the set of free variableso

urring in the LC(�)-term X and FV (�) for the free variables o

urring in theterms in the system � .A well-sorted substitution � is a �-uni�er of a system � if �� is �-valid. If �is a �-uni�er of � with the properties that D(�) � FV (�) and that for any �-uni�er � of � , � ��� � holds, then � is said to be a most general �-uni�er of � .A system � is �-uni�able if there exists some �-uni�er of � . An idempotent well-sorted substitution � is a normalized �-uni�er of a system � if i) D(�) � FV (�),ii) � is a �-uni�er of � , and iii) for all unsolved variables x in � , �x is in long�-normal form. Write U�(�) for the set of all normalized �-uni�ers of � . It is
learthat every well-sorted substitution � is ��-equal to a well-sorted substitution �0 withD(�) = D(�0) and �0x in long �-normal form for ea
h x 2 D(�). Su
h a substitution�0 is said to be in long �-normal form. Thus for any �-uni�er � of a system � , thereexists a �0 2 U�(�) su
h that �0 =�� �[FV (�)℄. In parti
ular, every �-uni�ablesystem has a normalized �-uni�er. For te
hni
al reasons, normalized �-uni�erswill be important in what follows. Note that we relax the standard requirementthat normalized substitutions map all variables to normal forms, and allow solvedvariables to be bound arbitrarily. This is justi�ed in Lemma 32 below.

The remainder of this se
tion explores the relationship between systems and theiruni�ers. If � is a solved system whose non-trivial pairs are hX1; Y1i; :::; hXn; Yniwith Xi ��!�! xi for i = 1; :::; n, then these pairs determine an idempotent well-sorted substitution �� = fx1 7! Y1; :::; xn 7! Yng, although su
h a pair hX;Y iwith X ��!�! x 2 V arsA and Y ��!�! y 2 V arsA requires a
hoi
e as to whi
h of x andy is to be in the domain of the substitution. We assume that a uniform way existsfor making this
hoi
e, and so refer to the well-sorted substitution determined by asolved system. Conversely, idempotent well-sorted substitutions
an be representedby solved systems without trivial pairs. If � is su
h a substitution, write [�℄ for anysolved system whi
h represents it. Any system �
an be written as � 0; [�℄ where [�℄is the set of solved pairs in � . We
all [�℄ the solved part of � .Transformation-based uni�
ation methods attempt to redu
e systems to beuni�ed to solved systems whi
h represent their uni�ers. The fundamental
onne
tionbetween solved systems and �-uni�ers is that solved systems represent their ownsolutions:Lemma 31 If � � hX1; Y1i; :::; hXn; Yni is a solved system, then �� is a mostgeneral �-uni�er for � . In fa
t, for any �-uni�er � of � , � =�� ��� .In general, however, a system � will not have a single most general�-uni�er. Thenext lemma shows that we need not be
on
erned with solved pairs when
omputing�-uni�ers. This is
onsistent with the intuition that the solved part of a system ismerely a re
ord of an answer substitution being
onstru
ted.Lemma 32 Suppose � is a �-uni�able system with solved part [�℄ and unsolved part� 0. If � is a �-uni�er of � , then for every �-uni�er � of � 0 su
h that D(�) � FV (� 0)and � ��� �[FV (� 0)℄, �� is a �-uni�er of � and �� ��� �[FV (�)℄.3.2 The Uni�
ation AlgorithmOne of the key steps for sorted higher-order uni�
ation is solving the followingproblem: given a term X � �x1:::xk :hU1:::Un 2 LCA(�) in long �-normal form, �nda term G 2 LCA(�) with head h whi
h
an be instantiated to yield X . This is ageneralization of a problem in LC whi
h Huet ([Hue75℄) resolved by des
ribing a setof partial bindings in long �-normal form
apable of approximating any LC-term byinstantiation. While Huet-style partial bindings suÆ
e for approximating arbitraryLC(�)-terms | although not ne
essarily with bindings of the appropriate sorts| in our setting, we
annot require that partial bindings be �-expanded withoutsa
ri�
ing
ompleteness of our �-uni�
ation algorithm (see Example 36). Below, avariable will be
alled fresh if it does not appear in any term in the
urrent
ontext.De�nition 33 If h is an atom su
h that either h 2 V arsC or [h :: C℄ isa
onstant de
laration in �, then a partial binding of sort A for head h isany term of the form G � �y1:::yl:hV1:::Vm, where i) l = length(A), ii)m = l + length(�(C)) � length(�(A)) � 0, iii) � `
m(C) �
l(A), iv)yj 2 V arsÆj (A) for j = 1; :::; l, and v) Vi � ziy1:::yl for 1 � i � m, wherezi 2 V arsÆ1(A)!:::!Æl(A)!Æi(C) is fresh.

For a given sort A and head h partial bindings need not exist due to
onditionsii) and iii) of De�nition 33, but be
ause signatures respe
t fun
tion domains, whenthey do exist they are unique up to renaming of the variables zi. If � is a signaturewithout fun
tional base sorts, then the partial bindings are �-expanded; in parti
ular,if � is a signature with exa
tly one sort per (base) type, then the partial bindingsare pre
isely those obtained for LC. Writing GhA(�) for the set of partial bindings ofsort A for head h, the fa
t that � ` G : A for G 2 GhA(�) justi�es our terminology.Call a partial binding G � �y1:::yl:hV1:::Vm a jth proje
tion binding if h � yjand an imitation binding if h 2 FV (G)[C. The following transformations on whi
hour algorithm is based are adapted from those of [Sny91℄.De�nition 34 The set �T
omprises the following transformations on systems inlong �-normal form (it is possible that k = 0 below).{ de
ompose: For any atom h,� ; h�x1:::xk:hX1:::Xn; �x1:::xk :hU1:::Uni=)�; h�x1:::xk :X1; �x1:::xk:U1i; :::; h�x1:::xk :Xn; �x1:::xk:Uni:{ eliminate: If x 2 V arsA, x 62 fx1; :::; xkg, x 62 FV (�x1:::xk :X), and� = fx 7! �x1:::xk:Xg is well-sorted, then� ; h�x1:::xk :xx1:::xk; �x1:::xk:Xi=)hx; �x1:::xk:Xi; ��:{ imitate: If x 2 V arsA, h 2 C or h 2 FV (�x1:::xk :hU1:::Um), h 6� x, andG 2 GhA(�) is an imitation binding, then� ; h�x1:::xk:xX1:::Xn; �x1:::xk :hU1:::Umi=)�; hx;Gi; h�x1 :::xk :xX1:::Xn; �x1:::xk :hU1:::Umi:{ j-proje
t: If x 2 V arsA, h is a (possibly bound) atom and G 2 GhA(�) is ajth proje
tion binding for some j 2 f1; :::; ng su
h that head(Xj) 2 C implieshead(Xj) � h, then� ; h�x1:::xk:xX1:::Xn; �x1:::xk :hU1:::Umi=)�; hx;Gi; h�x1 :::xk :xX1:::Xn; �x1:::xk :hU1:::Umi:{ guess: If h is any atom, and x and y are free variables in V arsA and V arsB ,respe
tively, both distin
t from h, and G 2 GhA(�), then� ; h�x1:::xk :xX1:::Xn; �x1:::xk :yU1:::Umi=)�; hx;Gi; h�x1 :::xk :xX1:::Xn; �x1:::xk :yU1:::Umi:As part of the transformations imitate, j-proje
t, and guess, we immediatelyapply eliminate to the new pair hx;Gi.Our sort me
hanism insures that appli
ations of the transformations are su
h thatall terms involved are well-sorted. We adopt the
onvention that no transformationsmay be done out of solved or trivial pairs, whi
h a

ords with the intuition thatthe solved pairs in a system are merely re
ording an answer substitution as it isin
rementally built up.

We emphasize that there is no deletion of trivial pairs in this presentation. Thisguarantees that if � =)� 0, then FV (�) � FV (� 0), so that when a fresh variable is
hosen during a
omputation it is guaranteed to be new to the entire
omputation.This prevents us from having to manipulate the \prote
ted sets of variables" typi
allyfound in
ompleteness proofs in the literature, and respe
ts the fundamental ideabehind the use of transformations for des
ribing algorithms, namely that the logi
of the problem being
onsidered
an be abstra
ted from implementational issues.De�nition 35 The non-deterministi
 algorithm �U is the pro
ess of repeatedly1. redu
ing all terms of the unsolved pairs in the system to long �-normal formand then applying some transformation in �T to an unsolved pair, and2. returning a most general �-uni�er if at any point in the
omputation the systembe
omes solved.The
hoi
e of pair upon whi
h Algorithm �U is to a
t, and the rule from �T tobe applied, are non-deterministi
. We illustrate use of Algorithm �U :Example 36 Let [b :: Æ(A)℄ and [
 :: A℄
omprise the set of
onstant de
larationsin a signature � with a fun
tional base sort A. Let f 2 V arsA, x 2 V arsÆ(A),and w 2 V arsA!Æ(A), and
onsider the �-uni�able long �-normal form system� � hfx;
bi; hw
; bi. Applying imitate with partial binding
 to the �rstpair of � yields hf;
i; h
x;
bi; hw
; bi. An appli
ation of de
ompose resultsin hf;
i; hx; bi; hw
; bi, and an appli
ation of imitate with binding �y:b fory 2 V arsA to the third pair, followed by some �-redu
tions give the solvedsystem � 0 � hf;
i; hx; bi; hw; �y:bi; hb; bi. We extra
t the well-sorted substitution� = ff 7!
; x 7! b; w 7! �y:bg, and anti
ipating Theorem 38,
on
lude that � is a�-uni�er of � 0 and hen
e of � . If we instead allow only �-expanded partial bindings,then the only possible imitate step binds f to a term of the form �y:
(zy) for avariable y and a fresh variable z of appropriate sorts. But then eliminate
annotbe performed on the pair hf; �y:
(zy)i (as is required to
omplete the imitate step),sin
e � 6` �y:
(zy) : A.While uni�
ation in LC(�) is apparently more deli
ate than uni�
ation in LC, theextra
are pays o� when sort information disallows
ertain undesirable uni�
ationsthat would be possible in an unsorted
al
ulus.Example 37 Let � be a signature with base sorts D, I , and R, where the non-fun
tional sort R denotes the real numbers, and the fun
tional sorts D and I denotethe stri
tly de
reasing and stri
tly in
reasing fun
tions on the reals, respe
tively.Suppose further that Æ(D) = Æ(I) = R and
(D) =
(I) = R. Finally, let[n :: D ! I ℄ and [4 :: R℄
omprise the set of
onstant de
larations of �, wheren denotes the \negation fun
tor" mapping ea
h fun
tion F to �F , and 4 denotesthe real number four.Let x 2 V arsR, f 2 V arsI , and g 2 V arsD , and
onsider the uni�
ation problemgiven by the pairs hf4; ngxi; hgx; 4i. It is not hard to see that an appli
ation ofimitate to the pair hf4; ngxi is the only possibility for
omputation. Letting zbe fresh from V arsD , we have that nz 2 GnI (�), and so
an apply imitate withthis binding for f to get hf; nzi; hnz4; ngxi; hgx; 4i. Similarly, we
on
lude that only

de
ompose applies here, resulting in hf; nzi; hz; gi; hx; 4i; hgx; 4i. Two appli
ationsof eliminate yield hf; ngi; hz; gi; hx; 4i; hg4; 4i, all of whose pairs, save the last| unsolvable | one, are solved. The only alternative to eliminating z above isapplying guess to hz; gi in the se
ond derived system, but this makes no progresstoward a solution. Anti
ipating Theorem 313, we
on
lude that the original systemis unsolvable, in a

ordan
e with the fa
ts that neither the identity fun
tion nor thefun
tion whi
h is
onstantly four is stri
tly de
reasing.Of
ourse, if D were to denote the (not stri
tly) de
reasing real-valued fun
tionson the reals, then we would expe
t hg4; 4i to be solvable by binding g to �y:4.A
al
ulus allowing arbitrary term de
larations �nds a middle road between thetyped
al
ulus, whi
h permits too many bindings, and one supporting only
onstantde
larations, whi
h permits too few: de
laring �y:4 to be of sort D when y 2 V arsR,� yields pre
isely the desired solutions.3.3 Soundness and Completeness of the AlgorithmThe proof that our transformations are sound is not appre
iably di�erent from theproof for the
orresponding transformations for uni�
ation in LC.Theorem 38 (Soundness) If � =)� 0, then for any well-sorted substitution �, � isa �-uni�er of � if it is a �-uni�er of � 0.Thus if Algorithm �U is run on initial system � and returns a well-sortedsubstitution �, then � is indeed a �-uni�er of � . Our main result (Theorem 313)is a
onverse. We require a few te
hni
al lemmas, the �rst of whi
h is proved byindu
tion on the derivation of � ` Y : A.Lemma 39 If Y � �x1:::xp:hU1:::Uq 2 LCA(�) is in ��-normal form, then eitherh 2 V arsC or [h :: C℄ is a
onstant de
laration in � for some sort C su
h thatlength(A) + length(�(C))� length(�(A)) � 0 and � `
q(C) �
p(A).Lemma 310 If X � �x1:::xk:hU1:::Un 2 LCA(�) is in long �-normal form, thenthere exist a partial binding G 2 GhA(�) and a well-sorted substitution � in long�-normal form su
h that D(�) is pre
isely the set of fresh variables in G, �z hassmaller depth than X for ea
h z 2 D(�), and �G =�� X.Proof: Let Y � �x1:::xp:hU 01:::U 0q be the ��-normal form of X , where Ui ��!�! U 0ifor i = 1; :::; q; p � k, and n = q + (k � p). Let C be the sort whose existen
e isguaranteed by Lemma 39, m = length(A) + length(�(C)) � length(�(A)) � 0,and G � �x1:::xl:hV1:::Vm 2 GhA(�), where Vi = zix1:::xl for fresh variableszi, i = 1; :::;m. Then l � length(�(A)) = k and n = length(�(C)), so thatm = l + n � k = l + q � p. Sin
e � ` Y : A, we must have p � l � k. Thesubstitution � mapping zi to �x1:::xl:Ui for i = 1; :::; q, and zi to �x1:::xl:xp�q+ifor i = q + 1; :::;m is well-sorted, has domain
onsisting pre
isely of the set offresh variables in G, and has the property that �z has smaller depth than Xfor ea
h z 2 D(�). It is well-de�ned be
ause m � q = l � p � 0, and indeed�(G) =� �x1:::xl:hU1:::Uqxp+1:::xl =� �x1:::xp:hU 01:::U 0q =� X .Note that with the Huet-style partial bindings, it would not ne
essarily bepossible to �nd G of sort A and a substitution � as required:

Example 311 If � is a signature with a
onstant de
laration [
 :: A℄ for a fun
tionalbase sort A, then � ` �x:
x : A using (
onst) followed by an appli
ation of (�). AnyHuet-style partial binding that might approximate the long �-normal form �x:
xmust be of the form �x:
(zx) where z is a fresh variable of an appropriate sort, butthere is no derivation of � ` �x:
(zx) : A. Under our de�nition, however, G �
 isitself a partial binding of sort A for head h, and �
an be taken to be the identitysubstitution.The measure � de�ned by �(�; �) = h�1(�; �); �2(�)i, where �1(�; �) is themultiset of the depths of the �-bindings of unsolved variables in � whi
h are also inD(�), and �2(�) is the multiset of depths of terms in � , will provide the basis forproving termination of Algorithm �U .Lemma 312 Let � 2 U�(�) and let hX;Y i be an unsolved pair in a system � inlong �-normal form. Then there exist a system � 0 and a substitution �0 su
h that� =)� 0, � � �0[FV (�)℄, �0 2 U�(� 0), and �(� 0; �0) < �(�; �).Proof: If head(X) � head(Y) 62 D(�), then sin
e hX;Y i is not trivial, de
omposemust apply and we must have � 2 U�(� 0). Also, �(� 0; �) < �(�; �) sin
e�1(� 0; �) � �1(�; �) and �2(� 0) < �2(�).Otherwise, at least one of X and Y has an unsolved variable x 2 D(�) \ V arsAof � as its head; assume X does. Then sin
e � is well-sorted, � ` �x : A, and �xis in long �-normal form sin
e � is normalized. Suppose �x � �x1:::xk :hU1:::Un.By Lemma 310, there exist G 2 GhA(�) and a well-sorted substitution � in long�-normal form satisfying the
on
lusions of that lemma. Thus if head(Y) 62 D(�)and h � head(Y), then imitate applies, if head(Y) 62 D(�) and h 6� head(Y), thenj-proje
t applies for some j, and if head(Y) 2 D(�), then guess applies. Taking�0 = � [�, we have that � � �0[FV (�)℄, � 2 U�(� 0) sin
e � 2 U�(�) and � is inlong �-normal form, and D(�) is exa
tly the set of fresh variables in G. Moreover,�1(� 0; �0) < �1(�; �): x is removed from the set of unsolved variables in � whi
happear in D(�), and is repla
ed by the set of fresh variables of G, but for ea
h su
hvariable z, �0z � �z is smaller than �x. Thus �(� 0; �0) < �(�; �).Observe that if head(X) � head(Y) 62 D(�) does not hold, but X ��!�! x 2V arsA, x is not free in Y , and � ` Y : A, then eliminate applies. In this
ase, we
an take �0 to be � by noting that �1(� 0; �) < �1(�; �).The proof of Lemma 312 shows that it is possible to restri
t de
omposeto apply only when head(X) � head(Y) 62 D(�), although there is no wayof en
oding this restri
tion into the transformations. If we
all a transformationpres
ribed by Lemma 312 a �-pres
ribed transformation, then ea
h appli
ation ofa �-pres
ribed transformation de
reases the well-founded measure �. The previouslemma guarantees that if � is a �-uni�able system in long �-normal form to whi
hno �-pres
ribed transformation in �T applies, then � is solved.Theorem 313 Let � be a �-uni�er of � . Then there exists a
omputation ofAlgorithm �U on � produ
ing a �-uni�er � of � su
h that � ��� �[FV (�)℄.Proof: Sin
e every �-uni�er of � is pointwise ��-equal on FV (�) to some�0 2 U�(�), we prove the theorem under the added hypothesis that � 2 U�(�).

If � is not in long �-normal form, then perform redu
tions until a system in long�-normal form results. Note that if � �-uni�es � , then � also �-uni�es l�nf(�), andthat this redu
tion is a �U step. We may therefore assume without loss of generalityin the remainder of this proof that � is in long �-normal form. We indu
t on thelength of the longest sequen
e of �-pres
ribed sequen
e of transformations availableout of � .If no �-pres
ribed transformation from �T applies to � , then � is solved sowe may return a most general �-uni�er � of � whose existen
e is guaranteed byLemma 31. This a
tion is a step of Algorithm �U , and � ��� �. If some �-pres
ribedtransformation from �T applies to � yielding a system � 0 and a substitution �0satisfying the
on
lusion of Lemma 312, then applying this transformation is a �Ustep. By the indu
tion hypothesis, there is a
omputation of �U on � 0 produ
ing a�-uni�er Æ of � 0 su
h that Æ ��� �0[FV (� 0)℄. It follows from Lemma 38 that Æ is a�-uni�er of � , and sin
e FV (�) � FV (� 0), Æ ��� �0[FV (�)℄. But �0 � �[FV (�)℄,so that Æ ��� �[FV (�)℄.Sin
e we have not made any assumption about the order in whi
h transformationsfrom �T are performed, and sin
e any appli
ation of eliminate to a system redu
esthe measure �, we infer that the strategy of eager variable elimination is
ompletefor uni�
ation in our
al
ulus. It is unknown whether eager variable elimination is
omplete for an arbitrary
al
ulus and equational theory, even if both are �rst-order.Referen
es[BL90℄ K. B. Bru
e and G. Longo. A Modest Model of Re
ords, Inheritan
e, and BoundedQuanti�
ation. Information and Computation 87, pp. 196 { 240, 1990.[Car88℄ L. Cardelli. A Semanti
s of Multiple Inheritan
e. Information and Computation76, pp. 138 { 164, 1988.[CG91℄ P.-L. Curien and G. Ghelli. Subtyping + Extensionality: Con
uen
e of ��topRedu
tion in F�. In Pro
. TACS `91, Springer-Verlag LNCS 526, pp. 731 { 749,1991.[Coh89℄ A. G. Cohn. Taxonomi
 Reasoning with Many-sorted Logi
s. Arti�
ial Intelligen
eReview 3, pp. 89 { 128, 1989.[Hue72℄ G. Huet. Constrained Resolution: A Complete Method for Higher Order Logi
.Dissertation, Case Western Reserve University, 1972.[Hue75℄ G. Huet. A Uni�
ation Algorithm for Typed �-Cal
ulus. Theoreti
al ComputerS
ien
e 1, pp. 27 { 57, 1975.[JK93℄ P. Johann and M. Kohlhase. Uni�
ation in an Extensional Lambda Cal
ulus withOrdered Fun
tion Sorts and Constant Overloading. Te
hni
al Report SR-93-14,Universit�at des Saarlandes, 1993.[Koh92℄ M. Kohlhase. An Order-sorted Version of Type Theory. In Pro
. LPAR `92,Springer-Verlag LNAI 624, pp. 421 { 432, 1992.[NQ92℄ T. Nipkow and Z. Qian. Redu
tion and Uni�
ation in Lambda Cal
uli withSubtypes. In Pro
. CADE `92, Springer-Verlag LNAI 607, pp. 66 { 78, 1992.[Pfe92℄ F. Pfenning. Interse
tion Types for a Logi
al Framework. POP-Report, Carnegie-Mellon University, 1992.[Pie91℄ B. C. Pier
e. Programming with Interse
tion Types and Bounded Polymorphism.Dissertation, Carnegie Mellon University, 1991.[Qia90℄ Z. Qian. Higher-order Order-sorted Algebras. In Pro
. Algebrai
 & Logi
Programming `90, Springer-Verlag LNCS 463, pp. 86 { 100, 1990.

[S
h89℄ M. S
hmidt-S
hau�. Computational Aspe
ts of an Order-sorted Logi
 with TermDe
larations. Springer-Verlag LNAI 395, 1989.[Sny91℄ W. Snyder. A Proof Theory for General Uni�
ation. Birkh�auser Boston, 1991.[Wal88℄ C. Walther. Many-sorted Uni�
ation. Journal of the ACM 35, pp. 1 { 17, 1988.

