

Adapting Methods to [Novel lasks
in Proof Planning*

Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Jorn Richts

Fachbereich Informatik, Universitat des Saarlandes
66041 Saarbricken, Germany
{huang|kerber|kohlhaselrichts}@cs.uni-sb.de
WWW: http://js-sfbsun.cs.uni-sb.de/pub/wuw/

Abstract. In this paper we generalize the notion of method for proof
planning. While we adopt the general structure of methods introduced
by Alan Bundy, we make an essential advancement in that we strictly
separate the declarative knowledge from the procedural knowledge. This
change of paradigm not only leads to representations easier to under-
stand, it also enables modeling the important activity of formulating
meta-methods, that is, operators that adapt the declarative part of exist-
ing methods to suit novel situations. Thus this change of representation
leads to a considerably strengthened planning mechanism.

After presenting our declarative approach towards methods we describe
the basic proof planning process with these. Then we define the notion of
meta-method, provide an overview of practical examples and illustrate
how meta-methods can be integrated into the planning process.

1 Introduction

There has been growing concern in the automated theorem proving community
that general purpose machine oriented procedures like resolution might have
reached their limits in practice. Therefore the old discussion of the merits of a
human-oriented vs. a machine oriented approach to automated theorem proving
has been revived by researchers like Alan Bundy. In response to his request
for a “science of reasoning” [3] a string of systems and theories that aim at
combining human-oriented deduction methods with sophisticated planners have
been proposed.

A central concept of knowledge based reasoning in mathematics and proof
planning is that of a method. A method contains a piece of knowledge for solving
or simplifying problems or transforming them into a form that is easier to solve.
Therefore methods can be quite general such as finding proofs by a case analysis
or complete induction, or the advice to expand definitions. On the other hand,
domain specific methods are also very common, for instance, a clearly described
proof sketch for proving a theorem by diagonalization or Bledsoe’s k-parameter
technique for proving the completeness of resolution calculi.

During his academic training a mathematician has to accumulate lots of
methods. This body of methods is the reasoning repertoire which together with
the factual knowledge, to a great extent forms his technical knowledge. Another

* This work was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D2)

equally important knowledge source of a mathematician is his ability to adapt
existing methods to suit a new situation. Much of this discussion can already be
found in George Pdlya’s analysis of mathematical reasoning “How to Solve It”
[12], where he gives hundreds of examples for methods that mathematicians have
to learn. Some of these have been stated very explicitly, others are very general
and are largely illustrated with the help of examples only. Allen Newell [11]
discussed the relevance of Pdlya’s heuristics very intensively, although he did not
achieve a formalization. While specific methods have been widely implemented
as so-called tactics in deduction systems like LCF [6] or Nuprl [4], and extended
to methods in Alan Bundy’s approach of proof planning [2], no adequate solution
to the important problem of adapting methods to novel situations has been found
so far. In this paper we propose an extension of Bundy’s framework in order to
attack precisely this question.

Alan Bundy views methods essentially as a triple consisting of a tactic, a pre-
condition, and a postcondition. There the tactic is a piece of program code that
can manipulate the actual proof in a controlled way. The precondition and the
postcondition form a specification of the deductive ability of the tactic, formulat-
ing declaratively the applicability condition of the tactic and a description of the
proof status after its application. This has been an essential progress compared
with a mere tactic language because within this framework it is now possible to
develop proof plans with the help of the declarative knowledge in the precondi-
tions and postconditions. Following a one-sided approach relying on procedural
knowledge only, the OYSTER-CI&M system developed by Bundy’s group, still has
however a severe drawback: the adaption of methods to other problems is almost
impossible, because that would require the transformation of programs — tactics
are just programs — which is known to be a very hard problem in practice.

To remedy this shortcoming our notion of method separates the procedural
and the declarative knowledge in the tactic part.

2 General Framework

The work in this paper should be understood in the setting of a computational
model that casts the entire process of theorem proving, from the analysis of a
problem up to the completion of a proof, as an interleaving process of proof
planning, method application and verification. In particular, this model ascribes
a reasoner’s reasoning competence to the existence of methods together with
a planning mechanism that uses these methods for proof planning. Since only
planning with methods and meta-methods accounts for the creative behavior of
our approach, we will not elaborate on the verification phase in this paper.

The theorem proving process is centered around a partial proof tree, which
accommodates concepts like proof sketches, proof plans, and proofs by providing
various levels of certainty for justifications of proof nodes. Concretely the system
follows the paradigm of a blackboard architecture, where all system components
have access to the central data-structure of the blackboard, which in our case in-
cludes the current proof tree, the proof history, the method base, and a database
of mathematical definitions, theorems, and proofs [8].

380

2.1 Methods

The concept of a method 1s central to the reasoning process, since methods
are the basic units which make up proof plans and are carried out to obtain
the proof by bridging the gap between premises and conclusions. The body of
methods constitutes the basic reasoning repertoire of a reasoner, it is constantly
adapted and enriched with increasing experience.

There was a long and heated debate in Al as to whether knowledge should
be represented procedurally or declaratively. For both positions, arguments were
put forward from psychological and computational perspectives with respect to,
among others, flexibility, computational efficiency, and communicability. It has
been realized that both forms of knowledge are necessary to simulate intelli-
gent behavior. We believe it is plausible that both aspects play an important
role in human theorem proving and in implementing human-oriented deduction
systems. Therefore tactics in our methods have two parts, a declarative and a
procedural one that interprets the declarative part. Usually in concrete methods
the procedural part will be a standard procedure.

Generalizing the tactic part of a method from a procedure (in Bundy’s frame-
work) to a pair containing both a procedure and a piece of declarative knowledge
is significant. By discerning the declarative part of tactics, it is now possible to
formulate meta-methods that adapt the declarative part of existing methods and
thus come up with novel methods. In a framework where a tactic only consists
of procedural knowledge, we would in effect be confronted with the much more
difficult problem of program synthesis. Our framework is cast so general that it
accommodates both a small set of general purpose procedures which operate by
applying pieces of domain-specific declarative knowledge, and an open-end set
of special purpose reasoning procedures, in which knowledge needed is already
implicitly incorporated.

We define a method to be a 6-tuple with the following components:

— Rating: A function evaluating the appropriateness of applying this method.

— Premuses: A list of lines which are used to prove the conclusions.

— Constraints: Conditions that must hold before the method can be applied.

— Conclusions: A list of lines which are proved by this method.

— Declarative content: A piece of declarative knowledge used by the rating and
the procedural content. We currently only deal with proof schemata.

— Procedural content: Either a standard procedure interpreting the piece of
declarative knowledge, or a special purpose inference procedure.

Viewed within a planning framework, the method structure can be parti-
tioned into different logic units as illustrated in figure 1. The premuses, the con-
straints, and the conclusions slots together specify whether a method 1s applic-
able in a particular proof state. The rating is a procedure that evaluates the
declarative content of the method, the proof history, and the planning state to
give an estimation of the probability of a significant contribution of this method.
Thus the rating is a central part of the heuristic mechanism that guides the search
for plans (for an example of a rating-driven proof planning system see [13]).

While the specification contains all necessary information for the planner,
the declarative content and the procedural content slots together play the role of

381

Method
Rating

Premises

Specification

Constraints
— Declarative Part

Conclusion

Declarative Content

Tactic

Procedural Content [«*—— Procedural Part —

Fig. 1. The Structure of Methods

a so-called factic which is a pure procedure in systems like Nuprl [4] or Bundy’s
framework for proof planning [3]. For the purposes of this paper it suffices to
think of the declarative content as a proof schema with meta-variables, and of
the procedural content as a Lisp, C, or PROLOG procedure that takes this schema
as an argument. The possibilities range from the case where the procedure is an
interpreter that matches the proof schema and inserts it into the current proof
tree with the meta-variables bound to a situation where the procedure completely
ignores the proof schema and constructs new lines purely procedurally. The latter
subcase is what can be found in [2]. We only insist that the value of the procedure
is a subproof tree that can be integrated into the current partial proof tree.

2.2 Proof Planning with Methods

To give an account of the proof planning process itself, we first remember that
the goal of proof planning is to fill gaps in a given partial proof tree by forward
and backward reasoning. In our framework we follow a STRIPs-like planning
paradigm [5], where the planning operators correspond to the methods. Thus
from an abstract point of view the planning process is the process of exploring
the search space of planning states that is generated by the planning operators
in order to find a complete plan (that is a sequence of instantiated planning
operators) from a given initial state to a terminal state.

Concretely a planning state is a subset of lines in the current partial proof
that correspond to the boundaries of a gap in the proof. This subset can be
divided into open lines (that must be proved to bridge the gap) and support lines
(that can be used to bridge it). The terminal state is reached when there are no
more open lines. In the planning process new open lines enter the planning state
as subgoals by backward reasoning from existing open lines and new support lines
by forward reasoning from existing support lines. In order to achieve this with a
uni-directional planning mechanism, the planning direction must be independent
of the reasoning direction.

The key feature of our approach is that the planning operators are directly
derived from the specifications of the methods. However, the specification only

382

Method def-i (Definition Introduction)

Premises Definition: VZ.P(T) & ¥z
@ expanded-1line: ¥;

Conclusions © defined-line: P(1)

Method def-e (Definition Elimination)

Premises Definition: VZ.P(7) & ¥z
& defined-line: P(%)

Conclusions @ expanded-line: ¥;

Fig. 2. The specification of the methods def-i and def-e

gives a static description (viewed from the completed proof) of the method which
is inadequate for the dynamic behavior needed in proof planning. Statically a
method derives its conclusions from its premises. Dynamically, it is important
to declare which lines in the specification have to be present in the planning
state for the method to be applicable (we will call them required lines), and
which are constructed by the method. We will do this by labeling the latter lines
which will be inserted into the planning state by the label “®”. Additionally
it 1is useful to specify that some of the required lines will not be used again
by the planner. We will mark such lines with a “©”. Note that the required
lines consist of the unmarked ones and those that are marked with “©”. This
labeling in effect determines the direction (forward vs. backward) of reasoning
of the method. In order to illustrate these labels, figure 2 shows the specification
of two simple methods. These methods are only a simplified version of a more
general class of methods applying assertions (definitions and theorems). For a
study of this class which approximates basic proof steps encountered in informal
mathematical practice see [7].

. (H 1. 1, F Vosymmetric(o) & Vr,yu(z,y) €0 = (y,z) E 0
glanmng (H 2. 2 F symmetric(p)
tate 1 (?) 9. 1,2, F symmetric(converse(p))

def-i19
def-el 2
M 1. 1, F Vossymmetric(o) & Ve, y(z,y) €0 = (y,z) €0

glanning M 3. 1,2 b Vr,w(z,y)€p=>(y,x)Ep
tate 2 (7) 8. 1,2, F ¥z, y«{z,y) € converse(p) = (y, z) € converse(p)

Fig. 3. Using def-i and def-e in the planning process

Figure 3 shows an example of effect of the methods def-e and def-1 on the
planning state. In planning states we mark open lines by “?” and support lines
by “!”. The method def-1 applies a definition for the predicate P to an open line
and def-e applies it to a supporting line. It is obvious that in both methods the
line of the definition is required when applying these methods because it is not

383

sensible to “guess” a definition?; furthermore this line must not be deleted since
it might be used more than once. Therefore Definition has no label. Clearly in
both methods defined-line must be a required line and expanded-line can
be constructed by the methods (and therefore is labeled with “@”). Further-
more defined-line in def-i (and analogously in def-e) is useless after the
application because an open line must be proved only once.

In figure 4 we give an abstract view of the planning algorithm. In this al-
gorithm matching must consider the distribution of labels in order to apply
the planning operators in the correct direction. In particular an open line in the
planning state can only be matched against a line from the conclusions slot; sim-
ilarly support lines can only be matched against premises. During the matching
of the required lines (in steps 1.(b) and 1.(c)) and the evaluation of the con-
straints (step 1.(d)) all meta-variables should have been bound to terms without
meta-variables (in fact we consider this as one of the applicability conditions).
Therefore the new lines of step 4.(a) can be constructed by simply instantiating
the meta-variables. The new lines in the premises slot are inserted as open lines
while the lines from the conclusions slot become support lines.

1. Find all applicable methods
(a) Select aline L from the planning state.
(b) Select a method M with a required line that matches L.
(c) Match every required line in M with a line in the planning state.
(d) Evaluate the constraints of M.
2. Calculate the ratings of Methods
3. Select the best method A (this is the choice point for backtracking)
4. Apply the planning operator to the planning state
(a) Insert the new lines constructed by M.
(b) Delete the lines marked with a “©” in]\~4 from the planning state.

Fig. 4. The planning algorithm

Once a complete proof plan is found, all methods in the proof plan are suc-
cessively applied. Note that such a method application phase need not lead
to a complete proof of the problem at hand, since we do not require methods
to be sound or complete with respect to their specifications. Furthermore the
proof segments inserted by the methods may still contain open lines (see e.g.
the hom1-1 method) that define further gaps that still have to be closed by the
proof planner. Therefore the verification phase may result in a recursive call to
the planner or in backtracking. While the first possibility calls for a refinement
of the plan found and can be used to model hierarchical planning, the latter
rejects the plan and calls the proof planner in order to find a different plan.

Now that we have understood the basic framework, we have a look at the
slightly more complex, related example of the homi-1 method (see figure 5).
Its proof strategy can informally be described by: If f is a given function, P a
defined predicate and the goal is to prove P(f(c)), then show P(c) and use this

2 This could be sensible at a more sophisticated level of proof planning. However, this

“guessing” should be implemented by a different method in order to clearly separate
it from simply applying a definition.

384

to show P(f(c)). The very idea is that f is a homomorphism for the property
P and that f can be “rippled out” (compare [2, 9]). Note that line 5 is an open
line that does not occur in the specification and therefore does not enter the
planning state. This leads to an abstraction in the planning process (i.e. there
is less information in the planning state): since line 5 is not considered by the
planner, after completing the plan it will be inserted into the proof tree as an
open line by the application of the tactic of hom1-1. This will result in a recursive
call of the planner in the following verification phase.

Method: hom1-1
rating |rating-homi-1
prem 1, 2, $3
constr
conc o6
1. 1; F VzaFormulay (J1)
2. 2; F VeuP(z) & W, (J2)
3. 1,2, F P(e) (J3)
dec-cont |, 150 g, (def-e 2 3)
5. 1,2 b Uy (OPEN 1 4)
6. 1,2, F P(f(c) (def-1i 2 5)
proc schema-interpreter

Fig.5. The hom1-1 method

For example, to prove that the converse relation of a binary relation p is
symmetric (formally: symmetric(converse(p))), the method homi-1 can be ap-
plied by substituting converse, symmetric, and p for the meta-variables f, P,
and ¢, respectively. While in figure 3 we filled the gap between symmetric(p)
and symmetric(converse(p)) which were both existing lines, in this example the
method hom1-1 proposes symmetric(p) as a new line which can be used to prove
symmetric(converse(p)) together with the definitions of symmetric and converse.
If the plan can be completed (by proving the new open line 3 with some addi-
tional information about p) the proof resulting from the application of the tactic
homi-1 would look like in figure 6.

1. 1; F VouVr,y(z,y) € converse(o) & (y,z) €0 (J1)

2. 2,k VYowsymmetric(o) & Vo, ya(z,y) €0 = (y,z) €0 (12)

3. 1,2; F symmetric(p) (J3)

4. 1,2, F Vz,ylz,y) Ep=(y,z) Ep (def-e 3 2)
5. 1,2, F Ve, y(z,y) € converse(p) = (y, x) € converse(p) (OPEN 1 4)
6. 1,2; F symmetric(converse(p)) (def-1i 2 5)

Fig. 6. The proof resulting from the application of the tactic hom1-1

Let us have a look at the justifications in this proof fragment. Justifications
J1 and J2 are found by the matching procedure when applying the planning
operator of hom1-1, J3 will be inserted by the remaining proof plan. The justi-

385

fications of lines 4 and 6 stand for the subproofs generated by the applications
of the tactics of these methods, whereas the justification of line 5 defines a new
gap with support lines containing lines 1 and 4.

3 Extending the Reasoning Repertoire by Meta-Methods

It is one of the main features contributing to the problem solving competence of
mathematicians that they can extend their current problem solving repertoire
by adapting existing methods to suit novel situations (see [12] for mathematical
reasoning and [14] for general problem solving). By adopting a declarative ap-
proach for formulating methods, we propose a way to mechanize some aspects
of this procedure. In the rest of this paper, the emphasis is laid on the notion of
meta-method and a description of classes of meta-methods, while the integration
of meta-methods in the planning process is largely left to further research.

3.1 Definition of Meta-Methods

The isolation of the declarative part of tactics makes 1t feasible to formulate
meta-methods adapting existing methods. To achieve the same effect, in a frame-
work where tactics consist only of procedural knowledge, we would be confronted
with the much more difficult problem of adapting procedures.

A meta-method consists of:?

— A body: a procedure which takes as input a method, and possibly further
parameters (in particular the current state of proof planning) and generates
a new method with the same procedural part (see figure 1).

— A rating: a procedure which takes as input a method, the current state of
proof planning and the proof history. It estimates the contribution of the
application of the meta-methods to the solution of the current problem.

We illustrate this definition with the help of the hom1-1 method in figure 5.
This method simplifies a problem by generating an intermediate goal, where a
unary function symbol is eliminated. Suppose we are facing the similar problem
of proving that the intersection of symmetric relations is itself a symmetric
relation. A variant of hom1-1 is needed, which handles a binary function symbol
(i.e. “N”) in a similar way.

Meta-Method add-argument (M, F)
Rating add-argument-rating
Procedure add-argument-proc

Fig.7. Meta-Method: add-argument

In the following we illustrate how the meta-method add-argument (figure 7)
generates a binary version hom1-2 (figure 8) from the unary version hom1-1 (fig-
ure 5). While hom1-1 is applicable to situations with a unary predicate constant
P and a unary function constant f, hom1-2 handles situations with a unary

? In general, a more complete specification will be necessary for more complex problems
where meta-level planning is necessary for the generation of a new method.

386

Method: hom1-2
rating |rating-homi-1
prem 1, 2, B3, ¢4
constr —
conc o8
1. 1; F Vz,yaFormulagy (J1)
2. 2; F VeuP(z) & W, (J2)
3. 1,2, F P(e) (J3)
4. 1,2, F P(d) (J4)
dec-cont s 1y (def-e 2 3)
6. 1,2, F ¥y (def-e 2 4)
8. 1,2, F P(y(c,d)) (def-i2 7)
proc schema-interpreter

Fig. 8. The hom1-2 method

predicate constant P and a binary function constant g. Note that P, f, and g¢
are meta-variables standing for object constants.

The meta-method add-argument takes as input a method M and a unary
function or predicate constant F used in M. This meta-method is supposed to
add an argument to the key constant symbol F, the modified constant 1s called
F’. The rating procedure yields the value zero if F does not, occur in M, an average
value if F does not occur in the premises and conclusions of M. It produces a high
value if F is a key symbol of the method M.

The procedure add-argument-proc creates a method M’ by carrying out the
following modification on the declarative part of M:

— replace F(z) by F/(z,y) and augment the corresponding quantifications,

— replace F(a) by F/(a,b) (b has to be a new meta-variable),

— if @ occurs in a proof line, but not in a term F(a), a copy of this line will
be inserted into the proof schema, replacing a by b (in the example line 4 is
copied from 3).

Let us reiterate the crucial advantage of separating the procedural and the de-

clarative knowledge: the procedural part of M can be taken over for the new
method.

1.1, F VYp,oVe,ya{z,9y) € (pNo) & (z,y) EpA{z,y) €0 (J1)

2. 2, F VYowsymmetric(o) & Vo, ya(z,y) €0 = (y,0) €0 (12)

3. 1,2; F symmetric(p) (J3)

4. 1,2; + symmetric(o) (J4)

5. 1,2; b Vo, y{z,y) € p= (y,z) €Ep (def-e 2 3)

6. 1,2, b Vo, yu(z,y) €0 => (y,5) €0 (def-e 2 4)

7. 1,2, b Vo, gz, y) € (pNo) = (y,z) €E(pNo) (OPEN 1 5 6)
8 1,2, F symmetrlc((p No)) (def-i2 7)

Fig. 9. The proof resulting from the application of the tactic hom1-2

387

In figure 9 it 18 shown how the hom1-2 method simplifies the problem of
showing that the intersection of two symmetric relations is symmetric too. Ana-
logously a method hom2-1 (for handling a unary function symbol and a binary
predicate symbol) can be obtained by applying add-argument with the argu-
ments homi-1 and P.

3.2 Proof Planning with Meta-Methods

Meta-methods can be incorporated into the planning algorithm of figure 4. To
do this, firstly it must be possible to interrupt the planning with methods; in
order to create a new method with meta-methods. In our approach this is done
when all applicable methods yield a rating below a certain threshold. The harder
question is the choice of a meta-method and a method for the current situation.
We believe that there can hardly be any general answer and we have to rely
on heuristics. In an interactive proof development environment like Q-MKRP [8]
the user might want to make this choice himself. Therefore our main emphasis
lies in the task of offering the user heuristic support for this choice. Even more
challenging would be an automation, of course. A trivial answer would be to
apply all existing meta-methods on all existing methods and then choose the
applicable one with the highest rating. Such a procedure can be fairly expensive
with a large knowledge base. The first heuristics for choosing a method to adapt
we will investigate are listed below:

— Organize methods in a hierarchy of mathematical theories and prefer meth-
ods that belong to the same theory as the current problem or whose theory
is close to that of the problem in the hierarchy.

— Use general conflict solving strategies like those of oprsh [1], for instance,
favor the methods and meta-methods with the most specific specification.

— Take only non-applicable methods with the highest rating®.

Naturally only successful methods generated in a short-term memory are
integrated into the permanent base of methods. Another way to reduce the cost
of the operation would be to create only the specification of the methods to be
generated, select one for application and create the tactic part by need.

3.3 Classes of Meta-Methods

Clearly the success of the approach outlined in this paper critically depends on
the body of meta-methods that is at the disposal of the planner. In order to get
an idea of the range of possible meta-methods, consider the following classes.

Generalization This type of meta-methodsis designed to generalize an existing
method to extend the class of problems it can solve.
— Precondition analysis: a new method may be produced by generalizing
or even removing some of the lines in the specification.
— Syntactic abstraction: this type of meta-methods abstracts a given meth-
od by replacing terms satisfying certain conditions with corresponding
meta-variables.

* This presupposes sophisticated rating functions, which yield meaningful ratings even
if the method in question is not applicable.

388

— Semantic abstraction: this type of meta-methods produces more abstract
methods by capturing the nature of an existing method. For example, a
meta-method fixpoint-freeness can abstract a concrete method solv-
ing the Cantor problem. It recognizes that the very idea of the method
is based on the fixpoint-freeness of a function.

Syntactical adaption At least two types of gaps require syntactical adaptions
of methods. In the first case, the problem to be solved is basically the same as
the one a method is designed to solve, but the original is not applicable due
to a different formulation. In the second case, some non-trivial syntactical
adaption is necessary in order to solve a related but different problem.

— Change of formulation: Many mathematical concepts are logically ident-
ical, in certain sense. For example, sets can be viewed as predicates, and
predicates as special functions that yield only boolean values.

e set-to-predicate generates methods by either replacing formula-
tions concerning sets by formulations concerning predicates, or in
the opposite direction.

e predicate-to-function and set-to-function are similar to
set-to—predicate.

— Change of syntactical structure:

e add-argument (illustrated in detail in this section).

e connective-to-quantifier generating a method handling prob-
lems containing universal quantifiers from a methods containing the
logic connective A.

For more high-level procedures like learning and analogical reasoning further
classes of meta-methods are necessary, for instance, a meta-method that creates
new methods by isolating interesting parts in a method.

4 Conclusion

The advanced problem solving competence of a mathematician relies mainly on
his ability to adapt problem solving knowledge to new situations where existing
methods are not directly applicable. Up to now this has not received enough
attention in the field of automated theorem proving. In this paper we have
proposed a refined proof planning approach in order to mechanize parts of this
ability. It is our conviction that in the proof planning framework this is only
possible with declaratively represented knowledge. Therefore we have defined a
new structure for representing methods which supports the separation of the
knowledge into a declarative and a procedural part.

Since methods describe the planning operators (represented in the “specific-
ation”) as well as the deduction procedures (represented in the “tactic”), the
separation of the declarative and the procedural knowledge is necessary in the
specification and in the tactic as well. In order to perform the adaption of meth-
ods, we have introduced the new notion of a meta-method. We have specified
a proof planning process based on methods and meta-methods. The approach
has not only proved to be useful on the investigated examples, but also offers
the possibility to formalize analogical reasoning [10] and the basis for learning

389

of methods. Currently we are implementing these ideas in order to gain new
experiences from the experiments and to concentrate on the important point of
heuristic control through the ratings.

Acknowledgments

We would like to thank Jorg Denzinger, Erica Melis, Arthur Sehn, and Inger
Sonntag for many fruitful discussions about proof plans, which inspired and
clarified many of the ideas presented here.

References

1.

10.

11.

12.
13.

14.

L. Brownston, R. Farrell, E. Kant, and N. Martin. Programming Fxpert Systems
in OPS5 — An Introduction to Rule-Based Programming. Addison-Wesley, Reading,
Massachusetts, USA, 1985.

A. Bundy. The use of explicit plans to guide inductive proofs. In Proc. of 9th
International Conference on Automated Deduction, pages 111-120. Springer, 1988.

. A. Bundy. A science of reasoning: Extended abstract. In Proc. of 10th Interna-

tional Conference on Automated Deduction, pages 633—-640. Springer, 1990.
R. Constable et al. Implementing Mathematics with the Nuprl Proof Development
System. Prentice Hall, New Jersey, 1986.

. R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence, 2:189-208, 1971.
M. Gordon, R. Milner, and C. Wadsworth. Fdinburgh LCF: A Mechanized Logic
of Computation. LNCS 78. Springer, 1979.

. X. Huang. Reconstructing proofs at the assertion level. In Proc. of 12th Interna-

tional Conference on Automated Deduction. Springer, 1994.

X. Huang, M. Kerber, M. Kohlhase, E. Melis, D. Nesmith, J. Richts, and J. Siek-
mann. -MKRP — a proof development environment. In Proc. of 12th International
Conference on Automated Deduction. Springer, 1994.

. D. Hutter. Guiding induction proofs. In Proc. of the 10th International Conference

on Automated Deduction, pages 147-161. Springer, 1990.

E. Melis. Change of representation in theorem proving by analogy. SEKI-Report
SR-93-07, Fachbereich Informatik, Universitat des Saarlandes, Saarbricken, Ger-
many, 1993.

A. Newell. The heuristic of George Polya and its relation to artificial intelli-
gence. In R. Groner, M. Groner and W. F. Bishof, editors, Methods of Heuristics,
Lawrence Erlbaum, Hillsdale, New Jersey, USA, 195-243.

G. Pélya. How to Solve it. Princeton Univ. Press, 1945.

I. Sonntag and J. Denzinger. Extending automatic theorem proving by planning.
SEKI-Report SR-93-02 (SFB), Fachbereich Informatik, Universitat Kaiserslautern,
Kaiserslautern, Germany, 1993.

K. VanlLehn. Problem solving and cognitive skill acquisition. In M. I. Posner,
editor, Foundations of Cognitive Science, chapter 14. MIT Press, 1989.

390

