
UNIVERSIT� ATDE
SSAARLANDES

FACHBEREICHIN
FORMATIK

D-66041SAARBR� U
CKEN

GERMANY WWW:http://js-sfbsun.cs.u
ni-sb.de/pub/www/

Adapting Methods to NovelTasks in Proof PlanningXiaorong Huang, Manfred Kerber,Michael Kohlhase, and J�orn RichtsPublished as: In Bernhard Nebel and Leonie Dreschler-Fischer, edit-ors, KI-94: Advances in Arti�cial Intelligence, Proceed-ings of the 18th German Annual Conference on Arti�cialIntelligence, pages 379{390, Saarbr�ucken, Germany, 1994.Springer Verlag, Berlin, Germany, LNAI 861.

Adapting Methods to Novel Tasksin Proof Planning?Xiaorong Huang, Manfred Kerber, Michael Kohlhase, J�orn RichtsFachbereich Informatik, Universit�at des Saarlandes66041 Saarbr�ucken, Germanyfhuang|kerber|kohlhase|richtsg@cs.uni-sb.deWWW: http://js-sfbsun.cs.uni-sb.de/pub/www/Abstract. In this paper we generalize the notion of method for proofplanning. While we adopt the general structure of methods introducedby Alan Bundy, we make an essential advancement in that we strictlyseparate the declarative knowledge from the procedural knowledge. Thischange of paradigm not only leads to representations easier to under-stand, it also enables modeling the important activity of formulatingmeta-methods, that is, operators that adapt the declarative part of exist-ing methods to suit novel situations. Thus this change of representationleads to a considerably strengthened planning mechanism.After presenting our declarative approach towards methods we describethe basic proof planning process with these. Then we de�ne the notion ofmeta-method, provide an overview of practical examples and illustratehow meta-methods can be integrated into the planning process.1 IntroductionThere has been growing concern in the automated theorem proving communitythat general purpose machine oriented procedures like resolution might havereached their limits in practice. Therefore the old discussion of the merits of ahuman-oriented vs. a machine oriented approach to automated theorem provinghas been revived by researchers like Alan Bundy. In response to his requestfor a \science of reasoning" [3] a string of systems and theories that aim atcombining human-oriented deduction methods with sophisticated planners havebeen proposed.A central concept of knowledge based reasoning in mathematics and proofplanning is that of a method. A method contains a piece of knowledge for solvingor simplifying problems or transforming them into a form that is easier to solve.Therefore methods can be quite general such as �nding proofs by a case analysisor complete induction, or the advice to expand de�nitions. On the other hand,domain speci�c methods are also very common, for instance, a clearly describedproof sketch for proving a theorem by diagonalization or Bledsoe's k-parametertechnique for proving the completeness of resolution calculi.During his academic training a mathematician has to accumulate lots ofmethods. This body of methods is the reasoning repertoire which together withthe factual knowledge, to a great extent forms his technical knowledge. Another? This work was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D2)

equally important knowledge source of a mathematician is his ability to adaptexisting methods to suit a new situation. Much of this discussion can already befound in George P�olya's analysis of mathematical reasoning \How to Solve It"[12], where he gives hundreds of examples for methods that mathematicians haveto learn. Some of these have been stated very explicitly, others are very generaland are largely illustrated with the help of examples only. Allen Newell [11]discussed the relevance of P�olya's heuristics very intensively, although he did notachieve a formalization. While speci�c methods have been widely implementedas so-called tactics in deduction systems like LCF [6] or Nuprl [4], and extendedto methods in Alan Bundy's approach of proof planning [2], no adequate solutionto the important problem of adapting methods to novel situations has been foundso far. In this paper we propose an extension of Bundy's framework in order toattack precisely this question.Alan Bundy views methods essentially as a triple consisting of a tactic, a pre-condition, and a postcondition. There the tactic is a piece of program code thatcan manipulate the actual proof in a controlled way. The precondition and thepostcondition form a speci�cation of the deductive ability of the tactic, formulat-ing declaratively the applicability condition of the tactic and a description of theproof status after its application. This has been an essential progress comparedwith a mere tactic language because within this framework it is now possible todevelop proof plans with the help of the declarative knowledge in the precondi-tions and postconditions. Following a one-sided approach relying on proceduralknowledge only, the OySteR-CLaM system developed by Bundy's group, still hashowever a severe drawback: the adaption of methods to other problems is almostimpossible, because that would require the transformation of programs { tacticsare just programs { which is known to be a very hard problem in practice.To remedy this shortcoming our notion of method separates the proceduraland the declarative knowledge in the tactic part.2 General FrameworkThe work in this paper should be understood in the setting of a computationalmodel that casts the entire process of theorem proving, from the analysis of aproblem up to the completion of a proof, as an interleaving process of proofplanning, method application and veri�cation. In particular, this model ascribesa reasoner's reasoning competence to the existence of methods together witha planning mechanism that uses these methods for proof planning. Since onlyplanning with methods and meta-methods accounts for the creative behavior ofour approach, we will not elaborate on the veri�cation phase in this paper.The theorem proving process is centered around a partial proof tree, whichaccommodates concepts like proof sketches, proof plans, and proofs by providingvarious levels of certainty for justi�cations of proof nodes. Concretely the systemfollows the paradigm of a blackboard architecture, where all system componentshave access to the central data-structure of the blackboard, which in our case in-cludes the current proof tree, the proof history, the method base, and a databaseof mathematical de�nitions, theorems, and proofs [8].380

2.1 MethodsThe concept of a method is central to the reasoning process, since methodsare the basic units which make up proof plans and are carried out to obtainthe proof by bridging the gap between premises and conclusions. The body ofmethods constitutes the basic reasoning repertoire of a reasoner, it is constantlyadapted and enriched with increasing experience.There was a long and heated debate in AI as to whether knowledge shouldbe represented procedurally or declaratively. For both positions, arguments wereput forward from psychological and computational perspectives with respect to,among others,
exibility, computational e�ciency, and communicability. It hasbeen realized that both forms of knowledge are necessary to simulate intelli-gent behavior. We believe it is plausible that both aspects play an importantrole in human theorem proving and in implementing human-oriented deductionsystems. Therefore tactics in our methods have two parts, a declarative and aprocedural one that interprets the declarative part. Usually in concrete methodsthe procedural part will be a standard procedure.Generalizing the tactic part of a method from a procedure (in Bundy's frame-work) to a pair containing both a procedure and a piece of declarative knowledgeis signi�cant. By discerning the declarative part of tactics, it is now possible toformulate meta-methods that adapt the declarative part of existing methods andthus come up with novel methods. In a framework where a tactic only consistsof procedural knowledge, we would in e�ect be confronted with the much moredi�cult problem of program synthesis. Our framework is cast so general that itaccommodates both a small set of general purpose procedures which operate byapplying pieces of domain-speci�c declarative knowledge, and an open-end setof special purpose reasoning procedures, in which knowledge needed is alreadyimplicitly incorporated.We de�ne a method to be a 6-tuple with the following components:{ Rating : A function evaluating the appropriateness of applying this method.{ Premises: A list of lines which are used to prove the conclusions.{ Constraints: Conditions that must hold before the method can be applied.{ Conclusions: A list of lines which are proved by this method.{ Declarative content : A piece of declarative knowledge used by the rating andthe procedural content. We currently only deal with proof schemata.{ Procedural content : Either a standard procedure interpreting the piece ofdeclarative knowledge, or a special purpose inference procedure.Viewed within a planning framework, the method structure can be parti-tioned into di�erent logic units as illustrated in �gure 1. The premises, the con-straints, and the conclusions slots together specify whether a method is applic-able in a particular proof state. The rating is a procedure that evaluates thedeclarative content of the method, the proof history, and the planning state togive an estimation of the probability of a signi�cant contribution of this method.Thus the rating is a central part of the heuristic mechanism that guides the searchfor plans (for an example of a rating-driven proof planning system see [13]).While the speci�cation contains all necessary information for the planner,the declarative content and the procedural content slots together play the role of381

MethodRatingPremisesConstraintsConclusionDeclarative ContentProcedural ContentSpeci�cationTactic Declarative Part���� Procedural Part��Fig. 1. The Structure of Methodsa so-called tactic which is a pure procedure in systems like Nuprl [4] or Bundy'sframework for proof planning [3]. For the purposes of this paper it su�ces tothink of the declarative content as a proof schema with meta-variables, and ofthe procedural content as a Lisp,C, orProlog procedure that takes this schemaas an argument. The possibilities range from the case where the procedure is aninterpreter that matches the proof schema and inserts it into the current prooftree with the meta-variables bound to a situation where the procedure completelyignores the proof schema and constructs new lines purely procedurally. The lattersubcase is what can be found in [2]. We only insist that the value of the procedureis a subproof tree that can be integrated into the current partial proof tree.2.2 Proof Planning with MethodsTo give an account of the proof planning process itself, we �rst remember thatthe goal of proof planning is to �ll gaps in a given partial proof tree by forwardand backward reasoning. In our framework we follow a Strips-like planningparadigm [5], where the planning operators correspond to the methods. Thusfrom an abstract point of view the planning process is the process of exploringthe search space of planning states that is generated by the planning operatorsin order to �nd a complete plan (that is a sequence of instantiated planningoperators) from a given initial state to a terminal state.Concretely a planning state is a subset of lines in the current partial proofthat correspond to the boundaries of a gap in the proof. This subset can bedivided into open lines (that must be proved to bridge the gap) and support lines(that can be used to bridge it). The terminal state is reached when there are nomore open lines. In the planning process new open lines enter the planning stateas subgoals by backward reasoning from existing open lines and new support linesby forward reasoning from existing support lines. In order to achieve this with auni-directional planning mechanism, the planning direction must be independentof the reasoning direction.The key feature of our approach is that the planning operators are directlyderived from the speci�cations of the methods. However, the speci�cation only382

Method def-i (De�nition Introduction)Premises Definition: 8x P (x), 	x� expanded-line: 	tConclusions	 defined-line: P (t)Method def-e (De�nition Elimination)Premises Definition: 8x P (x), 	x	 defined-line: P (t)Conclusions� expanded-line: 	tFig. 2. The speci�cation of the methods def-i and def-egives a static description (viewed from the completed proof) of the method whichis inadequate for the dynamic behavior needed in proof planning. Statically amethod derives its conclusions from its premises. Dynamically, it is importantto declare which lines in the speci�cation have to be present in the planningstate for the method to be applicable (we will call them required lines), andwhich are constructed by the method. We will do this by labeling the latter lineswhich will be inserted into the planning state by the label \�". Additionallyit is useful to specify that some of the required lines will not be used againby the planner. We will mark such lines with a \	". Note that the requiredlines consist of the unmarked ones and those that are marked with \	". Thislabeling in e�ect determines the direction (forward vs. backward) of reasoningof the method. In order to illustrate these labels, �gure 2 shows the speci�cationof two simple methods. These methods are only a simpli�ed version of a moregeneral class of methods applying assertions (de�nitions and theorems). For astudy of this class which approximates basic proof steps encountered in informalmathematical practice see [7].PlanningState 1 (!) 1. 1; ` 8� symmetric(�), 8x; y hx; yi 2 �) hy; xi 2 �(!) 2. 2; ` symmetric(�)(?) 9. 1,2; ` symmetric(converse(�)) ?�� ��def-i 1 9def-e 1 2PlanningState 2 (!) 1. 1; ` 8� symmetric(�), 8x; y hx; yi 2 �) hy; xi 2 �(!) 3. 1,2; ` 8x; y hx; yi 2 �) hy; xi 2 �(?) 8. 1,2; ` 8x; y hx; yi 2 converse(�)) hy; xi 2 converse(�)Fig. 3. Using def-i and def-e in the planning processFigure 3 shows an example of e�ect of the methods def-e and def-i on theplanning state. In planning states we mark open lines by \?" and support linesby \!". The method def-i applies a de�nition for the predicate P to an open lineand def-e applies it to a supporting line. It is obvious that in both methods theline of the de�nition is required when applying these methods because it is not383

sensible to \guess" a de�nition2; furthermore this line must not be deleted sinceit might be used more than once. Therefore Definition has no label. Clearly inboth methods defined-line must be a required line and expanded-line canbe constructed by the methods (and therefore is labeled with \�"). Further-more defined-line in def-i (and analogously in def-e) is useless after theapplication because an open line must be proved only once.In �gure 4 we give an abstract view of the planning algorithm. In this al-gorithm matching must consider the distribution of labels in order to applythe planning operators in the correct direction. In particular an open line in theplanning state can only be matched against a line from the conclusions slot; sim-ilarly support lines can only be matched against premises. During the matchingof the required lines (in steps 1.(b) and 1.(c)) and the evaluation of the con-straints (step 1.(d)) all meta-variables should have been bound to terms withoutmeta-variables (in fact we consider this as one of the applicability conditions).Therefore the new lines of step 4.(a) can be constructed by simply instantiatingthe meta-variables. The new lines in the premises slot are inserted as open lineswhile the lines from the conclusions slot become support lines.1. Find all applicable methods(a) Select a line L from the planning state.(b) Select a method M with a required line that matches L.(c) Match every required line in M with a line in the planning state.(d) Evaluate the constraints of M .2. Calculate the ratings of Methods3. Select the best method eM (this is the choice point for backtracking)4. Apply the planning operator to the planning state(a) Insert the new lines constructed by eM .(b) Delete the lines marked with a \	" in eM from the planning state.Fig. 4. The planning algorithmOnce a complete proof plan is found, all methods in the proof plan are suc-cessively applied. Note that such a method application phase need not leadto a complete proof of the problem at hand, since we do not require methodsto be sound or complete with respect to their speci�cations. Furthermore theproof segments inserted by the methods may still contain open lines (see e.g.the hom1-1 method) that de�ne further gaps that still have to be closed by theproof planner. Therefore the veri�cation phase may result in a recursive call tothe planner or in backtracking. While the �rst possibility calls for a re�nementof the plan found and can be used to model hierarchical planning, the latterrejects the plan and calls the proof planner in order to �nd a di�erent plan.Now that we have understood the basic framework, we have a look at theslightly more complex, related example of the hom1-1 method (see �gure 5).Its proof strategy can informally be described by: If f is a given function, P ade�ned predicate and the goal is to prove P (f(c)), then show P (c) and use this2 This could be sensible at a more sophisticated level of proof planning. However, this\guessing" should be implemented by a di�erent method in order to clearly separateit from simply applying a de�nition. 384

to show P (f(c)). The very idea is that f is a homomorphism for the propertyP and that f can be \rippled out" (compare [2, 9]). Note that line 5 is an openline that does not occur in the speci�cation and therefore does not enter theplanning state. This leads to an abstraction in the planning process (i.e. thereis less information in the planning state): since line 5 is not considered by theplanner, after completing the plan it will be inserted into the proof tree as anopen line by the application of the tactic of hom1-1. This will result in a recursivecall of the planner in the following veri�cation phase.Method: hom1-1rating rating-hom1-1prem 1, 2, �3constr |conc 	6dec-cont 1. 1; ` 8x Formulaf (J1)2. 2; ` 8x P (x), 	x (J2)3. 1,2; ` P (c) (J3)4. 1,2; ` 	c (def-e 2 3)5. 1,2; ` 	f(c) (OPEN 1 4)6. 1,2; ` P (f(c)) (def-i 2 5)proc schema-interpreterFig. 5. The hom1-1 methodFor example, to prove that the converse relation of a binary relation � issymmetric (formally: symmetric(converse(�))), the method hom1-1 can be ap-plied by substituting converse, symmetric, and � for the meta-variables f , P ,and c, respectively. While in �gure 3 we �lled the gap between symmetric(�)and symmetric(converse(�)) which were both existing lines, in this example themethod hom1-1 proposes symmetric(�) as a new line which can be used to provesymmetric(converse(�)) together with the de�nitions of symmetric and converse.If the plan can be completed (by proving the new open line 3 with some addi-tional information about �) the proof resulting from the application of the tactichom1-1 would look like in �gure 6.1. 1; ` 8� 8x; y hx; yi 2 converse(�), hy; xi 2 � (J1)2. 2; ` 8� symmetric(�), 8x; y hx; yi 2 �) hy; xi 2 � (J2)3. 1,2; ` symmetric(�) (J3)4. 1,2; ` 8x; y hx; yi 2 �) hy; xi 2 � (def-e 3 2)5. 1,2; ` 8x; y hx; yi 2 converse(�)) hy; xi 2 converse(�) (OPEN 1 4)6. 1,2; ` symmetric(converse(�)) (def-i 2 5)Fig. 6. The proof resulting from the application of the tactic hom1-1Let us have a look at the justi�cations in this proof fragment. Justi�cationsJ1 and J2 are found by the matching procedure when applying the planningoperator of hom1-1, J3 will be inserted by the remaining proof plan. The justi-385

�cations of lines 4 and 6 stand for the subproofs generated by the applicationsof the tactics of these methods, whereas the justi�cation of line 5 de�nes a newgap with support lines containing lines 1 and 4.3 Extending the Reasoning Repertoire by Meta-MethodsIt is one of the main features contributing to the problem solving competence ofmathematicians that they can extend their current problem solving repertoireby adapting existing methods to suit novel situations (see [12] for mathematicalreasoning and [14] for general problem solving). By adopting a declarative ap-proach for formulating methods, we propose a way to mechanize some aspectsof this procedure. In the rest of this paper, the emphasis is laid on the notion ofmeta-method and a description of classes of meta-methods, while the integrationof meta-methods in the planning process is largely left to further research.3.1 De�nition of Meta-MethodsThe isolation of the declarative part of tactics makes it feasible to formulatemeta-methods adapting existing methods. To achieve the same e�ect, in a frame-work where tactics consist only of procedural knowledge, we would be confrontedwith the much more di�cult problem of adapting procedures.A meta-method consists of:3{ A body : a procedure which takes as input a method, and possibly furtherparameters (in particular the current state of proof planning) and generatesa new method with the same procedural part (see �gure 1).{ A rating : a procedure which takes as input a method, the current state ofproof planning and the proof history. It estimates the contribution of theapplication of the meta-methods to the solution of the current problem.We illustrate this de�nition with the help of the hom1-1 method in �gure 5.This method simpli�es a problem by generating an intermediate goal, where aunary function symbol is eliminated. Suppose we are facing the similar problemof proving that the intersection of symmetric relations is itself a symmetricrelation. A variant of hom1-1 is needed, which handles a binary function symbol(i.e. \\") in a similar way.Meta-Method add-argument(M,F)Rating add-argument-ratingProcedure add-argument-procFig. 7. Meta-Method: add-argumentIn the following we illustrate how the meta-method add-argument (�gure 7)generates a binary version hom1-2 (�gure 8) from the unary version hom1-1 (�g-ure 5). While hom1-1 is applicable to situations with a unary predicate constantP and a unary function constant f , hom1-2 handles situations with a unary3 In general, a more complete speci�cation will be necessary for more complex problemswhere meta-level planning is necessary for the generation of a new method.386

Method: hom1-2rating rating-hom1-1prem 1, 2, �3, �4constr |conc 	8dec-cont 1. 1; ` 8x; y Formulag (J1)2. 2; ` 8x P (x), 	x (J2)3. 1,2; ` P (c) (J3)4. 1,2; ` P (d) (J4)5. 1,2; ` 	c (def-e 2 3)6. 1,2; ` 	d (def-e 2 4)7. 1,2; ` 	g(c;d) (OPEN 1 5 6)8. 1,2; ` P (g(c; d)) (def-i 2 7)proc schema-interpreterFig. 8. The hom1-2 methodpredicate constant P and a binary function constant g. Note that P , f , and gare meta-variables standing for object constants.The meta-method add-argument takes as input a method M and a unaryfunction or predicate constant F used in M. This meta-method is supposed toadd an argument to the key constant symbol F, the modi�ed constant is calledF0. The rating procedure yields the value zero if F does not occur in M, an averagevalue if F does not occur in the premises and conclusions of M. It produces a highvalue if F is a key symbol of the method M.The procedure add-argument-proc creates a method M0 by carrying out thefollowing modi�cation on the declarative part of M:{ replace F(x) by F0(x; y) and augment the corresponding quanti�cations,{ replace F(a) by F0(a; b) (b has to be a new meta-variable),{ if a occurs in a proof line, but not in a term F(a), a copy of this line willbe inserted into the proof schema, replacing a by b (in the example line 4 iscopied from 3).Let us reiterate the crucial advantage of separating the procedural and the de-clarative knowledge: the procedural part of M can be taken over for the newmethod.1. 1; ` 8�; � 8x; y hx; yi 2 (� \ �), hx; yi 2 � ^ hx; yi 2 � (J1)2. 2; ` 8� symmetric(�), 8x; y hx;yi 2 �) hy; xi 2 � (J2)3. 1,2; ` symmetric(�) (J3)4. 1,2; ` symmetric(�) (J4)5. 1,2; ` 8x; y hx; yi 2 �) hy; xi 2 � (def-e 2 3)6. 1,2; ` 8x; y hx; yi 2 �) hy; xi 2 � (def-e 2 4)7. 1,2; ` 8x; y hx; yi 2 (� \ �)) hy; xi 2 (� \ �) (OPEN 1 5 6)8. 1,2; ` symmetric((� \ �)) (def-i 2 7)Fig. 9. The proof resulting from the application of the tactic hom1-2387

In �gure 9 it is shown how the hom1-2 method simpli�es the problem ofshowing that the intersection of two symmetric relations is symmetric too. Ana-logously a method hom2-1 (for handling a unary function symbol and a binarypredicate symbol) can be obtained by applying add-argument with the argu-ments hom1-1 and P .3.2 Proof Planning with Meta-MethodsMeta-methods can be incorporated into the planning algorithm of �gure 4. Todo this, �rstly it must be possible to interrupt the planning with methods, inorder to create a new method with meta-methods. In our approach this is donewhen all applicable methods yield a rating below a certain threshold. The harderquestion is the choice of a meta-method and a method for the current situation.We believe that there can hardly be any general answer and we have to relyon heuristics. In an interactive proof development environment like
-mkrp [8]the user might want to make this choice himself. Therefore our main emphasislies in the task of o�ering the user heuristic support for this choice. Even morechallenging would be an automation, of course. A trivial answer would be toapply all existing meta-methods on all existing methods and then choose theapplicable one with the highest rating. Such a procedure can be fairly expensivewith a large knowledge base. The �rst heuristics for choosing a method to adaptwe will investigate are listed below:{ Organize methods in a hierarchy of mathematical theories and prefer meth-ods that belong to the same theory as the current problem or whose theoryis close to that of the problem in the hierarchy.{ Use general con
ict solving strategies like those of ops5 [1], for instance,favor the methods and meta-methods with the most speci�c speci�cation.{ Take only non-applicable methods with the highest rating4.Naturally only successful methods generated in a short-term memory areintegrated into the permanent base of methods. Another way to reduce the costof the operation would be to create only the speci�cation of the methods to begenerated, select one for application and create the tactic part by need.3.3 Classes of Meta-MethodsClearly the success of the approach outlined in this paper critically depends onthe body of meta-methods that is at the disposal of the planner. In order to getan idea of the range of possible meta-methods, consider the following classes.Generalization This type of meta-methods is designed to generalize an existingmethod to extend the class of problems it can solve.{ Precondition analysis: a new method may be produced by generalizingor even removing some of the lines in the speci�cation.{ Syntactic abstraction: this type of meta-methods abstracts a given meth-od by replacing terms satisfying certain conditions with correspondingmeta-variables.4 This presupposes sophisticated rating functions, which yield meaningful ratings evenif the method in question is not applicable.388

{ Semantic abstraction: this type of meta-methods produces more abstractmethods by capturing the nature of an existing method. For example, ameta-method fixpoint-freeness can abstract a concrete method solv-ing the Cantor problem. It recognizes that the very idea of the methodis based on the �xpoint-freeness of a function.Syntactical adaption At least two types of gaps require syntactical adaptionsof methods. In the �rst case, the problem to be solved is basically the same asthe one a method is designed to solve, but the original is not applicable dueto a di�erent formulation. In the second case, some non-trivial syntacticaladaption is necessary in order to solve a related but di�erent problem.{ Change of formulation:Many mathematical concepts are logically ident-ical, in certain sense. For example, sets can be viewed as predicates, andpredicates as special functions that yield only boolean values.� set-to-predicate generates methods by either replacing formula-tions concerning sets by formulations concerning predicates, or inthe opposite direction.� predicate-to-function and set-to-function are similar toset-to-predicate.{ Change of syntactical structure:� add-argument (illustrated in detail in this section).� connective-to-quantifier generating a method handling prob-lems containing universal quanti�ers from a methods containing thelogic connective ^.For more high-level procedures like learning and analogical reasoning furtherclasses of meta-methods are necessary, for instance, a meta-method that createsnew methods by isolating interesting parts in a method.4 ConclusionThe advanced problem solving competence of a mathematician relies mainly onhis ability to adapt problem solving knowledge to new situations where existingmethods are not directly applicable. Up to now this has not received enoughattention in the �eld of automated theorem proving. In this paper we haveproposed a re�ned proof planning approach in order to mechanize parts of thisability. It is our conviction that in the proof planning framework this is onlypossible with declaratively represented knowledge. Therefore we have de�ned anew structure for representing methods which supports the separation of theknowledge into a declarative and a procedural part.Since methods describe the planning operators (represented in the \speci�c-ation") as well as the deduction procedures (represented in the \tactic"), theseparation of the declarative and the procedural knowledge is necessary in thespeci�cation and in the tactic as well. In order to perform the adaption of meth-ods, we have introduced the new notion of a meta-method. We have speci�eda proof planning process based on methods and meta-methods. The approachhas not only proved to be useful on the investigated examples, but also o�ersthe possibility to formalize analogical reasoning [10] and the basis for learning389

of methods. Currently we are implementing these ideas in order to gain newexperiences from the experiments and to concentrate on the important point ofheuristic control through the ratings.AcknowledgmentsWe would like to thank J�org Denzinger, Erica Melis, Arthur Sehn, and IngerSonntag for many fruitful discussions about proof plans, which inspired andclari�ed many of the ideas presented here.References1. L. Brownston, R. Farrell, E. Kant, and N. Martin. Programming Expert Systemsin OPS5 { An Introduction to Rule-Based Programming. Addison-Wesley, Reading,Massachusetts, USA, 1985.2. A. Bundy. The use of explicit plans to guide inductive proofs. In Proc. of 9thInternational Conference on Automated Deduction, pages 111{120. Springer, 1988.3. A. Bundy. A science of reasoning: Extended abstract. In Proc. of 10th Interna-tional Conference on Automated Deduction, pages 633{640. Springer, 1990.4. R. Constable et al. Implementing Mathematics with the Nuprl Proof DevelopmentSystem. Prentice Hall, New Jersey, 1986.5. R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application oftheorem proving to problem solving. Arti�cial Intelligence, 2:189{208, 1971.6. M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A Mechanized Logicof Computation. LNCS 78. Springer, 1979.7. X. Huang. Reconstructing proofs at the assertion level. In Proc. of 12th Interna-tional Conference on Automated Deduction. Springer, 1994.8. X. Huang, M. Kerber, M. Kohlhase, E. Melis, D. Nesmith, J. Richts, and J. Siek-mann.
-mkrp { a proof development environment. In Proc. of 12th InternationalConference on Automated Deduction. Springer, 1994.9. D. Hutter. Guiding induction proofs. In Proc. of the 10th International Conferenceon Automated Deduction, pages 147{161. Springer, 1990.10. E. Melis. Change of representation in theorem proving by analogy. SEKI-ReportSR-93-07, Fachbereich Informatik, Universit�at des Saarlandes, Saarbr�ucken, Ger-many, 1993.11. A. Newell. The heuristic of George Polya and its relation to arti�cial intelli-gence. In R. Groner, M. Groner and W. F. Bishof, editors, Methods of Heuristics,Lawrence Erlbaum, Hillsdale, New Jersey, USA, 195-243.12. G. P�olya. How to Solve it. Princeton Univ. Press, 1945.13. I. Sonntag and J. Denzinger. Extending automatic theorem proving by planning.SEKI-Report SR-93-02 (SFB), Fachbereich Informatik, Universit�at Kaiserslautern,Kaiserslautern, Germany, 1993.14. K. VanLehn. Problem solving and cognitive skill acquisition. In M. I. Posner,editor, Foundations of Cognitive Science, chapter 14. MIT Press, 1989.390

