
Extensional Higher-Order Resolution

Christoph Benzmüller and Michael Kohlhase

Fachbereich Informatik, Universität des Saarlandes, Germany
chris|kohlhase@cs.uni-sb.de

Abstract. In this paper we present an extensional higher-order resolu-
tion calculus that is complete relative to Henkin model semantics. The
treatment of the extensionality principles – necessary for the complete-
ness result – by specialized (goal-directed) inference rules is of practical
applicability, as an implentation of the calculus in the Leo-System shows.
Furthermore, we prove the long-standing conjecture, that it is sufficient
to restrict the order of primitive substitutions to the order of input for-
mulae.

1 Introduction
The history of building automated theorem provers for higher-order logic is al-
most as old as the field of deduction systems itself. The first successful attempts
to mechanize and implement higher-order logic were those of Huet [Hue73] and
Jensen and Pietrzykowski [JP76]. They combine the resolution principle for
higher-order logic (first studied in [And71]) with higher-order unification. The
unification problem in typed λ-calculi is much more complex than that for first-
order terms, since it has to take the theory of αβη-equality into account. In
particular the higher-order unification problem is undecidable and sets of so-
lutions need not to have most general elements that represent them. Thus the
calculi for higher-order logic have to take special measures to circumvent the
problems posed by the theoretical complexity of higher-order unification.

Experiments like the Tps system [And89,ABI+96] (which uses a higher-order
matings calculus) or our own Leo system [BK98,Ben97] (which uses a variant of
Huet’s resolution calculus [Hue73]) have shown the practical feasibility of higher-
order automated theorem proving based on these ideas. Establishing complete-
ness for higher-order calculi is more problematic than in first-order logic. The
intuitive set-theoretic standard semantics cannot give a sensible notion of com-
pleteness, since it does not admit complete calculi [Göd31]. But there is a more
general notion of semantics due to Henkin [Hen50] that allows complete calculi
and therefore sets the standard for the deductive power of calculi.

The core of higher-order resolution (HORES, see [Hue73,Koh94] for details)
is a simple extension of the first-order resolution method to the higher-order
language: the only significant difference is that βη-equality has to be build in
by keeping formulae in normal form and that first-order unification has to be
replaced by higher-order unification (i.e. unification with respect to the theory
of βη-equality). Since this is a semi-decidable search process itself, it cannot
simply be used as a sub-procedure that is invoked during the application of



the resolution or factoring rules. Rather resolution and factorization rules are
modified, so that they record the induced unification problem in a unification
constraint instead of trying to compute a complete set of unifiers. Furthermore,
the calculus is augmented with the inference rules of higher-order unification
that are lifted to act on the unification constraints of clauses. With this trick
the search for empty clauses and that for higher-order unifiers are interleaved,
which alleviates the undecidability problem.

Unfortunately, neither HORES nor the Tps procedure are complete with
respect to Henkin semantics, since they fail to capture substitutivity of equiva-
lence. In [Koh95], the first author has presented a higher-order tableau calculus
that addresses the problem with a new inference rule that uses substitutivity of
equivalence in a goal-oriented way, but still fails to capture functional extension-
ality of Leibniz equality.

For our extensional higher-order resolution calculus ER we extend higher-
order resolution by ideas from [Koh95] and a suitable treatment of Leibniz
equality and prove the resulting calculus sound and complete with respect to
Henkin’s general model semantics [Hen50]. Furthermore, we show that we can
restrict the set of primitive substitutions that are necessary for flexible literals
to a finite set.

Before we begin with the exposition, let us specify what we mean by “higher-
order logic”: any simply typed logical system that allows quantification over
function variables. In this paper, we will employ a systemHOL, which is based on
the simply typed λ-calculus; for an introduction see for instance [And86,Bar84].

2 Higher-Order Logic (HOL)
The set wffα(Σ) of well-formed formulae of type α is build up from the
set V of variables, and the signature Σ (a set of typed constants) as appli-
cations and λ-abstractions. We will denote variables with upper-case letters
(Xα, Y, Z,X

1
β , X

2
γ . . .), constants with lower-case letters (cα, fα→β , . . .), and well-

formed formulae with upper-case bold letters (Aα,B,Ci, . . .)1. Furthermore, we
abbreviate multiple applications and abstractions in a kind of vector notation,
so that AUk denotes k-fold application (associating to the left) and λXk A de-
notes k-fold λ-abstraction (associating to the right) and use the square dot as
an abbreviation for a pair of brackets, where stands for the left one with its
partner as far to the right as is consistent with the bracketing already present
in the formula.

We will use the terms like free and bound variables in their standard meaning
and we use Free(A) for the set of free variables of a formula A. In particular
alphabetic change of names of bound variables is build into our HOL: we con-
sider alphabetic variants to be identical (viewing the actual representation as a
representative of an alphabetic equivalence class) and use a notion of substitu-
tion that avoids variable capture, systematically renaming bound variables. We
could also have used de Bruijn’s indices [dB72] as a concrete implementation of
this approach at the syntax level.

1 We will denote the types of formulae as indices, if it is not clear from the context.

2



By wffclα (Σ) ⊆ wffα(Σ) we denote the set of all closed well-formed formulae,
i.e. which contain no free variables and we call the members of wffo(Σ) sentences.

We denote a substitution that instantiates a variable X with a formula A
with [A/X] and write σ, [A/X] for the substitution that is identical with σ but
instantiates X with A.

The structural equality relation of HOL is induced by βη-reduction

(λX A)B −→β [B/X]A (λX CX) −→η C

where X is not free in C. It is well-known, that the reduction relations β, η, and
βη are terminating and confluent, so that there are unique normal forms.

InHOL, the set of base types is {o, ι} for truth values and individuals, and the
signature Σ contains logical constants for negation ¬o→o, conjunction ∧o→o→o,
and quantification2 Πα

(α→o)→o. All other constants are called parameters, since
the argumentation in this paper is parametric in their choice3.

It is matter of folklore that equality can directly be expressed in HOL e.g.
by the Leibniz definition, so that a primitive notion of equality (expressed by a
primitive constant = in Σ) is not strictly needed; we will use this observation
in this paper to treat equality as a defined notion. Leibniz equality defines two
terms to be equal, iff they have the same properties. Hence equality can be
defined as

.=α := λXα λYα ∀Pα→o PX ⇒ PY

A standard model for HOL provides a fixed set Dι of individuals, and a set
Do := {T, F} of truth values. All the domains for the complex types are defined
inductively: Dα→β is the set of functions f :Dα → Dβ . The evaluation Iϕ with
respect to an interpretation I: Σ → D of constants and an assignment ϕ of
variables is obtained by the standard homomorphic construction that evaluates
a λ-abstraction with a function, whose operational semantics is specified by β-
reduction.

Henkin models only require that Dα→β has enough members that any
well-formed formula can be evaluated4. Note that with this generalized notion
of a model, there are less formulae that are valid in all models (intuitively, for
any given formulae there are more possibilities for counter-models). Thus the
generalization to Henkin models restricts the set of valid formulae sufficiently,
so that all of them can be proven by the resolution calculus presented in this
paper. For our completeness proofs, we will use the abstract consistency method
first introduced by Raymond Smullyan in [Smu63] for first-order logic and later
extended to higher-order logic by Peter Andrews [And71]. The model existence
theorem below is a variant of the latter for Henkin models. For the proof we
refer to [BK97].
2 With this quantification constant, standard quantification of the form ∀XαA can

be regained as an abbreviation for Πα(λXαA).
3 In particular, we do not assume the existence of description or choice operators. For

a detailed discussion of the semantic issues raised by the presence of these logical
constants see [And72].

4 In other words: the functional universes are rich enough to satisfy the comprehension
axioms.

3



Theorem 1 (Henkin Model Existence). Let ΓΣ be a saturated abstract con-
sistency class for Henkin models (see the definition below), and Φ ∈ ΓΣ, then
there is a Henkin model M such that M |= Φ.

Definition 1 (Abstract Consistency Class for Henkin Models). We call
a class ΓΣ of sets of sentences an abstract consistency class for Henkin
Models, iff ΓΣ is closed under subsets and such that for all sets Φ ∈ ΓΣ (we use
Φ ∗A as an appreviation for Φ ∪ {A}):

∇c If A is atomic, then A /∈ Φ or ¬A /∈ Φ.
∇¬ If ¬¬A ∈ Φ, then Φ ∗A ∈ ΓΣ.
∇βη If A ∈ Φ and B is the βη-normal form of A, then B ∗ Φ ∈ ΓΣ.
∇∨ If A ∨B ∈ Φ, then Φ ∗A ∈ ΓΣ or Φ ∗B ∈ ΓΣ.
∇∧ If ¬(A ∨B) ∈ Φ, then Φ ∗ ¬A ∗ ¬B ∈ ΓΣ.
∇∀ If ΠαF ∈ Φ, then Φ ∗ FG ∈ ΓΣ for each G ∈ wffclα (Σ).
∇∃ If ¬ΠαF ∈ Φ, then Φ ∗ ¬(Fw) ∈ ΓΣ for a fresh parameter wα ∈ Ωα.
∇b If ¬(A .=o B) ∈ Φ, then Φ ∪ {A,¬B} ∈ ΓΣ or Φ ∪ {¬A,B} ∈ ΓΣ.
∇q If ¬(F .=α→β G) ∈ Φ, then Φ ∗ ¬(Fw .=β Gw) ∈ ΓΣ for a fresh parameter

wα ∈ Ωα.

We will call ΓΣ saturated, iff for all sentences A ∈ wffo(Σ) we have Φ ∗A ∈ ΓΣ
or Φ ∗ ¬A ∈ ΓΣ.

Remark 1 (Counterparts for ∇b,∇q). In Definition 1 positive counterparts for the
two conditions∇b,∇q are not needed, since these conditions are automatically met
(note that .= is a defined construct). For details see [BK97].

In this paper the extensionality principles will play a major role. These for-
malize fundamental mathematical intuitions about functions and truth values.
The functional extensionality principle says, that two functions are equal,
iff they are equal on all arguments. This principle can be formulated by the
following schematic λ-term:

∀Mα→β ∀Nα→β (∀X (MX) .= (NX)) ≡ (M .= N)

The extensionality principle for truth values states that on the set of truth
values equality and equivalence relation coincide: ∀Po ∀Qo (P .= Q) ≡ (P ≡ Q).
Note that in Henkin models both extensionality principles are valid and that
Leibniz equality indeed denotes equality relation (see [BK97] for details).

3 The Calculus ER
Now we introduce the higher-order resolution calculus ER. Therefore we will re-
view standard higher-order resolution HORES and use the extensionality prin-
ciples to discuss why it is not complete. From the deficiencies we will develop the
necessary extensions and give an intuition by exhibiting refutations that become
possible.
HORES is a refutation calculus that manipulates sets of clauses, i.e. sets

(which we will represent as disjunctions) of literals (e.g. C := [qα→oXα]T ∨
[pα→oXα]F ∨ [cα = Xα]F ).

4



Definition 2 (Literal). Literals are atomic propositions labeled with an in-
tended truth value. We call a literal a unification constraint, iff it is negative
(i.e. annotated by the truth value F ) and the head is =, all the others we call
proper literals. Clauses existing entirely of unification constraints are called
almost empty. Since instantiation of a head variable will convert a literal into a
general labeled propositions, we will sometimes call these pre-literals.

Clause normalization is very similar to the first-order case, except for the treat-
ment of existential quantification. Therefore, we will not present the transfor-
mation rules here, but simply discuss the differences and assume that each given
higher-order proof problem P can be transformed into a set of clauses CNF(P).
A naive treatment with Skolemization results in a calculus that is not sound with
respect to Henkin models, since Skolem functions are special choice functions5,
which are not guaranteed to exist in Henkin models. A solution due to [Mil83]
is to associate with each Skolem constant the minimum number of arguments
the constant has to be applied to. Skolemization becomes sound, if any Skolem
function fn only occurs in a Skolem term, i.e. a formula S = fnAn, where
none of the Ai contains a bound variable. Thus the Skolem terms only serve as
descriptions of the existential witnesses and never appear as functions proper.
When we speak of a Skolem term Sα for a clause C, where {X1

α1 · · ·Xn
αn} is

the set of free variables occurring in C, then Sα is an abbreviation for the term
(fnα1→···→αn→αX

1 · · ·Xn), where f is a new constant from Cα1→···→αn→α and n
specifies the number of necessary arguments for f .

Remark 2 (Leibniz Equality). We assume that before applying clause normal-
ization each primitive equality symbol is replaced by its corresponding Leibniz
definition. Hence after normalizing a given input problem, the resulting clause
set does not contain any equality symbol. However, during the refutation process,
equality symbols may be introduced again as we code unification constraints by
negated equation literals.

3.1 Higher-Order Unification in ER
Higher-order unification is a process of recursive deterministic simplification
(rules α, η, Dec, Triv, and Subst in figure 1) and non-deterministic variable
binding (rule Flex/Rigid). The rules α and η are licensed by the functional
extensionality principle and eliminate the top λ-binder in unification constraints
of functional type. The Skolem term sα is an existential witness for the fact
that the functions are different. Since clauses are implicitly universally quanti-
fied, this witness may depend on the values of all free variables occurring in the
clauses, so it must be a Skolem term for this clause. Decomposition (rule Dec)
is analogous to the first-order case and the rule Triv allows to remove reflexivity
pairs. Rule Dec will be discussed again in connection with the extensionality
rules in section 3.3.

The rule Subst eliminates variables that are solved in a clause: we call a
unification constraint U := [Xα = Nα]F or U := [Nα = Xα]F solved iff Xα is
5 They choose an existential witness from the set of possible witnesses for an existential

formula.

5



C ∨ [(λXαA) = (λYαB)]F sα Skolem term for this clause

C ∨ [[s/X]A = [s/Y ]B]F
α

C ∨ [(λXαA) = B]F sα Skolem term for this clause

C ∨ [[s/X]A = (Bs)]F
η

C ∨ [hUn = hVn]F

C ∨ [U1 = V1]F ∨ . . . ∨ [Un = Vn]F
Dec

C ∨ [A = A]F

C
Triv

C ∨ E E solved for C
CNF(substE(C))

Subst

C ∨ [FγUn = hV]F G ∈ GBhγ
C ∨ [F = G]F ∨ [FU = hV]F

Flex/Rigid

Fig. 1. Lifted Higher-Order (pre-)unification rules

not free in Nα. In this case X is called the solved variable of U . Let C := L1∨
· · · ∨ Ln ∨ U1 ∨ · · · ∨ Um be a clause with unification constraints U1 ∨ · · · ∨ Um
(1 ≤ m). Then a disjunction U i1 ∨ · · · ∨ U ik (ij ∈ {1, · · · ,m}; 1 ≤ j ≤ k)
of solved unification constraints occurring in C is called solved for C iff for
every U ij (1 ≤ j ≤ k) holds: the solved variable of U ij does not occur free in
any of the U il for l 6= j; 1 ≤ l ≤ k. Note that each solved set of unification
constraints E for a clause C can be associated with a substitution substE which
is the most general unifier of E. Thus the rule Subst essentially propagates the
information from the unification constraints to the proper clause parts. Since the
instantiation of flexible literals (i.e. literals, where the head is a free variable)
may result in pre-literals, the result of this propagation may cease to be a clause,
therefore it needs to be reduced to clause normal form.

Remark 3 (Eager Unification). The set of rules described up to now is termi-
nating and confluent, so that higher-order unification applies it eagerly to filter
out all clauses with an unsolvable unification constraint6. It leads to unification
constraints, where both sides are applications and where at least one side is flex-
ible, i.e. where the head is a variable. In this case, the higher-order unification
problem can be reduced to the problem of finding most general formulae of a
given type and a given head symbol.

Definition 3 (General Binding). Let α = (βl → γ), and h be a constant
or variable of type (δm → γ) in Γ, then G := λX l

βl
hVm is called a general

6 As we will see later this solution is too strong if we want to be complete in Henkin
models since an unsolvable unification constraint might be solvable by using the
extensionality rules.

6



binding of type α and head h, if Vi = HiX l
βl

. The Hi are new variables of
types βl → δi]. It is easy to show that general bindings indeed have the type and
head claimed in the name and are most general in the class of all such terms.

General bindings, where the head is a bound variable Xj
βj

are called projec-
tion bindings (we write them as Gjα) and imitation bindings (written Ghα)
else. Since we need both imitation and projection bindings for higher-order uni-
fication, we collect them in the set of approximating bindings for h and α
(GBhα := {Ghα} ∪ {Gjα

∣∣ j ≤ l}).

Since there are only finitely many general bindings (one imitation binding
and at most l projection bindings) the Flex/Rigid rule is finitely branching. We
never have to consider the so-called Flex/Flex literals7, since Flex/Flex equa-
tions can always be solved by instantiating the head variables with suitable con-
stant functions that absorb their arguments. This observation is due to Gérard
Huet [Hue73] and defines higher-order pre-unification, a computationally more
feasible (but still undecidable) variant of higher-order unification. However, even
if Flex/Flex pairs are solvable, we cannot simply delete them like trivial pairs,
since one or both of the heads may be instantiated making the term rigid, so
that the pair has to be subject to pre-unification again.

3.2 Higher-Order resolution
Definition 4 (Higher-Order Resolution). The higher-order resolution
calculus HORES consists of the inference rules in figure 2 together with the
unification rules in figure 1. We call a clause empty, iff it consists entirely of
Flex/Flex unification constraints and say hat a HORES-derivation of an empty
clause from a set Φ of clauses is a refutation of Φ. For a sentence Ao we call
a refutation of CNF(¬A) a refutation for A.

As in first-order we have resolution and factorization rules Res and Fac. But
instead of solving the unification problems immediately within a rule application
we delay their solution and incorporate them explicitly as unification constraints
in the resulting clauses. Note that the resolution rule as well as the factorization
rule are allowed to operate on unification constraints.

To find a refutation for a given problem we may have to instantiate the head
variables of flexible literals by material that contains logical constants. Unfor-
tunately these instantiations cannot be generated by the unification rules, since
all logical constants have been eliminated from the clause set by normalization,
thus they enter the refutation by unification. Therefore the rule Prim allows
to instantiate head variables Qγ by general bindings P of type γ and head in
{¬,∨} ∪ {Πβ |β ∈ T }. Thus the necessary logical constants are introduced into
the refutation one by one, hence the name primitive substitutions.

For instance the sentence A := ∃XoX is valid in all Henkin models, but
CNF(¬A) = {[X]F } cannot be refuted without some kind of a primitive sub-
stitution rule, since none of the other rules apply. With Prim, we can deduce
7 For a refutation, we do not need to enumerate all unifiers for a given unification

problem but to seek for one possible instantiation of a given problem which leads to
the contradiction.

7



[N]α ∨ C [M]β ∨D α 6= β

C ∨D ∨ [N = M]F
Res

[N]α ∨ [M]α ∨ C α ∈ {T, F}
[N]α ∨ C ∨ [N = M]F

Fac

[QγUk]α ∨ C P ∈ GB{¬,∨}∪{Π
β |β∈T k}

γ

[QγUk]α ∨ C ∨ [Q = P]F
Primk

Fig. 2. Higher-order resolution rules

[X]F ∨ [X = ¬H]F and then [Y ]T by Subst. These two unit literals can be re-
solved to [X = Y ]F , which is an empty clauses, since [X = Y ]F is a Flex/Flex
unification constraint.

The primitive substitution rules have originally been introduced by Peter
Andrews in [And89] (Gérard Huet uses a set of so-called “splitting rules” for
the same purpose in [Hue73]). Note that the set of general bindings is infinite,
since we need one for every quantifier Πα and the set of types is infinite. Thus
in contrast to the goal-directed search for instantiations in unification, the rule
Prim performs blind search and even worse, is infinitely branching. Therefore,
the problem of finding instantiations for predicate variables is conceived as the
limiting factor to higher-order automated theorem proving.

It has been a long-standing conjecture that in machine-oriented calculi it is
sufficient to restrict the order of primitive quantifier substitutions to the order
of the input formulae. In [BK97], we have established a finer-grained variant
of theorem 1 that we can use as a basis to prove this conjecture. Let us now
introduce the necessary definitions.

Definition 5 (Order). For a type α ∈ T , we define the order ord(α) of α as
ord(ι) = ord(o) = 0, and ord(α → β) = max{ord(α),ord(β)} + 1. Note that
the set T k = {α ∈ T

∣∣ ord(α) ≤ k} is finite for any order k. We will take the
order of a formula to be the highest order of any type of any of its subterms, and
the order of a set of formulae to be the maximum of the orders of its members.

Theorem 2 (Model Existence with Order). The model existence theorem
holds even if we weaken the condition ∇∀ of an abstract consistency class to
∇k∀ If ΠαF ∈ Φ, then Φ ∗ FG ∈ ΓΣ for each G ∈ wffclα (Σ) with ord(G) ≤

ord(Φ).

In [BK97] we establish this theorem for arbitrary well-founded orderings on
types such that ord(α),ord(β) ≤ ord(α → β). This allows us to restrict in-
stantiation in ER to formulae of the order of the input formulae. Note that this
only effects the primitive substitution rule, since all other instantiations are per-
formed by unification, which is order-restricted by construction. In particular,
the non-standard definition of order above ensures finite branching of the primi-
tive substitution rule. This ordering, that takes the lengths of argument lists into
account leads to an increased order of the input set compared to the standard

8



definition of order (ord(αn → β) = maxn{αi} + 1) and effectively restricts the
number of necessary instantiations.

Our result justifies the practice of higher-order theorem provers to restrict
the search for primitive substitutions and gives a road-map towards complete
procedures. Of course there is still a lot of room for experimentation with the
respective orderings.

3.3 Extensionality
The higher-order resolution calculusHORES defined above is not complete with
respect to Henkin models, as the following example will show.

Example 1. The following formulae E1-E58 are not provable in HORES without
using additional axioms for functional extensionality and/or extensionality on
truth values.

E1 ao ≡ bo ⇒ (∀Po→o Pa⇒ Pb)
This is the non-trivial direction of the extensionality property for truth val-
ues: if ao is equivalent to bo then ao is equal to bo (ao ≡ bo ⇒ a = b).

E2 ∀Po→o P (ao ∧ bo)⇒ P (b ∧ a).
Any property which holds for a ∧ b also holds for b ∧ a (or simply that
a ∧ b = b ∧ a).

E3 (po→oao ∧ pbo)⇒ p(b ∧ a)
In other words, an arbitrary property po→o which coincidently holds for ao
and bo also holds for their conjunction.

E4 (∀Xι ∀Pι→o (P (mι→ιX) ⇒ P (nι→ιX))) ⇒ (∀Q(ι→ι)→oQ(λXιmX) ⇒
Q(λXι nX))
This formula can be interpreted as an instance of the ξ-rule (∀Xιmι→ιX =
nι→ιX)⇒ (λXιmX) = (λXι nX) (See for instance [Bar84]).

E5 (∀Xι ∀Pι→o P (mι→ιX)⇒ P (nι→ιX))⇒ (∀Q(ι→ι)→oQm⇒ Qn)
This is an instance of the non-trivial direction of the functional extensionality
axiom for type ι→ ι: (∀Xι (mι→ιX) = (nι→ιX)⇒ m = n).

For a proof of E1 note that the clause normal form of the succedent consists
of the two unit clauses [p0a]F and [p0b]T , where p0 is the Skolem constant for
the variable P . These can be resolved upon to obtain the clause [p0a = p0b]F ,
which can be decomposed to [ao = bo]F . Obviously, this unification constraint
cannot be solved by higher-order unification, and hence the refutation fails. In
this situation, we need the principle of extensionality on truth values, which
allows to replace each negated equality on type o by an equivalence. This leads
to the clause normal form of [ao ≡ bo]F , which contradicts the antecedent of E1
and finally gives us the refutation.

Similar investigations show that the other examples cannot be proven by
HORES too.

Our aim is to find an extension of HORES, which is both Henkin-complete
and adequate for an implementation. Surely, the introduction of axioms for the
8 In Problems E1, E2, E4, and E5 we have used Leibniz definition of equality to remove

the intuitive equality symbols.

9



C ∨ [Mo = No]
F

CNF(C ∨ [Mo ≡ No]
F )

Equiv
C ∨ [Mα = Nα]F α ∈ {o, ι}

CNF(C ∨ [∀Pα→o PM ⇒ PN ]F )
Leib

C ∨ [Mα→β = Nα→β ]F sα Skolem term for this clause

C ∨ [Ms = Ns]F
Func

Fig. 3. Extensionality rules

extensionality principles can solve the completeness problem in theory, but this
will lead to an explosion of the search space which has to be avoided in prac-
tice. In particular, we do not change the purely negative spirit of the resolution
calculus by introducing axioms but introduce special inference rules.

Definition 6 (Extensional Higher-Order Resolution). The extensional
higher-order resolution calculus ER is HORES extended with the inference
rules in figure 3.

The Rule Leib instantiates the equality symbol by its Leibniz definition and
applies clause normalization. Rule Equiv is directly motivated by the proof at-
tempt of E1 discussed in example 1. Thus rule Equiv reflects the extensionality
property for truth values but in a negative way: if two formulas are not equal
then they are also not equivalent. Rule Func does the same for functional ex-
tensionality: if two functions are not equal then there exists an argument sα on
which these functions differ. To ensure soundness sα has to be a new Skolem
term which contains all the free variables occurring in the given clause.

The new rules strongly connect the unification part of our calculus with
the resolution part. In some sense, they make the unification part extensional,
since they allow to modify unification problems, which are not solvable by pre-
unification alone in an extensional appropriate way and to translate them back
into usual literals, such that we can try to find the right argumentation for
the solvability of the unification constraints in the general refutation process by
possibly respecting the additionally given clauses in the search space.

Remark 4 (Rule Func). Note that we have already introduced two rules – α and
η in unification (see figure 1) – which are very similar to this one. In fact we can
restrict rule Func to the case were N and M are non-abstractions or vice-versa,
we can remove the α and η rules from simplification as they are subsumed by
the rule Func as purely type-based and apply β-reduction to both sides of the
modified unification constraint.

Remark 5 (Unification Constraints). We have lifted the unification constraints
to clause level by coding them into negated equation literals. Hence the question
arises whether or not resolution and factorization rules are allowed to be applied
on these unification constraints. In order to obtain a Henkin complete calculus

10



this is not necessary – as our completeness proof shows – if we add the three ex-
tensionality rules discussed in the next subsection. Consequently the unification
constraints do not necessarily have to be coded as negative equation literals, any
other form will work as well.

The coding of unification constraints as negated equation literals becomes
important if one considers an alternative version of extensional higher order
resolution – which we will also motivate below –, where the rule Leib is avoided.

Note that none of the three new extensionality rules introduces any flexible
literal and even better, they introduce no new free variable at all; even if they
heavily increase the search space for refutations, they behave much better –
as experiments show with the LEO theorem prover [BK98,Ben97] – than the
extensionality axioms, which introduce lots of flexible literals in the refutation
process.

3.4 Examples
We now demonstrate the idea of the extensional resolution calculus on examples
E3 and E5:

E3 ∀Po→o (Pao ∧ Pbo)⇒ P (a ∧ b)

CNF(¬E3) (po→o is a new Skolem constant):
c1: [pa]T c2: [pb]F c3: [p(a ∧ b)]F

Res(c3,c1 ): c4: [p(a ∧ b) = pa]F

Res(c3,c2 ): c5: [p(a ∧ b) = pb]F

Dec(c4 ): c6: [(a ∧ b) = a]F

Dec(c5 ): c7: [(a ∧ b) = b]F

Equiv(c6 ): c8: [a]F ∨ [b]F c9: [a]T ∨ [b]T c10: [a]T

Equiv(c7 ): c11: [a]F ∨ [b]F c12: [a]T ∨ [b]T c13: [b]T

The rest is obvious: Resolve c10 and c13 against c8 (or c11 ). �
E5 (∀Xι ∀Pι→o P (mι→ιX)⇒ P (nι→ιX))⇒ (∀Q(ι→ι)→oQm⇒ Qn)

CNF(¬E5) (q is a new Skolem constant):
c1: [P (mX)]F ∨ [P (nX)]T c2: [qm]T c3: [qn]F

Res(c2,c3 ): c4 : [qm = qn]F

Dec(c4 ): c5 : [m = n]F

Func(c5 ) (sι is a new Skolem constant): c6 : [ms = ns]F

Leib(c6 ) (pι→o is a new Skolem constant): c7 : [p(ms)]T c8 : [p(ns)]F

Note that resolving c2 and c3 immediately against c1 does not lead to a solv-
able unification constraint. Instead we made a detour to the pre-unification
part of the calculus and modified the clauses c2 and c3 in an extensionally
appropriate way. Now c2 and c3 have their counterparts in c7 and c8, but
in contrast to c2 and c3 the new clauses can successfully be resolved against
c1. �

The proofs of the other examples are discussed in [Ben97].

11



Remark 6 (Optimization of Extensionality). Note the order in which the ex-
tensionality rules were applied in the examples above. For a practical imple-
mentation these examples suggest the following extensionality treatment of
unification constraints: First decompose the unification constraint as much as
possible. Then use rule Func to add as many arguments as possible to both
hand sides of the resulting unification constraints. And last use rule Leib and/or
Equiv to finish the extensionality treatment. In this sense the above rules can
be combined to form only one rule Ext-Treat.

Remark 7 (Rule Leib). Due to an idea of Frank Pfenning every refutation which
uses rule Leib can possibly be done without this rule by resolving against the
extensional modified unification constraint instead, and hence rule Leib may be
superfluous. For example the application of rule Leib in the proof of example E5
can be replaced by an immediate resolution step between clause c1 and c6 :
c7 : [P (mX)]F∨[P (nX) = (ms = ns)]F . And by pre-unification (P ← λYι (ms =
Y ) and X ← s) we immediately get the empty clause. Note that in this case it
is essential that unification constraints are encoded as negative equality literals
(see Remark 5).

However, there are two reasons why rule Leib seems to be very appropriate.
First the completeness proof with respect to Henkin models seems to be more
complicated without rule Leib and isn’t done yet. Additionally the experience
from the implementation work of the system Leo is, that rule Func eases the
implementation and the integration of heuristics. See [Ben97] for a more detailed
discussion.

4 Soundness and Completeness
Theorem 3 (Soundness of ER). The calculus ER is sound with respect to
Henkin semantics.

Proof. The soundness of HORES is discussed in detail in [Koh94], the only
major difference to the first-order case is the treatment of Skolemization, which
has been discussed in [Mil83].

The soundness of the three new extensionality rules are obvious, as they do
only apply the two extensionality principles and the Leibniz definition, which
are valid in Henkin models.

For the completeness result, we will need a series of disjunction Lemmata,
which are well-known for first-order logic, and which can be proven with the same
techniques, only considering the extra inference rules of ER in the inductions.

Lemma 1. Let Φ,∆,Γ1,Γ2 ⊆ wffcl(Σ) and A,B ∈ wffcl(Σ). We have

1. If CNF(Φ∗A) `ER � and CNF(Φ∗B) `ER �, then CNF(Φ∗A∨B) `ER �
2. If CNF(Φ∗¬A∗B) `ER � and CNF(Φ∗A∗¬B) `ER �, then CNF(Φ∗¬(A ≡

B)) `ER �

Proof. For the proof of the first assertion we first verify that CNF(Φ ∗A∨B) =
CNF(Φ) ∪ CNF(A) t CNF(B), where Γ t∆ = := {C ∨D|C ∈ CNF(A)},D ∈

12



CNF(B)}. Then we use that Φ∪Γ1tΓ2 `ER �, provided that Φ∪Γ1 `ER � and
Φ ∪ Γ2 `ER �. The second involves a tedious but straightforward calculation.

Lemma 2 (Lifting Lemma). Let Φ be a set of clauses and σ a substitution,
then Φ is refutable by ER, provided that θ(Φ) is.

Proof. The claim is proven by an induction on the structure of the refutation
Dθ: θ(Φ) `ER � be a refutation of θ(Φ) constructing a refutation D for Φ that
is isomorphic to Dθ.

For this task it is crucial to maintain a tight correspondence ω: Φ −→ θ(Φ)
between the respective clause sets. This is formalized by a clause set isomor-
phism, i.e. a bijection of clause sets, that corresponding clauses are isomorphic,
i.e. for a ω respects literal polarities and is compatible with θ, i.e. for any lit-
eral Nα we have ω(N) = θ(N). The main difficulty with lifting properties in
higher-order logic is the fact that due to the existence of predicate variables at
the head of formulae, the propositional structure of formulae can change during
instantiation. For instance if θ(F ) = λXαGX ∨ p, and AT = FaT, then the
pre-literal θ(F ) is split Dθ but not in the ER-derivation already constructed.
The solution of this problem is to apply the rule Prim with a suitable general
binding G∨α→o = λXα (H1X) ∨ (H2X) and obtain a pre-literal (H1a ∨ H2a)T,
to which can be split in order to regain a clause set isomorphism. Since G∨α→o
is more general than θ(F ) there is a substitution ρ, such that θ(F ) = ρ(G∨α→o),
therefore ω((H1a ∨H2a)T) = θ′((H1a ∨H2a)T) where θ′ = θ ∪ ρ.

Theorem 4 (Completeness of ER). The calculus ER is complete with respect
to Henkin semantics.

Proof. Let ΓΣ be the set of Σ-sentences which cannot be refuted by calculus ER
(ΓΣ := {Φ ⊆ wffclo (Σ)|CNF(Φ) 6`ER �}), then we show that ΓΣ is a saturated
abstract consistency class for Henkin models. This entails completeness of ER
by theorem 1.

Let Φ ∈ ΓΣ. We show that Φ mets the conditions required in definition 1:

∇c Suppose that A,¬A ∈ Φ. Since A is atomic we have CNF(Φ ∗A ∗ ¬A) =
CNF(Φ) ∗ [A]T ∗ [A]F and hence we can derive � with Res and Triv. This
contradicts our assumption.

In all of the remaining cases, we show the contrapositive, e.g. in the next case
we prove, that for all Φ ∈ ΓΣ, if Φ ∗ ¬¬A ∗A /∈ ΓΣ, then Φ ∗ ¬¬A /∈ ΓΣ, which
entails the assertion.

∇¬ If CNF(Φ ∗ ¬¬A ∗ A) `ER �, then also CNF(Φ ∗ ¬¬A) `ER �, since
CNF(Φ ∗ ¬¬A ∗A) = CNF(Φ ∗ ¬¬A).

∇βη Analog to ∇¬, since CNF(Φ ∗A ∗A↓βη ) = CNF(Φ ∗A).
∇∨ If CNF(Φ ∗ A ∨ B ∗ A) `ER � and CNF(Φ ∗ A ∨ B ∗ B) `ER �, then

CNF(Φ ∗A ∨B) `ER � by lemma 1(3).
∇∧ If CNF(Φ ∗ ¬(A∨B) ∗ ¬A ∗ ¬B) `ER �, then CNF(Φ ∗ ¬(A∨B)) `ER �,

since CNF(Φ ∗ ¬(A ∨B) ∗ ¬A ∗ ¬B) = CNF(Φ ∗ ¬(A ∨B)).

13



∇∀ By the lifting lemma 2.
∇∃ Let CNF(Φ ∗ ¬ΠF ∗ ¬Fw) `DER � and note that CNF(Φ ∗ ¬ΠF ∗ ¬Fw) =

CNF(Φ ∗¬Fw′ ∗¬Fw). Now let w′′ be any new constant symbol which does
not occur in Φ or F. Since also w and w′ do not occur in Φ or F it is
easy to verify that their is a derivation CNF(Φ ∗ ¬Fw′′) `D′

ER �, where each
occurrence of ¬Fw′ or ¬Fw is replaced by ¬Fw′′. Hence CNF(Φ∗¬ΠF) `ER
�.

∇b We show that if CNF(Φ∗¬(A .=o B)∗¬A∗B) `ER � and CNF(Φ∗¬(A .=o

B) ∗A ∗ ¬B) `ER �, then CNF(Φ ∗ ¬(A .= B) `ER �. Note that CNF(Φ ∗
¬(A .= B)) = CNF(Φ∗¬Π(λP ¬PA∨PB)) = CNF(Φ)∗ [rA]T ∗ [rB]F , with
Skolem constant ro→o. Now consider the following derivation

[rA]T [rB]F

[rA .= rB]F
Res

[A .= B]F
Dec

CNF(¬(A ≡ B))
Equiv

Hence CNF(Φ ∗ ¬(A .= B)) `ER CNF(Φ ∗ ¬(A .= B)) ∪ CNF(¬(A ≡ B))
and we get the conclusion as a simple consequence of lemma 1(4).

∇q We show that if CNF(Φ ∗ ¬(F .=α→β G) ∗ ¬(Fw .=β Gw)) `ER �, then
CNF(Φ∗¬(F .= G)) `ER �. Note that CNF(Φ∗¬(F .= G)∗¬(Fw .= Gw)) =
CNF(Φ∗¬Π(λQ¬QF∨QG)∗¬Π(λP ¬P (Fw)∨P (Gw))) = CNF(Φ)∗[qF]T ∗
[qG]F ∗[p(Fw)]T ∗[p(Gw)]F and that CNF(Φ∗¬(F .= G)) = CNF(Φ)∗[rF]T ∗
[rG]F , where pβ→o, q(α→β)→o and r(α→β)→o are new Skolem constants. Now
consider the following derivation:

[rF]T [rG]F

[rF .= rG]F
Res

[F .= G]F
Dec

[Fs .= Gs]F
Func

[t(Fs)]T
Leib

[t(Gs)]F

Here again sα and tβ→o are new Skolem constants. Hence CNF(Φ) ∗ [rF]T ∗
[rG]F `ER CNF(Φ) ∗ [rF]T ∗ [rG]F ∗ [t(Fs)]T ∗ [t(Gs)F .
Now the conclusion follows from the assumption since s, t and r are only
renamings of the Skolem symbols w, p and q and all do not occur in Φ.

To see that ΓΣ is saturated let A ∈ wffo(Σ) and Φ ⊆ wffclo (Σ) with Φ 6`ER �. We
have to show that Φ∗A 6`ER � or Φ∗¬A 6`ER �. For that suppose Φ 6`ER �, but
Φ ∗A `ER � and Φ ∗¬A `ER �. By lemma 1(3) we get that Φ ∗A∨¬A `ER �,
and hence, since A∨¬A is a tautology, it must be the case that Φ `ER �, which
contradicts our assumption.

5 Conclusion
We have presented an extensional higher-order resolution calculus that is com-
plete relative to Henkin model semantics. The treatment of the extensionality

14



principles – necessary for the completeness result – by specialized (goal-directed)
inference rules practical applicability, as an implentation of the calculus in the
Leo-System [BK98] shows.

Acknowledgments The work reported here was funded by the Deutsche
Forschungsgemeinschaft under grant HOTEL. The authors are grateful to Peter
Andrews and Frank Pfenning for stimulating discussions.

References
[ABI+96] Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfen-

ning, and Hongwei Xi. TPS: A theorem proving system for classical type
theory. Journal of Automated Reasoning, 16(3):321–353, 1996.

[And71] Peter B. Andrews. Resolution in type theory. Journal of Symbolic Logic,
36(3):414–432, 1971.

[And72] Peter B. Andrews. General models descriptions and choice in type theory.
Journal of Symbolic Logic, 37(2):385–394, 1972.

[And86] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory:
To Truth Through Proof. Academic Press, 1986.

[And89] Peter B. Andrews. On Connections and Higher Order Logic. Journal of
Automated Reasoning, 5:257–291, 1989.

[Bar84] H. P. Barendregt. The Lambda Calculus. North Holland, 1984.
[Ben97] Christoph Benzmüller. A calculus and a system architecture for extensional

higher-order resolution. Research Report 97-198, Department of Mathemat-
ical Sciences, Carnegie Mellon University, Pittsburgh,USA, June 1997.

[BK97] Christoph Benzmüuller and Michael Kohlhase. Model existence for higher-
order logic. SEKI-Report SR-97-09, Universität des Saarlandes, 1997.

[BK98] Christoph Benzmüller and Michael Kohlhase. LEO, a higher-order theorem
prover. to appear at CADE-15, 1998.

[dB72] Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dum-
mies, a tool for automatic formula manipulation, with an application to the
Church-Rosser theorem. Indagationes Mathematicae, 34(5):381–392, 1972.

[Göd31] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I. Monatshefte der Mathematischen Physik, 38:173–
198, 1931.

[Hen50] Leon Henkin. Completeness in the theory of types. Journal of Symbolic
Logic, 15(2):81–91, 1950.

[Hue73] Gérard P. Huet. A mechanization of type theory. In Donald E. Walker and
Lewis Norton, editors, Proc. IJCAI’73, pages 139–146, 1973.

[JP76] D. C. Jensen and T. Pietrzykowski. Mechanizing ω-order type theory through
unification. Theoretical Computer Science, 3:123–171, 1976.

[Koh94] Michael Kohlhase. A Mechanization of Sorted Higher-Order Logic Based on
the Resolution Principle. PhD thesis, Universität des Saarlandes, 1994.

[Koh95] Michael Kohlhase. Higher-Order Tableaux. In P. Baumgartner, et al. eds,
TABLEAUX’95, volume 918 of LNAI, pages 294–309, 1995.

[Mil83] Dale Miller. Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon
University, 1983.

[Smu63] Raymond M. Smullyan. A unifying principle for quantification theory. Proc.
Nat. Acad Sciences, 49:828–832, 1963.

15


