
System Description:
Leo – A Higher-Order Theorem Prover?

Christoph Benzmüller and Michael Kohlhase

Fachbereich Informatik, Universität des Saarlandes, Germany
chris|kohlhase@cs.uni-sb.de

Many (mathematical) problems, such as Cantor’s theorem, can be expressed
very elegantly in higher-order logic, but lead to an exhaustive and un-intuitive
formulation when coded in first-order logic.

Thus, despite the difficulty of higher-order automated theorem proving,
which has to deal with problems like the undecidability of higher-order unifi-
cation (HOU) and the need for primitive substitution, there are proof problems
which lie beyond the capabilities of first-order theorem provers, but instead can
be solved easily by an higher-order theorem prover (HOATP) like Leo. This
is due to the expressiveness of higher-order Logic and, in the special case of
Leo, due to an appropriate handling of the extensionality principles (functional
extensionality and extensionality on truth values).

Leo uses a higher-order Logic based upon Church’s simply typed λ-calculus,
so that the comprehension axioms are implicitly handled by αβη-equality. Leo
employs a higher-order resolution calculus ER (see [3] in this volume for details),
where the search for empty clauses and higher-order pre-unification [6] are in-
terleaved: the unifiability preconditions of the resolution and factoring rules are
residuated as special negative equality literals that are treated by special uni-
fication rules. In contrast to other HOATP’s (such as Tps [1]) extensionality
principles are build in into Leo’s unification, and hence do not have to be ax-
iomatized in order to achieve Henkin completeness.

Architecture

Leo’s architecture is based on a standard set-of-support strategy, extended
in order to fulfill the requirements specific to higher-order logic. Furthermore,
it uses a higher-order variant [7] of Graf’s substitution tree indexing [4] and
its implementation is based on the Keim [5] toolkit which provides most of the
necessary data structures and algorithms for a HOATP. The four cornerstones of
Leo’s architecture (see the figure for details see [2]) are the set of usable clauses
(USABLE), the set of support (SOS) – well known from theorem provers such
as OTTER – and two new constructions: The set of extensionally interesting
clauses (EXT) and the set of HOU continuations (CONT). The motivation for
these two additional sets comes from the main idea of using HOU as a filter in
order to eliminate in each loop all those newly derived clauses from the search
space, which cannot be pre-unified within the given search depth limit (specified
by a flag). Unfortunalety this filter is too strong and eliminates clauses which

? The work reported in this paper was supported by the Deutsche Forschungsgemein-
schaft in grant HOTEL.

are nevertheless important for the refutation. Such clauses are preserved from
elimination and put into CONT or EXT.

In each cycle, Leo selects the lightest clause from SOS and resolves it against
all clauses in USABLE, factorizes it and applies primitive substitutions – the
higher-order pre-unifiers that license this are not directly computed but resid-
uated as unification literals. In a first-order theorem prover, these processed
clauses would simply be integrated into the SOS after unification. A HOATP
would thereby loose completeness for two reasons:

– There may be clauses which are non-unifiable within the given unification
depth limit, but which have solutions beyond this limit. Upon reaching the
depth limit, the unification procedure generates the clauses induced by the
open leaves of the unification tree. These are stored in CONT for further
processing by pre-unification.

– There are clauses which are not pre-unifiable at all, but which might be nec-
essary for a refutation, if one takes the extensionality principles into account
(these are stored in EXT for extensionality treatment).
As an example consider the unification constraint [λXι ao ∨ bo = λXι bo ∨
ao]F , which is not pre-unifiable, but leads to a refutation if one applies the
extensionality rules to it (first Func, then Equiv, rest straightforward).

Of course it would be theoretically sufficient to integrate the clauses in CONT
and EXT directly into the SOS, but the experiments show that it is better to
subject them to specialized heuristics and filters and possibly delay their further
processing.

Leo employs a higher-order substitution-tree indexing method [7], for ex-
ample in the subsumption tests during incorporation into the SOS. Since full
HOU is undecidable, it is only possible to use an imperfect filter that rules out
all literals where simplification of the induced unification literals fails. However,
it is impossible to use these techniques to select possible resolutions and fac-

torizations, since co-simplification does not take extensionality into account –
see example 1 below, where the refutation would be impossible, since the set of
possible resolutions found by indexing is empty.

Experiments

Leo is able to solve a variety of simple higher-order theorems such as Cantor’s
theorem and it is specialized in solving theorems with embedded propositions.

Example 1 (Embedded Propositions). pa ∧ pb⇒ p(a ∧ b), where po→o, ao and bo
are constants. Despite it’s simplicity, this theorem cannot be solved automati-
cally by any other HOATP such as Tps or Hol.

The clause normal form of the problem consists of three clauses

[p(a ∧ b)]F [pa]T [pb]T

Leo inserts the first one into the SOS and the others into USABLE. In the first
cycle [p(a∧b)]F is resolved against [pa]T and [pb]T yielding the clauses [p(a∧b) =
pa]F and [p(a∧b) = pb]F . These are simplified to [a∧b = a]F and [a∧b = b]F and
subsequently stored in EXT, since their unification constraints are of boolean
type, which makes them extensionally interesting. Since unification fails on these
the SOS becomes empty now, leaving extensionality treatment as the only option
for further processing. This now interprets the equalities as logical equivalences
and yields (after subsumption) the clauses

[a]F ∨ [b]F [b]T [a]T

from which an empty clause can be derived in two resolution steps.

Among the examined examples are also some interesting theorems about sets,
where the application of the extensionality principles are essential for finding a
proof.

Example 2. 2{X|pX} ∩ 2{X|qX} = 2{X|pX∧qX}, where pι→o and qι→o are two
arbitrary predicates. In Leo we code this theorem as:

P(λXι pX) ∩ P(λXι qx) = P(λXι pX ∧ qX)

where the power-set P stands for λXι→o λYι→o Y ⊂ X and ∩,⊂ are similarly
defined from ∧,⇒. The current default heuristic of Leo’s clause normalization
procedure, does not replace the negated theorem by it’s Leibniz formulation, but
generates the following clause consisting of exactly one unification constraint

[(λXι→o (∀YιXY ⇒ pY)∧(∀YιXY ⇒ qY)) = (λXι→o (∀YιXY ⇒ (pY ∧qY)))]F

This unification constraint is not pre-unifiable, but note that the two functions
on both hand sides can be identified with the help of the extensionality prin-
ciples. Thus a higher-order theorem prover without extensionality treatment
would either give up or would have to use the extensionality axioms, provided
they are available in the search space. Leo instead makes use of its extensional-
ity rules and first derives the following clause with rule Func (sι is a new Skolem
constant):

[(∀Y sY ⇒ pY) ∧ (∀Y sY ⇒ qY)) = (∀Y sY ⇒ (pY ∧ qY)))]F

Next Leo applies the rule Equiv, which first replaces the primitive equality
symbol by an equivalence and second applies clause normalization. By this we
get 12 new first-order clauses, and the rest of the proof is straightforward.

Similar examples are those discussed in [10]. When coding these theorems as
above, then Leo discovers all proofs (except those for examples 56 and 57, where
too many simple first-order clauses were generated), most of them within one
second on a Pentium Pro 200. On these examples Leo outperforms well known
first-order ATPs like Spass, Otter, Protein, Gandalf and Setheo (see
http://www-irm.mathematik.hu-berlin.de/~ilf/miz2atp/mizstat.html).
Especially example 111, which cannot be solved by any of the above provers, is
trivial for Leo (10msec on a Pentium Pro 200).

Conclusion and Availability

The next logical steps to enhance the deductive power of Leo will be to ex-
tend the system to sorted logics [8], to extend the indexing scheme from co-
simplification to higher-order pattern unification [9], to fine-tune the heuristics
for extensionality treatment and finally to extend the system by a treatment for
primitive equality.

The source code and proof examples (including detailed proofs for the exam-
ple discussed above and those for the problems in [10]) are available via
http://www.ags.uni-sb.de/projects/deduktion/projects/hot/leo/.

References

1. P. B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning, and H. Xi. TPS: A
theorem proving system for classical type theory. Journal of Automated Reasoning,
16(3):321–353, 1996.

2. C. Benzmüller. A Calculus and a System Architecture for Extensional Higher-
Order Resolution. Research Report 97-198, Department of Mathematical Sciences,
Carnegie Mellon University, Pittsburgh,USA, June 1997.

3. C. Benzmüller and M. Kohlhase. Extensional Higher-Order Resolution.
Proc. CADE-15, this volume, 1998.

4. P. Graf. Term Indexing. Number 1053 in LNCS. Springer Verlag, 1996.
5. X. Huang, M. Kerber, M. Kohlhase, E. Melis, D. Nesmith, J. Richts, and J. Siek-

mann. Keim: A toolkit for automated deduction. In Alan Bundy, editor,
Proc. CADE-13, number 814 in LNAI, pages 807–810, 1994. Springer Verlag.

6. G. P. Huet. An unification algorithm for typed λ-calculus. Theoretical Computer
Science, 1:27–57, 1975.

7. L. Klein. Indexing für Terme höherer Stufe. Master’s thesis, FB Informatik,
Universität des Saarlandes, 1997.

8. M. Kohlhase. A Mechanization of Sorted Higher-Order Logic Based on the Reso-
lution Principle. PhD thesis, Universität des Saarlandes, 1994.

9. D. Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
14:321–358, 1992.

10. Z. Trybulec and H. Swieczkowska. Boolean properties of sets. Journal of Formalized
Mathematics, 1, 1989.

