Proofs in Structured Specifications

Don Sannella

LFCS, School of Informatics, University of Edinburgh

MLPA, 15 July 2010

Algebraic specification

Starting point:
> take many-sorted algebras, or similar, as models of programs

> use axioms in a logical system involving equality for describing
required properties

About:
> specifying programs
> proving correctness of programs with respect to specifications

» developing correct programs from specifications

Proof is obviously central, but the theory is primarily
model-oriented

Algebraic specification

Modular structure is used to tame large programs.

» My favourite: ML module system (signatures, structures,
functors)

Modular structure is needed to tame large specifications

» Build large structured specifications by combining smaller
specifications

R. Burstall and J. Goguen. Putting theories together to make
specifications. Proc. IJCAI 1977

Algebraic specification

Need to:

» prove correctness of modular programs with respect to
structured specifications

» develop modular programs from structured specifications

(Problem: usually the structure of the specification will not match
the structure of the program)

Based on: proof in structured specifications

» Obvious relation to the use of a proof assistant in the context
of a library

My aim in this talk:
» breezy introduction to one approach to algebraic specification

» concentrating on proof

Advertisement

Donald Sannella
Andrzej Tarlecki

Foundations of
Algebraic Specification

and Formal Software
Development

@ Springer

Early algebraic specification (1970s)

Specification (X, E)
> Y is a signature (set of sorts, set of operations
fisi X XS, —S)
» E is a set of equations
» Semantics: Mod((X, E)) = {M € Alg(X) | M |= E}

EEeiff Mod((X,E)) Ee

E |- e: equational calculus (reflexivity, transitivity, etc.)
Theorem: E | e is sound and complete w.r.t. E = e

Rewriting techniques can be used to give a decision procedure for
some specifications (Knuth-Bendix completion algorithm)

Early algebraic specification, continued

But there are too many models:
» including trivial ones
» including ones containing unreachable elements, so induction
is not valid
Solution: take the initial model Ty /=g

» Proofs use equational logic and induction

» Completeness is lost: there is no complete proof system for
initial models of equational specifications

» Term rewriting using inductionless induction (a.k.a. proof by
consistency)

J. Goguen, J. Thatcher and E. Wagner. An initial algebra
approach to the specification, correctness and implementation of
abstract data types. IBM Technical Report 1976.

Early algebraic specifications: inadequacies (1)

Problems with large specifications:
» Management of name space, e.g. auxiliary operations
» It is difficult to deal with very long lists of axioms

» Simple unions of such sets can give surprising results,
especially in combination with initiality

» ... unless strong restrictions are imposed (“sufficient
completeness”, “hierarchy consistency")

» ... which are problematic in connection with “loose”
specifications

Solution: language of structured specifications

Early algebraic specifications: inadequacies (2)

Equations are inadequate:
» Need more powerful logics for convenient expressibility
» ... but which one? There are many candidates

» On the other hand, we need (conditional) equations to
guarantee existence of initial models

v

But in structured specifications, initial models (i.e. free
extensions) aren’t guaranteed anyway

v

What you really need is reachability (a.k.a. finite generation)
which gives induction

Solution: specifications in an arbitrary logical system (a.k.a.
institution), abandon restriction to initial models

Institutions

An institution consists of:

> a set of signatures, with signature morphisms o : ¥ — ¥’

v

for each ¥, a set Sen(X) of X-sentences

and for each o : ¥ — Y/, a translation o : Sen(X) — Sen(X')

v

v

for each ¥, a set Mod(X) of X-models

and for each ¢ : ¥ — ¥/, a translation
‘lo : Mod(X') — Mod(X)

v

v

for each ¥, a satisfaction relation =y C Mod(X) x Sen(X)
such that for any 0 : ¥ — ¥/, p € Sen(X), M’ € Mod(Y')

Mo s e it Mg o(p)

v

Institutions: equational logic

» Signatures: the usual ones, with the usual signature
morphisms (renamings)
» Sentences over ¥: equations with sorts/operations from X

» Signature morphisms rename the sorts/operations

» Models over X: Y-algebras Alg(X)
» A signature morphism o : ¥ — Y’ induces reduct,
|0 : Alg(X') — Alg(X)

» Satisfaction relation |=y: satisfaction of X-equations by
> -algebras

Institutions: first-order equational logic

» Signatures: the usual ones, with predicates, with the usual
signature morphisms (renamings)

> Sentences over ¥: closed first-order formulae with equations
and predicate applications as atomic formulae

» Signature morphisms rename the sorts/operations/predicates

» Models over X>: ¥ -structures
» A signature morphism o : ¥ — Y’ induces reduct,
‘lo : Mod(X') — Mod(X)

» Satisfaction relation |=y: satisfaction of X-formulae by
2 -structures

Institutions: others
Dozens of other examples:

» order-sorted logic

» higher-order logic
logics of partial functions
multiple-valued logics
temporal logics
logic for hybrid systems

observational logic

vV v v v VY

process description logics
> etc. etc. etc.
Usually equations are (one kind of) atomic formula

Assuming for this talk
» induction provided as a special kind of sentence

» ... or as part of the signature (designating constructors).

Structured specifications

Using a simple set of specification-building operations

Semantics:
» Sig(SP) is a signature
» Mod(SP) is a class of Sig(SP)-models

Basic specifications (X, ®)
» Sig((X,9)) =%
» Mod((X,®)) = {M € Mod(X) | M |=x ®}

Structured specifications

Union SP U SP’, requiring Sig(SP) = Sig(SP’)
» Sig(SP U SP") = Sig(SP)
> Mod(SP U SP') = Mod(SP) N Mod(SP')

Translation o(SP), requiring o : Sig(SP) —» ¥/
» Sig(o(SP)) =
» Mod(o(SP)) = {M € Mod(Y') | M|, € Mod(SP)}

Derive SP|,, requiring o : ¥ — Sig(SP)
> Sig(SP|,) =X
» Mod(SP|,) = {M|, | M € Mod(SP)}

Structured specifications

Other operations can be expressed in these terms:

enrich SP by sorts S opns 2 axioms ¢ = o(SP) U (X,)
where ¥ = Sig(SP) U (5,Q) and o : Sig(SP) — ¥

SP + SP' = o(SP) U o' (SP')
where ¥ = Sig(SP) U Sig(SP’), o : Sig(SP) — X and
o’ : Sig(SP') — &

export X from SP = SP|,
where o : ¥ — Sig(SP)

Stepwise refinement, simple version

SP ~» SP1 ~» - ~» SP,

SP ~» SP’ means
> Sig(SP) = Sig(SP)
» Mod(SP) 2 Mod(SP')

Stop when we have a model M,, of SP,
» Then M, € Mod(SP)

Stepwise refinement

Problem:

SPO ~

K1

SPq

R1

K2

. /{n‘

Stepwise refinement, improved

A better way:

SPo i SPq gy oy, @ SP = EMPTY

Stepwise refinement, improved
SP ~sp, SP1 ~=py o~y SPh

SP ~+,. SP' means
» % : Mod(SP') — Mod(SP)
> kis a “constructor’ taking SP’ models to SP models

» Given a model of what SP’ requires, x builds a model of what
SP requires

» Think of k as a program fragment (better: ML functor)

Stop when we have a model M, of SP,
» Then k1(k2(- - Kkn(My)---)) € Mod(SP)

What about proofs?

® =5 ¢ means
» M =5 ¢ for all M € Mod(X) such that M =5 ¢

We need a consequence relation ® -y ¢ that is sound w.r.t.
¢ sy

» Completeness is nice but hardly ever achievable, despite
results to come

» For equational logic, - is given by the equational calculus

» For first-order logic, - is some standard proof system for
first-order logic

» Etc.

Assume we have such a F for the institution at hand

Other levels of proof

We need proofs at more levels:
» SP + ¢: ¢ holds in all models of SP
» SP I SP': correctness of refinement steps SP’ ~+ SP
» SP .. SP’: correctness of refinement steps SP’ ~~,. SP

What about proving that a program P correctly implements a
specification SP?

» This is covered by p, if we view the program as a
constructor P : Mod(BuUILTINS) — Mod(SP)
» More generally, if P is an ML functor

functor P(X : SP): SP' = ...
then we need SP +-p SP’

Proof in structured specifications

Most relevant to MLPA

SP = ¢ means
> M [=sig(sp) ¢ for all M € Mod(SP)

Need SP | ¢ that is sound w.r.t. SP |= ¢

Builds on ® I ¢:

SPrFy; - SPF @, {¢1,...

,ony o

SPF

Proof in structured specifications

Rules for the specification-building operations:

—_ co
o) ke ©
5P1|—(p SPQl_SO
SP1USPy SP1USPy
SPE SPEo(p)
a(SP) - o(p) SPl, ¢

Then SP F ¢ is sound w.r.t. SP |= ¢

Proof in structured specifications

Theorem: If
1. ®F ¢ is complete w.rt. ® = ¢

2. INS is finitely exact (signature category is finitely cocomplete,
model functor is finitely continuous)

3. INS has interpolation
4. INS can express truth, negation and conjunction
then SP = ¢ is complete w.r.t. SP |= ¢

Interpolation:
> Suppose 1 = 2
» ... then there is 8 using only the common symbols of ¢1, w2
» ... such that 1 =60 and 6 = 2

Exercise: Express interpolation institutionally

If SP doesn't involve -|,, then (2)—(4) aren’t required

Proof in structured specifications

Problem: equational logic doesn't have interpolation
And SP t ¢ is not complete for equational logic

Alternative: normalise specifications

Theorem: If INS is finitely exact, then for any SP there is an
equivalent specification nf(SP) of the form (X, ®)|,

Then use
S Fo(p)

—— nf(SP) = (Z, ®)],
B, "SR =(T0)

Proof in structured specifications

Theorem: If
1. ®F ¢ is complete w.rt. ® = ¢
2. INS is finitely exact
then SP F ¢ via nf(SP) is complete w.r.t. SP = ¢

Proof in structured specifications

But we would like to take advantage of the structure of
specifications in proof search.

D. Sannella and R. Burstall. Structured theories in LCF. Proc.
CAAP 1983

W. Farmer, J. Guttman and F. Thayer. Little theories. Proc.
CADE 1992

The earlier rules are compositional
» Proofs follow the structure of the specification

» Lemmas proved in sub-specifications are put together in a
bigger specification to obtain the result

The nf rule is non-compositional

Proof in structured specifications

A middle way: transform specifications without completely
flattening them:

SP'
SPF

SP = SP’

Or, using SP - SP’ below:

SP+ SP’ SP ¢
SPF ¢

This seems to be required quite frequently in examples to get easy
proofs

Proof in structured specifications

We can give derived rules that encapsulate some of the
transformations we need, for instance

SPo SP'Ey {p,0(d)}F o(y)
SP|, USP -4
Uses SP|, U SP’ = (SP U o(SP"))|,

A systematic approach along these lines:

T. Mossakowski, S. Autexier and D. Hutter. Development graphs:
proof management for structured specifications. Journal of Logic
and Algebraic Programming 2006

Entailment between specification

Need SP + SP’ that is sound w.r.t. Mod(SP) C Mod(SFP’)

Why?

» Provides a system for transforming specifications for use in
proving SP = ¢

» For proving correctness of simple refinements SP ~+ SP’

» As a basis for SP ~+,, SP’ later

Builds on SP I ¢:

SPFy1 -+ SPF o,

Entailment between specification

Rules:

SP + SP; SP+ SP,
SPF SP{ U SP,

SP'|, I SP
SP'F o(SP)

SP - SP' o:SP— SP
SPF SP'|, admits model expansion

Theorem: If SP |- ¢ is complete then SP = SP’ is complete.

Admits model expansion

SP - SP/ o:SP— SP
SP SP'|, admits model expansion

o : SP — SP admits model expansion:
» for any M € Mod(SP)
> ... there exists M € Mod(§13))
» ... such that §I\3\U =M

This is a sufficient condition for o : SP — SP being conservative

Admits model expansion?

SORT = export sort from
enrich specification of issorted by
opns sort : list — bool
axioms issorted(sort(/))

Then we refine: SORT ~~ definition of sort

Need to show:
definition of sort U definition of issorted \ issorted(sort(/))

We require a definition of issorted to avoid inconsistency

Relates to 3 for modelling hiding:

definition of sort = dissorted : list — bool.
specification of issorted A issorted(sort(/)))

A proof requires a witness for issorted.

Entailment between specification via x

Need SP |-,. SP’ that is sound w.r.t. SP' ~,, SP, i.e.
% : Mod(SP) — Mod(SP)

Regard k as a specification-building operation
» Sig(k(SP)) = X, where « : Sig(SP) — X
» Mod(k(SP)) = {k(M) | M € Mod(SP)}

Reduces the problem to SP - SP’:

k(SP) - SP'
SP . SP'

Main constructors of interest:
> |5 (rules already provided)
» Free extension

» “Anarchic” case, i.e. ML-style algebraic datatypes, is most
important and easiest

Behavioural specifications

Motivating example: sets
» SUT=TUS
»aeSUT =aeSVvaeT

Are lists okay as a model of sets, with U implemented as append?
» append(a, b) # append(b, a)

But the order of elements in a list isn't observable using set

membership, so who cares?

An interpretation that reflects this is
» Mod=(SET) = {M | M = M’ € Mod(SET)}
» M = M’ is behavioural equivalence: M and M’ give the same
value to any term of basic type (e.g. booleans)

» cf. indistinguishability, contextual equivalence

Behavioural specifications

We need another proof system: SP = ¢

This is much more difficult, but there are methods available
One approach is via regarding equality in axioms as denoting
indistinguishability ~

This gives a new satisfaction relation M = ¢

> ML piff M/~ = o
> M= M iff M/~p = M/~opp

M. Bidoit and R. Hennicker. Constructor-based observational logic.
Journal of Logic and Algebraic Programming 2006

Conclusion

v

There is relevant work in algebraic specification going back to
about 1980, with a well-investigated theory

An interesting point is the independence of the structuring
mechanisms from the logical system

> not just the syntax of axioms
> also the details of its type system

| don't know if any of this, when seen from the proof assistant
point of view, is new or surprising

but a lot of it pre-dates most work on libraries in proof
assistants (exception: Mizar)

Relatively little work on implementation, compared with the
proof assistant community

but see work on development graphs

That advertisement again

Donald Sannella
Andrzej Tarlecki

[N | Liglbl i
| (NN 1
[N 1 1
(IR 11
(RENNRENN Il L

Foundations of
Algebraic Specification

and Formal Software
Development

@ Springer

