
Flexary Operators for Formalized Mathematics

Fulya Horozal Florian Rabe Michael Kohlhase

Jacobs University, Bremen, Germany

Mathematical Knowledge Management
Conferences on Intelligent Computer Mathematics

July 07, 2014
Coimbra, Portugal

1

Motivation

Flexary Operators

I flexary = flexible arity compare unary, binary, etc.

I Many operators naturally flexary pervade mathematics

I associative operators

a1 + . . .+ an = +(a1, . . . , an)

I collection constructors

{a1, . . . , an} = set(a1, . . . , an)

I vector, matrix, polynomial constructors

I Not commonly supported in content representation languages
surprising

2

Motivation

Flexary Binders

I Binder = operator that binds some variables in a scope

I Arity = number of bound variables

I Flexary binders very common
actually, hard to find a fixed-arity binder

I Define: binder B is associative if

Bx , y .E = Bx .By .E

I Most binders not only flexary but also associative
I associative: ∀, ∃
I associative up to currying:

∫
, λ

I not associative (but still naturally flexary): ∃1

I Support for flexary binders equally desirable

3

Motivation

Standard Solution (1)

Use (some incarnation of) lists

a1 + . . .+ an = +(list(a1, . . . , an))

But

I awkward even more so for a mathematician

I introduces foundational dependency
what if there are no lists in my language?

4

Motivation

Standard Solution (2)

Use notations

I only fixed arity in content

I parser and printer adapted to mimic flexible arity

a1 + . . .+ an parsed as +(a1, . . . ,+(an−1, an) . . .)

But

I flexary representation often more natural

I requires choice between right- and left-associative notations
no-canonical choice for non-associative flexary operators

I requires domain=codomain
cannot make the {. . .} operator right-associative

I no flexary reasoning
would be nice to quantify over the number of arguments

5

Motivation

Ellipses
I Flexary operators naturally lead to ellipses
I Sequential ellipsis

define [ai]
n
i=1 as a1, . . . , an

example:
+[ai]

n
i=1 = +(a1, . . . , an)

I No standardized formalization
dot-dot-dot notation fine on paper

I Nested ellipsis
f1(. . . fn(x) . . .)

special case of sequential ellipsis via flexary function
composition:

f1(. . . fn(x) . . .) = ◦[fi]ni=1(x)

6

Motivation

Ellipses
I Flexary operators naturally lead to ellipses
I Sequential ellipsis

define [ai]
n
i=1 as a1, . . . , an

example:
+[ai]

n
i=1 = +(a1, . . . , an)

I No standardized formalization
dot-dot-dot notation fine on paper

I Nested ellipsis
f1(. . . fn(x) . . .)

special case of sequential ellipsis via flexary function
composition:

f1(. . . fn(x) . . .) = ◦[fi]ni=1(x)

6

Motivation

Where to Formalize Flexible Arities?

I Theory level: not good
I amounts to creating a theory of lists
I must be imported into any theory with flexary operators

e.g., monoids

I Logic level: better but
I logics becomes more complicated
I flexible arities logic-independent feature

I Logical framework level our approach

I once-and-for-all formalization
I corresponds to mathematical practice

flexible arity and ellipses are assumed at the meta-level

7

Motivation

Overview

1. Define logical framework LFS
extends Edinburgh Logical Framework (LF) with

I sequences
I ellipses
I flexible arities

2. Use LFS to define flexary logics
I flexary connectives
I flexary quantifiers
I with corresponding flexary inference rules

concretely: flexary FOL, flexary λ-calculus

3. Use flexary logics to formalize mathematical examples

8

A Flexary Logical Framework

LF with Sequences (LFS)

I LF = dependently-typed λ-calculus
I LF primitives

I terms, types, and kinds
I Π-types, λ, and application
I typing judgment ` E : E ′

I Very simple, but just right as logical framework
I New primitives in LFS

I term, type, and kind sequences
I natural numbers needed for indices in ellispes
I sequence ellipsis [E (i)]ni=1
I flexary function composition needed for nested ellipses

9

A Flexary Logical Framework

LFS Syntax

LF Grammar

E ::= type | Πx : E .E | λx : E .E | E E

I Empty sequence

I Concatenation

I Index n-th element of E

I Sequence ellipses reduces to E (1), . . . ,E (n)

I Flexary function composition
◦ (f1, . . . , fn) s reduces to f1(. . . (fn s) . . .)

olive

10

A Flexary Logical Framework

LFS Syntax

LFS Grammar

E , n ::= typen | Πx : E .E | λx : E .E | E E

· | E ,E | En

I Empty sequence ·
I Concatenation E ,E ′

I Index En n-th element of E

I Sequence ellipses reduces to E (1), . . . ,E (n)

I Flexary function composition
◦ (f1, . . . , fn) s reduces to f1(. . . (fn s) . . .)

olive

10

A Flexary Logical Framework

LFS Syntax

LFS Grammar

E , n ::= typen | Πx : E .E | λx : E .E | E E

· | E ,E | En | [E]nx=1 | ◦ E

I Empty sequence ·
I Concatenation E ,E ′

I Index En n-th element of E

I Sequence ellipses [E (x)]nx=1 reduces to E (1), . . . ,E (n)

I Flexary function composition ◦ f
◦ (f1, . . . , fn) s reduces to f1(. . . (fn s) . . .)

olive

10

A Flexary Logical Framework

Flexary Interpretation of LF Primitives

I LF primitives retained but now flexary

I Flexary application = sequence arguments

f · = f f (E ,E ′) = (f E) E ′

I Flexary binding = sequence variables

λx : ·.E = E [x/·]

λx : (E ,E ′).F = λx1 :E . λx2 :E ′. F [x/(x1, x2)]

accordingly for Π

I LF typing rules can be reused without change

11

A Flexary Logical Framework

Type System: Natural Numbers

Axiomatized as LF declarations

nat : type

≤ : nat→ nat→ type

0 : nat

1 : nat

+ : nat→ nat→ nat

with appropriate axioms

12

A Flexary Logical Framework

Type System: Introduction of Sequences

Kind sequences
Σ ` n : nat : type

Σ ` typen Kind

Type sequences

`Σ Sig

Σ ` · : type0
Σ ` U : typem Σ ` V : typen

Σ ` U,V : typem+n

Term sequences

`Σ Sig

Σ ` · : · : type0

Σ ` S : U : typem Σ ` T : V : typen

Σ ` S ,T : U,V : typem+n

13

A Flexary Logical Framework

Type System: Elimination of Sequences

Term sequences

Σ ` S : U : typen Σ ` x∗ : 1 ≤ x : type Σ ` x∗ : x ≤ n : type

Σ ` Sx : Ux : type

accordingly for type sequences

Static bound checking:

I Only valid indices within bounds well-typed

I 2 implicit arguments for 1 ≤ x and x ≤ n

14

A Flexary Logical Framework

Type System: Ellipses

Ellipsis for sequence of terms

Σ ` n : nat : type Σ, x :nat, x∗ :1 ≤ x , x∗ :x ≤ n ` S : U : type

Σ ` [S]nx=1 : [U]nx=1 : typen

accordingly for sequence of types

Static bound checking:

I Actually binds 3 variables

I Bounds 1 ≤ x and x ≤ n passed as assumptions

15

A Flexary Logical Framework

Flexary Function Composition

Σ ` U : typen+1 Σ ` F : [Ui+1 → Ui]
n
i=1

Σ ` ◦ F : Un+1 → U1

Example: Folding

If

S : A, . . . ,A : typen and f : A→ A→ A and a : A

then
i : nat ` λx : A. f x Si : A→ A

and we define

foldl S f a = (◦ [λx : A. f x Si]
n
i=1) a

(here Ui = A for 1 ≤ i ≤ n + 1)

16

Flexary Logics

Flexary Connectives
LFS type form : type of FOL formulas

Notation: Write formn for [form]ni=1

Binary conjunction

∧ : form→ form→ form

Flexary conjunction

∧∗ : Πn : nat. formn → form = λn : nat. λF : formn. foldlF ∧ true

Thus,
∧∗n F1, . . . ,Fn = (. . . (true ∧ F1) . . .) ∧ Fn

∧∗ 0 · = true

I Flexary proof rules also definable in terms of rules for binary
conjunction

I Other flexary connectives defined accordingly

17

Flexary Logics

Flexary Quantifiers
LFS type term : type of FOL terms

Unary universal quantifier

∀ : (term→ form)→ form

Flexary universal quantifier

∀∗ : Πn : nat. (termn → form)→ form

= λn : nat. λF : termn → form.

◦ [λf : termi → form. λy : termi−1. ∀λx : term. f (y , x)︸ ︷︷ ︸
(termi→form)→(termi−1→form)

]ni=1 F

I Flexary proof rules definable accordingly

I Other flexary quantifiers definable accordingly

18

Flexary Mathematics

Powers

I Signature of monoids in FOL

a : type

• : a→ a→ a

e : a

I Power operator routinely used in informal mathematics
often introduced in same paragraph

but not definable in FOL

I Now: flexary monoid operator definable in flexary FOL

•∗ : Πn : nat. an → a = λn. λx : an. foldl • x e

and thus power operator definable

power : a→ nat→ a = λx . λn. •∗ xn

19

Flexary Mathematics

Multirelations

I Multi-relations routinely used in informal mathematics
e.g., a ∈ b ⊆ c

I But cannot be defined as single operators within a fixary logic

I In flexary FOL:

multirel : Πn : nat. termn+1 → (term→ term→ form)n → form

= λn.λx . λr .∧∗ [ri xi xi+1]ni=1

I Example:

a ∈ b ⊆ c = multirel (a, b, c) (∈,⊆)

20

Conclusion

I Sequences and ellipses meta-level operators of informal
mathematics

I But a challenge for formalized mathematics
I Logical framework approach permits clean solution

I LFS = LF with sequences and ellipses
I flexary logics defined in LFS
I natural formalizations in flexary logics

I Key properties
I flexary operators take natural number argument

arity polymorphism
I LFS retains semantics of LF primitives

no new type constructors, no change to typing rules
I length of sequences known to type system static bounds check

21

	Motivation
	Flexary Operators
	Flexary Binders
	Standard Solution (1)
	Standard Solution (2)
	Ellipses
	Ellipses
	Where to Formalize Flexible Arities?
	Overview

	A Flexary Logical Framework
	LF with Sequences (LFS)
	LFS Syntax
	LFS Syntax
	LFS Syntax
	Flexary Interpretation of LF Primitives
	Type System: Natural Numbers
	Type System: Introduction of Sequences
	Type System: Elimination of Sequences
	Type System: Ellipses
	Flexary Function Composition

	Flexary Logics
	Flexary Connectives
	Flexary Quantifiers

	Flexary Mathematics
	Powers
	Multirelations

	
	Conclusion

