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Motivation
Flexary Operators

> flexary = flexible arity compare unary, binary, etc.
» Many operators naturally flexary pervade mathematics

> associative operators

at...+a, = +(a,...,an)
» collection constructors

{a1,...,a,} = set(ay,...,an)

» vector, matrix, polynomial constructors

» Not commonly supported in content representation languages
surprising



Motivation
Flexary Binders

v

Binder = operator that binds some variables in a scope

» Arity = number of bound variables

v

Flexary binders very common
actually, hard to find a fixed-arity binder

Define: binder B is associative if

v

Bx,y.E = Bx.By.E

v

Most binders not only flexary but also associative
» associative: V, 3
> associative up to currying: [, A
» not associative (but still naturally flexary): 3!

v

Support for flexary binders equally desirable



Motivation

Standard Solution (1)

Use (some incarnation of) lists
a+...+a, = +(list(ar,...,an))

But
» awkward even more so for a mathematician

» introduces foundational dependency
what if there are no lists in my language?



Motivation

Standard Solution (2)

Use notations
» only fixed arity in content
> parser and printer adapted to mimic flexible arity

ai+ ...+ ap parsed as +(a1, ..., +(an—1,an)...)

But
» flexary representation often more natural
> requires choice between right- and left-associative notations
no-canonical choice for non-associative flexary operators
> requires domain=codomain
cannot make the {...} operator right-associative
» no flexary reasoning

would be nice to quantify over the number of arguments



Motivation

Ellipses
> Flexary operators naturally lead to ellipses
» Sequential ellipsis
define [aj]l.; as a1,...,an
example:
+lailizs = +(a1,.. -, an)

» No standardized formalization
dot-dot-dot notation fine on paper



Motivation
Ellipses
> Flexary operators naturally lead to ellipses
» Sequential ellipsis
define [aj]l.; as a1,...,an
example:
+lailizy = +(a1,.. ., an)
» No standardized formalization
dot-dot-dot notation fine on paper
» Nested ellipsis
(.. f(x)...)
special case of sequential ellipsis via flexary function
composition:

Al f(x)...) = o[fi]l1(x)



IMlotivation
Where to Formalize Flexible Arities?

» Theory level: not good

» amounts to creating a theory of lists
» must be imported into any theory with flexary operators

e.g., monoids
» Logic level: better but
> logics becomes more complicated
» flexible arities logic-independent feature
» Logical framework level our approach

» once-and-for-all formalization
» corresponds to mathematical practice
flexible arity and ellipses are assumed at the meta-level



Motivation
Overview

1. Define logical framework LFS
extends Edinburgh Logical Framework (LF) with
> sequences
> ellipses
> flexible arities
2. Use LFS to define flexary logics

» flexary connectives
» flexary quantifiers
» with corresponding flexary inference rules

concretely: flexary FOL, flexary A-calculus

3. Use flexary logics to formalize mathematical examples



A Flexary Logical Framework

LF with Sequences (LFS)

v

LF = dependently-typed A-calculus

v

LF primitives
> terms, types, and kinds
» [l-types, A, and application
» typing judgment - E : E’

v

Very simple, but just right as logical framework

v

New primitives in LFS

term, type, and kind sequences

natural numbers needed for indices in ellispes
sequence ellipsis [E(/)],

flexary function composition needed for nested ellipses

vV vy Vvyy



A Flexary Logical Framework

LFS Syntax

E = type|lx:E.E|XAx:E.E|EE

olive

10



A Flexary Logical Framework

LFS Syntax

LFS Grammar
E.n = type"|MNx:E.E|Xx:E.E|EE
| E,E | E,

» Empty sequence -
» Concatenation E.E’
» Index E, n-th element of E

olive

10



A Flexary Logical Framework

LFS Syntax

LFS Grammar
E.n = type"|MNx:E.E|Xx:E.E|EE
| E,E | Ep|[Elj=a| 0 E

» Empty sequence -

» Concatenation E,E’
» Index E, n-th element of E
» Sequence ellipses [E(x)]|7_; reduces to E(1),..., E(n)

v

Flexary function composition o f
o(f,...,fy)s reduces to fi(...(frs)...)

olive

10



A Flexary Logical Framework
Flexary Interpretation of LF Primitives

» LF primitives retained but now flexary

» Flexary application = sequence arguments
f-=1f f(E,E'Y = (FE)FE
> Flexary binding = sequence variables
A E = E[x/]

M (E,ENF = MU EONCEL Fx/ (XY, X))
accordingly for I1

» LF typing rules can be reused without change
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A Flexary Logical Framework

Type System: Natural Numbers

Axiomatized as LF declarations

+ R oIAE
t

with appropriate axioms

type

nat — nat — type
nat

nat

nat — nat — nat
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A Flexary Logical Framework
Type System: Introduction of Sequences

Kind sequences
> F n:nat: type

Y I type" Kind

Type sequences

=Y Sig Y U:type™ T b V:type”
Y F - type? Y U,V :type™t”

Term sequences

FY Sig Y S:U:type” X T:V:type

YF i type? Y ST : UV  type”™”
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A Flexary Logical Framework
Type System: Elimination of Sequences

Term sequences

YES:U:type” T x":1<x:type Xt xx:x<n:type

Y S5¢: Uy type
accordingly for type sequences

Static bound checking:
» Only valid indices within bounds well-typed

» 2 implicit arguments for 1 < x and x < n
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A Flexary Logical Framework

Type System: Ellipses

Ellipsis for sequence of terms

Y - n:nat:type X, x:nat, x":1<x, x,:x<nhk §S:U: type
T [Sier [UlR=y - type”

accordingly for sequence of types

Static bound checking:
» Actually binds 3 variables
» Bounds 1 < x and x < n passed as assumptions
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A Flexary Logical Framework
Flexary Function Composition

Y F U:type" T b F: (U — U],
Y o F:Upt— U

Example: Folding
If

S:A...,A: type" and fF:A—-A— A and

then
iinatEAx:AfxS A=A

and we define
foldlSfa = (o[Ax: A fxS]iLi)a

(here Uy =Afor1<i<n+1)
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Flexary Logics
Flexary Connectives
LFS type form : type of FOL formulas

Notation: Write form" for [form|_,

Binary conjunction
A : form — form — form
Flexary conjunction
A* : Mn: nat. form™ — form = An: nat. \F : form". fold1l F A true

Thus,
NnFy, ..., F,=(..(true\NF1)...)AF,

A*0 - = true

> Flexary proof rules also definable in terms of rules for binary
conjunction
» Other flexary connectives defined accordingly
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Flexary Logics
Flexary Quantifiers
LFS type term : type of FOL terms

Unary universal quantifier
v : (term — form) — form
Flexary universal quantifier
V* : Mn: nat. (term” — form) — form

= An: nat. \F : term" — form.

o[\ : term' — form. \y : term' 1. VAx : term. f (y,x)]7_, F

(termi— form)— (term'—1— form)

» Flexary proof rules definable accordingly

» Other flexary quantifiers definable accordingly
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Flexary Mathematics
Powers

» Signature of monoids in FOL

a: type
. a—a—a
e:a
» Power operator routinely used in informal mathematics

often introduced in same paragraph
but not definable in FOL

> Now: flexary monoid operator definable in flexary FOL
o :Mn:nat.a" - a = An.\x:3".foldl e xe
and thus power operator definable

power : a—mnat —a = Ax.An. e x”
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Flexary Mathematics
Multirelations

v

Multi-relations routinely used in informal mathematics
eg,aebCc

» But cannot be defined as single operators within a fixary logic

> In flexary FOL:
multirel : Tn : nat. term™™ — (term — term — form)™ — form
= AnAX A A" [ xi Xip1]ieg
» Example:

a€ bCc = multirel (a, b, c) (€,C)
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Conclusion

v

Sequences and ellipses meta-level operators of informal
mathematics

v

But a challenge for formalized mathematics

v

Logical framework approach permits clean solution
» LFS = LF with sequences and ellipses
» flexary logics defined in LFS
» natural formalizations in flexary logics

v

Key properties

» flexary operators take natural number argument
arity polymorphism
» LFS retains semantics of LF primitives
no new type constructors, no change to typing rules
» length of sequences known to type system static bounds check
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