Flexary Operators for Formalized Mathematics

Fulya Horozal Florian Rabe Michael Kohlhase

Jacobs University, Bremen, Germany

Mathematical Knowledge Management
Conferences on Intelligent Computer Mathematics
July 07, 2014
Coimbra, Portugal

Motivation
Flexary Operators

> flexary = flexible arity compare unary, binary, etc.
» Many operators naturally flexary pervade mathematics

> associative operators

at...+a, = +(a,...,an)
» collection constructors

{a1,...,a,} = set(ay,...,an)

» vector, matrix, polynomial constructors

» Not commonly supported in content representation languages
surprising

Motivation
Flexary Binders

v

Binder = operator that binds some variables in a scope

» Arity = number of bound variables

v

Flexary binders very common
actually, hard to find a fixed-arity binder

Define: binder B is associative if

v

Bx,y.E = Bx.By.E

v

Most binders not only flexary but also associative
» associative: V, 3
> associative up to currying: [, A
» not associative (but still naturally flexary): 3!

v

Support for flexary binders equally desirable

Motivation

Standard Solution (1)

Use (some incarnation of) lists
a+...+a, = +(list(ar,...,an))

But
» awkward even more so for a mathematician

» introduces foundational dependency
what if there are no lists in my language?

Motivation

Standard Solution (2)

Use notations
» only fixed arity in content
> parser and printer adapted to mimic flexible arity

ai+ ...+ ap parsed as +(a1, ..., +(an—1,an)...)

But
» flexary representation often more natural
> requires choice between right- and left-associative notations
no-canonical choice for non-associative flexary operators
> requires domain=codomain
cannot make the {...} operator right-associative
» no flexary reasoning

would be nice to quantify over the number of arguments

Motivation

Ellipses
> Flexary operators naturally lead to ellipses
» Sequential ellipsis
define [aj]l.; as a1,...,an
example:
+lailizs = +(a1,.. -, an)

» No standardized formalization
dot-dot-dot notation fine on paper

Motivation
Ellipses
> Flexary operators naturally lead to ellipses
» Sequential ellipsis
define [aj]l.; as a1,...,an
example:
+lailizy = +(a1,.. ., an)
» No standardized formalization
dot-dot-dot notation fine on paper
» Nested ellipsis
(.. f(x)...)
special case of sequential ellipsis via flexary function
composition:

Al f(x)...) = o[fi]l1(x)

IMlotivation
Where to Formalize Flexible Arities?

» Theory level: not good

» amounts to creating a theory of lists
» must be imported into any theory with flexary operators

e.g., monoids
» Logic level: better but
> logics becomes more complicated
» flexible arities logic-independent feature
» Logical framework level our approach

» once-and-for-all formalization
» corresponds to mathematical practice
flexible arity and ellipses are assumed at the meta-level

Motivation
Overview

1. Define logical framework LFS
extends Edinburgh Logical Framework (LF) with
> sequences
> ellipses
> flexible arities
2. Use LFS to define flexary logics

» flexary connectives
» flexary quantifiers
» with corresponding flexary inference rules

concretely: flexary FOL, flexary A-calculus

3. Use flexary logics to formalize mathematical examples

A Flexary Logical Framework

LF with Sequences (LFS)

v

LF = dependently-typed A-calculus

v

LF primitives
> terms, types, and kinds
» [l-types, A, and application
» typing judgment - E : E’

v

Very simple, but just right as logical framework

v

New primitives in LFS

term, type, and kind sequences

natural numbers needed for indices in ellispes
sequence ellipsis [E(/)],

flexary function composition needed for nested ellipses

vV vy Vvyy

A Flexary Logical Framework

LFS Syntax

E = type|lx:E.E|XAx:E.E|EE

olive

10

A Flexary Logical Framework

LFS Syntax

LFS Grammar
E.n = type"|MNx:E.E|Xx:E.E|EE
| E,E | E,

» Empty sequence -
» Concatenation E.E’
» Index E, n-th element of E

olive

10

A Flexary Logical Framework

LFS Syntax

LFS Grammar
E.n = type"|MNx:E.E|Xx:E.E|EE
| E,E | Ep|[Elj=a| 0 E

» Empty sequence -

» Concatenation E,E’
» Index E, n-th element of E
» Sequence ellipses [E(x)]|7_; reduces to E(1),..., E(n)

v

Flexary function composition o f
o(f,...,fy)s reduces to fi(...(frs)...)

olive

10

A Flexary Logical Framework
Flexary Interpretation of LF Primitives

» LF primitives retained but now flexary

» Flexary application = sequence arguments
f-=1f f(E,E'Y = (FE)FE
> Flexary binding = sequence variables
A E = E[x/]

M (E,ENF = MU EONCEL Fx/ (XY, X))
accordingly for I1

» LF typing rules can be reused without change

11

A Flexary Logical Framework

Type System: Natural Numbers

Axiomatized as LF declarations

+ R oIAE
t

with appropriate axioms

type

nat — nat — type
nat

nat

nat — nat — nat

12

A Flexary Logical Framework
Type System: Introduction of Sequences

Kind sequences
> F n:nat: type

Y I type" Kind

Type sequences

=Y Sig Y U:type™ T b V:type”
Y F - type? Y U,V :type™t”

Term sequences

FY Sig Y S:U:type” X T:V:type

YF i type? Y ST : UV type”™”

13

A Flexary Logical Framework
Type System: Elimination of Sequences

Term sequences

YES:U:type” T x":1<x:type Xt xx:x<n:type

Y S5¢: Uy type
accordingly for type sequences

Static bound checking:
» Only valid indices within bounds well-typed

» 2 implicit arguments for 1 < x and x < n

14

A Flexary Logical Framework

Type System: Ellipses

Ellipsis for sequence of terms

Y - n:nat:type X, x:nat, x":1<x, x,:x<nhk §S:U: type
T [Sier [UlR=y - type”

accordingly for sequence of types

Static bound checking:
» Actually binds 3 variables
» Bounds 1 < x and x < n passed as assumptions

15

A Flexary Logical Framework
Flexary Function Composition

Y F U:type" T b F: (U — U],
Y o F:Upt— U

Example: Folding
If

S:A...,A: type" and fF:A—-A— A and

then
iinatEAx:AfxS A=A

and we define
foldlSfa = (o[Ax: A fxS]iLi)a

(here Uy =Afor1<i<n+1)

16

Flexary Logics
Flexary Connectives
LFS type form : type of FOL formulas

Notation: Write form" for [form|_,

Binary conjunction
A : form — form — form
Flexary conjunction
A* : Mn: nat. form™ — form = An: nat. \F : form". fold1l F A true

Thus,
NnFy, ..., F,=(..(true\NF1)...)AF,

A*0 - = true

> Flexary proof rules also definable in terms of rules for binary
conjunction
» Other flexary connectives defined accordingly

17

Flexary Logics
Flexary Quantifiers
LFS type term : type of FOL terms

Unary universal quantifier
v : (term — form) — form
Flexary universal quantifier
V* : Mn: nat. (term” — form) — form

= An: nat. \F : term" — form.

o[\ : term' — form. \y : term' 1. VAx : term. f (y,x)]7_, F

(termi— form)— (term'—1— form)

» Flexary proof rules definable accordingly

» Other flexary quantifiers definable accordingly

18

Flexary Mathematics
Powers

» Signature of monoids in FOL

a: type
. a—a—a
e:a
» Power operator routinely used in informal mathematics

often introduced in same paragraph
but not definable in FOL

> Now: flexary monoid operator definable in flexary FOL
o :Mn:nat.a" - a = An.\x:3".foldl e xe
and thus power operator definable

power : a—mnat —a = Ax.An. e x”

19

Flexary Mathematics
Multirelations

v

Multi-relations routinely used in informal mathematics
eg,aebCc

» But cannot be defined as single operators within a fixary logic

> In flexary FOL:
multirel : Tn : nat. term™™ — (term — term — form)™ — form
= AnAX A A" [xi Xip1]ieg
» Example:

a€ bCc = multirel (a, b, c) (€,C)

20

Conclusion

v

Sequences and ellipses meta-level operators of informal
mathematics

v

But a challenge for formalized mathematics

v

Logical framework approach permits clean solution
» LFS = LF with sequences and ellipses
» flexary logics defined in LFS
» natural formalizations in flexary logics

v

Key properties

» flexary operators take natural number argument
arity polymorphism
» LFS retains semantics of LF primitives
no new type constructors, no change to typing rules
» length of sequences known to type system static bounds check

21

	Motivation
	Flexary Operators
	Flexary Binders
	Standard Solution (1)
	Standard Solution (2)
	Ellipses
	Ellipses
	Where to Formalize Flexible Arities?
	Overview

	A Flexary Logical Framework
	LF with Sequences (LFS)
	LFS Syntax
	LFS Syntax
	LFS Syntax
	Flexary Interpretation of LF Primitives
	Type System: Natural Numbers
	Type System: Introduction of Sequences
	Type System: Elimination of Sequences
	Type System: Ellipses
	Flexary Function Composition

	Flexary Logics
	Flexary Connectives
	Flexary Quantifiers

	Flexary Mathematics
	Powers
	Multirelations

	
	Conclusion

