
A Query Language for Formal Mathematical
Libraries

Florian Rabe

Jacobs University Bremen, Germany

Abstract. One of the most promising applications of mathematical
knowledge management is search: Even if we restrict attention to the
tiny fragment of mathematics that has been formalized, the amount ex-
ceeds the comprehension of an individual human.
Based on the generic representation language MMT, we introduce the
mathematical query language QMT: It combines simplicity, expressiv-
ity, and scalability while avoiding a commitment to a particular logical
formalism. QMT can integrate various search paradigms such as unifica-
tion, semantic web, or XQuery style queries, and QMT queries can span
different mathematical libraries.
We have implemented QMT as a part of the MMT API. This combina-
tion provides a scalable indexing and query engine that can be readily
applied to any library of mathematical knowledge. While our focus here
is on libraries that are available in a content markup language, QMT
naturally extends to presentation and narration markup languages.

1 Introduction and Related Work

Mathematical knowledge management applications are particularly strong at
large scales, where automation can be significantly superior to human intuition.
This makes search and retrieval pivotal MKM applications: The more the amount
of mathematical knowledge grows, the harder it becomes for users to find relevant
information. Indeed, even expert users of individual libraries can have difficulties
reusing an existing development because they are not aware of it. Therefore, this
question has received much attention.

Object query languages augment standard text search with phrase queries
that match mathematical operators and with wild cards that match arbitrary
mathematical expressions. Abstractly, an object query engine is based on an in-
dex, which is a set of pairs (l, o) where o is an object and l is the location of o. The
index is built from a collection of mathematical documents, and the result of an
object query is a subset of the index. The object model is usually based on pre-
sentation MathML and/or content MathML/OpenMath [W3C03,BCC+04], but
importers can be used to index other formats such as LaTeX. Examples for ob-
ject query languages and engines are given in [MY03,MM06,MG08,KŞ06,SL11].
A partial overview can be found in [SL11]. A central question is the use of wild
cards. An example language with complex wild cards is given in [AY08]. Most
generally, [KŞ06] uses unification queries that return all objects that can be
unified with the query.

Property query languages are similar to object query languages except
that both the index and the query use relational information that abstracts
from the mathematical objects. For example, the relational index might store
the toplevel symbol of every object or the “used-in” relation between statements.
This approximates an object index, and many property queries are special cases
of object queries. But property queries are simpler and more efficient, and they
still cover many important examples. Such languages are given in [GC03,AS04]
and [BR03] based on the Coq and Mizar libraries, respectively.

Compositional query languages focus on a complex language of query
expressions that are evaluated compositionally. The atomic queries are provided
by the elements of the queried library. SQL [ANS03] uses n-ary relations be-
tween elements, and query expressions use the algebra of relations. The SPARQL
[W3C08] data model is RDF, and queries focus on unary and binary predicates
on a set of URIs of statements. This could serve as the basis for mathematics
on the semantic web. Both data models match bibliographical meta-data and
property-based indices and could also be applied to the results of object queries
(seen as sets of pairs); but they are not well-suited for expressions. The XQuery
[W3C07] data model is XML, and query expressions are centered around oper-
ations on lists of XML nodes. This is well-suited for XML-based markup lan-
guages for mathematical documents and expressions and was applied to OMDoc
[Koh06] in [ZK09]. In [KRZ10], the latter was combined with property queries.
Very recently [ADL12] gave a compositional query language for hiproof proof
trees that integrates concepts from both object and property queries.

A number of individual libraries of mathematics provide custom query
functionality. Object query languages are used, for example, in [LM06] for Ac-
tivemath or in Wolfram|Alpha. Most interactive proof assistants permit some
object or property queries, primarily to search for theorems that are applicable
to a certain goal, e.g., Isabelle, Coq, and Matita. [Urb06] is notable for using
automated reasoning to prepare an index of all Mizar theorems.

It is often desirable to combine several of the above formalisms in the same
query. Therefore, we have designed the query language QMT with the goal of
permitting as many different query paradigms as possible. QMT uses a simple
kernel syntax in which many advanced query paradigms can be defined. This per-
mits giving a formal syntax, a formal semantics, and a scalable implementation,
all of which are presented in this paper.

QMT is grounded in the Mmt language (Module System for Mathematical
Theories) [RK11], a scalable, modular representation language for mathematical
knowledge. It is designed as a scalable trade-off between (i) a logical framework
with formal syntax and semantics and (ii) an MKM framework that does not
commit to any particular formal system. Thus, Mmt permits both adequate
representations of virtually any formal system as well as the implementation of
generic MKM services. We implement QMT on top of our Mmt system, which
provides a flexible and scalable query API and query server.

Our design has two pivotal strengths. Firstly, QMT can be applied to the
libraries of any formal system that is represented as Mmt. Queries can even span

Declaration Intended Semantics

base type a a set of objects
concept symbol c a subset of a base type
relation symbol r a relation between two base types
function symbol f a sorted first-order function
predicate symbol p a sorted first-order predicate

Kind of Expression Intended Semantics

Type T a set
Query Q : T an element of T

element query Q : t an element of t
set query Q : set(t) a subset of t

Relation R < a, a′ a relation between a and a′

Proposition F a boolean truth value

Fig. 1. QMT Notions and their Intuitions

libraries of different systems. Secondly, QMT queries can make use of other Mmt
services. For example, queries can access the inferred type and the presentation
of a found expression, which are computed dynamically.

We split the definition of QMT into two parts. Firstly, Sect. 2 defines QMT
signatures in general and then the syntax and semantics of QMT for an arbitrary
signature. Secondly, Sect. 3 describes a specific QMT signature that we use
for Mmt libraries. Our implementation, which is based on that signature, is
presented in Sect. 4.

2 The QMT Query Language

2.1 Syntax

Our syntax arises by combining features of sorted first-order logic – which leads
to very intuitive expressions – and of description logics – which leads to efficient
evaluations. Therefore, our signatures Σ contain five kinds of declarations as
given in Fig. 1.

For a given signature, we define four kinds of expressions: types T , relations
R, propositions F , and typed queries Q as listed in Fig. 1. The grammar for
signatures and expressions is given in Fig. 2.

The intuitions for most expression formation operators can be guessed easily
from their notations. In the following we will discuss each in more detail.

Regarding types T , we use product types and power type. However, we go
out of our way to avoid arbitrary nestings of type constructors. Every type is
either a product t = a1 × . . . × an of base types ai or the power type set(t) of
such a type. Thus, we are able to use the two most important type formation
operators in the context of querying: product types arise when a query contains
multiple query variables, and power types arise when a query returns multiple

Signatures Σ ::= · | Σ, a : type | Σ, c < a | Σ, r < a, a
| Σ, f : T, . . . , T → T | Σ, p : T, . . . , T → prop

Contexts Γ ::= · | Γ, x : T

Simple Types t ::= a× . . .× a
General Types T ::= t | set(t)
Relations R ::= r | R−1 | R∗ | R;R | R ∪R | R ∩R | R \R
Propositions F ::= p(Q, . . . , Q) | ¬F | F ∧ F | ∀x ∈ Q.F (x)
Queries Q ::= c | x | f(Q, . . . , Q) | Q ∗ . . . ∗Q | Qi

| R(Q) |
⋃
x∈QQ(x) | {x ∈ Q|F (x)}

Fig. 2. The Grammar for Query Expressions

results. But at the same time, the type system remains very simple and can be
treated as essentially first-order.

Regarding relations, we provide the common operations from the calculus
of binary relations: dual/inverse R−1, transitive closure R∗, composition R;R′,
union R ∪ R′, intersection R ∩ R′, and difference R \ R′. Notably absent is the
absolute complement operation RC; it is omitted because its semantics can not be
computed efficiently in general. Note that the operation R−1 is only necessary
for atomic R: For all other cases, we can put (R∗)−1 = (R−1)∗, (R;R′)−1 =

R′
−1

;R−1, and (R ∗R′)−1 = R−1 ∗R′−1 for ∗ ∈ {∪,∩, \}.
Regarding propositions, we use the usual constructors of classical first-order

logic: predicates, negation, conjunction, and universal quantification. As usual,
the other constructors are definable. However, there is one specialty: The quan-
tification ∀x ∈ Q.F (x) does not quantify over a type t; instead, it is relativized
by a query result Q : set(t). This specialty is meant to support efficient evalua-
tion: The extension of a base type is usually much larger than that of a query,
and it may not be efficiently computable or not even finite.

Regarding queries, our language combines intuitions from description and
first-order logic with an intuitive mathematical notation. Constants c, variables
x, and function application are as usual for sorted first-order logic. Q1 ∗ . . . ∗Qn
for n ∈ N and Qi for i = 1, . . . , n denote tupling and projection. R(Q) represents
the image of the object given by Q under the relation given by R.

⋃
x∈QQ

′(x)
denotes the union of the family of queries Q′(x) where x runs over all objects in
the result of Q. Finally, {x ∈ Q|F (x)} denotes comprehension on queries, i.e.,
the objects in Q that satisfy F . Just like for the universal quantification, all
bound variables are relativized to a query result to support efficient evaluation.

Remark 1. While we do not present a systematic analysis of the efficiency of
QMT, we point out that we designed the syntax of QMT with the goal of sup-
porting efficient evaluation. In particular, this motivated our distinction between
the ontology part, i.e., concept and relation symbols, and the first-order part,
i.e., the function and predicate symbols.

Indeed, every concept c < t can be regarded as a function symbol c : set(t),
and every relation r < a, a′ as a predicate symbol r : a, a′ → prop. Thus, the
ontology symbols may appear redundant — their purpose is to permit efficient
evaluations. This is most apparent for relations. For a predicate symbol p :

n not declared in Σ

n 6∈ Σ ` ·

` Σ a 6∈ Σ

` Σ, a : type

` Σ c 6∈ Σ a : type in Σ

` Σ, c < a

` Σ r 6∈ Σ
(
ai : type in Σ

)2
i=1

` Σ, r < a1, a2

` Σ f 6∈ Σ
(
`Σ Ti : type

)n+1

i=1

` Σ, f : T1, . . . , Tn → Tn+1

` Σ p 6∈ Σ
(
`Σ Ti : type

)n
i=1

` Σ, p : T1, . . . , Tn → prop

Fig. 3. Well-Formed Signatures

a, a′ → prop, evaluation requires a method that maps from JaK×Ja′K to booleans.
But for a relation symbol r < a, a′, evaluation requires a method that returns for
any u all v such that (u, v) ∈ JrK or all v such that (v, u) ∈ JrK. A corresponding
property applies to concepts.

Therefore, efficient implementations of QMT should maintain indices for
them that are computed a priori: hash sets for the concept symbols and hash
tables for the relation symbols. (Note that using hash tables for all relation sym-
bols permits fast evaluation of all relation expressions R, which is crucial for
the evaluation of queries R(Q).) The implementation of function and predicate
symbols, on the other hand, only requires plain functions that are called when
evaluating a query.

Thus, it is a design decision whether a certain feature is realized by an on-
tology or by a first-order symbol. By separating the ontology and the first-order
part, we permit simple indices for the former and retain flexible extensibility for
the latter (see also Rem. 2).

Judgment Intuition
` Σ well-formed signature Σ
`Σ T : type well-formed type T
Γ `Σ Q : T well-typed query Q of type T
Γ `Σ Q : T well-typed query Q of type T
`Σ R < a, a′ well-typed relation R between a and a′

Γ `Σ F : prop well-formed proposition F

Fig. 5. Judgments

Based on these in-
tuitions, it is straight-
forward to define the
well-formed expres-
sions, i.e., the expres-
sions that will have
a denotational seman-
tics. More formally,
we use the judg-
ments given in Fig. 5
to define the well-formed expressions over a signature Σ and a context Γ . The
rules for these judgments are given in Fig. 3 and 4.

In order to give some meaningful examples, we will already make use of the
symbols from the MMT signature, which we will introduce in Sect. 3.

(
ai : type in Σ

)n
i=1

`Σ a1 × . . .× an : type

(
ai : type in Σ

)n
i=1

`Σ set(a1 × . . .× an) : type

c < t in Σ

Γ `Σ c : set(t)

f : T1,Tn → T in Σ Γ `Σ Qi : Ti

Γ `Σ f(Q1, . . . , Qn) : T

x : T in Γ

Γ `Σ x : T

Γ `Σ Qi : ti for i = 1, . . . , n

Γ `Σ Q1 ∗ . . . ∗Qn : t1 × . . .× tn

Γ `Σ Q : t1 × . . .× tn i ∈ {1, . . . , n}

Γ `Σ Qi : ti

Γ `Σ Q : set(t) Γ, x : t `Σ Q′(x) : set(t′)

Γ `Σ
⋃
x∈Q

Q′(x) : set(t′)

Γ `Σ Q : t `Σ R < t, t′

Γ `Σ R(Q) : set(t′)

Γ `Σ Q : set(t) Γ, x : t `Σ F (x) : prop

Γ `Σ {x ∈ Q|F (x)} : set(t)

r < a, a′ in Σ

`Σ r < a, a′

`Σ R < a, a′

`Σ R−1 < a′, a

`Σ R < a, a

`Σ R∗ < a, a

`Σ R < a, a′ `Σ R′ < a′, a′′

`Σ R;R′ < a, a′′

`Σ R < a, a′ `Σ R′ < a, a′ ∗ ∈ {∪,∩, \}

`Σ R ∗R′ < a, a′

p : T1, . . . , Tn → prop in Σ Γ `Σ Qi : Ti

Γ `Σ p(Q1, . . . , Qn) : prop

Γ `Σ F : prop

Γ `Σ ¬F : prop

Γ `Σ F : prop Γ `Σ F ′ : prop

Γ `Σ F ∧ F ′ : prop

Γ `Σ Q : set(t) Γ, x : t `Σ F (x) : prop

Γ `Σ ∀x ∈ Q.F (x) : prop

Fig. 4. Well-Formed Expressions

Example 1. Consider a base type id : type of MMT identifiers in some fixed
MMT library. Moreover, consider a concept symbol theory < id giving the iden-
tifiers of all theories, and a relation symbol includes < id , id that gives the
relation “theory A directly includes theory B”.

Then the query theory of type set(id) yields the set of all theories. Given a

theory u, the query includes∗
−1

(u) of type set(id) yields the set of all theories
that transitively include u.

Example 2 (Continued). Additionally, consider a concept constant < id of iden-
tifiers of MMT constants, relation symbol declares < id , id that relates every
theory to the constants declared in it, a base type obj : type of OpenMath
objects, a function symbol type : id → obj that maps each MMT constant to its
type, and a predicate symbol occurs : id , obj → prop that determines whether
an identifier occurs in an object.

Then the following query of type set(id) retrieves all constants that are
included into the theory u and whose type uses the identifier v:

{x ∈ (includes∗; declares)(u) | occurs(v, type(x))}

2.2 Semantics
Judgment Semantics
`Σ T : type JT K ∈ SET

Γ `Σ Q : t JQKα ∈ JtK
Γ `Σ Q : set(t) JQKα ⊆ JtK

`Σ R < a, a′ JRK ⊆ JaK× Ja′K
Γ `Σ F : prop JF Kα ∈ {0, 1}

Fig. 6. Semantics of Judgments

A Σ-model assigns to every symbol s in
Σ a denotation. The formal definition is
given in Def. 1. Relative to a fixed model
M (which we suppress in the notation),
each well-formed expression has a well-
defined denotational semantics, given by
the interpretation function J−K. The se-
mantics of propositions and queries in context Γ is relative to an assignment α,
which assigns values to all variables in Γ . An overview is given in Fig. 6. The
formal definition is given in Def. 2.

Definition 1 (Models). A Σ-model M assigns to every Σ-symbol s a denota-
tion sM such that

– aM is a set for a : type
– cM ⊆ JaK for c < a
– rM ⊆ JaK× Ja′K for r < a, a′

– fM : JT1K× . . .× JTnK→ JT K for f : T1, . . . , Tn → T
– pM : JT1K× . . .× JTnK→ {0, 1} for p : T1, . . . , Tn → prop

Definition 2 (Semantics). Given a Σ-model M , the interpretation function
J−K is defined as follows.
Semantics of types:

– Ja1 × . . .× anK is the cartesian product aM1 × . . .× aMn
– Jset(t)K is the power set of JtK

Semantics of relations:

– JrK = rM

– JR−1K is the dual/inverse relation of JRK, i.e., the set {(u, v) | (v, u) ∈ JRK}

– R∗ is the transitive closure of JRK
– R;R′ is the composition of JRK and JR′K,

i.e., the set {(u,w)| exists v such that (u, v) ∈ JRK, (v, w) ∈ JR′K}
– R∪R′, R∩R′, and R\R′ are interpreted in the obvious way using the union,

intersection, and difference of sets

Semantics of propositions under an assignment α:

– Jp(Q1, . . . , Qn)Kα = pM (JQ1Kα, . . . , JQnKα)
– J¬F Kα = 1 iff JF Kα = 0
– JF ∧ F ′Kα = 1 iff JF Kα = 1 and JF ′Kα = 1
– J∀x ∈ Q.F (x)Kα = 1 iff JF (x)Kα,x/u = 1 for all u ∈ JQKα

Semantics of queries Γ `Σ Q : T under an assignment α:

– JcKα = cM

– JxKα = α(x)
– Jf(Q1, . . . , Qn)Kα = fM (JQ1Kα, . . . , JQnKα)
– JR(Q)Kα = {u ∈ Ja′K | (JQKα, u) ∈ JRK} for a relation `Σ R < a, a′ and a

query Γ `Σ Q : a
informally, JR(Q)Kα is the image of JQKα under JRK

– J
⋃
x∈QQ

′(x)Kα is the union of all sets JQ′(x)Kα,x/u where u runs over all
elements of JQKα

– J{x ∈ Q|F (x)}Kα is the subset of JQKα containing all elements u for which
JF (x)Kα,x/u = 1

Remark 2. It is easy to prove that if all concept and relation symbols are inter-
preted as finite sets and if all function symbols with result type set(t) always
return finite sets, then all well-formed queries of type set(t) denote a finite sub-
set of JtK. Moreover, if the interpretations of the function and predicate symbols
are computable functions, then the interpretation of queries is computable as
well. This holds even if base types are interpreted as infinite sets.

2.3 Predefined Symbols Symbol Type Semantics
{ } : t→ set(t) the singleton set
.
= : t, t→ prop equality
∈ : t, set(t)→ prop elementhood

Fig. 7. Predefined Symbols

We use a number of predefined
function and predicate symbols
as given in Fig. 7. These are as-
sumed to be implicitly declared
in every signature, and their se-
mantics is fixed. All of these symbols are overloaded for all simple types t. More-
over, we use special notations for them.

All of this is completely analogous to the usual treatment of equality as a
predefined predicate symbol in first-order logic. The only difference is that our
slightly richer type system calls for a few additional predefined symbols.

It is easy to add further predefined symbols, in particular equality of sets
(which, however, may be inefficient to decide) and binary union of queries. We
omit these here for simplicity.

2.4 Definable Queries

Using the predefined symbols, we can define a number of further useful query
formation operators:

Example 3. Using the singleton symbol { }, we can define for Γ `Σ Q : set(t)
and Γ, x : t `Σ q(x) : t′

{q(x) : x ∈ Q} :=
⋃
x∈Q
{q(x)} of type set(t′).

It is easy to show that, semantically, this is the replacement operator, i.e.,
J{q(x) : x ∈ Q}Kα is the set containing exactly the elements Jq(x)Kα,x/u for any
u ∈ JQKα.

Example 4 (SQL-style Queries). For a query `Σ Q : set(a1 × . . .× aN), natural
numbers n1, . . . , nk ∈ {1, . . . , N}, and a proposition x1 : a1, . . . , xN : aN `Σ
F (x1, . . . , xn) : prop, we write

select n1, . . . , nk from Q where F (1, . . . , N)

for the query

{xn1
∗ . . . ∗ xnk

: x ∈ {y ∈ Q |F (y1, . . . , yN)}}

of type set(an1
× . . .× ank

).

Example 5 (XQuery-style Queries). For queries `Σ Q : set(a) and x : a `Σ
q′(x) : a′ and x : a, y : a′ `Σ Q′′(x, y) : set(a′′), and a proposition x : a, y : a′ `Σ
F (x, y) : prop, we write

for x in Q let y = q′(x) where F (x, y) return Q′′(x, y)

for the query⋃
z∈P

Q′′(z1, z2) with P :=
{
z ∈ {x ∗ q′(x) : x ∈ Q} | F (z1, z2)

}
of type set(a′′).

Example 6 (DL-style Queries). For a relation `Σ R < a, a′, a concept c < a, and
a query `Σ Q : set(a′), we write �cR.Q for the query {x ∈ c | ∀y ∈ R(x).y ∈ Q}
of type set(a).

Note that, contrary to the universal restriction �R.Q in description logic,
we have to restrict the query to all x of concept c instead of querying for all x
of type a. This makes sense in our setting because we assume that we can only
iterate efficiently over concepts but not over (possibly infinite!) base types.

However, this is not a loss of generality: individual signatures may always
couple a base type a with a concept isa such that JisaK = JaK.

Declaration Intuition

Base types

id : type URIs of Mmt declarations
obj : type Mmt (OpenMath) objects
xml : type XML elements

Concepts

theory < id theories
view < id views
constant < id constants
style < id styles

Relations

includes < id , id inclusion between theories
declares < id , id declarations in a theory
domain < id , id domain of structure/view
codomain < id , id codomain of structure/view

Functions

type : id → obj type of a constant
def : id → obj definiens of a constant
infer : id , obj → obj type inference relative to a theory
argp : obj → obj argument at position p
subobj : obj , id → set(obj) subobjects with a certain head
unify : obj → set(id × obj × obj) all objects that unify with a given one
render : id , id → xml rendering of a declaration using a certain

style
render : obj , id → xml rendering of an object using a certain style
u : id literals for Mmt URIs u
o : obj literals for Mmt objects o

Predicates

occurs : id , obj → prop occurs in

Fig. 8. The QMT Signature for Mmt

3 Querying MMT Libraries

We will now fix an Mmt-specific signature Σ that customizes QMT with the
Mmt ontology as well as with several functions and predicates based on the
Mmt specification. The declarations of Σ are listed in Fig. 8.

For simplicity, we avoid presenting any details of Mmt and refer to [RK11]
for a comprehensive description. For our purposes, it is sufficient to know that
Mmt organizes mathematical knowledge in a simple ontology that can be seen
as the fragment of OMDoc pertaining to formal theories. We will explain the
necessary details below when explaining the respective Σ-symbols.

An Mmt library is any set of Mmt declarations (not necessarily well-typed
or closed under dependency). We will assume a fixed library L in the following.
Based on L, we will define a model M by giving the interpretation sM for every
symbol s listed in Fig. 8.

Base Types We use three base types. Firstly, every Mmt declaration has a
globally unique canonical identifier, its Mmt URI. We use this to define idM

as the set of all Mmt URIs declared in L.

objM the set of all OpenMath objects that can be formed from the symbols
in idM . In order to handle objects with free variables conveniently, we use the
following convention: All objects in objM are technically closed; but we permit
the use of a special binder symbol free, which can be used to formally bind
the free variables. This has the advantage that the context of an object, which
may carry, e.g., type attributions, is made explicit. Using general OpenMath
objects means that the type obj is subject to exactly α-equality and attribution
flattening, the only equalities defined in the OpenMath standard. The much
more difficult problem of queries relative to a stronger equality relation remains
future work.

The remaining base type xml is a generic container for any non-Mmt XML
data such as HTML or presentation MathML. Thus, xmlM is the set of all XML
elements. This is useful because the Mmt API contains several functions that
return XML.

Ontology For simplicity, we restrict attention to the most important notions of
the Mmt ontology; adding the remaining notions is straightforward. The ontol-
ogy only covers the Mmt declarations, all of which have canonical identifiers.
Thus, all concepts refine the type id , and all relations are between identifiers.

Among the Mmt concepts, theories are used to represent logics, theories of
a logic, ontologies, type theories, etc. They contain constants, which represent
function symbols, type operators, inference rules, theorems, etc. Constants may
have OpenMath objects [BCC+04] as their type or definiens. Theories are
related via theory morphisms called views. These are truth-preserving transla-
tions from one theory to another and represent translations and models. Theories
and views together form a multi-graph of theories across which theorems can be
shared. Finally, styles contain notations that govern the translation from con-
tent to presentation markup.

Mmt theories, views, and styles can be structured by a strong module sys-
tem. The most important modular construct is the includes relation for explicit
imports. The declares relation relates every theory to the constants it declares;
this includes the constants that are not explicitly declared in L but induced
by the module system. Finally, two further relations connect each view to its
domain and codomain.

All concepts and relations are interpreted in the obvious way. For example,
the set theoryM contains the Mmt URIs of all theories in L.

Function and Predicate Symbols Regarding the function and predicate symbols,
we are very flexible because a wide range of operations can be defined for Mmt
libraries. In particular, every function implemented in the Mmt API can be
easily exposed as a Σ-symbol. Therefore, we only show a selection of symbols
that showcase the potential.

In Sect. 2, we have deliberately omitted partial function symbols in order
to simplify the presentation of our language. However, in practice, it is often
necessary to add them. For example, def M must be a partial function because
(i) the argument might not be the Mmt URI of a constant declaration in L,
or (ii) even if it is, that constant may be declared without a definiens. The
best solution for an elegant treatment of partial functions is to use option types
opt(t) akin to set types set(t). However, for simplicity, we make J−K a partial
function that is undefined whenever the interpretation of its argument runs into
an undefined function application. This corresponds to the common concept of
queries returning an error value.

The partial functions typeM and def M take the identifier of a constant
declaration and return its type or definiens, respectively. They are undefined for
other identifiers.

The partial function inferM (u, o) takes an object o and returns its dynam-
ically inferred type. It is undefined if o is ill-typed. Since Mmt does not com-
mit to a type system, the argument u must identify the type system (which
is represented as an Mmt theory itself). If O is a binding object of the form
OMBIND(OMS(free), Γ, o′), the type of o′ is inferred in context Γ .

argp is a family of function symbols indexed by a natural number p. p in-

dicates the position of a direct subobject (usually an argument), and argMp (o)

is the subobject of o at position p. In particular, argMi (OMA(f, a1, . . . , an)) =
ai. Note that arbitrary subobjects can be retrieved by iterating argp. Simi-

larly, subobjM (o, h) is the set of all subobjects of o whose head is the sym-
bol with identifier h. In particular, the head of OMA(OMS(h), a1, . . . , an) is h. In
both cases, we keep track of the free variables, e.g., argM2 (OMBIND(b, Γ, o)) =
OMBIND(OMS(free), Γ, o) for b 6= OMS(free).

unifyM (O) performs an object query: It returns the set of all tuples u ∗ o ∗ s
where u is the Mmt URI of a declaration in L that contains an object o that
unifies with O using the substitution s. Here we use a purely syntactic definition
for unifiability of OpenMath objects.

renderM (o, u) and renderM (d, u) return the presentation markup dynami-
cally computed by the Mmt rendering engine. This is useful because the query
and the rendering engine are often implemented on the same remote server.
Therefore, it is reasonable to compute the rendering of the query results, if de-
sired, as part of the query evaluation. Moreover, larger signatures might provide
additional functions to further operate on the presentation markup. render is
overloaded because we can present both Mmt declarations and Mmt objects.
In both cases, u is the Mmt URI of the style providing the notations for the
rendering.

The predicate symbol occurs takes an object O and an identifier u, and
returns true if u occurs in O.

Finally, we permit literals, i.e., arbitrary URIs and arbitrary OpenMath
objects may be used as nullary constants, which are interpreted as themselves
(or as undefined if they are not in the universe). This is somewhat inelegant
but necessary in practice to form interesting queries. A more sophisticated QMT

signature could use one function symbol for every OpenMath object constructor
instead of using OpenMath literals.

Example 7. An Mmt theory graph is the multigraph formed by using the theo-
ries as nodes and all theory morphisms between them as edges. The components
of the theory graph can be retrieved with a few simple queries.

Firstly, the set of theories is retrieved simply using the query theory . Secondly,
the theory morphisms are obtained by two different queries:

views {v ∗ x ∗ y : v ∈ view , x ∈ domain(v), y ∈ domain(v)}
inclusions

⋃
y∈theory{x ∗ y : x ∈ includes∗(y)}

The first one returns all view identifiers with their domain and codomain. Here
we use an extension of the replacement operator { : } from Ex. 3 to multiple
variables. It is straightforward to define in terms of the unary one. The second
query returns all pairs of theories between which there is an inclusion morphism.

Example 8. Consider a constant identifier ∃I for the introduction rule of the
existential quantifier from the natural deduction calculus. It produces a con-
structive existence proof of ∃x.P (x); it takes two arguments: a witness w, and a
proof of P (w). Moreover, consider a theorem with identifier u. Recall that using
the Curry-Howard representation of proofs-as-objects, a theorem u is a constant,
whose type is the asserted formula and whose definiens is the proof.

Then the following query retrieves all existential witnesses that come up in
the proof of u:

{arg1(x) : x ∈ subobj (def (u),∃I)}

Here we have used the replacement operator introduced in Ex. 3.

Example 9 (Continuing Ex. 8). Note that when using ∃I, the proved formula P
is present only implicitly as the type of the second argument of ∃I. If the type
system is given by, for example, LF and type inference for LF is available, we
can extend the query from Ex. 8 as follows:

{arg1(x) ∗ infer(LF , arg2(x)) : x ∈ subobj (def (u),∃I)}

This will retrieve all pairs (w,P) of witnesses and proved formulas that come
up in the proof of u.

4 Implementation

We have implemented QMT as a part of the Mmt API. The implementation
includes a concrete XML syntax for queries and an integration with the Mmt
web server, via which the query engine is exposed to users. The server can
run as a background service on a local machine as well as a dedicated remote
server. Sources, binaries, and documentation are available at the project web
site [Rab08].

The Mmt API already implements the Mmt ontology so that appropriate
indices for the semantics of all concept and relation symbols are available. Indices
scale well because they are written to the hard drive and cached to memory
on demand. With two exceptions, the semantics of all function and predicate
symbols is implemented by standard Mmt API functions.

The semantics of unify is computed differently: A substitution tree index of
the queries library is maintained separately by an installation of MathWebSearch
[KŞ06]. Thus, QMT automatically inherits some heuristics of MathWebSearch,
such as unification up to symmetry of certain relation symbols. MathWebSearch
and query engine run on the same machine and communicate via HTTP.

Another subtlety is the semantics of infer . The Mmt API provides a plugin
interface, through which individual type systems can be registered; the first
argument to inferM is used to choose an applicable plugin. In particular, we
provide a plugin for the logical framework LF [HHP93], which handles type
inference for any type system that is formalized in LF; this covers all type systems
defined in the LATIN library [CHK+11] and thus also applies to our imports of
the Mizar [TB85] and TPTP libraries [SS98].

Query servers for individual libraries can be set up easily. In fact, because
the Mmt API abstracts from different backends, queries automatically return
results from all libraries that are registered with a particular instance of the
Mmt API. This permits queries across libraries, which is particularly interesting
if libraries share symbols. Shared symbols arise, for example, if both libraries use
the standard OpenMath CDs where possible or if overlap between the libraries’
underlying meta-languages is explicated in an integrating framework like the
LATIN atlas [CHK+11].

Example 10. The LATIN library [CHK+11] consists of over 1000 highly modu-
larized LF signatures and views between them, formalizing a variety of logics,
type theories, set theories, and related formal systems. Validating the library
and producing the index for the Mmt ontology takes a few minutes with typical
desktop hardware; reading the index into memory takes a few seconds. Typical
queries as given in this paper are evaluated within seconds.

As an extreme example, consider the query Q = Declares(theory). It returns
in less than a second the about 2000 identifiers that are declared in any theory.
The query

⋃
x∈Q{x∗ type(x)} returns the same number of results but pairs every

declaration with its type. This requires the query engine to read the types of all
declarations (as opposed to only their identifiers). If none of these are cached in
memory yet, the evaluation takes about 4 minutes.

5 Conclusion and Future Work

We have introduced a simple, expressive query language for mathematical theo-
ries (QMT) that combines features of compositional, property, and object query
languages. QMT is implemented on top of the Mmt API; that provides any li-
brary that is serialized as Mmt content markup with a scalable, versatile query-
ing engine out of the box. As both Mmt and its implementation are designed to

admit natural representations of any declarative language, QMT can be readily
applied to many libraries including, e.g., those written in Twelf, Mizar, or TPTP.

Our presentation focused on querying formal mathematical libraries. This
matches our primary motivation but is neither a theoretical nor a practical re-
striction. For example, it is straightforward to add a base type for presentation
MathML and some functions for it. MathWebSearch can be easily generalized
to permit unification queries on presentation markup. This also permits queries
that mix content and presentation markup, or content queries that find presen-
tation results. Moreover, for presentation markup that is generated from content
markup, it is easy to add a function that returns the corresponding content item
so that queries can jump back and forth between them.

Similarly, we can give a QMT signature with base types for authors and
documents (papers, book chapters, etc.) as well as relations like author-of and
cites. It is easy to generate the necessary indices from existing databases and to
reuse our implementation for them. Moreover, with a relation mentions between
papers and the type id of mathematical concepts, we can combine content and
narrative aspects in queries. An index for the mentions relation is of course
harder to obtain, which underscores the desirability of mathematical documents
that are annotated with content URIs.

References

ADL12. D. Aspinall, E. Denney, and C. Lüth. Querying Proofs. In Proceedings of
LPAR, 2012. To appear.

ANS03. ANSI/ISO/IEC. 9075:2003, Database Language SQL, 2003.

AS04. Andrea Asperti and Matteo Selmi. Efficient Retrieval of Mathematical State-
ments. In A. Asperti, G. Bancerek, and A. Trybulec, editors, Mathematical
Knowledge Management, pages 17–31. Springer, 2004.

AY08. M. Altamimi and A. Youssef. A Math Query Language with an Expanded
Set of Wildcards. Mathematics in Computer Science, 2:305–331, 2008.

BCC+04. S. Buswell, O. Caprotti, D. Carlisle, M. Dewar, M. Gaetano, and
M. Kohlhase. The Open Math Standard, Version 2.0. Technical report, The
Open Math Society, 2004. See http://www.openmath.org/standard/om20.

BR03. G. Bancerek and P. Rudnicki. Information Retrieval in MML. In A. Asperti,
B. Buchberger, and J. Davenport, editors, Mathematical Knowledge Manage-
ment, pages 119–132. Springer, 2003.

CHK+11. M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and F. Rabe.
Project Abstract: Logic Atlas and Integrator (LATIN). In J. Davenport,
W. Farmer, F. Rabe, and J. Urban, editors, Intelligent Computer Mathe-
matics, volume 6824 of Lecture Notes in Computer Science, pages 287–289.
Springer, 2011.

GC03. F. Guidi and C. Sacerdoti Coen. Querying Distributed Digital Libraries of
Mathematics. In T. Hardin and R. Rioboo, editors, Proceedings of Calcule-
mus, pages 17–30, 2003.

HHP93. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, 1993.

http://www.openmath.org/standard/om20

Koh06. M. Kohlhase. OMDoc: An Open Markup Format for Mathematical Docu-
ments (Version 1.2). Number 4180 in Lecture Notes in Artificial Intelligence.
Springer, 2006.

KRZ10. M. Kohlhase, F. Rabe, and V. Zholudev. Towards MKM in the Large: Modu-
lar Representation and Scalable Software Architecture. In S. Autexier, J. Cal-
met, D. Delahaye, P. Ion, L. Rideau, R. Rioboo, and A. Sexton, editors, In-
telligent Computer Mathematics, volume 6167 of Lecture Notes in Computer
Science, pages 370–384. Springer, 2010.

KŞ06. M. Kohlhase and I. Şucan. A Search Engine for Mathematical Formulae. In
T. Ida, J. Calmet, and D. Wang, editors, Artificial Intelligence and Symbolic
Computation, pages 241–253. Springer, 2006.

LM06. P. Libbrecht and E. Melis. Methods to Access and Retrieve Mathematical
Content in ActiveMath. In A. Iglesias and N. Takayama, editors, International
Congress on Mathematical Software, pages 331–342. Springer, 2006.

MG08. J. Mǐsutka and L. Galamboš. Extending full text search engine for mathe-
matical content. In P. Sojka, editor, Towards a Digital Mathematics Lbrary,
pages 55–67, 2008.

MM06. R. Munavalli and R. Miner. MathFind: a math-aware search engine. In
E. Efthimiadis, S. Dumais, D. Hawking, and K. Järvelin, editors, Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, page 735. ACM, 2006.

MY03. B. Miller and A. Youssef. Technical Aspects of the Digital Library of Math-
ematical Functions. Annals of Mathematics and Artificial Intelligence, 38(1-
3):121–136, 2003.

Rab08. F. Rabe. The MMT System, 2008. see https://trac.kwarc.info/MMT/.
RK11. F. Rabe and M. Kohlhase. A Scalable Module System. see http://arxiv.

org/abs/1105.0548, 2011.
SL11. P. Sojka and M. Ĺıska. Indexing and Searching Mathematics in Digital

Libraries - Architecture, Design and Scalability Issues. In J. Davenport,
W. Farmer, J. Urban, and F. Rabe, editors, Intelligent Computer Mathe-
matics, pages 228–243. Springer, 2011.

SS98. G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning, 21(2):177–203, 1998.

TB85. A. Trybulec and H. Blair. Computer Assisted Reasoning with MIZAR. In
A. Joshi, editor, Proceedings of the 9th International Joint Conference on
Artificial Intelligence, pages 26–28, 1985.

Urb06. J. Urban. MOMM - Fast Interreduction and Retrieval in Large Libraries
of Formalized Mathematics. International Journal on Artificial Intelligence
Tools, 15(1):109–130, 2006.

W3C03. W3C. Mathematical Markup Language (MathML) Version 2.0 (second edi-
tion), 2003. See http://www.w3.org/TR/MathML2.

W3C07. W3C. XQuery 1.0: An XML Query Language, 2007. http://www.w3.org/

TR/xquery/.
W3C08. W3C. SPARQL Query Language for RDF, 2008. http://www.w3.org/TR/

rdf-sparql-query/.
ZK09. V. Zholudev and M. Kohlhase. TNTBase: a Versioned Storage for XML. In

Proceedings of Balisage: The Markup Conference 2009, volume 3 of Balisage
Series on Markup Technologies. Mulberry Technologies, Inc., 2009.

https://trac.kwarc.info/MMT/
http://arxiv.org/abs/1105.0548
http://arxiv.org/abs/1105.0548
http://www.w3.org/TR/MathML2
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

	1 Introduction and Related Work
	2 The QMT Query Language
	2.1 Syntax
	2.2 Semantics
	2.3 Predefined Symbols
	2.4 Definable Queries

	3 Querying MMT Libraries
	4 Implementation
	5 Conclusion and Future Work

