
The MMT API: A Generic MKM System

Florian Rabe

Computer Science, Jacobs University Bremen, Germany
http://trac.kwarc.info/MMT

Abstract. The Mmt language has been developed as a scalable repre-
sentation and interchange language for formal mathematical knowledge.
It permits natural representations of the syntax and semantics of virtu-
ally all declarative languages while making Mmt-based MKM services
easy to implement. It is foundationally unconstrained and can be instan-
tiated with specific formal languages.
The Mmt API implements the Mmt language along with multiple back-
ends for persistent storage and frontends for machine and user access.
Moreover, it implements a wide variety of Mmt-based knowledge man-
agement services. The API and all services are generic and can be applied
to any language represented in Mmt. A plugin interface permits injecting
syntactic and semantic idiosyncrasies of individual formal languages.

The Mmt Language Content-oriented representation languages for mathemati-
cal knowledge are usually designed to focus on either of two goals: (i) the automa-
tion potential offered by mechanically verifiable representations, as pursued in
semi-automated proof assistants like Isabelle and (ii) the universal applicability
offered by a generic meta-language, as pursued in XML-based content markup
languages like OMDoc. The Mmt language [11] (Module system for Mathe-
matical Theories) was designed to realize both goals in one coherent system. It
uses a minimal number of primitives with a precise semantics chosen to permit
natural and adequate representations of many individual languages.

A key feature is foundation-independence: Mmt systematically avoids a com-
mitment to a particular type theory or logic. Instead, it represents every formal
system as an Mmt theory: domain theories (like the theory Group), logics (like
first-order logic FOL), and logical frameworks (like LF [4]) are represented uni-
formly as Mmt theories. These theories are related by the meta-theory relation,
e.g., LF is the meta-theory of FOL, which in turn is the meta-theory of Group.
Mmt uses this relation to obtain the semantics of a theory from that of its meta-
theory; thus, an external semantics (called the foundation), e.g., a research article
or an implementation, only has to be supplied for the topmost meta-theories.
For example, a foundation for LF can be given in the form of a type system.

Theories contain typed symbol declarations, which permit the uniform repre-
sentation of constants, functions, and predicates as well as – via the Curry-
Howard correspondence – judgments, inference rules, axioms, and theorems.
Theories are related via theory morphisms, which subsume translations, func-
tors, and models. Finally, Mmt provides a module system for building large
theories and morphisms via reuse and inheritance.

http://trac.kwarc.info/MMT


Mathematical objects such as terms, types, formulas, and proofs are repre-
sented uniformly as OpenMath objects [1], which are formed from the symbols
available to the theory under consideration: For example, LF declares the sym-
bols type and λ; FOL declares ∀ and ⇒, and Group declares ◦ and e. Mmt
is agnostic in the typing relation between these objects and instead delegates
the resolution of typing judgments to the foundation. Then all Mmt results are
obtained for arbitrary foundations. For example, Mmt guarantees that theory
morphisms translate objects in a typing- and truth-preserving way, which is the
crucial invariant permitting the reuse of results in large networks of theories.

The Mmt API Exploiting the small number of primitives in Mmt, the Mmt
API provides a comprehensive, scalable implementation of Mmt itself and of
Mmt-based knowledge management (KM) services. The development is inten-
tionally application-independent : It focuses on the data model of Mmt and its
KM services in a way that makes the integration into specific applications as
easy as possible. But by itself, it provides only a basic user interface.

All algorithms are implemented generically and relegate all foundation-specific
aspects to plugins. Concrete applications usually provide a few small plugins to
customize the behavior to one specific foundation and a high-level component
that connects the desired Mmt services to a user interface.

The API is written in the functional and object-oriented language Scala [9],
which is fully compatible with Java so that API plugins and applications can
be written in either language. Excluding plugins and libraries, it comprises over
20, 000 lines of Scala code compiling into about 3000 Java class files totaling
about 5 MB of platform-independent bytecode. Sources, binaries, API documen-
tation, and user manual are available at http://trac.kwarc.info/MMT.

Knowledge Management Services The Mmt API provides a suite of coherently
integrated KM services, which we only summarize here because they have been
presented individually. A notation language based on [7] is used to serialize Mmt
in arbitrary output formats. Notations are grouped into styles, and a rendering
engine presents any Mmt concept according to the chosen style.

Mmt content can be organized in archives [5], a light-weight project ab-
straction to integrate source files, content markup, narrative structure, notation
indices, and RDF-style relational indices. Archives can be built, indexed, and
browsed, and simplify distribution and reuse. A query language [10] integrates
hierarchic, relational, and unification-based query paradigms. A change manage-
ment infrastructure [6] permits detecting and propagating and changes at the
level of individual OpenMath objects.

User and System Interfaces If run as a standalone application, the API responds
with a shell that interacts via standard input/output. The shell is scriptable,
which permits users and application developers to initialize and configure it
conveniently. For example, to check the theory Group, the initialization script
would first register the Mmt theory defining the syntax of LF and then a plugin

http://trac.kwarc.info/MMT


providing a foundation for LF, then register the theory FOL, and finally check
the file containing the theory Group.

A second frontend is given by an HTTP server. For machine interaction, it
exposes all API functionality and KM services via a RESTful interface, which
permits developing Mmt-based applications outside the Java/Scala world. For
human interaction, the HTTP server offers an interactive web browser based on
HTML+presentation MathML. The latter is computed on demand according to
the style interactively selected by the user. Based on the JOBAD JavaScript
library [3], user interaction is handled via JavaScript and Ajax. In particular,
Mmt includes a JOBAD module that provides interactive functionality such as
definition lookup and type inference.

To facilitate distributing Mmt content, all Mmt declarations are referenced
by canonical logical identifiers (the Mmt URIs), and their physical locations
(their URLs) remain transparent. This is implemented as a catalog that trans-
lates Mmt URIs into URLs according to the registered knowledge repositories.
Mmt declarations are retrieved and loaded into memory transparently when
needed so that storage and memory management are hidden from high-level ser-
vices, applications, and users. Supported knowledge repositories are file systems,
SVN working copies and repositories, and TNTBase databases [12]. The latter
also supports Mmt-specific indexing and querying functions [8] permitting, e.g.,
the efficient retrieval of the dependency closure of an Mmt knowledge item.

A Specific Application for a Specific Foundation The LATIN project [2] built
an atlas of logics and related formal systems. The atlas is realized as an Mmt
project, and Mmt is used for building and interactively browsing the atlas.

All theories in the atlas use LF as their meta-theory, which defines the ab-
stract syntax of LF and thus of the logics in the atlas.

For concrete syntax, the Twelf implementation of LF is used. To integrate
Twelf with Mmt, LATIN developed an Mmt plugin that calls Twelf to read
individual source files and convert them to OMDoc, which Mmt reads natively.

Based on this import, Mmt’s foundation-independent algorithms can index
and catalog the LATIN atlas and make it accessible to KM services and appli-
cations. Here the use of Twelf remains fully transparent: An application sends
only an Mmt URI (e.g., the one LATIN defines for the theory FOL) to Mmt
and receives the corresponding Scala object.

From the perspective of Mmt, Twelf is an external tool for parsing and type
reconstruction that is applicable only to theories whose meta-theory is LF. From
the perspective of Twelf on the other hand, the Mmt theory LF does not exist.
Instead, the symbols type, λ, etc. are implemented directly in Twelf’s underlying
programming language.

This is a typical situation: Generally, Mmt uses the meta-theory to determine
which plugin is applicable, and these plugins hard-code the semantics of the
respective meta-theory. Similar concrete syntax plugins can be written for most
languages and exist for, e.g., the ATP interface language TPTP, the ontology
language OWL, and the Mizar language for formalized mathematics.



LATIN also customizes the Mmt web server by providing a style that pro-
vides notations for objects from theories with meta-theory LF. The above screen
shot shows the generic web server displaying a theory IMPExt: It imports the
theory IMP of the implication connective imp and extends it with derived rules
for the introduction and elimination of double implications, i.e., formulas of the
form A imp (B imp C). The symbol impI represents the derivation of the rule

A,B`C
`A imp (B impC) . Via the context menu, the user has called type inference on the

selected subobject, which opened a dialog showing the dynamically inferred type.
The interactive type inference is implemented using the HTTP interface to

the Mmt API. First of all, the LATIN style is such that the rendered HTML
includes parallel markup in the form of special attributes on the presentation
MathML elements. JavaScript uses them to build an Mmt query that is posted
to the server as an Ajax request and whose response is shown in the dialog. This
query bundles multiple Mmt API calls into a single HTTP request-response
cycle: First the parallel markup is used to retrieve the OpenMath object cor-
responding to the selected expression (and its context), then type inference is
called, and finally the rendering engine is called to render the type as presenta-
tion MathML.

For the type inference, LATIN provides one further plugin: a foundation
plugin that supplies the typing relation for theories with meta-theory LF. Mmt
uses it to perform type inference directly in memory without having to call
external tools like Twelf. Such foundation plugins are easy to write because
they can focus on the logical core of the type system and, e.g., parsing and
module system remain transparent to the plugin. For example, the plugin for
LF comprises only 200 lines of code

Except for the concrete syntax plugin, the presentation style, and the foun-
dation plugin, all steps of the above example are foundation-independent and
are immediately available for Mmt content written in any other meta-theory.
Moreover, being a logical framework, these plugins LF are immediately inherited
by all logics defined in LF: We obtain, e.g., type inference for FOL and Group
(in fact: for all logics defined in LATIN) without writing additional plugins.



Furthermore, all implementations are application-independent and can be
immediately integrated into any application, e.g., a Wiki containing LF objects.
This customization of Mmt to specific foundations and specific applications
occurs at minimal cost, a principle we call rapid prototyping for formal ystems.

Acknowledgements Over the last 6 years, contributions to the API or to individ-
ual plugins have been made by Maria Alecu, Alin Iacob, Catalin David, Stefania
Dumbrava, Dimitar Misev, Fulya Horozal, Füsun Horozal, Mihnea Iancu, Felix
Mance, and Vladimir Zamdzhiev. Some of them were partially supported by
DFG grant KO-2428/9-1.

References

1. S. Buswell, O. Caprotti, D. Carlisle, M. Dewar, M. Gaetano, and M. Kohlhase.
The Open Math Standard, Version 2.0. Technical report, The Open Math Society,
2004. See http://www.openmath.org/standard/om20.

2. M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and F. Rabe. Project Ab-
stract: Logic Atlas and Integrator (LATIN). In J. Davenport, W. Farmer, F. Rabe,
and J. Urban, editors, Intelligent Computer Mathematics, pages 289–291. Springer,
2011.

3. J. Gičeva, C. Lange, and F. Rabe. Integrating Web Services into Active Math-
ematical Documents. In J. Carette, L. Dixon, C. Sacerdoti Coen, and S. Watt,
editors, Intelligent Computer Mathematics, pages 279–293. Springer, 2009.

4. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the Association for Computing Machinery, 40(1):143–184, 1993.

5. F. Horozal, A. Iacob, C. Jucovschi, M. Kohlhase, and F. Rabe. Combining Source,
Content, Presentation, Narration, and Relational Representation. In J. Davenport,
W. Farmer, F. Rabe, and J. Urban, editors, Intelligent Computer Mathematics,
pages 212–227. Springer, 2011.

6. M. Iancu and F. Rabe. Management of Change in Declarative Languages. In
J. Campbell, J. Carette, G. Dos Reis, J. Jeuring, P. Sojka, V. Sorge, and M. Wenzel,
editors, Intelligent Computer Mathematics, pages 325–340. Springer, 2012.

7. M. Kohlhase, C. Müller, and F. Rabe. Notations for Living Mathematical Docu-
ments. In S. Autexier, J. Campbell, J. Rubio, V. Sorge, M. Suzuki, and F. Wiedijk,
editors, Mathematical Knowledge Management, pages 504–519. Springer, 2008.

8. M. Kohlhase, F. Rabe, and V. Zholudev. Towards MKM in the Large: Modular
Representation and Scalable Software Architecture. In S. Autexier, J. Calmet,
D. Delahaye, P. Ion, L. Rideau, R. Rioboo, and A. Sexton, editors, Intelligent
Computer Mathematics, pages 370–384. Springer, 2010.

9. M. Odersky, L. Spoon, and B. Venners. Programming in Scala. artima, 2007.
10. F. Rabe. A Query Language for Formal Mathematical Libraries. In J. Campbell,

J. Carette, G. Dos Reis, J. Jeuring, P. Sojka, V. Sorge, and M. Wenzel, editors,
Intelligent Computer Mathematics, pages 142–157. Springer, 2012.

11. F. Rabe and M. Kohlhase. A Scalable Module System. Information and Compu-
tation, 2013. conditionally accepted; see http://arxiv.org/abs/1105.0548.

12. V. Zholudev and M. Kohlhase. TNTBase: a Versioned Storage for XML. In
Proceedings of Balisage: The Markup Conference 2009, volume 3 of Balisage Series
on Markup Technologies. Mulberry Technologies, Inc., 2009.

http://www.openmath.org/standard/om20
http://arxiv.org/abs/1105.0548

	
	

