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Abstract

Mathematical logic and computer science drive the design of a growing

number of logics and related formalisms such as set theories and type

theories. In response to this population explosion, logical frameworks have

been developed as formal meta-languages in which to represent, structure,

relate, and reason about logics.

Research on logical frameworks has diverged into separate communi-

ties with often con�icting backgrounds and philosophies. In particular,

among the most important logical frameworks are the framework of insti-

tutions from the area of model theory based on category theory, and the

Edinburgh Logical Framework LF from the area of proof theory based on

dependent type theory. Even though their ultimate motivations overlap

� for example in applications to software veri�cation � these take funda-

mentally di�erent perspectives on logic.

We design a logical framework that integrates the frameworks of insti-

tutions and LF in a way that combines their complementary advantages

while retaining the elegance of either one. In particular, our framework

takes a balanced approach between model theory and proof theory and

permits the representation of logics in a way that comprises all major in-

gredients of a logic: syntax, models, satisfaction, judgments, and proofs.

This provides a theoretical basis for the systematic study of logics in a

comprehensive logical framework. Our framework has been applied to ob-

tain a large library of structured and machine-veri�ed encodings of logics

and logic translations.

1 Introduction

Since the Grundlagenkrise of mathematics, logic has been an important research
topic in mathematics and computer science. A central issue has always been
what a logic actually is (let alone a logic translation). Over the course of the last
hundred years researchers have provided very di�erent answers to this question;
for example, even in 2005 the World Congress on Universal Logic held a contest
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about what a logic is [Béz05]. Research areas that were initially connected have
diverged and evolved into separate �elds, and while this specialization has led
to very successful results, it has also created divisions in the research on logic
that are sometimes detrimental.

In response to these divisions, logical frameworks have been introduced.
They unify di�erent logical formalisms by representing them in a �xed meta-
language. Logical frameworks have been used successfully for logic-independent
investigations both on the theoretical (e.g., in the textbook [Dia08]) and on the
practical level (e.g., in the proof assistant [Pau94]).

However, today we observe that one division remains and that there are
two groups of logical frameworks: model theoretical and proof theoretical ones.
While some of these frameworks integrate the other side, such as the general
proof theory developed in [Mes89], almost all of them lean towards either model
or proof theory. Often these sides are divided not only by research questions
but also by �con�icting cultures and attitudes�, and �attempts to bridge these
two cultures are rare and rather timid� (quoting an anonymous reviewer of
a related paper). This paper makes one such attempt, trying to provide a
balanced framework that integrates and subsumes both views on logic in a way
that preserves and exploits their respective advantages.

Model theoretical frameworks are based on set theoretical (such as
Zermelo-Fraenkel set theoretical [Zer08, Fra22]) or category theoretical ([Mac98])
foundations of mathematics and characterize logics model theoretically in a way
that goes back to Tarski's view of logical consequence ([Tar33, TV56, Rob50]).
The central concept is that of a model, which interprets the non-logical sym-
bols, and the satisfaction relation between formulas and models. Often cat-
egory theory and initial models ([GTW78]) are employed to study the model
classes. The most important such framework is that of institutions ([GB92]).

Proof theoretical frameworks are based on type theoretical foundations
of mathematics (such as the principia [WR13] or simple type theory [Chu40])
and characterize logics proof theoretically (e.g., [Göd30, Gen34]) in a way most
prominently expressed in Hilbert's program ([Hil26]). The central concept is
that of a proof, which derives valid judgments from axioms via inference
rules. Often the Curry-Howard correspondence ([CF58, How80]) is employed
to study proofs as expressions of a formal language. The most important such
frameworks are Automath ([dB70]), Isabelle ([Pau94]), and the Edinburgh Log-
ical Framework (LF, [HHP93]).

The ontological intersection of model and proof theory is the syntax of log-
ical formulas and the consequence relation between formulas, which includes
the study of theorems. Thus, both provide ontological frameworks for formu-
las and consequence, and this intersection will be our central interest in this
work. But both frameworks also go beyond this intersection. Model theory
studies the properties of models in general such as for example categoricity and
initiality. Similarly, proof theory studies the properties of proofs in general such
as for example normalization and program extraction. Our work may provide a
starting point to investigate whether these advanced properties have interesting
analogues in the respective other �eld.
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Our uni�ed framework picks one of the most successful frameworks from
each side and combines them: institutions and LF.

Institutions provide an abstract de�nition of the syntax and the model
theoretical semantics of a logic. Research on institutions focuses on signatures,
sentences, models, and satisfaction but deemphasizes proofs and derivability.
Among the most characteristic features of the framework of institutions are: (i)
It abstracts from the syntax of formulas and only assumes an abstract set of
sentences; similarly, it uses an abstract class of models and an abstract satisfac-
tion relation. (ii) Using a Galois connection between sentences and models, it
permits viewing the relation between syntax and (model theoretical) semantics
as a pair of adjoint functors ([Law69]). (iii) Using category theory ([Mac98]), it
provides an abstract notion of translations, both of translations within a logic
� called signature or theory morphisms � and of translations between logics
([GR02, MML07]) � called institution (co)morphisms.

LF is a dependent type theory related to Martin-Löf's type theory ([ML74])
featuring kinded type families and dependent function types. Research on logic
encodings in LF focuses on syntax, proofs, and provability and dually deempha-
sizes models and satisfaction. Among the most characteristic features of this
framework are: (i) It represents the logical and non-logical symbols as constants
of the type theory using higher-order abstract syntax to represent binders. (ii)
Using the judgments-as-types paradigm ([ML96]), it permits viewing syntax
and (proof theoretical) semantics via judgments and inference systems and thus
without appealing to a foundation of mathematics. (iii) Using a constructive
point of view, translation functions are given as provably terminating programs
(e.g., in [NSM01]).

The contrast between model and proof theoretical approaches is related to
the philosophical contrast between two inherently incompatible views: non-
substantialism or platonism on the one hand and substantialism or formalism
on the other hand. Even though this philosophical contrast is orthogonal to
the model/proof theory contrast in principle, they are correlated in practice:
Model theoretical approaches are usually based on the former view and proof
theoretical ones on the latter view.

This is exempli�ed especially well by the di�erence between institutions and
LF, which have been strongly in�uenced by the respective philosophical view.
This in�uence has created complementary strengths and weaknesses. For exam-
ple, the bias towards an abstraction from the syntax exhibited by institutions is
very useful for a logic-independent meta-logical analysis ([Dia08]). But LF's bias
towards concrete syntax excels when de�ning individual logics and extracting
programs from individual translations ([Pfe01]).

Therefore, we focus on combining the respective strengths and motivations.
While our work is technically formulated within institution theory, it inherits
a strictly formalist justi�cation from LF. In particular, the two philosophical
views are re�ected in di�erent aspects of our work.

In the literature on individual logics, the combination of proof and model
theoretical perspective is commonplace, and logics are usually introduced giving
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their syntax, model theory, and proof theory. The major di�erence is often the
order of the latter two. Sometimes the model theory is given primacy as the
semantics, and then a proof theory is given and proved sound and complete
(e.g., in [Bar77, Smu95]). And sometimes it is the other way round, e.g., in
[And86, LS86]. Often this di�erence re�ects a philosophical inclination of the
author.

A similar di�erence in primacy is found when looking at families of logics.
For example, the model theoretical view takes precedence in description logic
(see, e.g., [BS85, BCM+03]) where the model theory is �xed and proof theory
is studied chie�y to provide reasoning tools. This view is arguably paramount
as it dominates accounts of (classical) �rst-order logic and most uses of logic in
mathematics. On the other hand, the proof theoretical view takes precedence in,
for example, higher-order logic (proof theory [Chu40], model theory [Hen50]);
and some logics such as intuitionistic logics ([Bro07]) are explicitly de�ned by
their proof theory.

At the level of logical frameworks, proof theoretical principles have been
integrated into model theoretical frameworks in several ways. Parchments are
used in [GB86, MTP97] to express the syntax of a logic as a formal language.
And for example, in [Mes89, FS88, MGDT05], proof theory is formalized in the
abstract style of category theory. These approaches are very elegant but often
fail to exploit a major advantage of proof theory � the constructive reasoning
over concrete syntax. Vice versa, model theoretical principles have been inte-
grated into proof theoretical frameworks, albeit to a lesser extent. For example,
models and model classes can be represented using axiomatic type classes in
Isabelle [Pau94, HW06] or using structures in Mizar ([TB85]).

But a logical framework that systematically subsumes frameworks from both
perspectives has so far been lacking, and our contribution consists in providing
such a framework. Our work is separated into three main parts.

Firstly � in Sect. 3 � we extend institutions with an abstract notion of proof
theory arriving at what we call logics. Our logics are de�ned in the spirit of
institutions, in particular retaining the abstraction from concrete syntax. Thus,
they are very similar to the general logics of [Mes89] and to the proof theoretic
institutions of [MGDT05, Dia06]. We also discuss the use of meta-logics, which
can be seen as a response to [Tar96], where the use of a meta-institution is
explored in general and the use of LF suggested in particular.

Secondly � in Sect. 4 � we give a logic M based on LF that we will use as
our meta-logic. The central idea is that a signature of M captures syntax, proof
theory, and model theory of an object logic. Similarly, M-signature morphisms
capture translations between object logics, including the translations of syntax,
proof theory, and model theory. M is de�ned in the spirit of LF, in particular
retaining the focus on concrete syntax. Consequently, judgments are represented
as types and proofs as terms. Moreover � inspired by the ideas of Lawvere
([Law63]) � models are represented as signature morphisms from the logical
theory into a signature representing the foundation of mathematics.

In this paper, we will use the term �foundation of mathematics� to refer to a
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�xed language in which mathematical objects are expressed. While mathemati-
cians usually assume a variant of �rst-order set theory as the foundation, the
choice of foundation is more di�cult in computational logic, where for example
higher-order logic ([Chu40]) and the calculus of constructions ([CH88]) are of-
ten used instead. By representing such a foundation as an LF signature itself,
our framework can formulate model theory without committing to a speci�c
foundation.

Thirdly � in Sect. 5 � we demonstrate how to use M as a meta-logic. We
also show how existing logics and translations can be encoded in M and how we
can reason about the adequacy of such encodings. This section reconciles the
type/proof and the set/model theoretical perspective: institution-based logics
are expressed using the syntax of an LF-based meta-logic. We will exemplify all
our de�nitions by giving a simple logic translation from modal logic to �rst-order
logic as a running example. Moreover, we have implemented our framework and
evaluated it in large scale case studies ([HR11, IR11, CHK+11a]).

We discuss and evaluate our framework in Sect. 6 and conclude in Sect. 7.
We give introductions to the frameworks of institutions and LF in Sect. 2.

2 Logical Frameworks

2.1 The Model Theoretical Framework of Institutions

Institutions were introduced in [GB92] as as means to manage the population
explosion among logics in use. The key idea is to abstract from the satisfaction
relation between the sentences and the models. We will only give an intuitive
introduction to the notion of an institution here. A rigorous and more compre-
hensive treatment is inherent in our de�nitions in Sect. 3.

The components of an institution are centered around a class Sig of sig-
natures. To each signature Σ ∈ Sig are associated a set Sen(Σ) of sen-
tences, a class Mod(Σ) of models, and the satisfaction relation |=Σ ⊆
Mod(Σ)× Sen(Σ).

Example 1 (Modal Logic). For a simple institution ML of modal logic, the
signatures in SigML are the �nite sets of propositional variables (chosen from
some �xed set of symbols). The set SenML(Σ) is the smallest set containing p
for all p ∈ Σ and closed under sentence formation F ⊃ G and �F .

A model M ∈ ModML(Σ) is a Kripke model, i.e., a tuple (W,≺, V ) for a
set W of worlds, an accessibility relation ≺⊆ W × W , and a valuation V :
Σ ×W → {0, 1} for the propositional variables. V is extended to a mapping
Sen(Σ)×W → {0, 1} in the usual way, and the satisfaction relation M |=ML

Σ F
holds i� V (F,w) = 1 for all worlds w ∈W .

This abstract de�nition yields a rich setting in which institutions can be
studied (see, e.g., [Dia08]). Most importantly, we can de�ne an abstract notion
of theory as a pair (Σ,Θ) for a set Θ ⊆ Sen(Σ) of axioms. (See Term. 19
for di�erent uses of the term �theory�.) A sentence F ∈ Sen(Σ) is a (Σ,Θ)-
theorem i� for all models M ∈Mod(Σ) we have that M |=Σ A for all A ∈ Θ
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impliesM |=Σ F . This is the model theoretical consequence relation and written
as Θ |=Σ F .

The above concepts have a second dimension when all classes are extended to
categories ([Mac98]). Sig is in fact a category, and Sen a functor Sig → SET .
Similarly, Mod is a functor Sig → CAT op (see also Not. 5). Signature mor-
phisms represent translations between signatures, and the actions of Sen and
Mod on signature morphism extend these translation to sentences and models.
Sentence and model translations go in opposite directions, which corresponds
to an adjunction between syntax and semantics. Finally |=Σ is subject to the
satisfaction condition, which guarantees that the satisfaction of a sentence in a
model is invariant under signature morphisms.

Example 2 (Continued). In the case of modal logic, signature morphisms σ :
Σ→ Σ′ are substitutions of Σ′-sentences for the propositional variables in Σ, and
SenML(σ) : SenML(Σ) → SenML(Σ′) is the induced homomorphic extension.
The functor ModML(σ) reduces a model (W,≺, V ′) ∈ModML(Σ′) to the model
(W,≺, V ) ∈ModML(Σ) by putting V (p, w) = V ′(σ(p), w).

A theory morphism σ : (Σ,Θ) → (Σ′,Θ′) is a signature morphism σ :
Σ → Σ′ such that for all axioms A ∈ Θ, we have that Sen(σ)(A) is a (Σ′,Θ′)-
theorem. This implies that Sen(σ) maps (Σ,Θ)-theorems to (Σ′,Θ′)-theorems,
i.e., theory morphisms preserve truth. Adjointly, one can show that σ is a theory
morphism i� Mod(σ) maps (Σ′,Θ′)-models to (Σ,Θ)-models.

Institutions can be described elegantly as functors out of a signature category
into a �xed category C of rooms. This yields a notion of institution transla-
tions via the well-known notion of the lax slice category of functors into C.
Such translations are called institution comorphisms ([Mes89, Tar96, GR02]).
This is the basis of a number of logic translations that have been expressed as
translations between institutions (see, e.g., [MML07] for examples).

A comorphism from I to I′ translates signatures and sentences from I to I′
and models in the opposite direction. The sentence translation preserves the
(model theoretical) consequence relation Θ |=Σ F . If the model translations are
surjective � called the model expansion property � the consequence relation is
also re�ected. This is the basis of the important borrowing application ([CM97]),
where the consequence relation of one institution is reduced to that of another,
e.g., one for which an implementation is available.

In fact, very few logic translations can be expressed as comorphisms in this
sense � instead, it is often necessary to translate I-signatures to I′-theories.
However, such translations can be represented as institution comorphisms from
I to Th(I′). Here Th(I′) is a new institution whose signatures are the theories
of I′, a straightforward construction that is possible for all institutions.

2.2 The Proof Theoretical Framework LF

LF ([HHP93]) is a dependent type theory related to Martin-Löf type theory
([ML74]). It is the corner of the λ-cube ([Bar92]) that extends simple type theory

6



with dependent function types. We will work with the Twelf implementation of
LF ([PS99]).

The main use of LF and Twelf is as a logical framework in which deductive
systems are represented. Typically, kinded type families are declared to
represent the syntactic classes of the system. For example, to represent higher-
order logic, we use a signature HOL with declarations

tp : type

tm : tp → type

bool : tp
ded : tm bool → type

Here type is the LF-kind of types, and tp is an LF-type whose LF-terms
represent the STT-types. tp → type is the kind of type families that are
indexed by terms of LF-type tp; then tm A is the LF-type whose terms repre-
sent the STT-terms of type A. For example, bool represents the HOL-type of
propositions such that HOL-propositions are represented as LF-terms of type
tm bool . LF employs the Curry-Howard correspondence to represent proofs-as-
term ([CF58, How80]) and extends it to the judgments-as-types methodology
([ML96]): ded declares the truth judgment on HOL-propositions, and the type
ded F represents the judgment that F is derivable. HOL-derivations of F are
represented as LF-terms of type ded F , and F is provable in HOL i� there is
an LF term of type ded F .

Additionally, typed constants are declared to construct expressions of
these syntactic classes, i.e., types (e.g., bool above), terms, propositions, and
derivations of HOL. For example, consider:

⇒ : tm bool → tm bool → tm bool
⇒E : {F : bool} {G : bool} ded (F ⇒ G) → ded F → ded G
∀ : {A : tp} (tm A→ bool) → bool

Here ⇒ encodes implication as a binary proposition constructor. ⇒E en-
codes the implication elimination rule (modus ponens): It takes �rst two propo-
sitions F and G as arguments, and then two derivations of F ⇒ G and F ,
respectively, and returns a derivation of G. Note that the types of the later
arguments depend on the values F and G of the �rst two arguments. The en-
coding of the universal quanti�er ∀ uses higher-order abstract syntax to
declare binders as constants: LF terms of type S → T are in bijection to LF
terms of type T with a free variable of type S. Thus, ∀ encodes a proposition
constructor that takes a HOL type A and a proposition with a free variable of
type tm A.

We will always use Twelf notation for the LF primitives of binding and
application: The type Πx:AB(x) of dependent functions taking x : A to an
element of B(x) is written {x : A}B x, and the function term λx:At(x) taking
x : A to t(x) is written [x : A] t x. As usual, we write A → B instead of
{x : A}B if x does not occur in B.
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This yields the following grammar for the three levels of LF expressions:

Kinds: K ::= type | {x : A}K
Type families: A,B ::= a |A t | [x : A]B | {x : A}B
Terms: s, t ::= c |x | [x : A] t | s t

{x : A}K and {x : A}B are used to abstract over variables occurring in
kinds and types, respectively. Similarly, there are two λ-abstractions and two
applications. The three productions for kind level abstraction are given in gray.

The judgments are Γ `Σ K kind for well-formed kinds, Γ `Σ A : K
for well-kinded type families, and Γ `Σ s : A for well-typed terms. They are
de�ned relative to a signature Σ and a context Γ, which declare the symbols
and variables, respectively, that can occur in expressions. Moreover, all levels
come with an equality judgment, and both abstractions respect α, β, and
η-conversion. All judgments are decidable [HHP93].

The grammar for signatures and contexts and their translations is as follows:

Signatures Σ ::= · |Σ, c : A |Σ, a : K,
Morphisms σ ::= · |σ, c := t |Σ, a := A
Contexts Γ ::= · |Γ, x : A
Substitutions σ ::= · | γ, x := t

An LF signature Σ holds the globally available declared names; it is a list
of kinded type family declarations a : K and typed constant declarations c : A.
Similarly, a Σ-context holds the locally available declared names; it is a list
typed variable declarations x : A.

Both signatures and contexts come with a notions of homomorphic trans-
lations. Given two signatures Σ and Σ′, a signature morphism σ : Σ → Σ′

is a typing- and kinding-preserving map of Σ-symbols to closed Σ′-expressions.
Thus, σ maps every constant c : A of Σ to a term σ(c) : σ(A) and every type
family symbol a : K to a type family σ(a) : σ(K). Here, σ is the homomorphic
extension of σ to all closed Σ-expressions, and we will write σ instead of σ from
now on.

Signature morphisms preserve typing, kinding, and equality of expressions,
i.e., if · `Σ E : F , then · `Σ′ σ(E) : σ(F ), and similarly for equality. In
particular, because σ must map all axioms or inference rules declared in Σ to
proofs or derived inference rules, respectively, over Σ′, signature morphisms
preserve the provability of judgments. Two signature morphisms are equal if
they map the same constants to αβη-equal expressions. Up to this equality,
signatures and signature morphisms form a category, which we denote by LF.

LF has inclusion morphisms Σ ↪→ Σ,Σ′ and pushouts along inclusions ([HST94]).
Moreover, a coherent system of pushouts along inclusions can be chosen canoni-
cally: Given σ : Σ→ Σ′ and an inclusion Σ ↪→ Σ, c : A, the canonical pushout
is given by

σ, c := c : Σ, c : A → Σ′, c : σ(A)

(except for possibly renaming c if it is not fresh for Σ′). The canonical choices
for pushouts along other inclusions are obtained accordingly.
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Similarly, given two Σ-contexts Γ and Γ′, a substitution γ : Γ → Γ′ is a
typing-preserving map of Γ-variables to Γ′-expressions (which leaves the symbols
of Σ �xed). Thus, σ maps every variable x : A of Γ to a term γ(x) : γ(A). Again
γ is the homomorphic extension of γ, and we write γ instead of γ. Similar to
signature morphisms, substitutions preserve typing, kinding, and equality of
expressions in contexts, e.g., if Γ `Σ E : F , then Γ′ `Σ γ(E) : γ(F ). Two
substitutions are equal if they map the same variables to αβη-equal terms. Up
to this equality, for a �xed signature Σ, the contexts over Σ and the substitutions
between them form a category.

Finally a signature morphism σ : Σ → Σ′ can be applied component-wise
to contexts and substitutions: σ(·) = · and σ(Γ, x : A) = σ(Γ), x : σ(A) for
contexts, and σ(·) = ·, and σ(γ, x := t) = σ(γ), x := σ(t) for substitutions.
We have the invariant that if γ : Γ → Γ′ over Σ and σ : Σ → Σ′, then σ(γ) :
σ(Γ)→ σ(Γ′). Categorically, σ(−) is a functor from the category of Σ-contexts
to the category of Σ′-contexts.

3 A Comprehensive Logical Framework

Our primary objective is to encode logics and logic translations in an LF-based
meta-logic. Therefore, we must do three things (i) de�ne what logics and logic
translations are, which we do in Sect. 3.1 and 3.2, respectively, (ii) de�ne what
it means to encode them in a meta-logic, which we do in Sect. 3.3, and (iii) give
the LF-based meta-logic, which we do in Sect. 4. Note that (ii) and (iii) could
also be given the other way round. We give (ii) �rst for an arbitrary meta-logic
so that it is possible to substitute other meta-logics later.

3.1 Logics

Model Theories and Institutions In order to give a uni�ed approach to
model and proof theory, we will refactor the de�nition of institutions by splitting
an institution into syntax and model theory:

De�nition 3 (Logic Syntax). A logic syntax is a pair (Sig,Sen) such that
Sig is a category and Sen : Sig → SET is a functor.

De�nition 4 (Model Theory). For a logic syntax (Sig,Sen), amodel theory

is a tuple (Mod, |=) such that Mod : Sig → CAT op is a functor and |=Σ ⊆
Sen(Σ) × |Mod(Σ)| is family of relations such that the satisfaction condition
holds: For all σ : Σ → Σ′, F ∈ Sen(Σ), and M ′ ∈ |Mod(Σ′)|, we have
Mod(σ)(M ′) |=Σ F i� M ′ |=Σ′ Sen(σ)(F ).

In particular, institutions are exactly the pairs of a logic syntax and a model
theory for it.

Notation 5. In the literature, the model theory functor is usually given asMod :
Sigop → CAT . We choose the dual orientation here in order to emphasize the
symmetry between model and proof theory later on.
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Example 6 (Modal Logic). (SigML,SenML) and (ModML, |=ML) from Ex. 1 are
examples of a logic syntax and a model theory for it. To complete the example,
we have to show the satisfaction condition: Assume σ : Σ→ Σ′, F ∈ SenML(Σ),
and (W,≺, V ) ∈ModML(Σ′); then the satisfaction condition follows if we show
that V (F,w) = V ′(SenML(σ)(F ), w), which is easy to see.

Note that we proved that σ preserves truth in all worlds, whereas the sat-
isfaction condition only requires the weaker condition that SenML(σ)(F ) holds
in all worlds of (W,≺, V ) i� F holds in all worlds of (W,≺, V ′). This extension
of the satisfaction condition to all components of syntax and model theory is
typical but di�erent for each institution. A uniform formulation was given in
[AD07] using strati�ed institutions.

Proof Theories and Logics Like in the case of model theories, for a given
logic syntax, we will de�ne proof theories as pairs (Pf ,`). First, we de�ne
proof categories, the values of the Pf functor:

De�nition 7 (Proof Categories). A proof category is a category P with
�nite products (including the empty product). PFCAT is the category of proof
categories together with the functors preserving �nite products.

Notation 8. If a category has the product (F1, . . . , Fn), we write it as (Fi)
n
1 or

simply Fn
1 . Similarly, for pi : E → Fi, we write pn1 for the universal morphism

(p1, . . . , pn) : E → Fn
1 .

We think of the objects of P as judgments about the syntax that can be
assumed and derived. The intuition of a morphism pn1 from Em

1 to Fn
1 is that it

provides evidence pi for each judgment Fi under the assumptions E1, . . . , Em.

Example 9 (Continued). We obtain a proof theory functor Pf ML : SigML →
PFCAT as follows. The proof category Pf ML(Σ) is the category of �nite fam-
ilies Fn

1 for Fi ∈ SenML(Σ). The morphisms in Pf ML(Σ) from Em
1 to Fn

1 are
the families pn1 such that every pi is a proof of Fi from assumptions E1, . . . , Em.
We can choose any calculus to make the notion of proofs precise, e.g., a Hilbert
calculus with rules for modus ponens and necessitation.

Pf ML(Σ) has �nite products by taking products of families. The action of
Pf ML on signature morphisms σ : Σ→ Σ′ is induced in the obvious way.

Remark 10 (Proof Categories). By assuming proof categories to have products
in Def. 7, we are implicitly assuming the rules of weakening (given by mor-
phisms from (A,B) to A), contraction (given by morphisms from A to (A,A)),
and exchange (given by morphisms from (A,B) to (B,A)). A substructural
framework, e.g., one akin to linear logic ([Gir87]), could be obtained by weak-
ening the condition on the existence of products.

We only require �nite products because deductive systems typically use
words over countable alphabets, in which only �nite products of judgments
can be expressed. This amounts to a restriction to compact deductive systems,
which corresponds to the constructive �avor of proof theory.

It is natural to strengthen the de�nition by further assuming that all objects
of a proof category P can be written as products of irreducible objects, in

10



which case proof categories become many-sorted Lawvere categories ([Law63]).
Then, up to isomorphism, the judgments can be seen as the �nite multi-sets
of irreducible objects, and canonical products are obtained by taking unions of
multi-sets. This is the typical situation, but we do not assume it here because
we will not make use of this additional assumption.

An even stronger de�nition could require that the irreducible objects of
Pf (Σ) are just the sentences in Sen(Σ). This is the case in Ex. 9 where the
irreducible objects are the singleton multi-sets and thus essentially the sentences.
But it is desirable to avoid this assumption in order to include deductive systems
where auxiliary syntax is introduced, such as hypothetical judgments (as used in
natural deduction, see Ex. 11) or signed formulas (as used in tableaux calculi).

Example 11. The proof theory of the �rst-order natural deduction calculus arises
as follows. For a FOL-signature Σ, an atomic Σ-judgment is of the form Γ; ∆ ` F
where Γ is a context declaring some free variables that may occur in ∆ and F ;
∆ is a list of Σ-formulas; and F is a Σ-formula. The objects of Pf FOL(Σ)
are the multi-sets of atomic Σ-judgments, and products are given by unions of
multi-sets. A morphism in Pf FOL(Σ) from Jm

1 to a singleton multi-set (K) is
a natural deduction proof tree whose root is labelled with K and whose leaves
are labelled with one element of J1, . . . , Jm. Morphisms with other codomains
are obtained from the universal property of the product.

Giving a proof category Pf (Σ) for a signature Σ is not su�cient to de�ne a
proof theoretical semantics of Σ � we also have to relate the Σ sentences and the
Σ-judgments. For that purpose, we use a map `Σ: Sen(Σ)→ Pf (Σ) assigning
to every sentence its truth judgment. In particular, Pf (Σ)-morphisms from
the empty family () to `Σ F represent the proofs of F . Corresponding to the
satisfaction condition, the truth judgment should be preserved under signature
morphisms. This yields the following de�nition:

De�nition 12 (Proof Theory). For a logic syntax (Sig,Sen), a proof theory
is a tuple (Pf ,`) such that Pf : Sig → PFCAT is a functor and `Σ is a
mapping from Sen(Σ) to Pf (Σ) such that for all σ : Σ→ Σ′ and F ∈ Sen(Σ),
we have Pf (σ)(`Σ F ) = `Σ′ Sen(σ)(F ).

Finally, we can put together syntax, model theory, and proof theory to form
a logic:

De�nition 13 (Logics). A logic is a tuple I = (Sig,Sen,Mod, |=,Pf ,`) such
that (Sig,Sen) is a logic syntax and (Mod, |=) and (Pf ,`) are a model theory
and a proof theory, respectively, for it.

Example 14 (Continued). We obtain a proof theory and thus a logic (in our
formal sense) for modal logic by using Pf ML as in Ex. 9 and putting `ML

Σ F =
(F ) where (F ) is the family containing a single element F . Indeed, we have
Pf ML(σ)(`ML

Σ F ) = (SenML(σ)(F )) = `ML
Σ′ SenML(σ)(F ).
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Sen(Σ) Sen(Σ′) SET

Mod(Σ) Mod(Σ′) CAT

Pf (Σ) Pf (Σ′) PFCAT

Sen(σ)

Mod(σ)

Pf (σ)

|=Σ |=Σ′

`Σ `Σ′

Thus, a logic consists of a
category of signatures Sig, a
sentence functor Sen, a model
theory functor Mod, a proof
theory functor Pf , and model
and proof theoretical de�ni-
tions of truth |= and `, respec-
tively. This is visualized on the
right for a signature morphism
σ : Σ→ Σ′. Technically, this is
not a diagram in the sense of category theory. But if we treat the sets Sen(Σ)
and Sen(Σ′) as discrete categories, then the lower half is a commuting diagram
of categories. Moreover, if we forget morphisms and treat functors as special
cases of relations between classes, then the upper half is a commutative dia-
gram in the category of classes and relations. This is made more precise in the
following remark.

Remark 15. The de�nition of logics can be phrased more categorically, which
also makes the formal symmetry between model and proof theory more apparent.
Let CLASS and REL be the categories of classes with mappings and relations,
respectively, and let | − | : CAT op → CLASS and | − |r : CAT op → REL
be the functors forgetting morphisms. Let us also identify SET with its two
inclusions into REL and PFCAT . Then |= and ` are natural transformations
|= : Sen → | − |r ◦Mod and ` : Sen → | − | ◦Pf .

Then a logic (Sig,Sen,Mod, |=,Pf ,`) yields the following diagram in the
category CAT , where double arrows indicate natural transformations between
the functors making up the surrounding rectangles:

Sig SET

CAT op

PFCAT

REL

CLASS

Sen

Mod

Pf

| − |r

| − |

|=

`

Remark 16. Even more categorically than in Rem. 15, assume U : SET →
REL × CLASS maps a set S to (S, S), and V : CAT op × PFCAT → REL ×
CLASS maps a pair of a model category and a proof category to itself but forget-
ting morphisms. Then logics are the functors from some category of signatures
Sig to the comma category (U ↓ V ).
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Theories and Consequence While the notion of theories only depends on
a logic syntax, both the model theoretical semantics and the proof theoretical
semantics induce one consequence relation each: As usual, we write |= and `
for the model and proof theoretical consequence, respectively. Consequently, we
obtain two notions of theory morphisms.

De�nition 17 (Theories). Given a logic syntax (Sig,Sen), a theory is a pair
(Σ,Θ) for Σ ∈ Sig and Θ ⊆ Sen(Σ). The elements of Θ are called the axioms

of (Σ,Θ).

De�nition 18 (Consequence). Assume a logic I = (Sig,Sen,Mod, |=,Pf ,`).
For a theory (Σ,Θ) and a Σ-sentence F , we de�ne consequence as follows:

• Θ entails F proof theoretically, written Θ `IΣ F , i� there are a �nite
subset {F1, . . . , Fn} ⊆ Θ and a Pf (Σ)-morphism from (`IΣ Fi)

n
1 to `IΣ F ,

• Θ entails F model theoretically, written Θ |=I
Σ F , i� every model M ∈

Mod(Σ) satisfying all sentences in Θ also satis�es F .

We will drop the superscript I if it is clear from the context.
A signature morphism σ : Σ → Σ′ is called a model theoretical (or proof

theoretical) theory morphism from (Σ,Θ) to (Σ′,Θ′) if for all F ∈ Θ, we
have Θ′ |=Σ′ Sen(σ)(F ) (or Θ′ `Σ′ Sen(σ)(F ) in case of proof theoretical
theory morphisms).

Terminology 19. In the literature, the term theory is sometimes used only for
a set of sentences that is closed under the consequence relation. In that case
theories in our sense are called presentations.

Theory morphisms preserve the respective consequence relation:

Lemma 20 (Truth Preservation). Assume a (i) model theoretical or (ii) proof
theoretical theory morphism σ : (Σ,Θ)→ (Σ′,Θ′) and a sentence F ∈ Sen(Σ).
Then in case

(i): Θ |=Σ F implies Θ′ |=Σ′ Sen(σ)(F ),

(ii): Θ `Σ F implies Θ′ `Σ′ Sen(σ)(F ).

The well-known concepts of soundness and completeness relate the two con-
sequence relations:

De�nition 21 (Soundness and Completeness). A logic is sound i� ∅ `Σ F
implies ∅ |=Σ F for all signatures Σ and all sentences F . It is strongly sound

i� Θ `Σ F implies Θ |=Σ F for all theories (Σ,Θ) and all sentences F . Similarly,
a logic is strongly complete or complete if the respective converse implication
holds.

In particular, if a logic is strongly sound and strongly complete, then proof
and model theoretical consequence and theory morphisms coincide.
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3.2 Logic Translations

Logic Translations We will now de�ne translations between two logics. Since
our framework is based on institutions, we will build upon the existing notion
of an institution comorphism.

De�nition 22 (Logic Comorphism). Assume two logics I = (Sig,Sen,Mod, |=
,Pf ,`) and I′ = (Sig′,Sen′,Mod′, |=′,Pf ′,`′). A logic comorphism from
I to I′ is a tuple (Φ, α, β, γ) consisting of a functor Φ : Sig → Sig′ and natural
transformations α : Sen → Sen′ ◦ Φ, β : Mod → Mod′ ◦ Φ, and γ : Pf →
Pf ′ ◦ Φ such that

1. for all Σ ∈ Sig, F ∈ Sen(Σ), M ′ ∈Mod′(Φ(Σ)):

βΣ(M ′) |=Σ F iff M ′ |=′Φ(Σ) αΣ(F ),

2. for all Σ ∈ Sig, F ∈ Sen(Σ):

γΣ(`Σ F ) = `′Φ(Σ) αΣ(F ).

With the obvious choices for identity and composition, we obtain the category
LOG of logics and comorphisms.

Recall that βΣ is a morphism in the category CAT op and thus the same as
a functor βΣ : Mod′(Φ(Σ))→Mod(Σ); thus, βΣ(M ′) is a well-formed functor
application. Note that the syntax and the proof theory are translated from I
to I′, whereas the model theory is translated in the opposite direction. The
two conditions on comorphisms are truth preservation conditions: The model
and proof theory translations must preserve model and proof theoretical truth,
respectively.

Just like logics can be decomposed into syntax, model theory, and proof
theory, a logic comorphism consists of a

• a syntax translation (Φ, α) : (Sig,Sen)→ (Sig′,Sen′),

• for a given syntax translation (Φ, α), a model translation β : (Mod, |=)→
(Mod′, |=′) which must satisfy condition 1,

• for a given syntax translation (Φ, α), a proof translation γ : (Pf ,`) →
(Pf ′,`′) which must satisfy condition 2.

Remark 23. Continuing Rem. 16, we observe that if logics are slices Ii : Sigi →
(U ↓ V ), then a logic comorphisms from I1 to I2 is a functor Φ : Sig1 → Sig2

together with a natural transformation from I1 to I2 ◦ Φ. Thus, LOG can be
seen as the lax slice category of objects over (U ↓ V ).
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Comorphism Modi�cations The category of logics and logic comorphisms
can be turned into a 2-category. Again we are inspired by the existing notion for
institutions, for which the 2-cells are called institution comorphism modi�cations
([Dia02]):

De�nition 24 (Modi�cations). Assume two logic comorphisms µi = (Φi, αi, βi, γi) :
I → I′ for i = 1, 2. A comorphism modi�cation from µ1 to µ2 is a natural
transformation m : Φ1 → Φ2 such that the following diagrams commute:

Sen(Σ)

Sen′(Φ1(Σ))

Sen′(Φ2(Σ))

α1
Σ

α2
Σ

Sen′(mΣ) Mod(Σ)

Mod′(Φ1(Σ))

Mod′(Φ2(Σ))

β1
Σ

β2
Σ

Mod′(mΣ)

Pf (Σ)

Pf ′(Φ1(Σ))

Pf ′(Φ2(Σ))

γ1
Σ

γ2
Σ

Pf ′(mΣ)

where the diagram for the model theory is drawn in CAT .

Thus, a comorphism modi�cation m is a family (mΣ)Σ∈Sig of I′-signature
morphismsmΣ : Φ1(Σ)→ Φ2(Σ). It can be understood as modifying µ1 in order
to make it equal to µ2: For example, the sentence translations α1

Σ : Sen(Σ)→
Sen′(Φ1(Σ)) and α2

Σ : Sen(Σ) → Sen′(Φ2(Σ)) may be quite di�erent. Yet,
by composing α1

Σ with Sen′(mΣ), the di�erence can be bridged. We obtain a
comorphism modi�cation if syntax, model, and proof translation can be bridged
uniformly, i.e., by using the respective translations induced by mΣ.

3.3 Meta-Logics

Logic comorphisms I→ I′ permit representing a logic I in a logic I′. An impor-
tant special case arises when this representation is adequate in the intuitive
sense that the semantics of I is preserved when representing it in I′. Then our
understanding of I′ can be applied to study properties of I. If we use a �xed
logicM = I′, in which multiple other logics are represented adequately, we speak
of logic encodings in a meta-logic. Occasionally, the term �universal logic�
is used instead of �meta-logic�, e.g., in [Tar96], but we avoid it here to prevent
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confusion with the general �eld of �universal logic�, which investigates common
structures of all logics.

Alternatively, instead of giving a logic comorphism from a given logic I to M,
we can start with a partial logic � e.g., an institution or even only a category Sig
� and translate only that intoM. The missing components of a logic can then be
inherited � often called borrowed � from M. We speak of logic de�nitions.

Similarly, a meta-logic can be applied to de�ne or encode logic comorphisms
so that we have four cases in the end: de�ning/encoding a logic (comorphism).
In the following we will derive the general properties of these four concepts for
an arbitrary meta-logic M. Then Sect. 4 will give the concrete de�nition of our
meta-logic M as well as examples.

De�ning Logics Given a signature category Sig, to de�ne a logic in a
meta-logic M means to relate Sig to M in such a way that the syntax, model
theory, and proof theory of M can be borrowed to extend Sig to a logic.

Notation 25. If |= is a family (|=Σ)Σ∈Sig and Φ : Sig′ → Sig is a functor,
then we write |= ◦Φ for the family (|=Φ(Σ))Σ∈Sig′ . ` ◦Φ is de�ned accordingly.
Considering Rem. 15, this is simply the composition of a functor and a natural
transformation.

De�nition 26. Let M be a logic. A logic de�nition in M consists of a
category Sig and a functor Φ : Sig → SigM. Such a logic de�nition induces a
logic M ◦ Φ = (Sig,SenM ◦ Φ,ModM ◦ Φ, |=M ◦ Φ,Pf M ◦ Φ,`M ◦ Φ).

Remark 27. With the notation of Rem. 15, this yields the diagram

Sig SigM SET

CAT op

PFCAT

REL

CLASS

Φ SenM

ModM

Pf M

| − |r

| − |

|=M

`M

Moreover, Φ induces a canonical comorphism M ◦ Φ→M.

Theorem 28 (Logic De�nitions). M ◦ Φ is indeed a logic. Moreover, it is
(strongly) sound or (strongly) complete if M is.

Proof. That M ◦Φ is a logic follows immediately from the diagram in Rem. 27.
In particular, |=M ◦Φ and `M ◦Φ are natural transformation because they arise
by composing a natural transformation with a functor.
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It is inherent in Def. 26 that Θ `M◦ΦΣ F i� Θ `MΦ(Σ) F , and similarly for the
entailment relation. That yields the (strong) soundness/completeness result.

Remark 29. In Rem. 16, we stated that institutions are functors into (U ↓ V ),
and thus in particular M : SigM → (U ↓ V ). Then M ◦ Φ is indeed the
composition of two functors (which justi�es our notation).

Encoding Logics While a logic de�nition starts with a signature category
and borrows all other notions from M, a logic encoding starts with a whole
logic I = (Sig,Sen,Mod, |=,Pf ,`) and a functor Φ : Sig → SigM:

De�nition 30 (Logic Encoding). An encoding of a logic I in M is a logic
comorphism (Φ, α, β, γ) : I → M. (Equivalently, we can say that (id , α, β, γ) is
a logic comorphism I→M ◦ Φ.)

When encoding logics in a meta-logic, a central question is adequacy. Intu-
itively, adequacy means that the encoding is correct with respect to the encoded
logic. More formally, a logic encoding yields two logics I andM◦Φ, and adequacy
is a statement about the relation between them.

Ideally, α, β, and γ are isomorphisms, in which case I and M ◦ Φ are iso-
morphic in the category LOG. However, often it is su�cient to show that the
consequence relations in I and M ◦ Φ coincide. This motivates the following
de�nition and theorem:

De�nition 31 (Adequate Encodings). In the situation of Def. 30, the encoding
is called adequate if

• each βΣ is surjective on objects (model theoretical adequacy),

• each γΣ is �surjective� on morphisms in the following sense: for any A, B,
if there is a morphism from γΣ(A) to γΣ(B), then there is also one from
A to B (proof theoretical adequacy).

Model theoretical adequacy is just themodel expansion property (e.g., [CM97]);
intuitively, it means that a property that holds for all models of ModM(Φ(Σ))
can be used to establish the corresponding property for all models of Σ. Proof
theoretical adequacy means that proofs found inM◦Φ give rise to corresponding
proofs in I. More precisely:

Theorem 32 (Adequacy). Assume an adequate logic encoding (Φ, α, β, γ) of I
in M. Then for all I-theories (Σ,Θ) and all Σ-sentences F :

Θ |=I
Σ F iff αΣ(Θ) |=M

Φ(Σ) αΣ(F )

Θ `IΣ F iff αΣ(Θ) `MΦ(Σ) αΣ(F )

In particular, I is strongly sound or complete if M is.
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Proof. It is easy to show that the left-to-right implications hold for any logic
comorphism.

The right-to-left implications are independent and only require the respective
adequacy assumption. The model theoretical result is essentially the known
borrowing result for institutions (see [CM97]). For the proof theoretical result,
recall that γΣ is a functor Pf I(Σ)→ Pf M(Φ(Σ)); since provability is de�ned by
the existence of morphisms in the proof category, the proof theoretical adequacy
yields the result.

Then the soundness and completeness results follow by using Thm. 28.

Mixing De�ning and Encoding Logic de�nitions, where we start with Sig
and inherit all other components from M, and logic encodings, where we start
with a logic and encode all components in M, are opposite extremes. We can
also start, for example, with an institution I = (Sig,Sen,Mod, |=) and give
an institution comorphism (Φ, α, β) : I → M: This encodes syntax and model
theory of I in M and inherits the proof theory. Dually, we can start with syntax
and proof theory I = (Sig,Sen,Pf ,`) and give a comorphism (Φ, α, γ) : I →
M: This encodes syntax and proof theory and inherits the model theory.

The former of these two is often used to apply an implementation of the
proof theoretical consequence relation of M to reason about the model theoret-
ical consequence relation of I, a technique known as borrowing ([CM97]). The
borrowing theorem can be recovered as a special case of the above, and we
brie�y state it in our notation:

Theorem 33. Let I be an institution and M a logic, and let µ = (Φ, α, β) be
an institution comorphism from I to M (qua institution). Then we extend I to
a logic I′ by putting Pf ′ := Pf M ◦Φ and `′ := (`M ◦ Φ) ◦α. Moreover, we have
that (Φ, α, β, id ) : I′ →M is a logic comorphism that is an adequate encoding if
all βΣ are surjective on objects.

Proof. It follows from basic properties of category theory that I′ is indeed a
logic. Model theoretical adequacy holds due to the surjectivity assumption, and
proof theoretical follows because the proof translation is the identity.

De�ning Logic Comorphisms Now we turn to the treatment of logic comor-
phisms. To de�ne a logic comorphism we give a family of signature morphisms
in M:

De�nition 34 (De�ning Comorphisms). Assume two logic de�nitions Φi :
Sigi → SigM for i = 1, 2. A comorphism de�nition consists of a functor
Φ : Sig1 → Sig2 and a natural transformation m : Φ1 → Φ2 ◦ Φ. Such a
comorphism de�nition induces a logic comorphism (Φ,M ◦ m) = (Φ,SenM ◦
m,ModM ◦m,Pf M ◦m) from M ◦ Φ1 to M ◦ Φ2.

Remark 35. With the notation of Rem. 27, this yields the diagram
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Sig1

Sig2

SigM SET

CAT op

PFCAT

REL

CLASS

Φ1

Φ2

Φ
SenM

ModM

Pf M

| − |r

| − |

m

|=M

`M

where double arrows indicate natural transformations as before. Thus, mΣ is
a family of SigM-morphisms mΣ : Φ1(Σ) → Φ2(Φ(Σ)) for Σ ∈ Sig1. Sen-
tence, proof, and model translation are given by SenM(mΣ), ModM(mΣ), and
Pf M(mΣ).

Theorem 36 (De�ning Comorphisms). (Φ,M◦m) is indeed a logic comorphism.

Proof. From the diagram in Rem. 35, it is clear that the types of the components
of (Φ,M ◦m) are correct because they arise by composing functors and natural
transformations.

It remains to show Condition 1 and 2 in Def. 22. For the latter, we substitute
the respective de�nitions for `, `′, α, and γ and obtain

(Pf M ◦m)Σ

(
(`M ◦ Φ1)Σ F

)
= (`M ◦ Φ2)Φ(Σ) (SenM ◦m)Σ(F ).

This simpli�es to

Pf M(mΣ) (`MΦ1(Σ) F ) = `MΦ2(Φ(Σ)) SenM(mΣ)(F )

which is exactly the condition from Def. 12 for the morphism mΣ.
In the same way, Condition 1 simpli�es to the satisfaction condition from

Def. 4.

Remark 37. Recalling Rem. 16 and continuing Rem. 29, we observe thatM◦m is
a natural transformation M◦Φ1 →M◦Φ2 ◦Φ between functors Sig → (U ↓ V ).
Thus, (Φ,M ◦ m) : M ◦ Φ1 → M ◦ Φ2 is indeed a morphism in the lax slice
category of objects over (U ↓ V ) (which justi�es our notation). This yields a
simpler, more abstract proof of Thm. 36.

Encoding Logic Comorphisms Finally, we study the encoding of existing
logic comorphisms.

De�nition 38 (Encoding Comorphisms). Assume a logic comorphism µ : I1 →
I2 and two logic encodings µi : Ii → M. An encoding of µ relative to µ1 and
µ2 is a logic comorphism modi�cation µ1 → µ2 ◦ µ.
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To understand this de�nition better, let us assume a comorphism µ =
(Φ, α, β, γ) : I1 → I2 and two encodings µi = (Φi, αi, βi, γi) : Ii → M. Then an
encoding m of µ is a natural transformation Φ1 → Φ2◦Φ such that the following
diagrams commute for all Σ ∈ Sig1:

Sen1(Σ) Sen2(Φ(Σ))

SenM(Φ1(Σ)) SenM(Φ2(Φ(Σ)))

αΣ

α1
Σ

SenM(mΣ)

α2
Φ(Σ)

Mod1(Σ) Mod2(Φ(Σ))

ModM(Φ1(Σ)) ModM(Φ2(Φ(Σ)))

βΣ

β1
Σ

ModM(mΣ)

β2
Φ(Σ)

Pf 1(Σ) Pf 2(Φ(Σ))

Pf M(Φ1(Σ)) Pf M(Φ2(Φ(Σ)))

γΣ

γ1
Σ

Pf M(mΣ)

γ2
Φ(Σ)

Intuitively, mΣ : Φ1(Σ) → Φ2(Φ(Σ)) is a signature morphism in the meta-
logic such that SenM(mΣ) has the same e�ect as αΣ. This is particularly
intuitive in the typical case where α1

Σ and α2
Φ(Σ) are bijections. Similarly,

ModM(mΣ) and Pf M(mΣ) must have the same e�ect as βΣ and γΣ.

4 A Meta-Logic

We will now de�ne a speci�c logic M = (SigM,SenM,ModM, |=M,Pf M,`M)
that we use as our meta-logic. M is based on the dependent type theory of LF.

We could de�ne M such that the signatures of M are the LF signatures.
There are several choices for the sentences of such a logic, the most elegant
one uses the types as the sentences. In that case the proof categories are the
categories of contexts, and models are usually based on locally cartesian closed
categories ([See84, Car86]). For example, we gave a (sound and complete) logic
in this style but without the terminology used here in [AR11].

However, this is not our intention here. We want to use M as a logical
framework, in which all components of an object logic are represented in terms
of the syntax of the meta-logic. In order to capture all aspects of a logic, the
M-signatures must be more complex.
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Below we �rst de�ne the syntax, proof theory, and model theory of M in
Sect. 4.1, 4.2, and 4.3, respectively, before de�ning M and discussing its basic
properties in Sect. 4.4. We use propositional modal logic as a running exam-
ple. M is foundation-independent: Object logic models are represented using
the syntax of the meta-logic in a way that does not commit to a particular
foundation of mathematics. We discuss the use of foundations in more detail in
Sect. 4.5.

4.1 Syntax

The encoding of logical syntax in LF has been well-studied, and we motivate
our de�nitions of M signatures by analyzing existing logic encodings in LF.

Firstly, logic encodings in LF usually employ a distinguished type form for
the formulas and a distinguished judgment ded : form → type for the truth
judgment. But the names of these symbols may di�er, and in some cases form
is not even a symbol. Therefore, we �x a signature Base as follows

form : type

ded : form→ type

Now by considering morphisms out of Base, i.e., pairs of a signature Σ
and a morphism base : Base → Σ, we can explicate these distinguished types.
base(form) is a type over Σ representing the syntactic class of formulas. And
base(ded) is a type family over Σ representing the truth of formulas. By in-
vestigating morphisms out of Base, we are restricting attention to those LF
signatures that de�ne formulas and truth � the central properties that separate
logic encodings from other LF signatures.

Secondly, we want to represent models of a signature Σ as signature mor-
phisms out of Σ. However, models often have components that are not men-
tioned in the syntax, e.g., the set of worlds in a Kripke model. Therefore, we
will use two LF-signatures Σsyn and Σmod to represent syntax and model theory
separately.

Σsyn declares the syntax of a logical language, i.e., LF symbols that represent
syntactic classes (e.g., terms or formulas), sorts, functions, predicates, etc. Σmod

declares the model theory, i.e., LF symbols that axiomatize the properties of
models, typically in terms of a foundational semantic language like set theory,
type theory, or category theory. A morphism µ : Σsyn → Σmod interprets the
syntax in terms of the model theory and represents the inductive interpretation
function that translates syntax into the semantic realm. Finally individual
models are represented as morphisms out of Σmod.

Finally, because of the symmetry between model and proof theory, it is
elegant to split syntax and proof theory as well by introducing an LF-signature
Σpf and a morphism π : Σsyn → Σpf . Σpf declares the proof theory, i.e.,
LF symbols that represent judgments about the syntax and inference rules for
them. It typically deviates from Σsyn by declaring auxiliary syntax such as
signed formulas in a tableaux calculus. In many cases, π is an inclusion.

Then we arrive at the following diagram:

21



Base Σsyn

Σpf

Σmod

base

π

µ

The symbol ded plays a crucial duplicate role. Proof theoretically, the Σpf -
type π(base(ded) F ) is the type of proofs of F . A proof from assumptions Γ is a
Σpf -term in context Γ. This yields the Curry-Howard representation of proofs
as terms that is well-known in the proof theory community ([ML96, Pfe01]).
Model theoretically, the Σmod-type µ(base(form)) is the type of truth values,
and µ(base(ded)) is a predicate on it giving the designated truth values. Below
we will de�ne models as morphisms m : Σmod → M , and (M,m) satis�es F i�
the type m(µ(base(ded) F )) is inhabited overM . This yields the representation
of models as morphisms out of an initial object in a suitable category that is
well-known in the model theory community ([Law63, GTW78]). Thus, ded is
the mediator between proof and model theory, and Σpf and Σmod encode the
two di�erent ways to give meaning to Σsyn.

We summarize the above in the following de�nition:

De�nition 39 (Signatures). The signatures of M are tuples

Σ = (Σsyn,Σpf ,Σmod, base, π, µ)

forming a diagram of LF signatures as given above. base(ded) must be a con-
stant.

The restriction of base(ded) to constants is a bit inelegant. But it is not
harmful in practice and permits to exclude some degenerate cases that would
make later de�nitions more complicated.

As expected, sentences are the LF terms of type form over Σsyn:

De�nition 40 (Sentences). Given an M signature Σ as in Def. 39, we de�ne
the sentences by

SenM(Σ) = {F | · `Σsyn F : base(form)}

Example 41 (Modal Logic). For our simple modal logic ML from Ex. 1, we use
a signature MLsyn as follows:

form : type

⊃ : form→ form→ form

� : form→ form

ded : form→ type

Here ⊃ and � are formula constructors for implication and necessity. The
morphism base : Base → MLsyn is simply an inclusion. If we want to declare
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propositional variables, we can add them using declarations p : form. Let PQsyn

be the extension of MLsyn with p : form and q : form. Then an example
sentence is T = � p ⊃ p ∈ SenM(PQ), an instance of the axiom scheme T. As
here for ⊃, we will use intuitive in�x and bracket elimination rules when giving
example expressions.

De�nition 42 (Signature Morphism). An M-signature morphism σ : Σ →
Σ′ is a tuple (σsyn, σpf , σmod) such that

• the diagram below commutes,

• for every F ∈ SenM(Σ) there is an F ′ such that σsyn(base(ded) F ) =
base ′(ded) F ′.

Identity and composition for SigM-morphisms are de�ned component-wise.

Σsyn

Σpf

Σmod

π

µ

Σ′syn

Σ′pf

Σ′mod

π′

µ′
σsyn

σmod

σpf

σ is simple if additionally σsyn ◦ base = base ′.

Remark 43. The diagram in Def. 42 omits Base and thus does not imply σsyn ◦
base = base ′, which only holds for simple morphisms. It is natural to restrict
attention to simple morphisms. In particular, the second condition in Def. 42
is redundant for simple morphisms as we always have F ′ = σsyn(F ).

However, our slightly weaker de�nition is crucial for the representation of
many logic translations as we will see in Ex. 84 and discuss in Rem. 86.

Def. 42 is just strong enough to guarantee the existence of a sentence trans-
lation:

De�nition 44 (Sentence Translation). In the situation of Def. 42, we put

SenM(σ)(F ) = the F ′ such that σsyn(base(ded) F ) = base ′(ded) F ′

This is well-de�ned because F ′ exists by Def. 42; and if it exists, it is necessarily
unique.

Remark 45. In particular, sentence translation along simple morphisms is just
the application of the morphism σsyn: σsyn(base(o)) = base ′(o) and SenM(σ)(F ) =
σsyn(F ).

Example 46 (Continued). A simple SigM-morphism w : PQ→ PQ can contain
the component

wsyn = id, q := �q, p := q

where id is the identity morphism for PQsyn. Then we have wsyn(form) = form

and wsyn(ded) = ded, and wsyn(ded T ) = ded � q ⊃ q. Thus, we obtain,
SenM(w)(T ) = �q ⊃ q.

23



4.2 Proof Theory

The idea behind the proof theory of M is the Curry-Howard correspondence
([CF58, How80]): judgments (E1, . . . , En) correspond to contexts x1 : E1, . . . , xn :
En where the variables act as names for hypotheses. Moreover, a morphism from
Γ = x1 : E1, . . . , xm : Em to Γ′ = x1 : F1, . . . , xn : Fn provides one proof over
Γ for every judgment assumed in Γ′, i.e., it is a tuple pn1 of terms in context
Γ `Σpf pi : Fi. Such a tuple is simply a substitution from Γ′ to Γ, and the
proof categories are the well-understood categories of contexts and substitu-
tions. The �nite products are given by concatenations of contexts (possibly
using α-renaming to avoid duplicate variables).

De�nition 47 (Proof Categories). Given an M signature Σ as in Def. 39, we
de�ne the proof category Pf M(Σ) as the dual of the category of contexts and
substitutions over Σpf :

• the objects are the contexts over Σpf ,

• the morphisms from Γ to Γ′ are the substitutions from Γ′ to Γ.

Example 48 (Continued). For our modal logic, we can de�neMLpf by extending
MLsyn with a calculus for provability. Thus, πML is an inclusion. There are a
number of ways to do that (see [AHMP98]); for a simple Hilbert-style calculus,
MLpf consists of axioms for propositional logic and the declarations

mp : {x : form} {y : form} ded x ⊃ y → ded x→ ded y
nec : {x : form} ded x→ ded � x
K : {x : form} {y : form} ded �(x ⊃ y) ⊃ (�x ⊃ �y)

Note how the Π-binder {x : form} is used to declare schema variables.
Similarly, we de�ne PQpf by extending MLpf with p : form and q : form.

Then the proof category Pf M(PQ) contains objects like

Γ1 = x : ded �(p ⊃ q), y : ded �p

and
Γ2 = z : ded �q.

A Pf M(PQ)-morphism from Γ1 to Γ2 is the substitution

γ1 = z := mp �p �q
(
mp �(p ⊃ q) �p ⊃ �q (K p q) x

)
y

It gives a proof of the goal labelled z in terms of the two assumptions labelled x
and y. To enhance readability, we have underlined the arguments that instan-
tiate the schema variables.

Just like the proof categories are the categories of contexts and substitu-
tions over the LF signature Σpf , the proof translation functor is given by the
application of the LF morphism σpf to contexts and substitutions:

24



De�nition 49 (Proof Translation). Given an M-signature morphism σ : Σ →
Σ′ as in Def. 42, the proof translation functor Pf M(σ) : Pf M(Σ) → Pf M(Σ′)
is de�ned by

Pf M(σ)(Γ) = σpf (Γ) for Γ ∈ |Pf M(Σ)|
Pf M(σ)(γ) = σpf (γ) for γ ∈ Pf M(Σ)(Γ,Γ′)

Example 50 (Continued). Reusing the morphism w and the object Γ1 from our
running example, we obtain

Pf M(w)(Γ1) = x : ded �(q ⊃ �q), y : ded �q

and

Pf M(w)(γ1) = z := mp �q ��q
(
mp �(q ⊃ �q) �q ⊃ ��q (K q �q) x

)
y

which is an Pf M(PQ)-morphism from Pf M(w)(Γ1) to Pf M(w)(Γ2).

As expected, the truth judgment is given by the image of ded in Σpf :

De�nition 51 (Truth Judgment). Given an M signature Σ as in Def. 39, the
truth judgment `MΣ F is de�ned as the context x : π(base(ded) F ) for an arbi-
trary �xed variable x.

Example 52 (Continued). We have

`MPQ �(p ⊃ q) × `MPQ �p ∼= Γ1

`MPQ �q ∼= Γ2

The projection out of the product Γ1 are just inclusion substitutions. And the
isomorphism in the second case is a variable renaming. Thus, the morphism γ1

proves {�(p ⊃ q),�p} `MPQ �q. Similarly, the morphism Pf M(w)(γ1) proves
{�(q ⊃ �q),�q} `MPQ ��q.

4.3 Model Theory

The de�nition of Σmod is the most di�cult part because Σmod must declare
symbols for all components that are present in a model. Since a model may
involve any mathematical object, Σmod must be expressive enough to de�ne
arbitrary mathematical objects. Therefore, Σmod must include a representa-
tion of the whole foundation of mathematics. The foundation is �exible; for
example, we have represented Zermelo-Fraenkel set theory, Mizar's set theory,
and higher-order logic HOL as foundations in the applications of our framework
([HR11, IR11, CHK+11a]). For simplicity, we will use higher-order logic as the
foundation here. We start with our running example:
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Example 53 (Continued). To describe the model theory of modal logics, we reuse
the signature HOL that was introduced as a running example in Sect. 2.2. We
assume it also provides a declaration

∀ : (tm A→ tm bool)→ tm bool

for universal quanti�cation over elements of A.
Then MLmod can be given by extending HOL with

worlds : tp
acc : tm worlds → tm worlds → tm bool

where worlds and acc represent the set of words and the accessibility relation
of a Kripke model. Now the morphism µML : MLsyn →MLmod can be de�ned
as

form := tm worlds → tm bool
⊃ := [f : tm worlds → tm bool ] [g : tm worlds → tm bool ]

[w : tm worlds] (f w ⇒ g w)
� := [f : tm worlds → tm bool ]

[w : tm worlds]∀ [w′ : tm worlds] (acc w w′ ⇒ f w′)
ded := [f : tm worlds → tm bool ] ded (∀ [w : tm worlds] f w)

µML formalizes that formulas are interpreted as functions from the set of
worlds to the set of booleans. Consequently, µML(⊃) takes two and returns
one, and µML(�) takes one and returns one such functions. These formalize the
interpretation of formulas in Kripke models in the usual way. Finally, µML(ded)
formalizes the satisfaction relation: A formula holds in a model if it is true in
all worlds.

To avoid confusion, keep in mind that ded formalizes truth in the object-
logic ML, whereas ded formalizes truth in the mathematical foundation HOL,
which is used to express the model theory. As common in model theoretical
de�nitions of truth, the truth of formulas is de�ned in terms of the truth of the
mathematical foundation.

The signature PQmod arises by extending MLmod with declarations p :
µ(form), i.e., p : tm worlds → tm bool , and similarly for q. The morphism
µPQ : PQsyn → PQmod is given by µ, p := p, q := q.

Now a model of PQ must provide speci�c values for worlds, acc, p, and q in
terms of HOL. Thus, we can represent models as morphisms from PQmod to
HOL.

Then we arrive at the following de�nition of model categories:

De�nition 54 (Model Categories). Given an M signature Σ as in Def. 39,
we de�ne the model category ModM(Σ) as the slice category of objects under
Σmod:

• objects are the pairs (M,m) for an LF-signature morphism m : Σmod →
M ,

• morphisms from (M,m) to (M ′,m′) are LF-signature morphisms ϕ : M →
M ′ such that ϕ ◦m = m′,
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• the identity morphism of (M,m) is idM ,

• the composition of ϕ : (M,m)→ (M ′,m′) and ϕ′ : (M ′,m′)→ (M ′′,m′′)
is ϕ′ ◦ ϕ.

Here we use an arbitrary LF signature as the codomain of the models to avoid
a commitment to a particular foundation. We get back to that in Rem. 60.

The model translation functor is given by composition with σmod:

De�nition 55 (Model Translation). Given an M-signature morphism σ : Σ→
Σ′ as in Def. 42, we de�ne ModM(σ) : ModM(Σ′)→ModM(Σ) by

ModM(σ)(M,m) = (M,m ◦ σmod)

ModM(σ)(ϕ) = ϕ

The following commutative diagram illustrates the functor ModM:

Σmod Σ′mod

M M ′
ϕ

m m′

σmod

Example 56 (Continued). We have an example model (HOL,m1) ∈ModM(PQ)
by de�ning the LF-signature morphism m1 to map

• all symbols of HOL to themselves,

• worlds to the set N,

• acc to the ≤ relation on N,

• p and q to the predicates odd and nonzero on N that are true for odd and
non-zero numbers, respectively.

The model theoretical truth, i.e., the satisfaction relation, is given by the
inhabitation of the type base(ded) F in a model:

De�nition 57 (Satisfaction). For a Σ-model (M,m) and a Σ-sentence F , we
de�ne

(M,m) |=M
Σ F iff there exists t such that · `M t : m(µ(base(ded) F )).

Example 58 (Continued). We can assume that HOL has expressions true :
tm bool and false : tm bool such that ded true is inhabited but ded false is
empty. Thus, we obtain for the satisfaction in the model (HOL,m1) from above

(HOL,m1) |=M
PQ F iff exists t such that · `HOL t : ded (∀[w : tm N]m1(F ) w).
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That holds i� m1(F ) is the constant function returning true (up to provable
equality in HOL). For example, if we assume that HOL contains proof rules
to derive common HOL-theorems, we obtain (HOL,m1) |=M

PQ p ⊃ �q because
we can simplify m1(p ⊃ �q) w to the formula

odd w ⇒ ∀[w′ : tm N] ((w ≤ w′)⇒ nonzero w′)

which is true for all w.

Remark 59 (Lax Model Categories). Def. 54 can be generalized by using lax
slice categories under Σmod. Then model morphisms from (M,m) to (M ′,m′)
are pairs (ϕ, r) for an LF-signature morphism ϕ : M → M ′ and a 2-cell r : ϕ ◦
m⇒ m′. Model reduction can be generalized accordingly. This is problematic,
however, because there is no natural way to turn the category of LF signatures
into a 2-category. The same remark applies when other type theories are used
instead of LF.

Recently we developed a theory of logical relations for LF as relations be-
tween LF signature morphisms [Soj10]. Binary logical relations do not form
a 2-category either but behave like 2-cells in many ways. We expect that our
present de�nition can be improved along those lines but omit the details here.

Remark 60. This de�nition of models as morphisms (M,m) is very general per-
mitting for example the trivial model (Σmod, idΣmod). We are usually interested
in those models where the codomain is a �xed LF-signature F representing the
foundation of mathematics such as F = HOL above. Then the LF signature
morphism m ◦ µ maps the syntax into the foundation F , i.e., every syntactical
expression to its interpretation in the language of mathematics. We will get
back to this in Sect. 4.5.

4.4 Collecting the Pieces

We conclude the de�nition of M with the following result.

Theorem 61. M = (SigM,SenM,ModM, |=M,Pf M,`M) is a logic.

Proof. We have to prove a number of conditions:

• Sig is a category. The only non-obvious aspect here is that the existence of
F ′ in the de�nition of signature morphisms is preserved under composition.
It is easy to see.

• SenM is a functor. This is straightforward.

• ModM is a functor. This is a standard result of category theory for slice
categories (see, e.g., [Mac98]).

• It is a standard about the category of contexts in type theories that Pf M

is a functor SigM → CAT (see, e.g., [Pit00]). Thus, we only need to
show that Pf M(Σ) has �nite products and that Pf M(σ) preserves these
products. The products are given by Γ1 × . . .× Γn = Γ′1, . . . ,Γ

′
n where Γ′i
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arises from Γi by α-renaming to eliminate duplicate variable names. The
empty product (terminal object) is the empty context.

• |=M meets the satisfaction condition. Assume σ : Σ→ Σ′, F ∈ SenM(Σ),
and (M,m) ∈ModM(Σ′). Then

ModM(σ)(M,m) |=M
Σ F i�

there is an M -term of type (m ◦ σmod)
(
µ(base(ded) F )

)
i�

there is an M -term of type m
(
µ′
(
σsyn(base(ded) F )

))
i�

there is an M -term of type m
(
µ′
(
base ′(ded) SenM(σ)(F )

))
i�

(M,m) |=M
Σ′ Sen

M(σ)(F ).

• `M is preserved. Assume σ : Σ→ Σ′ and F ∈ SenM(Σ). Then

Pf M(σ)(`MΣ F ) = x : σpf (π(base(ded) F )) =

x : π′(σsyn(base(ded) F )) = x : π′(base ′(ded) SenM(σ)(F )) =

`MΣ′ Sen
M(σ)(F )

Soundness and Completeness M is intentionally neither sound nor com-
plete because it is designed to be a meta-logic in which other possibly unsound
or incomplete logics are represented. However, we have the following soundness
criterion:

De�nition 62. An M-signature (Σsyn,Σpf ,Σmod, base, π, µ) is called sound if
there is an LF signature morphism ψ : Σpf → Σmod such that the following
diagram commutes:

Σsyn

Σpf

Σmod

π

µ

ψ

This de�nition is justi�ed by:

Theorem 63. The logic arising from M by considering only the sound M-
signatures is strongly sound.

Proof. Let Σ be a sound signature (i) as in Def. 62, Θ a set of Σ-sentences,
and F a Σ-sentence. Assume Θ `MΣ F (ii); then we need to show Θ |=M

Σ F . So
assume an arbitrary model (M,m) ∈ ModM(Σ) such that (M,m) |=M

Σ A for
every A ∈ Θ (iii); then we need to show (M,m) |=M

Σ F .
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By (ii), there must be a substitution from `MΣ F to `MΣ F1 × . . . × `MΣ Fn

for some {F1, . . . , Fn} ⊆ Θ. Using the LF type theory, it is easy to show that
this is equivalent to having a closed Σpf -term t of type

π
(
base(ded) F1 → . . .→ base(ded) Fn → base(ded) F

)
.

By (i), we obtain a closed M -term m(ψ(t)) of type

m
(
µ
(
base(ded) F1 → . . .→ base(ded) Fn → base(ded) F

))
.

Now by (iii), there are M -terms ti of type m(µ(base(ded) Fi)). Thus, there
is also an M -term m(ψ(t)) t1 . . . tn of type m(µ(base(ded) F )) and therefore
(M,m) |=M

Σ F .

We will re�ne this into a criterion to establish the soundness of a logic in
Thm. 81 below.

Remark 64 (Completeness). It does not make sense to use the analogue of
Def. 62 for completeness: Σmod is typically much stronger than Σpf � often
as strong as mathematics as a whole as in Sect. 4.5 � so that there can be no
signature morphism Σmod → Σsyn. Moreover, even if we had such a morphism,
it would not yield completeness because the proof of Thm. 63 crucially uses the
composition m ◦ ψ.

This is not surprising. A soundness result is naturally proved by showing
inductively that the interpretation function maps every derivable syntactic state-
ment to a true semantic statement; this is exactly what a signature morphism
does. A completeness result on the other hand is usually proved by exhibiting
a canonical model, which has a very di�erent �avor.

However, it is still very promising to undertake completeness proofs within
our framework: The canonical model is usually formed from the syntax, which
is already formally represented in Σsyn. A framework like LF is ideal to build
canonical models as abstract data types. However, to show completeness, we still
have to re�ect these LF-level syntactical models into Σmod, e.g., by interpreting
an LF type as the set of LF terms of that type. This technique is related to the
de�nition of abstract data types in Isabelle/HOL ([NPW02]) and the quotations
of Chiron ([Far10]). We have to leave a further investigation to future work.

Theories Due to the Curry-Howard representation of proofs, there is no sig-
ni�cant conceptual di�erence between signatures and theories from an LF per-
spective. In fact, M-signatures subsume the �nite theories already:

Notation 65. If Θ = {F1, . . . , Fn}, the M-theory (Σ,Θ) behaves in the same way
as the M-signature arising from Σ by appending a1 : base(ded) F1, . . . , an :
base(ded) Fn to Σsyn. We write (Σ,Θ)syn for this signature. Accordingly,
we obtain (by pushout along Σsyn → (Σ,Θ)syn) the signatures (Σ,Θ)pf and
(Σ,Θ)mod.

Correspondingly, we can express M-theory morphisms as LF-signature mor-
phisms:
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Theorem 66. Assume an M-signature morphism σ : Σ→ Σ′ and �nite theories
(Σ,Θ) and (Σ′,Θ′).

1. The following properties of σ are equivalent:

• σ is a proof theoretical theory morphism (Σ,Θ)→ (Σ′,Θ′).

• There is an LF-signature morphism (σ, ϑ)pf such that the left diagram
below commutes.

2. The following properties of σ are equivalent:

• σ is a model theoretical theory morphism (Σ,Θ)→ (Σ′,Θ′).

• There is an LF-signature morphism (σ, ϑ)mod such that the right di-
agram below commutes.

Σpf Σpf

(Σ,Θ)pf (Σ′,Θ′)pf

σpf

(σ, ϑ)pf

Σmod Σmod

(Σ,Θ)mod (Σ′,Θ′)mod

σmod

(σ, ϑ)mod

Proof.

1. σ being a proof theoretical theory morphism is equivalent to there being
proof terms pi : σsyn(π(base ′(ded) Fi)) over the LF-signature (Σ′,Θ′)pf

for every Fi ∈ Θ, i.e., for every ai : base(ded) Fi in (Σ,Θ)syn. Then map-
ping every ai to pi yields the LF-signature morphism (σ, ϑ)pf : (Σ,Θ)pf →
(Σ′,Θ′)pf . The inverse direction is proved accordingly.

2. First, we observe, using the de�nition of satisfaction, that a Σ-model
(M,m) satis�es all axioms in Θ i�m : Σmod →M can be factored through
(Σ,Θ)mod (in other words: m can be extended to a signature morphism
(Σ,Θ)mod).
Thus, given (σ, ϑ)mod, models of Σ′ yield models of Σ simply by com-
position, which proves σ is a model theoretical theory morphism. Con-
versely, one obtains (σ, ϑ)mod by factoring the Σ-model ((Σ′,Θ′)mod, σmod)
through (Σ,Θ)mod.

The criterion for proof theoretical theory morphisms is quite intuitive and
useful: Via the Curry-Howard representation, axioms are mapped to proof
terms. The model theoretical criterion is much less useful because there are
many models in M, which makes it a very strong condition. It guarantees that
σ is a model theoretical theory morphism for any foundation. However, often the
property of being a model theoretical theory morphism depends on the chosen
foundation. In Sect. 4.5, we will look at a weaker, foundation-speci�c condition.
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4.5 Foundations

We call M foundation-independent because it is not committed to a �xed
foundation, in which the model theory of object logics is de�ned. Thus, we
are able to express logics using di�erent mathematical foundations and even
translations between them. However, this is also a drawback because for any
speci�c logic, we are usually only interested in certain models (M,m), namely
in those where M is the semantic realm of all mathematical objects. Therefore,
we restrict M accordingly using a �xed LF-signature F that represents the
foundation of mathematics.

The intuition is as follows. F is a meta-language, which is used by Σmod to
specify models. Thus, Σmod includes F and adds symbols to it that represent
the free parameters of a model, e.g., the universe and the function and predicate
symbols for �rst-order models. Models must interpret those added symbols as
expressions of the foundation in a way that preserves typing (and thus via Curry-
Howard, in a way that satis�es the axioms). Therefore, we can represent models
as signature morphisms m : Σmod → F .

However, representing a foundation in LF can be cumbersome due to the
size of the theory involved. Our representation of ZFC that we use in [HR11]
requires several thousand declarations just to build up the basic notions of
ZFC set theory to a degree that supports simple examples. Moreover, the
automation of foundations is a very di�cult problem, and type checking or
automated reasoning for untyped set theories is much harder than for most
logics.

We remedy these drawbacks with a slightly more general approach. We use
two LF-signatures F0 and F with a morphism P : F0 → F . The idea is that
F0 is a fragment or an approximation of the foundation F that is re�ned into
F via the morphism P . It turns out that manageably simple choices of F0 are
expressive enough to represent the model theory of most logics.

This has the additional bene�t that the same F0 can be used together with
di�erent values for P and F . This corresponds to the mathematical practice of
not detailing the foundation unless necessary. For example, standard construc-
tions and results like the real numbers are usually assumed without giving or
relying on a speci�c de�nition. For example, in [HR11], we use a simply-typed
higher-order logic for F0, ZFC set theory as F , and P interprets types as sets
and terms as elements of these sets. F0 can be written down in LF within a few
minutes, and strong implementations are available ([Gor88, NPW02, Har96]).

If we combine this approach with a module system for LF � as we do for
example in [CHK+11a] � this gives rise to the paradigm of little foundations.
It corresponds to the little theories used implicitly in [Bou74] and explicitly
in [FGT92]. Using little foundations, we specify models in F0 making as few
foundational assumptions as possible and re�ne it to a stronger foundation when
needed. In fact, Σsyn can be seen as the extreme case of making no assumptions
about the foundation, and µ : Σsyn → Σmod as a �rst re�nement step. At the
opposite end of the re�nement chain, we might �nd the extension ZF ↪→ ZFC,
which adds the axiom of choice.
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We formalize these intuitions as follows:

De�nition 67 (Foundations). Given an LF-signature F0, Sig
M
F0

is the subcat-
egory of SigM that is restricted to

• those signatures Σ for which there is an inclusion from F0 into Σmod,

• those signature morphisms σ for which σmod is the identity on F0.

Thus, SigM
F0

is the full subcategory of inclusions of the slice category of
objects under F0. Note that we recover Sig

M when F0 is the empty signature.

De�nition 68 (Founded Models). For an LF-signature morphism P : F0 → F ,
we de�ne ModM

P as the functor SigM
F0
→ CAT op that maps

• signatures Σ to the subcategory of ModM(Σ) restricted to the models
(F ,m) for which m agrees with P on F0,

• signature morphisms in the same way as ModM.

These de�nitions lead to the following commutative diagram for a Σ′-model
(F ,m) translated along σ:

Σmod Σ′mod

F0

F

σmod

m ◦ σmod mP

And these specializations indeed yield a logic:

Theorem 69. For arbitrary P : F0 → F , we obtain a logic

MP = (SigM
F0
,SenM,ModM

P , |=M,Pf M,`M)

(where SenM, |=M, Pf M, and `M are the appropriate restrictions according to
SigM

F0
and ModM

P ).

Proof. This follows immediately from Thm. 61. The only non-trivial aspect is
to show that ModM

P (σ) is well-de�ned, and that follows from the commutativity
of the above diagram.

Example 70 (Continued). In Ex. 53, we have already used MP -models: We used
F0 = F = HOL, and P was the identity.

Now we can revisit Thm. 66, which stated that model theoretical theory
morphisms σ : (Σ,Θ) → (Σ′,Θ′) in M are equivalent to LF-signature mor-
phisms (σ, ϑ)mod : (Σ,Θ)mod → (Σ′,Θ′)mod. If we restrict attention to MP , the
situation is a bit more complicated:
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Theorem 71. Assume an MP -signature morphism σ : Σ → Σ′ and �nite
theories (Σ,Θ) and (Σ′,Θ′). The following properties of σ are equivalent:

• σ is a model theoretical theory morphism (Σ,Θ) → (Σ′,Θ′) in the logic
MP .

• For every LF-signature morphism m′ : (Σ′,Θ′)mod → F , there is an LF-
signature morphism m : (Σ,Θ)mod → F such that the following diagram
commutes:

Σmod Σ′mod

(Σ,Θ)mod (Σ′,Θ′)mod

F

σmod

m m′

Proof. This follows immediately because σ is a model theoretical theory mor-
phism i� ModM

P (σ) maps Θ′-models to Θ-models.

Using Thm. 71, extending σmod to an LF-signature morphism (σ, ϑ)mod :
(Σ,Θ)mod → (Σ′,Θ′)mod is su�cient to make σ a model theoretical MP -theory
morphism. But it is not a necessary condition. Counter-examples arise when
F0 is too weak and cannot prove all theorems of F . In [HR11], we show that is
a necessary condition in the special case F0 = F = ZFC. The general case is
open.

5 De�ning and Encoding Logics

We can combine the results of Sect. 3 and 4 to de�ne logics and logic trans-
lations in our framework. Logics are de�ned or represented using functors
Φ : Sig → SigM. But the formal details can be cumbersome in practice: M-
signatures are 6-tuples and morphisms 3-tuples with some commutativity con-
straints. Therefore, we introduce the notion of uniform logic representations,
which are the typical situation in practice and which can be given conveniently.

Uniform logics are generated by a �xed SigM signature L. The intuition
is that Lsyn represents the logical symbols, and extensions Lsyn ↪→ Σsyn add
one declaration for each non-logical symbols. This is very similar to the use of
�uniform� in [HST94], from which we borrow the name. Then proof and model
theory are given in general by Lpf and Lmod, and these induce extensions Σpf

and Σmod for the proof and model theory of a speci�c choice of non-logical
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symbols. Similarly, translations interpret logical symbols in terms of logical
symbols and non-logical ones in terms of non-logical ones.

5.1 Non-Logical Symbols

Recall from Sect. 2.2 that we write LF for the category of LF signatures and LF
signature morphisms. Because SigM morphisms are triples of LFmorphisms and
composition is de�ned component-wise, SigM inherits inclusions and pushouts
from LF. In particular:

Lemma 72. SigM has inclusion morphisms in the following sense: The sub-
category of SigM which contains

• all objects and

• only those morphisms (σsyn, σpf , σmod) : Σ→ Σ′ for which σsyn, σpf , and
σmod are inclusions in LF

is a partial order. We write Σ ↪→ Σ′ for inclusion morphisms from Σ to Σ′

Proof. Morphisms in SigM are triples, and composition is de�ned component-
wise. Therefore, the properties of inclusions follow immediately from those of
inclusions in LF.

Remark 73. More generally, the inclusions of LF induce a weak inclusion system
in the sense of [CR97]. This property is inherited by SigM as well.

We will use inclusions L ↪→ Σ to represent a logic L together with non-logical
symbols given by Σ. When giving the non-logical symbols, it is not necessary to
give Σ; instead, we can just give an LF inclusion Lsyn ↪→ Σsyn and obtain the
remaining components of Σ by pushout constructions. We make that precise in
the following de�nitions:

De�nition 74. An inclusion Lsyn ↪→ Σsyn is called compatible with L if Σsyn

does not add declarations for names that are also declared in Lpf or Lmod.

De�nition 75. We de�ne the category M + LF as follows

• objects are the pairs (L,Σsyn) of an M signature L and an LF inclusion
Lsyn ↪→ Σsyn that is compatible with L,

• morphisms from (L,Σsyn) to (L′,Σ′syn) are the commuting rectangles

Lsyn

L′syn

Σsyn

Σ′syn

lsyn σsyn
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The restriction to compatible inclusions in Def. 75 is a technicality needed
for Def. 76: If Σsyn added a name that is also declared in Lpf or Lmod, the
respective canonical pushout in LF would not exist. This restriction is harmless
in practice because namespaces can be used to ensure the uniqueness of names.

For compatible inclusions, the canonical pushouts exist and every M + LF
object (L,Σsyn) induces an M signature and every M + LF morphism (l, σsyn)
induces an M signature morphism:

De�nition 76. We de�ne a functor · : M + LF→ SigM as follows

• For objects (L,Σsyn), we de�ne the M signature

(L,Σsyn) = (Σsyn,Σpf ,Σmod, baseΣ, πΣ, µΣ)

such that the following diagram commutes and Σpf and Σmod are canonical
pushouts in LF

Base Lsyn Σsyn

Lpf

Lmod

µ

π

Σpf

πΣ

Σmod

µΣ

base

baseΣ

• For morphisms (l, σsyn) : (L,Σsyn) → (L′,Σ′syn), we de�ne the M signa-
ture morphism (l, σsyn) = (σsyn, σpf , σmod) : (L,Σsyn)→ (L′,Σ′syn) such
that σpf and σmod are the unique morphisms that make the following LF
diagrams commute

Lsyn

L′syn

Σsyn

Σ′syn

lsyn
σsyn

Lpf

L′pf

Σpf

Σ′pf

πΣ

πΣ′

lpf
σpf

π

π′
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Lsyn

L′syn

Σsyn

Σ′syn

lsyn
σsyn

Lmod

L′mod

lmod

σmod

Σmod

Σ′mod

µΣ

µΣ′

µ

µ′

5.2 Uniform Logics

We obtain a uniform logic ML
P for every M signature L by pairing L with all

possible choices of non-logical symbols. In ML
P , we also �x a foundation for the

model theory:

De�nition 77 (Uniform Logics). Assume an LF signature morphism P : F0 →
F and a SigM

F0
-signature L. We write L + LF for the subcategory of M + LF

containing the objects (L,Σsyn) and the morphisms (idL, σ
syn). Then we obtain

a logic
ML

P = MP ◦ · |L+LF.

Here · |L+LF : L+ LF→ SigM is the restriction of · to L+ LF.
Uniform logics are de�ned completely within LF � signatures, sentences,

proofs, and models are given as syntactical entities of LF. We already know
how to represent existing logics in LF, namely via Thm. 30. Uniform logic
encodings arise when we use ML

P as the meta-logic.

Example 78 (Modal Logic). If we take all examples from Sect. 4 together, we
obtain a uniform encoding of ML using the M-signature

ML = (MLsyn,MLpf ,MLmod, incl, incl, µML)

(where incl denotes inclusion morphisms). We de�ne a functor ΦML : SigML →
ML + LF as follows. For a modal logic signature Σ = {p1, . . . , pn} ∈ |SigML|
and a signature morphism σ : Σ → Σ′, we de�ne ΦML(Σ) = (ML,Σsyn) and
ΦML(σ) = (id ,σ

syn) with

Σsyn = MLsyn, p1 : form, . . . , pn : form
σsyn = idMLsyn , p1 := σ(p1), . . . , pn := σ(pn)

This yields ΦML(Σ) = (Σsyn,Σpf ,Σmod, incl, incl, µΣ) and ΦML(σ) = (σsyn, σpf , σmod)
with

Σpf = MLpf , p1 : form, . . . , pn : form
Σmod = MLmod, p1 : tm worlds → tm bool , . . . , pn : tm worlds → tm bool
µΣ = µML, p1 := p1, . . . , pn := pn
σpf = idMLpf , p1 := σ(p1), . . . , pn := σ(pn)
σmod = idMLmod , p1 := σ(p1), . . . , pn := σ(pn)
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In particular, we have ΦML(PQ) = (PQsyn, PQpf , PQmod, incl, incl, µPQ)

and ΦML(w) = (wsyn, wpf , wmod) as de�ned throughout the running example.
Moreover it is straightforward to show that ΦML can be extended to a logic

comorphism (ΦML, α, β, γ) from ML to MML
P where P is as in Ex. 70. αΣ is an

obvious bijection. βΣ maps every LF-signature morphism m : Σmod → HOL to
a Kripke-model of Σ. Finally, γΣ is a straightforward encoding of judgments as
types and proofs as terms.

It is very easy to show the proof theoretical adequacy of γ. The discussion
of the model theoretical adequacy of β is complicated as it depends on which
sets are eligible as Kripke frames in ML-models (see Rem. 80). If HOL can
express all sets that are eligible as Kripke frames, we obtain model theoretical
adequacy.

Remark 79 (Declaration Patterns). Def. 77 uses all extensions of Lsyn as the
signatures of ML

P . However, often we want to work with a subcategory instead.
For example, for modal logic, we would like to use only those extensions with
declarations of the form p : form. This requires an extension of LF with what
we call declaration patterns (similar to the block declarations already present in
Twelf, [PS99]). Such an extension is currently designed in joint work with Fulya
Horozal.

Remark 80 (Model Theoretical Adequacy). Ex. 78 raises the question when
model theoretical adequacy holds. Let us call a mathematical object de�nable
if it can be denoted by an expression of the foundational language. For example,
since there can only be countably many de�nable objects, a set theory with
uncountably many objects has unde�nable objects. But even if we can prove
the existence of unde�nable objects, we can never actually give one. On the
other hand, it is easy to see that a model can be represented as an LF signature
morphism i� all its components are de�nable.

Therefore, the surjectivity of βΣ is and thus model theoretical adequacy
depend on the philosophical point of view we take.

The type theoretical school often rejects a commitment to set theory � recall
that LF and thus the essence of M can be developed using only formal languages
and inference systems without appealing to a foundation of mathematics like
set theory. Type theory does not object to model theory per se; but it would re-
strict attention to de�nable models. In fact, our models-as-signature-morphisms
paradigm is an appealing way to de�ne model from a type theoretical point of
view. This is particularly elegant if we observe that the approach uni�es the
study of models of theories and that of implementations of speci�cations. In that
case, of course all models are expressible as signature morphisms, and adequacy
holds.

The set theoretical school does not only de�ne individual models but also the
class of all models. Moreover, they see the sets of LF signatures and signature
morphisms as de�ned within set theory. Then adequacy means the existence of
a certain between a class of models and a set of morphisms. But then a simple
cardinality argument shows that adequacy usually does not hold. In order to
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maintain Thm. 32, we have to study weaker notions of adequacy. We leave this
to further work.

Besides their simplicity, uniform representations have the advantage, that
the properties of soundness can be proved formally within the logical framework:

Theorem 81. A uniform logic ML
P is strongly sound if L is a sound M signa-

ture.

Proof. Using Thm. 63, we only have to show that for every Σsyn extending
Lsyn there is an LF-morphism from Σpf to Σmod with a certain commutativity
property. That follows immediately from the universal property of the pushout
Σpf using the soundness of L.

We sketch another example � a fragment of our encoding of �rst-order logic
from [HR11] � in order to give an example of a logic translation below.

Example 82 (First-Order Logic). To de�ne �rst-order logic FOL, we give a
uniform functor ΦFOL over the M signature FOL. The central declarations of
FOLsyn are:

i : type terms
o : type formulas
⊃ : o→ o→ o implication
∀ : (i→ o)→ o universal
ded : o→ type truth

FOLpf adds natural deduction proof rules in a straightforward way. For
simplicity, we assume that FOLmod extends the same signature F0 = HOL
as MLmod. This extension includes a declaration univ : tp for the universe.
baseFOL and πFOL are inclusions, and µFOL maps i to tm univ, o to tm bool ,
and all formulas to their semantics in the usual way.

Assume a FOL signature Σ = (Σf ,Σp, arit) where Σf and Σp are the sets
of function and predicate symbols with arity function arit : Σf ∪ Σp → N.
Then ΦFOL(Σ) extends FOLsyn with declarations f : i → . . . → i → i and
p : i→ . . .→ i→ o, respectively, for each function or predicate symbol.

5.3 Uniform Logic Translations

Logic translations between uniform logics are already possible using the general
methods of Thm. 36. We speak of uniform translations in the special case where
a �xed M-signature morphism is used to translate the logical symbols:

Theorem 83 (Uniform Logic Translations). For i = 1, 2, assume functors
Φi : Sigi → Li + LF. Assume

• a functor Φ : Sig1 → Sig2,

• a SigM
F0
-morphism l = (lsyn, lpf , lmod) : L1 → L2,

39



• a natural transformation m : Φ1 → Φ2 ◦ Φ (seen as functors Sig1 →
M + LF) such that each mΣ is of the form (l, αΣ).

Then (ϕ,MP ◦ · ◦m) is a logic comorphism from ML1

P ◦ Φ1 to ML2

P ◦ Φ2.

Proof. Observe that · ◦m is a natural transformation · ◦Φ1 → · ◦Φ2 ◦Φ
between functors Sig1 → SigM, and also that MLi

P ◦ Φi = MP ◦ · ◦ Φi. Then
the result follows immediately from Thm. 36.

Finally we can give a uniform logic translation from modal logic to �rst-order
logic:

Example 84 (Translating ML to FOL). Based on Ex. 78 and 82, we represent the
well-known translation from modal logic to �rst-order logic that makes worlds
explicit and relativizes quanti�ers.

Firstly, the functor Φ : SigML → SigFOL maps every modal logic signature
Σ to the FOL signature that contains a binary predicate symbol acc (for the
accessibility relation) and one unary predicate symbol p for every propositional
variable p ∈ Σ.

Secondly, we cannot give a M signature morphism ML→ FOL because the
translation requires the �xed predicate symbol acc, which is present in every
Φ(Σ) but not in FOLsyn. Therefore, we put L1 = ML and L2 = FOL′ =
(FOL,Σ0) where Σ0 is the LF signature FOLsyn, acc : i → i → o. Then
ΦFOL ◦ Φ is indeed a functor SigML → FOL′ + LF.

Thirdly, we give a SigM morphism l : ML→ FOL′ as follows. lsyn is given
by

form := i→ o
⊃ := [f : i→ o] [g : i→ o] [x : i] (f x) ⊃ (g x)
� := [f : i→ o] [x : i]∀[y : i] ((acc x y) ⊃ (f y))
ded := [f : i→ o] ded ∀[x : i] f x

ML-sentences are mapped to FOL-formulas with a free variable (i.e., terms
of type i → o). The intuition is that the free variable represents the world in
which the ML-sentence is evaluated. ⊃ and � are translated in the expected
way. Finally, the ML-truth judgment ded F is mapped to the FOL-judgment
ded ∀[x] lsyn(F ) x; note how ∀ is used to bind the above-mentioned free variable
and to obtain a sentence.

lpf extends lsyn with assignments that map every proof rule of modal logic
to a proof in �rst-order logic. These are technical but straightforward. lmod is
the identity for all symbols of HOL and maps

worlds := univ
acc := acc

It is easy to establish the commutativity requirements on (lsyn, lpf , lmod).
Fourthly, we de�ne the natural transformation m. mΣ must be a M +

LF morphism (l, αΣ) from ΦFOL(Φ(Σ)) to ΦML(Σ). For Σ = {p1, . . . , pn}, the
domain of αΣ is MLsyn, p1 : form, . . . , pn : form, and the codomain is
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FOLsyn, acc : i → i → o, p1 : i → o, . . . , pn : i → o. Thus, we put
αΣ = lsyn, p1 := p1, . . . , pn := pn.

Remark 85. In the typical case where Φ1 and Φ2 are injective, we can modify
Def. 83 to use a functor Φ′ : L1 +LF→ L2 +LF such that Φ2 ◦Φ = Φ′ ◦Φ1. Φ′

represents the same signature translation as Φ but lives within the meta-logic
M.

Then in the case of Ex. 84, Φ′ and the natural transformation m are given
simply by pushout along l. This yields a signi�cantly simpler notion of uniform
logic translation induced by l alone. However, not all signature translations
can be obtained in this way. A counter-example is the translation from sorted
to unsorted FOL translates single declarations in Σ to multiple declarations in
Φ(Σ).

In general, Φ′ and m can be formalized using the declaration patterns from
Rem. 79, but we leave the details to future work.

Remark 86 (Non-simple Morphisms). Note that l in Ex. 84 is not simple, which
�nally justi�es the particular choice in Def. 42 explained in Rem. 43. The
induced sentence translation SenM(l) can be factored into two steps: First a
compositional translation maps F of type form to lsyn(F ) of type i → o; it
is followed by a non-compositional step that is only applied once on toplevel,
which maps lsyn(F ) to ∀[x] lsyn(F ) x of type o.

This is typical for non-trivial logic translations: If the semantics of I1 is
encoded using the syntax of I2, then I1-sentences are translated to some I2-
expressions, which must be lifted to I2-sentences using a �nal toplevel step.
Another example is the translation of many-valued propositional logic to �rst-
order logic where formulas are translated compositionally to terms and a �nal
toplevel step applies a unary predicate for designated truth values.

More generally, we can distinguish two kinds of sentence translation func-
tions: the within-logic translations Sen(σ) : Sen(Σ) → Sen(Σ) translate
along a signature morphism between two signatures of the same logic, and the
across-logic translations αΣ : Sen(Σ) → Sen′(Φ(Σ)) translate along a logic
translation between two signatures of di�erent logics. The corresponding obser-
vation applies to model and proof translations.

Within-logic translations are typically straightforward homomorphic map-
pings that can be represented as simple SigM-morphisms. But across-logic
translations may involve complex encoding steps that may not be easily express-
ible using homomorphic mappings. When using a Grothendieck institution as
in [Dia02], within-logic and across-logic translations are uni�ed, and the latter
are those that employ a non-trivial institution comorphism.

But if we use a meta-logic like M, both within- and across-logic translations
must be induced by SigM-morphisms. Therefore, we need our more general
de�nition of SigM-morphisms that includes non-simple ones. This problem is
a consequence of using a meta-logic in which a limited formal language is used
to express translations. The problem does not arise when using institutions (as
we do in Sect. 3) because both within-logic and across-logic translations are
represented as mappings and functors, the most general notion of a translation

41



operation.

6 Discussion

Our basic motivation was to provide a logical framework in which both model
theoretical and proof theoretical logics as well as their combinations can be
formulated and studied. But a logical framework � or any framework for that
matter � can only serve as an auxiliary device: it helps get work done but does
not do the work by itself. In fact, a good logical framework should be general
and weak in the sense of being foundationally uncommitted (see also [dB91]).

Therefore, to evaluate an individual framework, we must ask how it sup-
ports the solution of which concrete problems. More concretely, we must ask
(i) what logics can be represented in it, (ii) what applications become possible
for represented logics, and (iii) whether the same could be achieved with other,
more elegant frameworks. We will discuss these questions in Sect. 6.1, 6.2, and
6.3, respectively.

6.1 Coverage and Limitations

Logics Our de�nitions are chosen carefully to subsume both the framework
of institutions and the one of LF so that existing logic representations can be
reused or � in case they only cover either proof or model theory � comple-
mented. The available institution-based representations of model theoretical
logics (e.g., [GB92, CoF04, Bor00, MML07]) become logic representations in
our sense once their syntax and proof theory are made explicit in LF. Similarly,
the available LF-based proof theoretical logic representations (e.g., [HHP93,
HST94, AHMP92, Pfe01, Pfe00, AHMP98]) become uniform logic de�nitions in
our sense after encoding their model theory. In many cases, existing institution
and LF-based representations of the same logic can be paired to complement
each other.

Our de�nition of logic covers a wide range of logics including propositional,
�rst-order, or higher-order logics; logics based on untyped, simply typed, de-
pendently typed, or polymorphic type theories; modal, temporal, and descrip-
tion logics; and logics with classical or intuitionistic semantics. Multiple truth
values such as in three-valued logics are supported if some truth values are des-
ignated to obtain a two-valued satisfaction relation in the models (as we did in
[GMdP+08]), or if the syntax includes constants for the truth values.

The syntax of a logic can typically be expressed in our meta-logic M. A lim-
itation concerns logics where the notion of well-formed formulas is undecidable
(such as in PVS, [ORS92]). This requires to merge Σsyn and Σpf to axiomatize
well-formedness and take a subtype of base(form) as the type of sentences. This
is possible with the more general framework we used in [Rab08], but we have
omitted this here for simplicity.

Regarding proof theories, M inherits from LF the support of Hilbert, natural
deduction, sequent, or tableaux calculi. Resolution-based proof theories cannot
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be represented as elegantly. Also, our notions of proof categories is biased
against substructural logics, see Rem. 10. This is a bias shared with both
institutions and LF, the latter has even been extended to a linear variant for
that reason ([CP02]).

The representation of model theories in our meta-logic depends on two
things. Firstly, the foundation must be expressible in LF; this is typically the
case. Secondly, it must be adequate to represent models as morphisms; we
discussed this in Rem. 80.

Our logical framework permits expressing signatures, sentences, models, and
proofs of logics as LF objects. In addition, we identi�ed two extensions of LF
that we need to reach a fully comprehensive framework. Firstly, logical relations
should be developed and used to represent model morphisms (see Rem. 59).
Secondly, a language of declaration patterns is needed to express the category
of signatures as a whole as opposed to individual signatures (see Rem. 79).

Logic Translations For logic translations, the situation is more complicated.
Firstly, logic translations are less well classi�ed than logics, which complicates a
systematic study of which classes of logic translations are covered. Secondly, the
representation of logic translations is signi�cantly harder than that of logics. In
general, features present in covered syntax translations are expressing the model
theory of one logic using the syntax of another, or coding sentences of one logic
as terms of another logic.

A sentence translation is covered if it is compositional up to a �nal toplevel
step as in Ex. 84.

A proof theory translation is covered if it translates inference rules to deriv-
able rules. This excludes the non-compositional elimination of admissible rules
such as cut-elimination (where sentences and models are translated to them-
selves and proofs to cut-free proofs). Representing such translations requires
a stronger notion of LF signature morphism that supports computation, e.g.,
along the lines of Twelf's logic programs, Delphin ([PS08]), or Beluga ([PD10]).
But the typing invariants of such signature morphisms would be a lot more
complicated.

Model theory translations are typically covered if the model theories them-
selves are covered.

In Rem. 86, we have already discussed the need for non-simple SigM-morphisms.
We expect this to be a general phenomenon: While within-logic translations will
always be represented by simple morphisms, the representation of more complex
across-logic translations will require more complex notions of SigM-morphisms.
Consequently, we expect future work to further generalize the de�nition of SigM-
morphisms.

For example, some translations can only be encoded if the commutativity
condition of Def. 42 is relaxed, especially for the lower rectangle dealing with
the model translation. For example, the semantics of description logic interprets
concepts as subsets of the universe. But the translation of description logic into
�rst-order logic translates concepts to unary predicates, which the semantics
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of �rst-order logic interprets as functions from the universe to the booleans.
Thus, the model translation commutes only up to the isomorphism between
subsets and their characteristic functions. Recently a weaker condition than
commutativity was shown to be su�cient to obtain logic comorphisms in [Soj10],
namely commutativity up to certain logical relations (see also Rem. 59).

Finally there are some limitations of logic comorphisms, which are inher-
ited from institution comorphisms. Firstly, logic comorphisms are limited to
total translations. This excludes partial translations such as a translation from
higher-order to �rst-order logic that is unde�ned for expressions containing λ.
Such translations are important in practice to borrow (semi-)automated theorem
provers (e.g., the use of �rst-order provers in Isabelle) but di�cult to describe
in a logical framework. To overcome that, we recently designed an extension of
LF that supports partial signature morphisms ([DR10]).

Secondly, logic comorphisms separate the signature and the sentence trans-
lation. But there are applications of borrowing where a di�erent signature
translation is used for di�erent conjectures over the same signature. For ex-
ample, the Leo-II prover ([BPTF08]) uses a translation from higher-order logic
to sorted �rst-order logic by creating a new �rst-order sort for every function
type that is mentioned in the higher-order conjecture. Such translations remain
future work.

Case Studies In [RK11], we designed a generic module system based on the-
ories and theory morphisms. In [RS09], we extended the Twelf implementation
of LF with the corresponding instance of this module system. We have used
this implementation to conduct several large case studies where logics and logic
translations are de�ned and machine-checked e�ciently.

A large number of case studies has been conducted in the LATIN project
[CHK+11a]. These include various incarnations of �rst-order logics, higher-order
logics, modal and description logics as well as a number of set and type theoret-
ical foundations. These are written as modular LF signatures and morphisms,
and the overall size of the atlas exceeds 1000 modules.

The most extensive case studies were presented in [HR11] and [IR11]. In
[HR11], we give a comprehensive representation of �rst-order logic. It includes
a formalization of ZFC set theory to formalize the model theory of FOL and a
formalized soundness proof of FOL in the sense of Thm. 63.

The biggest investment when representing logics in M is the formalization
of the foundation of mathematics. Therefore, we formalized three important
foundations in [IR11]: Zermelo Fraenkel set theory ([Zer08, Fra22]), the logical
framework Isabelle and the higher-order logic Isabelle/HOL ([Pau94, NPW02]),
and the Mizar system for Tarski-Grothendieck set theory ([TB85]). These in-
clude translations between the foundations, which permits even the translation
of models across foundations.
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6.2 Applications

Our framework was designed in response to a number of speci�c problems we
encountered in practice. In all cases, the lack of a comprehensive framework
like ours had previously precluded general solutions.

An Atlas of Logics An important application of logical frameworks is to
structure and relate the multitude of logics in use. This goal was a central mo-
tivation of institutions and has been pursued in LF as well ([PSK+03]). And
both in model and proof theoretical frameworks, there are substantial collec-
tions of presentations of model and proof theoretical logics, respectively. But a
collection comprising both model and proof theory has so far been lacking.

Our framework provides the theoretical base of the LATIN project ([CHK+11a],
see also Sect. 6.1), which systematically builds such a collection of logic presen-
tations. The LATIN atlas contains formalizations of logics and logic translations
presented as a diagram of M signatures. It is made available as a web-based
portal of documented logic de�nitions.

Logic-Aware Machines A central motivation of logical frameworks has been
the goal to generically mechanize arbitrary logics: The implementation of one
logical framework induces implementations of individual logics de�ned in it.
This requires an abstract de�nition of logic and a machine-understandable lan-
guage in which individual logics can be presented. Our framework provides
both by presenting individual uniform logics as M-signatures, i.e., LF spans.
Therefore, we can now use implementations of LF � such as Twelf ([PS99]) � to
mechanically process logic presentations.

We have given an example for this work �ow in [CHK+11b]. The Hets sys-
tem ([MML07]) implements the framework of institutions and acts as a mediator
between parsers, static analyzers, and theorem provers for various object logics.
But previously Hets could only work with a �xed number of institutions and co-
morphisms implemented individually in the underlying programming language.
Our framework connects Hets to declarative logic presentations in LF, and Hets
is now able to work with arbitrary uniform logics de�ned in M.

Rapidly Prototyping Logics The de�nition of a new logic is typically the
result of a long quest, and the evaluation of candidate logics often requires large
case studies, which in turn usually require sophisticated machine support. Logi-
cal frameworks can support this process by permitting the swift implementation
of candidate logics.

Using our framework, users can present candidate logics concisely and quickly,
and Twelf immediately induces an implementation. In particular, Twelf pro-
vides type reconstruction and module system out of the box. Both features
require a major investment to realize for individual logics but are indispensable
in practice. Moreover, the module system can be used to build a library of logic
components that serve as building blocks for large logics.
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We employ this methodology in the LATIN atlas: Each logic feature (such as
a connective or a type formation operator) is presented separately along with its
proof and model theoretical semantics, and logics are composed using colimits.
Therefore, the presentation of each logic only requires formalizing those features
not already present in LATIN. Moreover, LATIN includes a library of modular
formalizations of a variety of type and set theories so that logics can be built
easily on top of and interpreted in a wide range of languages.

Veri�ed Heterogeneous Reasoning At the moment mechanically veri�ed
formalizations of mathematics are restricted to individual proof theoretical log-
ics, whose implementations �nd and verify theorems, e.g., Isabelle/HOL [NPW02]
or Mizar [TB85]. In this context, heterogeneous reasoning, i.e., the reuse of
theorems along logic translations, is problematic because the translation engine
would lie outside the verifying system. Applications are usually limited to trans-
lating and dynamically reverifying a suite of theorems (e.g., [KS10], [KW10]).

On the other hand, model theoretical adequacy (in the sense of Def. 31) has
been used very successfully in the institution community to borrow proof sys-
tems along a statically veri�ed logic translation ([CM97]). But while there are
systems (like Hets [MML07]) that permit presenting and applying such trans-
lations, there is no mechanized support for verifying them.

Our framework provides such support. For example, [Soj10] uses it to prove
the model theoretical adequacy of the translation from modal logic to �rst-order
logic. Well-formedness and adequacy of the translation reduce to type checking
in LF, which is veri�ed mechanically by Twelf.

Logical Knowledge Management In [RK11], we have developed the MMT
interface language for logic-related applications. The latter include both deduc-
tion systems such as theorem provers, proof assistants, or type checkers as well
as management systems such as databases, browsers, IDEs, or search engines.
MMT combines a modular representation format with a scalable knowledge
management infrastructure ([KRZ10]) to provide an exchange format for logics,
signatures, and theories as well as their morphisms, for foundations, and for
expressions, proofs, and models.

For example, these objects can be presented using Twelf, exported as MMT,
and imported by any other application. In particular, authors can use Twelf's
human-oriented concrete syntax including the reconstruction of omitted terms
and types, and the importing application can use fully reconstructed and thus
easily machine-processable MMT format. This work �ow is used in [CHK+11b]
to present logics in Twelf and use them in Hets.

6.3 Related Work

Frameworks based on Model Theory There are several closely related
frameworks that de�ne logics and logic comorphisms (possibly with di�erent
names) as certain tuples of categorical objects.
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Our de�nitions of logics and logic comorphisms follow and subsume those
of institutions and institution comorphisms ([GB92]). We obtain a forgetful
functor from logics to institutions by dropping the proof theory from a logic
and the proof translation from a logic comorphism. Similarly, if we drop the
condition on proof translations in Def. 24, we recover institution comorphism
modi�cations. These were introduced in [Dia02], albeit with a weaker condition;
in [Tar96] a similar concept was called a representation map. Our Def. 24
extends the de�nition of institution comorphism modi�cation given in [Mos05]
in the expected way.

In [Mes89], general logics are introduced as tuples (Sig,Sen,Mod, |=,`)
where ` is an entailment system between the sentences. Entailment systems
formalize the provability relation without formalizing proofs. Our use of `Σ F
as a truth judgment is di�erent from entailment systems, but our provability
relation Θ `Σ F is always an entailment system. In addition, [Mes89] de�nes a
proof calculus as a functor from theories to a �xed but arbitrary category Str.
Our de�nition of proof categories can be seen as the special case Str = PFCAT ;
in this special case, proofs can be represented as morphisms.

In [MGDT05] and [Dia06] proof theoretic institutions are introduced as es-
sentially tuples (Sig,Sen,Mod, |=,Pf ). Here the relation between sentences
and objects of the proof category is predetermined because the objects of the
proof categories are always the sets of sentences. Our de�nition of proof cat-
egories is more general and uses the truth judgment ` to relate sentences to
objects in the proof category. In particular, the objects of our proof categories
can be the multi-sets of sentences, which solves a problem discovered by us in
an early revision of [Dia06]: There the free generation of a proof system by a set
of rules is restricted to logics with signature morphisms σ : Σ → Σ′ for which
Sen(σ) is injective. Otherwise, σ would not induce a canonical functor Pf (σ)
between proof categories. Later Lawvere theories were used to overcome this
problem in the revised version of [MGDT05]: There, no size restriction on the
products is used, and proof categories are not small.

[MGDT05] also generalizes to C/D-institutions where C and D are the
codomains of Pf and Mod, respectively, and Sen is obtained by compos-
ing Pf with a �xed functor C → SET . Our logics are almost PFCAT /CAT
institutions; the di�erence is again that we give Sen and Pf separately and
relate them via `.

In [FS88], Π-institutions are introduced as tuples (Sig,Sen, Cn) where Cn
is a closure operator on sets of formulas de�ning consequence. Cn is treated
proof theoretically, and theory morphisms are studied proof theoretically.

The idea of using a meta-logic like M is well-known, and was studied for
institutions in e.g., [Tar96]. Our generalization to logic encodings is not sur-
prising, and our notion of model theoretical adequacy is known as the model
expansion property. The major novelty in our work is the use of LF as a concrete
meta-logic.

In [MOM96], rewriting logic is proposed as another concrete meta-logic
within an informal framework similar to general logics. Rewriting logic arises
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by combining sorted �rst-order logic with term rewriting, which makes it very
di�erent from LF. In rewriting logic, typically, the syntax of an object logic
is represented as a sorted �rst-order theory, and the proof theory as a set of
rewriting rules; the model theory is not represented syntactically but via the
model theory of rewriting logic. The main advantage of rewriting logic over LF
is the use of rewriting to simplify expressions; the main advantage of LF is the
use of dependent type theory and of higher-order abstract syntax to represent
proofs and variable binding as expressions.

The most advanced implementations of such frameworks are the Hets im-
plementation of institutions ([MML07]) and the Maude implementation of a
simpli�ed variant of rewriting logic ([CELM96]). Hets uses Haskell as an imple-
mentation language for the syntax of institutions and comorphisms. It maintains
a graph of logics via which theories can be translated between logics and serves
as middleware between implementations of individual logics. Maude uses theo-
ries of rewriting logic to represent the syntax and proof theory of object logics as
theories of the meta-logic. It implements term rewriting to provide computation
within the logical framework.

Hets implements an abstract framework (institutions) whereas Maude im-
plements a concrete meta-logic within a given framework (general logics). The
latter corresponds to our approach: Twelf ([PS99]) implements LF and thus M
within the framework of our logics; in particular, logics are represented declar-
atively. The former is complementary to our approach, for example, we have
used M as a convenient way to add logics to Hets in [CHK+11b]. Unlike Hets
and Maude, our approach also permits the mechanized representation of model
theory.

Frameworks based on Proof Theory Our de�nition of M subsumes the
logical framework LF. The use of LF signatures Lsyn and Lpf to obtain proof
theoretical logic encodings are well-understood (see, e.g., [Pfe01]). The reason-
ing about adequacy of these encodings corresponds to our comorphisms (Φ, α, γ).
A di�erence is that in the proof theoretical community, such encodings are con-
sidered adequate if α and γ are isomorphisms; we require only a weaker condition
on γ here.

Isabelle ([Pau94]) is an alternative logical framework, which uses higher-
order logic with shallow polymorphism ([Chu40]) instead of dependent type
theory. The main advantage over LF are recursive and inductive computation
and (semi-)automated reasoning support. Other type theories such as Martin-
Löf type theory in Agda ([ML74, Nor05]) or the calculus of constructions in
Coq ([CH88, BC04]) are sometimes used as logical frameworks as well and have
similar advantages. The main advantage of LF are the use of higher-order
abstract syntax, which facilitates adequacy proofs, and the support for signature
morphisms in Twelf ([PS99]).

Our de�nition of M and our results about it depend only on a few properties
of LF. The main assumptions are that the signatures and for each signature the
contexts form categories, and that there are pushouts along inclusions. This is
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the case for almost all type theories. Thus, our de�nitions can be generalized
easily to most type theories subsuming LF such as Martin-Löf type theory or
the calculus of constructions. Even though the signature Base uses dependent
types, it is also easy to adapt the de�nitions to (simply-typed) higher-order
logic. Then the signature Base contains ded : form → prop where prop is the
type of propositions. This corresponds to logic encodings in Isabelle where ded
is typically called Trueprop.

While logic translations play a major role in model theoretical frameworks,
they have been studied less systematically for proof theoretical frameworks. The
most comprehensive approach was the Logosphere project ([PSK+03]), which
employed LF as a framework for logic translations. These were implemented
in two ways: �rstly, using the operational semantics of Twelf based on logic
programming, secondly using the speci�cally developed functional programming
language Delphin ([PS08]). Our use of LF signature morphisms di�ers because
our translations are represented in a declarative language.

Other logic translations are typically represented ad-hoc, i.e., as implemen-
tations outside a logical framework, e.g., [OS06, McL06, KS10, KW10]. Instead
of appealing to general results about the framework, the correctness of such a
translation can be guaranteed by verifying the translated proofs. The disadvan-
tage is that proofs must be produced, stored, translated, and veri�ed for each
translated theorem.

Representing Models Our representation of models as morphisms goes back
to Lawvere's representation of models as functors ([Law63]) and the use of ini-
tial algebras as the semantics of theories ([GTW78]). This approach has been
applied most systematically in the area of categorical models of type theories
(see, e.g., [Pit00]) and has been integrated into model theoretical frameworks
(e.g., [GB86, FS88, GMdP+08]). The representation of models as signature mor-
phisms into some �xed signature has also been used to show the amalgamation
property of given institutions (see, e.g., [Dia08]).

From a model theoretical perspective, the novelty of our approach is to
use morphisms in a category � namely LF � whose objects and morphisms are
given in terms of concrete syntax and do not depend on any foundation of
mathematics. That makes it possible to represent models as expressions in a
mechanized language. Moreover, by separating Σsyn and Σmod and by using
morphisms out of Σmod as models (rather than morphisms out of Σsyn), we can
represent logics whose models have a di�erent structure than the syntax. For
example, Kripke models of modal logic use a set of worlds and an accessibility
relation, which are not present in the syntax.

In type theories, model theory has been represented occasionally in a sim-
ilar way. For example, in [BKV09, CD97] the syntax of formal languages is
represented as an inductive data type and models as inductive functions out of
it. Isabelle ([Pau94]) provides locales and interpretations, which behave very
similarly to LF signatures and signature morphisms.
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From a type theoretical perspective, the novelty of our approach is the sys-
tematic design of a logical framework on top of this intuition. Moreover, we
abstract from the foundation by permitting the use of an arbitrary LF signa-
ture. Thus, we avoid the commitment to a speci�c foundation such as higher-
order logic or Martin-Löf type theory that is often inherent in type theoretical
representations of models.

7 Conclusion

A Comprehensive Logical Framework We gave a logical framework that
permits comprehensive logic representations: The syntax, model theory, and
proof theory of logics as well as their translations are represented within a formal
logical framework. In particular, our approach combines the model theoretical
and the proof theoretical perspectives. Despite the ontological and philosophical
di�erences of these two perspectives on logic, we are able to preserve the �avor
and advantages of either one.

Speci�cally, we extended the model theoretical framework of institutions
([GB92]) with the notions of judgments and proof categories. Our de�nitions
preserve the elegance and abstraction of institutions while permitting a natural
integration of proof theoretical logics, which can be seen as the continuation of
work undertaken in [Mes89] and [MGDT05].

Correspondingly, we extended the proof theoretical framework LF ([HHP93])
with the notions of homomorphisms and model categories. We use a logic based
on LF as a meta-logic in which object logics are represented, a reply to a sug-
gestion made in [Tar96]. Using this meta-logic, all logical notions are de�ned as
syntactic objects in the LF type theory and can thus be veri�ed mechanically.
This includes a special LF signature representing the foundation of mathematics
so that we can represent model theory even though our meta-logic is founda-
tionally uncommitted.

Evaluation Using the criteria we gave at the beginning of Sect. 6, we can
conclude as follows. (i) As described in Sect. 6.1, our framework preserves
the large collection of existing logic encodings in institutions and LF. More-
over, since these encodings usually covered either the model theory or the proof
theory, in many cases we can now give comprehensive encodings for the �rst
time. Regarding logic translations, our work errs on the side of simplicity in the
simplicity-expressivity trade-o�, and extensions remain future work.

(ii) In Sect. 6.2, we described a number of applications that are enabled by
our framework, focusing on those that are already underway. The key feature
here is that our framework provides both an abstract de�nition of logics and
a simple declarative language, in which such logics can be presented concisely
and easily.

(iii) Finally, our framework has been designed systematically as the sim-
plest possible evolution of the existing frameworks which combines the above
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two properties. A special strength is the symmetric treatment of model the-
ory (Mod, |=) and proof theory (Pf ,`). Moreover, the models-as-morphisms
paradigm yields an elegant formalist representation of platonist model theory.

Future Work Future work will focus on three lines of research. Firstly, the
theoretical framework and the tool support that is in place now can be leveraged
in the practical applications outlined in Sect. 6.2. In particular, we have started
the work on a logic atlas in the LATIN project ([CHK+11a]).

Secondly, some of the limitations discussed in Sect. 6.1 can be overcome by
using di�erent underlying categories than LF. For example, we can use a type
theory with non-compositional or partial functions. Our results can be extended
easily to such type theories.

Thirdly, our framework can be used for the theoretical analysis of a logic's
meta-theory. This includes the mechanization of soundness and completeness
proofs: Soundness will use Thm. 81; completeness is currently open, but we
consider the approach along the lines of Rem. 64 very promising. A related
application is the modular development of logics as envisioned in [HST94] and
now implemented in the LATIN project.
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