
Representing Logics and Logic Translations

Florian Rabe

submitted in partial ful�llment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Submitted: 30.05.2008

Defended: 19.06.2008

Approved: 19.06.2008

Jacobs University Bremen
School of Engineering and Science

Dissertation Committee

Prof. Dr. Michael Kohlhase, Jacobs University Bremen (Supervisor)

Prof. Dr. Herbert Jaeger, Jacobs University Bremen

PD Dr. Till Mossakowski, German Research Center for Arti�cial Intelligence, Bremen

Prof. Dr. Frank Pfenning, Carnegie Mellon University, Pittsburgh

I hereby declare that this thesis has been written independently except where sources and
collaborations are acknowledged and has not been submitted at another university for the con-
ferral of a degree.

Parts of this thesis are based on or closely related to previously published material or material
that is prepared for publication at the time of this writing. These are [RK08], [AR08], [KMR08],
[GMdP+07], [Rab07], [KLR07], and [Rab06]. [Aga08] and [Soj08] are theses supervised by the
author that are related to this work. Parts of this work are the result of collaborations with
other researchers: for Sect. 4 with Steve Awodey and for Sect. 6 and 7 with Michael Kohlhase.
In each case the precise connection to this work is detailed in the relevant passages of the text.

Bremen, 17.11.2008, Florian Rabe

Abstract

Logic is the study of formal languages for propositions and truth. Logics are used both as a
foundation of mathematics and as speci�cation languages in mathematics and computer science.
Since logic is intricately intertwined with the nature of mathematics, the question how to rep-
resent logics in our minds is a constant challenge to our understanding. And only when it is
understood can we begin to answer the corresponding question about logic translations. At the
same time logics are used to a large extent in computer science to reason about both mathe-
matics and software systems. This brings up the question how logics and their translations can
be represented in a computer system. In this text we try to give answers to these fundamental
research questions.

Throughout the 20th century several answers have already been provided. Most of them can
be grouped into two kinds, which can be denoted by set/model theory and type/proof theory.
These two classes represent di�erent research �elds with con�icting philosophical and math-
ematical backgrounds, which makes their conceptualizations ontologically di�erent. However,
both �elds have developed very sophisticated and strong solutions.

Therefore, we base our investigation on the desire to reconcile these two views. Our focus
is on extending the existing notions of logic and logic translation in a way that retains their
nature and the accumulated knowledge about them while leading them into a new direction.
Our goal is to enrich both research �elds by applying them more cogently to and making them
more accessible and understandable to one another.

We choose institutions as a set/model theoretical and dependent type theory as a type/
proof theoretical representative of the two kinds. We observe that both have complementary
advantages that re�ect their di�erent backgrounds and devise our own answer by combining
them in a way that consequently exploits their respective strengths. Mathematically, our main
results can be summarized as follows. We de�ne logics by extending institutions with notions of
proof categories and proof theoretical truth that are very much parallel to the model categories
and satisfaction relation of institutions. Then we give a concrete simple logic for dependent type
theory using models inspired by Kripke models for intuitionistic logic. Finally, we show how to
use this logic to de�ne or encode logics and logic translations.

While this answers the question how to represent logics and logic translations in our minds,
it is not adequate for the speci�c constraints and use cases of software systems. Therefore, in
a second investigation, we explore how to make our representations more concrete and robust
enough to permit a mechanized treatment on a large scale.

We choose OMDoc as a scalable, web-compatible representation language for mathematical
knowledge. Because we �nd that its applicability to logical knowledge is limited, we revise
it taking into account the characteristic requirements of logic. While keeping the motivation
behind and �avor of OMDoc, we employ a di�erent methodology more suitable to logic, thus
e�ectively reinventing it. Mathematically our main results can be summarized as follows. We
provide a formal abstract syntax for modular theory development and a formal semantics for
it. Our module system treats logical frameworks, logics, and logical theories as well as the
translations between them uniformly as theories and theory morphisms that are related via
the �is meta-language for� relation. And it consequently separates logic-independent and logic-
speci�c language constructs, which lets us derive a logic-independent �attening theorem and
constitutes the basis for logic-independent logical knowledge management services.

Taking these two results together, we obtain a triangle of di�erent mathematical communi-
ties, research objectives, and philosophies consisting of set/model theory, proof/type theory, and
mathematical knowledge management. Our main contribution is to integrate its corners into a
coherent framework centered around logic that capitalizes on their comparative advantages.

I am most grateful to Michael for having the overview to �nd the right research topic
for me and for making it possible for me to pursue it. I am especially indebted to
Frank, Michael, and Till whose insights, advice, and guidance have been as di�erent
as they have been compelling and fruitful.

I have bene�ted a lot from discussions and collaborations with Steve Awodey and
numerous other researchers, in particular Carsten Schürmann, Geo� Sutcli�e, and
Valeria de Paiva, and the members of the KWARC group at Jacobs University
Bremen.

Finally, I would like to thank Jacobs University, the German Academic Exchange
Service, and the German National Merit Foundation who have provided me with
�nancial independence for the past three years.

Contents

I Introduction and Preliminaries 9

1 Introduction 11

1.1 Formal Languages for Mathematics . 11
1.1.1 Logic(s) . 11
1.1.2 Logical Frameworks . 15
1.1.3 Logical Reasoning . 16

1.2 Semi-Formal Languages for Mathematics . 23
1.2.1 Mathematical Knowledge in Traditional Form 23
1.2.2 Mathematical Knowledge on the Web . 24

1.3 Motivation . 25
1.3.1 Combining Model and Proof Theory . 25
1.3.2 Logical Knowledge Management . 28

1.4 Outline . 32

2 Preliminaries 33

2.1 Basic Concepts . 33
2.2 Institutions and Dependent Type Theory, bottom-up 34

2.2.1 The Intra-Theory Level . 34
2.2.2 The Inter-Theory Level . 42
2.2.3 The Inter-Logic Level . 50

2.3 Institutions, top-down . 55
2.3.1 Category Theory . 55
2.3.2 Institutions . 58

II Combining Model and Proof Theory 61

3 Logics and Logic Translations 63

3.1 Introduction . 63
3.2 Logics . 63

3.2.1 Proof Categories . 63
3.2.2 Logics . 64
3.2.3 Provability and Entailment . 65

3.3 Logic Translations . 66
3.3.1 Translations and Encodings . 66
3.3.2 Borrowing . 67
3.3.3 Meta-Logics . 67

3.4 Conclusion . 68

4 Dependent Type Theory 71
4.1 Introduction and Related Work . 71
4.2 Syntax Overview . 72
4.3 Well-Formed Expressions . 73
4.4 Categorical Preliminaries . 77
4.5 Operations on Indexed Sets . 81
4.6 Model Theory . 85
4.7 Substitution Lemma . 87
4.8 Soundness . 90
4.9 Completeness . 92
4.10 A Logic for DTT . 93

4.10.1 Syntax . 93
4.10.2 Model Theory . 95
4.10.3 Proof Theory . 95
4.10.4 Collecting the Pieces . 96
4.10.5 Subsystems . 97

4.11 Conclusion . 97

5 Dependent Type Theory as a Meta-Logic 99
5.1 Introduction . 99
5.2 A Meta-Logic for LF . 100

5.2.1 Signatures . 100
5.2.2 Signature Morphisms . 103
5.2.3 Sentences . 103
5.2.4 Proof Theory . 103
5.2.5 Model Theory . 104
5.2.6 Collecting the Pieces . 104

5.3 De�ning and Encoding Logics . 105
5.4 Examples . 106
5.5 De�ning and Encoding Logic Translations . 111
5.6 Examples . 111
5.7 Future Work . 113

5.7.1 Logical Libraries . 113
5.7.2 Completeness Analysis . 114

5.8 Conclusion . 114

III Logical Knowledge Management 117

6 A Module System for Logical Knowledge 119
6.1 Introduction . 119
6.2 Syntax . 123

6.2.1 A Four-Level Model of Mathematical Knowledge 123
6.2.2 Querying a Library . 131
6.2.3 Normalization . 135

6.3 Well-formed Mmt Expressions . 136
6.3.1 Adding Knowledge Items to Libraries . 137
6.3.2 Document and Module Level . 138
6.3.3 Symbol Level . 139
6.3.4 Object Level . 143
6.3.5 Validity Levels . 147
6.3.6 Structural Properties . 147

6.4 Library Transformations . 148
6.4.1 Modular and Flat Libraries . 148
6.4.2 Equivalence of Libraries . 148
6.4.3 Flattening . 150

6.5 Future Work . 153
6.5.1 Implementation . 153
6.5.2 Small Conservative Changes . 153
6.5.3 Roles . 154
6.5.4 Unnamed Imports . 154
6.5.5 Subtheories . 155
6.5.6 Functors . 155
6.5.7 Informal Documents . 156
6.5.8 Structured Proofs . 157
6.5.9 Abstractions . 158

7 Representing Foundations and Logics in Mmt 159
7.1 DTT as a Foundation . 159
7.2 ZFC as a Foundation . 160
7.3 Representing a Logical Framework in Mmt . 161
7.4 Conclusion . 163

8 Web-Scale Infrastructure 165
8.1 Strict OMDoc 2 . 165

8.1.1 XML Syntax . 165
8.1.2 Relative Names . 167

8.2 A Smart Logical Database . 169
8.3 Presenting Logical Knowledge on the Web . 171
8.4 Management of Change . 173
8.5 Conclusion . 174

Part I

Introduction and Preliminaries

9

Chapter 1

Introduction

In this section, we �rst look at the history and the fundamental concepts of mathematical
logic in Sect. 1.1. We see that there are many logics and not the logic, an observation that
gives rise to the concept of logic translations. Furthermore, we see that the choice of logic
is deeply connected to the nature of mathematics. Therefore, the representation of logics and
logic translations requires a general abstract formalism called a logical framework. The question
how to choose the logical framework is the central question of this text. While formal logic is
technically the language of mathematics, actual mathematical discourse usually uses less formal
languages. Therefore, we also look at semi-formal languages in Sect. 1.2.

After these introductions, we state the motivation of this text and describe our intended
contribution to the topic in Sect. 1.3. Finally, we outline the following sections in Sect. 1.4.

1.1 Formal Languages for Mathematics

1.1.1 Logic(s)

Logic is the �eld of mathematics concerned with the study of the concepts proposition and
truth and the reasoning about them. Intuitively, propositions are statements about mathemat-
ical objects, and propositions may be true or false.

It is not possible to de�ne mathematical objects �rst and propositions and truth later �
their de�nitions must be intertwined: To develop the mathematical objects, it is frequently
necessary to know the truth of certain propositions about previously developed objects. The
simplest example is the object {x | P (x)} containing all objects x such that the proposition P
is true about x. Thus, logic is fundamental to mathematics. It is so fundamental that it is hard
to give a formal de�nition of proposition and truth. In fact even the notion of de�nition itself
is unclear in the absence of the notion of truth.

When understanding logic, we must distinguish between logic and logics. We will consider
a logic to be a way to formalize the notions of proposition and truth. Thus, logics are speci�c
choices how to understand and study these notions. Then logic is the �eld of mathematics
concerned with logics. A speci�c logic that is picked as a starting point of mathematics is called
a foundation of mathematics.

Logic has been studied in most ancient high cultures, most in�uentially in Greece, and has
been a discipline of philosophy ever since. However, modern logic in the sense of mathematics and
computer science goes back to only the late 19th century. Frege's Begri�sschrift ([Fre79]) from
1879, which introduces a formal language for propositions, is generally seen as the beginning of
modern logic. Further seminal works of the 19th century are by Peirce, who introduced notations
and terminology that are still in use today ([Pei85]), and Peano, who gave an axiomatization of
arithmetic ([Pea89]).

11

1.1. FORMAL LANGUAGES FOR MATHEMATICS

In the following we will summarize the modern history of logic by relating three pivotal
discoveries of mathematics and their consequences: the Grundlagenkrise starting with the 20th

century, Gödel's incompleteness theorems from 1930, and the development of electronic com-
puter systems in the second half of the 20th century. We will cite the original papers and refer
to [vH67] for reprints and English translations of historical papers. We also recommend [Zal08]
as a source of historical and introductory articles and further references.

Grundlagenkrise The Grundlagenkrise was caused by the discovery of paradoxa, i.e., contra-
dictions, in what is called naive set theory in retrospect. Naive set theory was the implicitly
assumed foundation of mathematics at the time, Cantor's Grundlagen ([Can83]) from 1883 be-
ing the most in�uential contribution. The best known paradoxon was found by Russell in 1901
([Rus01]). Peano had noticed a similar one in 1897.

Roughly, Russell's paradoxon arises from unlimited set comprehension. That leads to a
contradiction because it permits to form the set of all sets that do not contain themselves.
Intuitively, a contradiction in a logic means that something is both true and not true. That
typically makes everything true, by which truth becomes vacuous. Since mathematics is a strictly
hierarchical science with every new concept resting on the preceding ones, a contradiction in
mathematics, unless it can be remedied somehow, is tantamount to total destruction. Therefore,
the freeness from contradictions, called consistency, is crucial for a foundation.

In response to this, mathematicians have developed several � sometimes alternative, some-
times complementary � foundations that can replace naive set theory. This happened over
several decades as an evolutionary creative process. But it did not culminate in a commonly
accepted solution. Rather, it led to profound and sometimes �erce debates on what mathemat-
ics is. The personal quarrel between Hilbert and Brouwer, which was partially fuelled by these
debates, is an almost tragic example. From this evolution emerged two major classes of founda-
tions: axiomatic set theory and type theory, which we will describe in the following. (The
clear separation between set and type theory is partially drawn here for instructive purposes:
The historical and mathematical boundaries are not as sharp.)

The basic idea of axiomatic set theory is that there is a universe of sets, and any mathe-
matical object ever introduced is a set. The sets are related via the binary relations of equality
and membership. For example m ∈ M is used to say that the set m is a member of the set M .
Depending on context, M is regarded as a property of m or as a structuring concept.

To talk about sets, equality, and membership, propositions are used. The basic propositions
are of the form m = m′ and m ∈ M . Composed propositions are built up from the basic ones.
Typically, (at least) �rst-order logic (FOL) is used as the language of composed propositions:
FOL uses propositions such as F ∧ G and ∀x.F (x) denoting �F and G are true� and �for all
(sets) x, F is true about x�.

Then a limited collection of propositions (the axioms) is chosen as fundamental truths.
These are chosen very carefully to prevent contradictions and to obtain a minimal set of axioms.
Based on the axioms, proofs are used to single out the true propositions. A proof consists of
a sequence of steps that derive one true proposition from other true propositions starting with
the axioms. In this way the whole of mathematics is developed, and for every proposition, truth
is de�ned by whether it has a proof.

The languages for proofs can be informal or formal. Mathematicians tend to favor informal
proofs that use natural � albeit highly standardized and precise � language. Formal language
is used when advantageous for brevity, disambiguation, or intuition. Looking at an arbitrary
mathematical textbook, a � maybe surprising � prevalence of informal language is likely to
become apparent.

Type theory mainly di�ers from set theory in that it employs a strati�cation of the mathe-
matical universe. In the simplest type theories, the basic concepts are term and type. Intuitively,
terms represent mathematical objects, and types represent properties and structuring concepts.
And for a term m and a type M , the propositions (in the context of type theory often called

12

1.1. FORMAL LANGUAGES FOR MATHEMATICS

judgments) m = m, M = M , and m : M are used, where the �rst two state equality and the
third is used to say that m has type M . Thus, the cases m : m and M : M leading to the
paradoxon of naive set theory are excluded by construction. Often a term may only have one
type, which is in contrast to set theory, where a set may be a member of arbitrary many other
sets. In that case there is a characteristic contrast between the universe of sets in set theory
and the typed terms of type theory.

The proofs of type theory are conceptually similar to those of set theory. However, type
theory tends to favor a more restricted language of propositions and a completely formal language
of proofs. Furthermore, it favors constructive and algorithmic reasoning over the assumption of
axioms. Then the consistency of set theory corresponds to the correctness and termination of
these algorithms.

Both set theory and type theory have led to numerous speci�c foundations of mathemat-
ics. Zermelo-Fraenkel set theory, based on [Zer08, Fra22], is most commonly in use today. Other
variants are von Neumann-Bernays-Gödel set theory, based on [vN25, Ber37, Göd40], which is
important for category theory, and Tarski-Groethendieck set theory, based on [Tar38, Bou64].
The �rst type theory was Russells's rami�ed theory of types ([Rus08]). And in their Principia
([WR13]), Whitehead and Russell gave one of the most in�uential foundations of mathemat-
ics. Church's simple theory of types, also called higher-order logic, ([Chu40]) is the most-used
type theory today. Important other type theories are typically organized in the lambda cube
([Bar91]) and include dependent type theory ([ML74, HHP93]), System F ([Gir71, Rey74]), and
the calculus of constructions ([CH88]). Most of these foundations have further variants, such
as Zermelo-Fraenkel set theory with or without the Axiom of Choice or type theory with or
without product types.

Besides the set/type theory distinction, there are other dimensions along which founda-
tions can be distinguished. We will only brie�y mention the question of the philosophical nature
of mathematics. In platonism (going back to Plato, with various defenders in the 20th century,
e.g., K. Gödel), formal mathematical objects are only devised as representations of abstract
platonic objects to assist in reasoning. And within the non-platonistic view, four important
schools can be singled out. In formalism (main proponent D. Hilbert, see, e.g., [Hil26]), the
formal mathematical objects themselves are the objects of interest. Thus, mathematical reason-
ing can be reduced to purely mechanical procedures. In logicism (main proponent G. Frege,
see [Fre84]), all of mathematics is reduced to logic, i.e., all axioms are logical truths without
mathematical intuition. In intuitionism (main proponent L. Brouwer, see [Bro07]), truth de-
pends on a mathematician's experience of it. Thus, mathematical proofs are only supplements
of mental constructions. Intuitionism rejects, e.g., an argument that derives �F � from �not not
F � because the absence of the truth of �not F � does not yield the truth of �F �. And predica-
tivism (main proponents H. Weyl, S. Feferman, see [Wey18, Fef05]) emphasizes the need that
a mathematical de�nition may not depend on the de�ned object itself. Predicativism rejects,
e.g., the de�nition of a closure of a set as the intersection of all supersets with a certain property
because the closure is among the intersected sets.

The correlation of these philosophical views to each other and to the set/type theory distinc-
tion is complex. Most mathematicians tend to think platonistically, and platonists tend to favor
set theory over type theory. Computer-supported work tends to be formalistic. But formalism
is not strongly correlated with either set or type theory. Type theories are usually predicative
and often intuitionistic whereas set theories are usually neither. Similarly, researchers favoring
type theory tend to favor intuitionism and predicativism. The importance of logicism has faded
in general. A good overview is given in [Hor08].

Gödel's Incompleteness Results Hilbert's formalistic program, set forth in his second prob-
lem ([Hil00]) and various texts from the 1920s, e.g., [Hil26], called for the reduction of all math-
ematics to a set of axioms and a consistency proof for these axioms using only �nitary means.
Since proofs are built up from the axioms, such a reduction would yield all true propositions by

13

1.1. FORMAL LANGUAGES FOR MATHEMATICS

systematically searching all proofs. In 1930, Gödel established two negative results ([Göd31]),
which as von Neumann recognized �rst showed that the goal of Hilbert's program is unreachable.

The �rst one roughly says that no foundation of mathematics can be found that de�nes the
truth of all propositions in an algorithmic way. The second one says that no foundation can
prove its own consistency. Gödel worked in the Principia, which were the foundation mainly in
use at the time, but the results extend to all foundations beyond a certain level of expressivity.

This is the major reason why no foundation has won the endorsement of mathematicians as
a whole and why there will not be a �nal answer which foundation of mathematics is the best.
Since no perfect foundation exists, the personal preferences and the characteristics of a problem
lead to di�erent choices of foundation.

All foundations have been used independently and with varying degrees of depth to de-
velop the central �elds of mathematics such as analysis and algebra. And in every foundation,
it is possible to introduce other logics as derived notions. These provide interfaces between
mathematical theories that are important for the hierarchic development of mathematics. Most
importantly, FOL can be de�ned in almost any foundation and su�ces for large portions of
analysis and algebra.

In particular, within a foundation, a second one may be de�ned. In fact, FOL alone is enough
to de�ne set theory. Thus, mathematics as developed in one foundation can often be transferred
to another one. And far up in the mathematical hierarchy, it is often not so important which
foundation is used because the development relies on interface logics that can be introduced
within several foundations. For example the real numbers in higher-order logic are the same
as those in Zermelo-Fraenkel set theory. However, proving such inter-de�nabilities is a di�cult
problem: It is either done outside of mathematics appealing only to intuition, or two foundations
and a translation between them are formalized in a third foundation.

Due to the inter-de�nability of foundations, the choice of foundation is, to a certain extent,
a matter of a researcher's personal preference. The majority of mathematicians uses set theory.
It can indeed be argued that the set-theoretical universe is more appropriate to the intuition of
mathematics. However, set theory only quieted but never extinguished its well-founded criticism
due to the danger of inconsistencies and the non-intuitionistic and impredicative reasoning. In
particular, computer science has continued the development of type theory because its rigorous
use of formal syntax and its focus on algorithmic de�nitions make it very appropriate as a
foundation used in a computer system. For example, functional programming languages can
be de�ned directly within a type theoretical foundation leading to a profound analogy between
proofs and programs.

Computers Modern hardware and software systems are huge and need to employ a signi�cant
degree of structuring. This structuring is both vertical, i.e., using a hierarchy of system layers,
and horizontal, i.e., using inter-connected and inter-dependent modules. Both the development
and the deployment of the components may be distributed over persons, points in time, locations,
and cultures. Thus, computer systems have created an enormous demand of interface languages,
which describe mathematical objects and their properties. Furthermore, there is a great demand
to check automatically the correctness of (i) the interface structure of a computer system and
(ii) its separate components with respect to the interfaces. Therefore, dedicated logics are used
to de�ne propositions for a speci�c context and then study their truth.

The computational tractability of a logic tends to react very sensitively to its expressivity.
In simple logics, the set of true propositions is decidable. However, even for the simplest logic,
the set of true formulas is NP-complete (called the SAT problem). But in more complex logics,
this set is only recursively enumerable or not even that. Thus, the choice of logic for a speci�c
purpose is subject to non-trivial trade-o�s. FOL is important here because it represents a
compromise between expressivity and algorithmic treatment. But together with the extreme
diversity among the nature of computer systems, this has led to what Goguen and Burstall

14

1.1. FORMAL LANGUAGES FOR MATHEMATICS

called a �population explosion among the logical systems� at the beginning of their seminal
paper introducing institutions ([GB92]).

1.1.2 Logical Frameworks

The population explosion has led to attempts to standardize and structure logics. This starts
with the question what the de�nition of a logic should be. However, if a de�nition is attempted,
systematically looking for a logic not covered is likely to yield an interesting logic. To be useful,
a de�nition must make assumptions about logics that will invariably exclude others.

For example, already the seemingly broad description of Sect. 1.1.1 conveys too narrow a
view: We distinguished the language of proposition and the method to de�ne truth. But in
some logics, e.g., some dependent type theories (e.g., [ORS92] or [CAB+86]), the property of
being a proposition itself depends on the truth of other propositions. Another caveat is that
logics disagree strongly on what it means to be true: Modal logics (going back to [Lew18]) use
quali�ed truth such as necessarily true and sometimes true. Intuitionistic logics (going back to
[Bro07]) reject the assumption that a proposition is either true or false. Many-valued (such as
in [�uk20]) and fuzzy (based on [Zad65]) logics replace the distinction between true and false
with degrees of truth. Linear logic ([Gir87]) sees the truth of assumptions as a resource that
is consumed when it is used. And paraconsistent logics (see [Pri02] for an overview) admit
propositions that are both true and false, which is a contradiction in most logics.

A logical framework provides a speci�c de�nition of what a logic is, and the mathematical
infrastructure to de�ne logics and reason within them and about them. A typical characteristic
of mathematical developments in logical frameworks is that they consist of two parts: a �rst
part de�ning a logic in the logical framework and a second one de�ning a theory within that
logic. Another use of logical frameworks is to encode logics that have already been de�ned in no
or in a di�erent framework. Then adequacy means that the encoding yields indeed the right
logic.

Several logical frameworks have been suggested and used. But just like there is no universally
accepted foundation, there is no universally accepted de�nition what a logic is. For example in
2005, the World Congress on Universal Logic held a contest about what a logic is [Béz05].

Two classes of logical frameworks can be distinguished: those built on type theoretical and
those built on set theoretical foundations. The former tend to favor a proof theoretical view and
the latter a model theoretical view of truth, although neither is a priori restricted to one view.
This tendency increases the distance between research on logics: The two views are sometimes
in con�ict with each other in a way that is not only due to mathematics but also due to the
mathematical philosophies and preferences of their proponents.

The proof theoretical view sees both propositions and proofs as formal mathematical ob-
jects (called terms in the context of type theory). Every proof term is typed by the proposition
it proves. Logics are de�ned by rules that construct the propositions and the proof terms.
And the truth of a proposition is de�ned by whether a proof term exists for it. The �rst such
framework was Automath ([dB70]). And the most important frameworks in use today are Is-
abelle ([Pau94]) based on higher-order logic ([Chu40]), LF ([HHP93, PS99]) based on dependent
type theory ([ML74]), and Coq ([BC04]) based on the calculus of constructions ([CH88]). An
overview over type theoretical logical frameworks is given in [Pfe01].

A proof theoretical framework in a type theoretical foundation typically uses the Curry-
Howard correspondence ([CF58, How80]): It regards propositions as types and proofs
as terms. Then the type of a proof is the proposition it proves. The Curry-Howard corre-
spondence has led to numerous deep correspondences between type theories and logics (e.g.,
[See84, BdP00]). More generally, types can be seen as judgments and terms as evidence: Then
the typing relation m : M expresses that m is evidence for the judgment M ([ML96]).

The model theoretical view sees propositions as mathematical objects that do not have
meaning per se. This is because the propositions may contain symbols that are place-holders for

15

1.1. FORMAL LANGUAGES FOR MATHEMATICS

mathematical objects. Only after assigning concrete mathematical objects to these symbols, the
proposition is meaningful. Such an assignment is called an interpretation (function), model,
or structure. To de�ne a logic, one gives a set of propositions and a collection of interpretations.
Then the truth of a proposition is de�ned relative to a �xed interpretation. And a proposition
is valid i� it is true under all interpretations.

The model theoretical view goes back to Tarski's de�nition of truth ([Tar33, TV56]). In�u-
ential steps were Robinson's models for algebra ([Rob50]) and Kripke's models for modal logic
([Kri63]). An overview over model theoretical logics can be found in ([BF85]).

Model theoretical logical frameworks are often called general logics. The most important
ones are the frameworks of general logics ([Mes89]) and institutions ([GB92]). Both abstract
from the speci�c syntax of propositions and the speci�c structure of models, which yields a high
degree of generality. They are closely related, but [Mes89] also covers proof theory. Another
proposal to add proof theory to institutions was given in [MGDT05].

Categorical logic ([LS86]) extends the Curry-Howard correspondence to categories so that
propositions and proofs correspond to objects and morphisms. Thus, it combines proof and
model theoretic aspects. A recent application of this approach as a logical framework is given
in [GMdP+07].

1.1.3 Logical Reasoning

Logical reasoning can be organized in a four-levelled hierarchy.

1.1.3.1 Intra-Theory Reasoning

Logic is not only the study of the truth of propositions. It is also the study of consequences
between propositions. Intuitively, consequence is a relation between a set of propositions ∆ and
a proposition F . This relation is one of the central questions of logic and studied in an area we
call intra-theory reasoning. Notation and terminology di�er between the proof theoretical and
the model theoretical view.

Model-theoretically, consequence is written as ∆ |= F . ∆ is called a theory, the propositions
in ∆ are called the (non-logical) axioms, and F is called a theorem of the theory. ∆ |= F is
de�ned to mean: F is true under all interpretations that make all axioms in ∆ true.

Proof-theoretically, consequence is written as ∆ ` F . ∆ is called a context, the propositions
in ∆ are called hypotheses, and F is said to be true in context ∆. The crucial concept of proof
theoretical consequence is that of a rule (also called inference rule or proof rule). In the simplest
case, a rule is a relation between propositions. Then it is written as

F1 . . . Fn

F

for propositions Fi and F . The Fi are called the hypotheses and F the conclusion of the
rule. The intuition is that if all Fi are true, then F is true as well. If a rule has no hypotheses,
its conclusion is always true. Such rules are called (logical) axioms. From the axioms, the
proof-theoretically true propositions are obtained by �nitely many rule applications. Precisely,
a proof is a tree in which the nodes are labelled with propositions and every node is the
conclusion of a rule in which its children are the hypotheses. If the proof tree has the root F ,
it is a proof of F .

Usually, logics have both a proof theory and a model theory. Then soundness means
that proof theoretical consequence implies model theoretical consequence. And completeness
expresses the converse implication. Often a speci�c model or proof theory is used to de�ne a
logic. But there can be several model or proof theories inducing the same consequence relation.
If logics are sound and complete, the two notions of consequence coincide. This is essential for

16

1.1. FORMAL LANGUAGES FOR MATHEMATICS

logical reasoning because proof theoretical consequence is an algorithmic notion that can be
automated. Then the consequence relation can be determined systematically.

Thus, the consequence problem is theoretically quite well-understood. However, it is a very
hard theoretical problem to prove the completeness for a pair of proof and model theory. And
implementations of the proof theoretical consequence pose a hard practical problem as well. The
naive automation of the proof theoretical consequence enumerates all proofs by exhaustively ap-
plying rules until a proof of the desired theorem is found. In general, for almost all interesting
logics, the consequence relation is at most enumerable and the enumeration intractable. There-
fore, much research is concerned with devising e�cient algorithms that yield useful automated
provers or disprovers. Another important goal is to �nd logics that have better decidability or
tractability properties such as description logics (see [BCM+03]). Furthermore, semi-automated
provers try to only automate some parts keeping humans in the loop for the crucial proof steps.

Several competing or complementary automated and semi-automated theorem provers have
been implemented for various logics. We refrain from giving an elaborate overview and mention
only some examples.

Among the automated provers, most success has been achieved for �rst-order logic where
provers compete in the annual CASC ([PSS02]) competition. The provers Vampire ([RV02]),
Spass ([WBH+02]), and E ([Sch01]), and the model �nder Paradox ([CS03]) are among the
strongest systems. Further example provers are FaCT ([Hor98]) for modal logic and TPS
([ABI+96]) and Leo-II ([BPTF07]) for higher-order logic.

For the formalization of mathematics, automated provers are typically too weak and need
interactive human support. But semi-automated provers have been used to formalize large
portions of mathematics. The largest library is available in the Mizar system, which uses Tarski-
Grothendieck set theory ([Tar38, Bou64]) as a foundation. Further large libraries exist in the
Isabelle/HOL ([NPW02]) and the Coq ([BC04]) systems, which are based on type theory. One of
the biggest successes in this area was the formalization of the Jordan curve theorem ([Hal05b]);
the Flyspeck project ([Hal03]) formalizes the proof of the Kepler conjecture ([Hal05a]). An
overview over systems speci�cally used for the formalization of mathematics is given in [Wie03].

An important aspect of logical reasoning is the use of proof tactics and strategies. These
can be heuristics that implementations employ in order to cut down the search space by iden-
tifying presumably futile proof directions. They can also be small programs that apply certain
combinations of rules such as for induction. This yields high-level languages in which humans
can write proofs in a way that is closer to natural language proofs written by mathematicians.
The most advanced tactic languages are the ones in Mizar ([TB85]) and the Isar language for
Isabelle ([Nip02]). Coq ([BC04]), PVS ([ORS92]), HOL ([Gor88]), and HOL Light ([Har96]),
and ΩMEGA ([BCF+97]) are also notable.

1.1.3.2 Inter-Theory Reasoning

Inter-theory reasoning studies relationships between theories. Since the inter-theory level is the
most relevant level for this text, we give a careful overview over the relevant concepts and the
related work.

Theory Graphs Sophisticated mathematical reasoning usually involves several related but
di�erent mathematical contexts, and it is desirable to exploit these relationships by moving
theorems between contexts. The �rst applications of this technique in mathematics are found
in the works by Bourbaki ([Bou68, Bou74]), which tried to prove every theorem in the context
with the smallest possible set of axioms. We will follow the �little theories approach� proposed
in [FGT92] in which separate contexts are represented by separate theories. Structural rela-
tionships between contexts are represented as theory morphisms, which serve as conduits for
passing information (e.g., de�nitions and theorems) between theories (see [Far00]).

17

1.1. FORMAL LANGUAGES FOR MATHEMATICS

monoid

comm_group ring

σ

Figure 1.1: A Theory of Rings

We will use a portion of the elementary algebraic hi-
erarchy as a running example. This de�nes the theory of
monoids, extends it to the theory of commutative groups
and then combines these two into the theory of rings. Fig. 1.1
shows the hierarchy in a graph whose nodes are theories, and
whose edges are the extension, combination, and interpreta-
tion operations. To understand it in more detail, we �rst need to come to grips with the notion
of a theory morphism.

Concrete theories are usually de�ned by a set of (possibly typed or de�ned) symbols (the
signature) and a set of axioms describing the properties of the symbols. A signature mor-
phism σ from a theory S to a theory T translates or interprets the symbols of S in T . If we
have entailment relations for the formulas of S and T , a signature morphism is particularly
interesting if the following holds: All theorems of S become theorems of T � after translation
via σ. Taking this as a guiding intuition, a signature morphism σ between two theories S and
T is called a theory morphism i� the σ-images of all S-axioms are T -theorems.

In the algebraic hierarchy, the theory of commutative groups is a subtheory of that of rings,
since their signatures and axiom sets are subsets. Therefore, to save space we only need to
represent those symbols and axioms in the ring node that are not already in the comm_group
node if we know that the theory ring is created by extending comm_group. We say that
ring imports from comm_group. Similarly, comm_group imports from monoid. The relation
between ring and monoid is more di�cult: Here we need a morphism σ that gives a speci�c
translation from monoid to ring. In general, such a morphism from S to T means that some
symbols imported from S are identi�ed with objects that are already de�ned over B, and only
the remaining symbols of S are imported. In our example, the carrier set of monoid must be
translated to the carrier set already imported from comm_group.

If we view the nodes in graphs like the one in Fig. 1.1 as partial theory speci�cations and
the edges as importing relations labelled with morphisms, we arrive at a theory graph that
serves as a compact speci�cation of a collection of mathematical theories and their relations.
More precisely, every node T in such a theory graph induces a theory T as follows: T itself
contributes its symbols and axioms to the theory T . And every import from S to T with a
morphism σ contributes the symbols and axioms of S translated via σ. Thus, the content of T
and the nodes below T determine the theory T . Clearly, a theory graph must be acyclic.

Order OrdList

OrdNat Main

e

m
n

l

Figure 1.2: Instantiation

Theory graphs can handle high-level theory constructions
like parametric polymorphism and instantiation. For ex-
ample, in Fig. 1.2, OrdList is a theory of ordered lists, which
is parametric in a theory Order for orderings via the import
e. Assume we have established a theory morphism m from
Order to the theory OrdNat of ordered natural numbers that
expresses that OrdNat models the speci�cation Order. Then
the instantiation of OrdList with OrdNat arises as the cate-
gory theoretical pushout of the diagram (see Def. 2.17).

In general, if the node T in a theory graph imports from the node S via a morphism σ,
the pushout semantics induces a theory morphism from S to T by construction. We call these
theory morphisms de�nitional because all axioms of S are imported into T and thus hold by
de�nition. We also allow postulated theory morphisms or views, where the theory morphism
property has to be established by proving σ(F) in T for all S-axioms F . Then we call the σ(F)
proof obligations.

In software engineering, theories and theory graphs have been studied with two applications
in mind. The �rst is in (algebraic) speci�cation where theories are used to specify the
behavior of programs and software components, and theory morphisms are used to enable reuse.
The second application of theory graphs is in module systems, where modules are used to
encapsulate program functionality into meaningful units and hide implementational details.

18

1.1. FORMAL LANGUAGES FOR MATHEMATICS

Functors are used to �exibly export module functionality for reuse in other situations.

Theory Graphs and Module Systems The parallelism in ideas (Module speci�cations cor-
respond to theories and implementations to theory morphisms.) can be made use of for software
development, if we structure modular program speci�cations and implementations correspond-
ingly. More precisely, a module T can be regarded as a theory, and the fact that T implements
a speci�cation S can be expressed as a theory morphism S → T . This approach naturally leads
to a regime of speci�cation and implementation codevelopment, where initial, declarative spec-
i�cations are re�ned to take operational issues into account. Implementations are adapted to
changing speci�cations, and veri�cation conditions and their proofs have to be adapted as pro-
gramming errors are found and �xed. This has been studied extensively, and numerous systems
have been developed.

Properties of Module Systems To compare existing module systems with ours, we will
introduce some terminology �rst that describes module systems on an abstract level.

Modules declare named symbols that may be typed or de�ned, for example sorts, constants,
operations, or predicates. Sometimes they may also declare axioms, which can be named or
unnamed. In addition, various system-speci�c concepts may be declared such as notations
or proof rules. Other names used instead of module in some contexts are theory, signature,
speci�cation, (type) class, (module) type, and locale.

Inheritance means that one module T can import another module S. An important
distinction is whether the imports are named or unnamed. In the former case, the name of
the import is available to refer (i) to the imported module as a whole, or (ii) to the imported
symbols via quali�ed names. With unnamed imports, all imported symbols must reside in the
same �at name space. Unnamed imports are conceptually easier but make multiple inheritance
di�cult: For example, in Fig. 1.1, ring imports from monoid twice. Some systems permit
to rename symbols of S upon an import from S. In systems with named imports, this is
just syntactic sugar; but in systems with unnamed imports, renaming is necessary for multiple
inheritance, i.e., to disambiguate two imports of the same module.

Instantiation means that when importing S into T , some names declared in S may be
mapped to expressions of T . Module systems di�er as to what kind of mappings are allowed.
Some systems only allow the map of S-symbols to T -symbols. This has the advantage that
it is easier to check whether a map is well-typed. Other systems allow to map symbols to
composed expressions. And systems with named imports, can permit the map of an import to
a structure (see below). Another di�erence regarding instantiation is which symbols or imports
may be instantiated: We speak of free instantiation if arbitrary symbols or imports can be
instantiated. Free instantiations must explicitly associate some names of S with expression of
T . And we speak of interfaced instantiation if the declarations of S are divided into two blocks,
and only the declarations in the �rst block � the interface � are available for instantiations.
Interfaced instantiations are often implicit: The order of declarations in the interface of S must
correspond to the order of provided T -expressions. Furthermore, instantiations may be total
or partial: Total instantiations provide expressions for all symbols or imports in (the interface
of) S. Finally, some systems restrict inheritance to axioms; in such systems, imports must carry
instantiations for all symbols; we speak of axiom-inheritance.

A further distinction regards the relation between the imports and the other declarations.
We speak of separated imports if all imports must be given at the beginning of the module;
otherwise, we call them interspersed imports. Separated imports are conceptually easier,
but less expressive: At the beginning of a module, less syntactic material is available to form
expressions that can be used in instantiations.

Structures of the module (type) S over the module T provide values or implementations
for the symbols declared in the module S in terms of the syntactic material of T . In particular,

19

1.1. FORMAL LANGUAGES FOR MATHEMATICS

every import from S into T yields a structure of type S over T , which is particularly interesting
if the imports are named. Contrary to imports, views from S to T are structures that are
explicitly declared on toplevel. Views are similar to imports in that they carry an instantiation
that provides T -expressions for the symbols of S. Views are independent of S and T and
change neither module. Finally, grounded structures are similar to views, but instead of T
the global environment is used. For example, the programs implementing a module S are often
grounded structures of type S. Other name used instead of structure are interpretation, link,
view, instance, and (module) term/value/expression.

Functors are operations that take structures as arguments and return other structures. If
modules are regarded as types and structures as values, then functors correspond to functions.
A module system is higher-order if functors may take other functors as arguments.

Hiding permits to omit some symbols of S when importing from S. That solves the problem
that S may contain auxiliary symbols that are only needed locally. A standard example used
for CASL ([CoF04]) is given in Fig. 1.3 (in simpli�ed syntax, actually CASL's hiding is a
structuring operation on speci�cations). This describes the speci�cation of function that sorts
a list of elements of type A according to some ordering on A. The predicates is_sorted and
is_permutation_of are de�ned by axioms and should be hidden because an implementation
should only implement the sorting operation. Giving a formal semantics to hiding in the context
of formal speci�cation has proved much harder than for instantiation. One crucial di�culty is
that implementations must be required to satisfy all axioms � including those about the hidden
operations � even though they do not provide implementations for the hidden operations. A
special form of hiding is given by declaring private symbols.

speci�cation sorter [A: Order] {
symbols:
sort : List(A) −> List(A)
hidden is_sorted : List(A) −> bool
hidden is_permutation_of : List(A) −> List(A) −> bool

axioms:
forall L : List(A). (is_sorted(sort(L)) and is_permutation_of(L,sort(L)))
[axiomatic de�nitions of is_sorted and is_permutation]

}

Figure 1.3: Hiding

Finally, some module systems are not speci�c to a certain logic or programming language;
rather, they are de�ned within a logical framework and thus parametrized by the underlying
logic. We call such module systems generic and further distinguish whether the logical frame-
work is based on set/model theory or type/proof theory.

We say that a module system is conservative if every module is equivalent to a self-contained
module, i.e., one that does not inherit from other modules. Such modules are also called �at,
and the process of transforming a module into its �at equivalent is called �attening. Language
features that typically prevent �attening are higher-order functors (as in Coq) and complex
hiding (as in ASL).

Important Module Systems Now we are ready to describe some important speci�c module
systems. We will loosely group the module systems into set theory-based systems, i.e., algebraic
speci�cation languages, type theory-based systems, and programming languages. Among the
algebraic speci�cation languages, we consider OBJ ([GWM+93]), ASL ([SW83, ST88]), CASL
([CoF04, MML07]), and development graphs ([AHMS99, MAH06]). The type theories with
module systems we consider are IMPS ([FGT93]), PVS ([ORS92, OS97]), Isabelle ([Pau94]),
Coq ([BC04]), and Nuprl ([CAB+86]). Finally, among the programming languages, we use SML
([MTHM97]) and Java ([GJJ96]) as examples.

OBJ refers to a family of languages based on variants of sorted �rst-order logic. It was

20

1.1. FORMAL LANGUAGES FOR MATHEMATICS

originally developed in the 1970s based on the Clear programming language and pioneered many
ideas of modular speci�cations, in particular initial semantics. Virtually all module systems in
use today are in�uenced by OBJ. The most important variant is OBJ3; Maude ([CELM96]) is a
rewriting logic system based on OBJ. OBJ permits named, separated imports between modules.
Instantiations are interfaced, implicit, and total. And the interface of a module may only declare
imports, which can be instantiated with views.

ASL is a generic module system over an arbitrary institution ([GB92]). It uses only axiom-
inheritance with renaming. The possible instantiations are abstract and given by the signature
morphisms of the underlying institution. ASL introduced hiding in speci�cations by using
instantiations in the direction opposite to the inheritance direction; thus, hiding could be treated
as dual to instantiation.

The common algebraic speci�cation language (CASL) was initiated in 1994 in an attempt
to unify and standardize existing speci�cation languages. As such, it was strongly in�uenced by
other languages such as OBJ and ASL. The CASL logics are centered around partial subsorted
�rst-order logic. Speci�c logics are obtained by specializing (e.g., total functions, no subsorting)
or extending (e.g., modal logic or higher-order logic). In HetCASL ([Mos05]), CASL is extended
to heterogeneous speci�cations (i.e., di�erent logics in the same speci�cation). CASL modules
are called speci�cations, the imports are unnamed and interspersed. Multiple inheritance is
supported by renaming, and disambiguation is also possible via parameter ascription. Instanti-
ations are interfaced, explicit, and total; they map symbols to symbols. Views are possible and
can be used in instantiations. The support for hiding is similar to ASL.

The development graph language is an extension of ASL speci�cally designed for the
management of change. The modules are called theories, the imports de�nitional links, and the
views theorem links. Theory morphisms are composable sequences of links. De�nitional links
are like in ASL, and theorem links represent proof obligations. Local links are used to decom-
pose links into smaller components. The Maya system ([AHMS02]) implements development
graphs for �rst-order logic. It is a notable implementation because � contrary to most other
module systems � it does not �atten the speci�cation while reading it in. Thus, the modular
information, in particular the decompositions, is available in the internal data structures. And
it turns out that this is much more robust against changes in the underlying modules and pro-
vides a good basis for a management of change. The motivation for local links is the realization
that for large theory graphs proving proof obligations becomes a redundant exercise, which can
be avoided: To establish a link µ : S → T , it is possible to concentrate on proof obligations
induced by the local axioms of S. If possible, the axioms S imports from say S′ are discharged
by �nding a theory morphism from S′ to T . Thus, local links are introduced that only import or
induce proof obligations for the local axioms of the source theory. Then a theory level calculus
is used to prove theorem links by decomposing them into local ones. For example, in Fig. 1.2, a
local import could be used for l; then a theorem link from OrdList to Main is postulated, and
decomposed. The decomposition uses l to prove the local axioms of OrdList and n◦m to prove
the axioms imported into OrdList via e.

IMPS was the �rst theorem proving system that systematically exploited the �little the-
ories approach� of separating theories into small modules and moving theorems along theory
morphisms. It was initiated in 1990 and is built around a custom variant of higher-order logic.
The imports are unnamed and separated and do not carry instantiations; there is no renaming.
Modules can be related via views, which map symbols to symbols.

PVS is an interactive theorem prover for a variant of classical higher-order logic with a
rich undecidable type system. PVS o�ers unnamed, interspersed imports. Instantiations are
interfaced, total, and implicit; they map symbols to terms. There is no renaming, but mul-
tiple inheritance is supported through a complex overloading resolution algorithm. Hiding is
supported by export declarations that determine which names become available upon import.

Isabelle is an interactive theorem prover based on simple type theory ([Chu40]) with a
structured high-level proof language. It provides two generic module systems. Originally, only

21

1.1. FORMAL LANGUAGES FOR MATHEMATICS

axiomatic type classes were used as modules. They permit only inheritance via unnamed, sep-
arated imports without instantiations. Type class ascriptions to type variables and overloading
resolution are used to access the symbols of a type class. Independently, later locales were in-
troduced as modules in [KWP99] and gradually extended. The current release o�ers unnamed,
separated imports between locales; renaming is possible. There are no instantiations, but sym-
bols from di�erent locales can be identi�ed by renaming them to the same name. Interestingly,
neither module system has no notion of instantiation or structure. Instead of instantiating a
locale, a locale predicate is exported to the toplevel that abstracts from all symbols and as-
sumptions of the locale; every theorem proved in the locale is relativized by the locale predicate
and exported to the toplevel. Thus, instantiation is reduced to β-reduction. In [HW06], the de-
velopers propose a redesign of the Isabelle module system, which uni�es axiomatic type classes
and locales and introduces structures (called interpretations).

Coq is an interactive theorem prover based on the calculus of constructions ([CH88]). It
provides a higher-order module system, which is not conservative. Being higher-order it contains
the analogues of all other module systems we describe.

Nuprl is an interactive theorem prover based on a very rich undecidable type theory. It does
not provide a module system per se. But its type theory is so expressive that a higher-order
module system can be de�ned in it as done in [CH00]. Dependent sum and product types are
used to model modules and structures, and inheritance is reduced to subtyping.

SML provides two interconnected module systems, one for speci�cations and one for im-
plementations. The speci�cation level module system has signatures as modules. Imports are
interspersed and can be named (called structure declarations) or unnamed (called inclusions);
there is no renaming. Both kinds of imports carry free, explicit, and partial instantiations that
map symbols to symbols or structures to structures. The implementation level module system
has functors as modules. Imports between functors (called structure de�nitions) are named and
interspersed. And the instantiations are interfaced, explicit, and total; they map symbols to
symbols and structures to structures. Hiding is supported by structural subtyping.

The modules of the Java module system are called classes. There are two kinds of imports.
Firstly, unnamed, separated imports without renaming are called class inheritance. Secondly,
named, interspersed imports are called object instantiation, and the resulting structures are
called objects. Instantiations are interfaced, implicit, and total, but a class may provide multiple
interfaces (the constructors). They map symbols to expressions or objects to objects. Since the
constructors may execute imperative code, the expressions passed to the constructor do not have
to correspond to symbols or objects declared in the class. Views are possible, but the domains
are restricted to so-called interfaces. Functors are subsumed by the concept of methods. Hiding
is supported via private declarations.

1.1.3.3 Inter-Logic Reasoning

Inter-logic reasoning is very similar to inter-theory reasoning. Here, the motivation is to move
results from one logic to another one via a translation between the logics. Most importantly,
borrowing ([CM97]) means to use a translation from a logic L to a logic L′ in order to use
automated reasoning systems for L′ to solve problems in L. Another application is the modular
composition of logics.

The systematic study of logic translations requires a logical frameworks: Only then do the
source and target logic conform to the same de�nition of what a logic is. Otherwise, the notion
of a meaningful translation would not be de�nable.

Among themodel theoretical frameworks, translations have been studied very successfully
in the framework of institutions ([GB92]). HetCASL and the Hets system ([MML07]) generalize
CASL to a logical framework in which translations between logics can be used within one
speci�cation. We speak of heterogeneous speci�cations ([Mos05]).

22

1.2. SEMI-FORMAL LANGUAGES FOR MATHEMATICS

There have also been some results about how to use institutions to develop module systems
for logics, e.g., [Tar96, MTP97].

Among the proof theoretical frameworks, the Logosphere project ([PSK+03]) uses LF as
the basis of a formal digital library in which logics, logic translations, and theorem are stored.
The only translation realized so far is one from HOL to Nuprl ([Chu40, CAB+86, NSM01, SS04]).

However, so far the majority of representations and implementations of logic translations
has been realized outside of logical frameworks. Such ad hoc translations can be developed
as separate mathematical results. While all such results make some sort of truth-preservation
statement, the exact form of the translation and the meaning of the truth-preservation vary
from case to case due to the lack of a logical framework.

For example, [McL06], gives a translation of Isabelle/HOL ([NPW02]) expressions to HOL
Light ([Har96]) expressions that preserves truth via a meta-mathematical result about the trans-
lation. On the other hand, in [OS06] a translation in the opposite direction is given, which only
uses the HOL Light proof as an oracle to construct a completely new Isabelle/HOL proof. Trans-
lations with the purpose of borrowing are given in [JM93] to translate parts of DTT into simple
type theory, in [BPTF07] to translate parts of HOL ([Chu40]) into FOL, in Scunak [Bro06]
to translate parts of DTT into FOL, in [Urb03] to translate Mizar ([TB85]) into FOL, and in
[HS00] to translate ML to FOL.

1.1.3.4 Inter-Framework Reasoning

Inter-framework reasoning would extend the principle of inter-theory and inter-logic translations
to logical frameworks. Of course, a formal truth-preservation condition cannot be given because
that would require an even higher framework in which logical frameworks are de�ned. But it
is interesting to explore if some results can be moved between logical frameworks if we take
a broader view on results. For example, some applications that are not results in a strict
mathematical sense such as databases and management of change may well be independent of
the logical framework. This has not been explored so far.

1.2 Semi-Formal Languages for Mathematics

1.2.1 Mathematical Knowledge in Traditional Form

Mathematics is one of the oldest areas of human knowledge and forms the basis of most modern
sciences. It provides them not only with modeling tools like statistical analysis or di�erential
equations, but also with a knowledge representation regime based on rigorous language that
can (in principle) be formalized in logic. However, mathematical knowledge is far too vast
to be understood by one person. It has been estimated that the total amount of published
mathematics doubles every ten � �fteen years ([Odl95]). Indeed, Zentralblatt Math ([ZBM31])
maintains a database of 2.3 million reviews for articles from 3500 journals from 1868 to 2007.
If we take into account the �hard sciences�, as they are represented, e.g., in the Cornell ePrint
archive ([ArX94]), then we can see a similar trend: The collection is just short of half a million
papers with over 80 000 submitted in 2007 alone.

Thus, the question of supporting the management and dissemination of mathematical knowl-
edge is becoming ever more pressing. But it remains di�cult. The advent of the internet, which
has made more mathematics accessible than ever before does little to help in this respect. It
only makes mathematics accessible in the sense that it can be viewed or downloaded, but it does
not help with the organization of mathematical knowledge into a form that can be understood
by machines.

Currently, the best way for this organization of mathematical knowledge is to have humans
read mathematical documents or communicate to peers to build a cognitive representation of
the contents in their minds, �nd mappings from these to the problem at hand, transform the

23

1.2. SEMI-FORMAL LANGUAGES FOR MATHEMATICS

organized knowledge via these mappings so that they can be applied, and then �nally document
and communicate the results. Throughout this cycle, the documentation and communication
uses natural � i.e., informal � language with interspersed formulas. This mind-based process
is well-suited to doing mathematics �in the small� where human creativity is needed to create
new mathematical insights. But it leads to increasing specialization, academic isolation, and
missed opportunities for knowledge transfer.

The sheer volume of mathematical knowledge precludes this approach to organize mathemat-
ics �in the large�. The mathematical community has sometimes joined forces on prestige projects
such as the classi�cation of �nite simple groups ([Sol95]), but collaboration in mathematics is
largely small-scale. Thus, it is necessary to transcend the con�nes of a single mind and make use
of computer support. As computer programs still lack any real understanding of mathematics,
human mathematicians must make structures in mathematical knowledge su�ciently explicit
so that we can make use of the strengths of the computer: its ability to systematically manage
extremely large data sets.

This approach has been pioneered in an area, where computer support is desired for another
reason: the �eld of formal methods in software engineering (FMSE). In the veri�cation of
software systems, a sound logical foundation and the incorruptibility of computers are combined
to obtain reliable statements about their safety-critical properties. Such computer-aided proofs
rely on large amounts of formal knowledge about the mathematics of programming language
constructs, data structures, and program fragments, and the productivity of FMSE in practice
is restricted by the e�ectivity of managing this knowledge.

Even though mathematical knowledge can vary greatly in its presentation as well as its
level of formality and rigor, there is a level of deep semantic structure that is common to all
forms of mathematics and that must be represented to capture the essence of the knowledge.
However, the large-scale structure of mathematical knowledge is much less apparent than that of
formulas. Experienced mathematicians are nonetheless aware of it, and use it for navigating in
and communicating mathematical knowledge. Much of this structure can be found in networks
of mathematical theories: groups of mathematical statements, e.g., those in a monograph
�Introduction to Group Theory� or a chapter in a textbook. The relations among such theories
are described in the text, sometimes supported by mathematical statements called representation
theorems. We can observe that mathematical texts can only be understood with respect to a
particular mathematical context given by a theory which the reader can usually infer from the
document. The context can be stated explicitly (e.g., by the title of a book) or implicitly (e.g.,
by the fact that an email comes from a person that we know works on �nite groups).

If we make the structure of the context as explicit as the structure of the mathematical
objects, then mathematical software systems are able to provide novel services that rely on
this structure such as semantics-based searching and navigation or object classi�cation. Over
the last years this problem has been studied in the emerging �eld of mathematical knowledge
management (MKM).

1.2.2 Mathematical Knowledge on the Web

The challenge in putting mathematics on the World Wide Web is to capture both notation
and meaning in such a way that documents can utilize the highly-evolved notational forms of
written and printed mathematics, and the potential for interconnectivity in electronic media.
The W3C recommendation for mathematics on the web is the MathML language ([ABC+03]).
It provides two sublanguages: the �rst � presentation MathML � allows to specify high-
quality notations for mathematical formulas, the second � content MathML � is geared
towards specifying the meaning.

Content MathML represents the meaning of mathematical formulas in terms of Open-
Math objects ([BCC+04]), i.e., as tree-like expressions built up from constants and variables
via function applications and bindings. In the upcoming OpenMath 3 and MathML 3 stan-

24

1.3. MOTIVATION

dards, content representations will be isomorphic. The meaning of constants (called �symbols� in
MathML and OpenMath) is given by reference to content dictionaries (CDs), i.e. machine-
readable and web-accessible documents that give the meaning of symbols. CDs provide a simple
form of meaning to mathematical objects for the communication over the WWW: The mean-
ing of variables is local, and that of function application and binding is well-understood and
speci�ed in the OpenMath standard.

The notion of �meaning� in the OpenMath/MathML approach is strictly structural as
there is no requirements for CDs to be machine-understandable. Two mathematical objects are
considered equal, i� the encoded OpenMath objects are; in particular two symbols are equal,
i� their names and the URIs of their CDs are. This gives us a level of communication safety
over traditional mathematics: It can no longer be the case that the author writes N for the set
of natural numbers with 0, and the reader understands the set of natural number without 0,
as the two notions of �natural numbers� are represented by di�erent symbols (probably from
di�erent CDs). Thus, the service o�ered by the OpenMath/MathML approach is one of
disambiguation, and any machine support for dealing with OpenMath objects can only be
based on this.

The standardized XML-based universal syntax for mathematical formulas depends on a
notion of content dictionaries as a context representation. CDs can be seen as a very simple
representation of mathematical background knowledge that enables formula disambiguation and
communication of mathematical objects at a web scale. But the lack of machine-understandable
intra-CD knowledge structure and inter-CD relations preclude higher-level machine support.

The OMDoc format ([Koh06]) represents mathematical knowledge at three levels: objects,
i.e., content representations of mathematical objects and propositions about them, statements,
e.g., symbols, axioms, de�nitions, theorems, and proofs, and theories, i.e., a representation of
theory graphs. For communication and archival, OMDoc provides a basic, content-oriented
infrastructure for documents as well. Mathematical objects are represented as OpenMath
objects, statements, theories, and documents have a custom XML-based syntax. The use of
XML as a syntactical basis and Uniform Resource Identi�ers (URIs) throughout make the format
web-scalable. This, together with the fact that all formal mathematical elements of the language
can be augmented or even replaced by natural language text fragments distinguishes the format
from the purely formal approaches mentioned in Sect. 1.1. From the OpenMath/MathML
languages, OMDoc is distinguished by its rich infrastructure for inter-theory relations.

1.3 Motivation

1.3.1 Combining Model and Proof Theory

Objective In Sect. 1.1.1, we described two groups of foundations for mathematics, the set
theoretical and the type theoretical ones. And we described two views on logics, the model
theoretical and the proof theoretical one. We mentioned that mathematicians and computer
scientists who favor set theory also tend to favor model theory, and similarly researchers favoring
type theory tend to favor proof theory. We hold that the distance between these mathematical
directions is unnatural and undesirable, and we attempt to contribute to mathematics and
computer science by fostering a closer relationship between them.

Using the words of an unnamed reviewer of a related paper of ours, we can state our �rst
motivation by saying we are �trying to bridge the gap between two strongly con�icting cultures
and a[t]titudes in logic and computer science: model theory and proof/type theory�, which is
worthwhile because �attempts to bridge these two cultures are rare and rather timid�. Thus,
we want to provide a logical framework that combines model and proof theory. It is our goal
not only to provide a framework for the study of logics that connects the two views, but also to
bring together research and researchers from both views.

25

1.3. MOTIVATION

Requirements Our design choices for this framework are based on the following concrete
requirements. The framework should

(R1) subsume existing popular model- and proof-theoretic frameworks,

(R2) support logical reasoning on the intra-theory, inter-theory, and inter-logic level,

(R3) not commit to any particular syntax for mathematical objects, propositions, and proofs,

(R4) provide an implementable and scalable interface infrastructure for logics.

The motivation for (R1) is obvious: Any framework not compatible with popular prede-
cessors is doomed from the start. (R2) expresses that we want to exploit the levels of logical
reasoning. As seen in Sect. 1.1.3, there are various systems providing strong support on the
intra-theory and the inter-theory level. However, the support on the higher levels is small. The
number of logic translations conducted within proof theoretical logical frameworks is restricted
to a single translation in Logosphere. And although the model theoretical system Hets supports
various translations, currently, these translations are hard-coded. Furthermore, while many for-
mal languages support module systems, translations that preserve the modular structure are
much less understood. Therefore, a strong support for module systems would make our frame-
work more attractive for users as an interface language. We will get back to this in Sect. 1.3.2.2.
(R3) is necessary because users are always unwilling to leave established notations behind.
Therefore, an abstraction layer above the actual syntax is necessary. However, for usability
in practice, straightforward encodings of speci�c syntaxes must be possible. Finally, (R4) ex-
presses our commitment to contribute to practical applications that go beyond toy examples
and � borrowing Frank Pfenning's words � help researchers get work done.

Among the model theoretical frameworks, (R1) makes a strong statement in favor of institu-
tions ([GB92]). The institution-independent research has reached textbook strength ([Dia08]);
and the semantics of various speci�cation languages are based on or related to institutions such
as OBJ ([GWM+93]), ASL ([ST88]), ASL+ ([SST92]), CASL ([CoF04]), Maude ([CELM96]),
and development graphs ([AHMS99]). Furthermore, institutions are very strong with respect to
(R2) and (R3): Institutions provide a very strong framework for logic-independent high-level
speci�cation as shown by languages such as ASL, which are fully parametric in the underlying
base institution.

Institutions provide abstractions for propositions, truth, and model theory. The propositions
and models are described by objects of set theory, and truth is a relation between them. However,
the framework does not cover proof theory. Furthermore, the strength of institutions � their
abstraction � entails the weakness that they do not formalize the structure of mathematical
objects at all. Various attempts have been made to remedy this. Charters and parchments
were added by the developers of institutions ([GB86]) to provide a more concrete framework.
These were used in [MTP97] to represent logics in a universal logic. A di�erent approach to make
institutions more concrete was undertaken in [Mos99]. Proof theoretical structure for institutions
was already suggested in [GB92] following the Lambek-Scott approach ([LS86]) of proofs from
one sentence to another one. In [FS88] and [Mes89] entailment systems were introduced to
capture the proof theoretic consequence relation, i.e., proofs from a set of sentences to a single
sentence. In [MGDT05] proof theoretic institutions were introduced that use categories of proofs
from a set of sentences to another one.

However, these approaches su�ered from � besides some details � the simple fact that they
were undertaken by researchers leaning towards set and model theory. Only few attempts were
undertaken to combine institutions with the equally numerous work already existing in type and
proof theory. A notable exception is the work in [HST94] and [Tar96], which suggests the use of
LF, the Edinburgh Logical Framework ([HHP93]), as a universal logic, in which other logics are
speci�ed via institution translations. However, a deep and long-lived attempt has so far been
missing.

26

1.3. MOTIVATION

To fully achieve (R1), we have to look at the type and proof theoretic frameworks. We have
already mentioned in Sect. 1.1.2 that these can be organized in the λ-cube, and we gave Isabelle
([Pau94]), LF ([HHP93]), and Coq ([BC04]) as example frameworks. Our framework of choice
is LF. LF is a variant of dependent type theory related to Martin-Löf type theory ([ML74]). It
includes simple type theory ([Chu40]), which forms the base of Isabelle, and is included by the
calculus of constructions ([CH88]), which forms the base of Coq.

LF was designed with the speci�c goal to be a logical framework. Therefore, LF is a very
simple language that provides exactly those constructs needed to specify formal systems follow-
ing the judgments-as-types approach ([Pfe01, ML96]). In particular, all mathematical objects,
propositions, and proofs are uniformly represented as LF-terms and judgments about them as
LF-types. This permits very elegant representations of syntax and proof theory of logics.

Thus, LF is distinguished from Isabelle and Coq, which tend to put more emphasis on
providing a foundation of mathematics. Coq is usually not seen as a logical framework even
though it could be used as one; and while Isabelle is a logical framework, it is mainly used
in the instantiations Isabelle/HOL for higher-order logic and Isablelle/ZF for Zermelo-Fraenkel
set theory. This is re�ected in the literature about and the work conducted in the systems:
There is a large body of work on the study of logics in LF (e.g., [HHP93], [Pfe00], [HST94],
[AHMP92], [AHMP98], [NSM01]), whereas Isabelle and Coq are distributed with large libraries
of formalized mathematics ([Isa08], [Coq08]) and provide strong support for semi-automated
proof search (see ([Nip02]) for Isabelle and [BC04] for Coq).

A weakness of LF is that dependent types make the system more complicated. For example,
the model theory even for simple type theory as in Isabelle is already complex. Thus, a satisfac-
tory connection between LF and model theory in general is so far missing. Furthermore, systems
for LF (e.g., Twelf [PS99]) tend to focus on intra-theory reasoning. While some type theoretic
systems provide module systems as described in Sect. 1.1.3, the problem of high-level reasoning
is much more complicated and less well-understood in type theoretical frameworks because they
focus on concrete syntax instead of abstracting from it like the model theory-based frameworks.

As to the implementations required by (R4), the type theoretical frameworks are much
stronger than the model theoretical ones. The goal behind implementations is the automation
of logical reasoning, which naturally favors proof theoretical approaches. Only on the higher
levels of logical reasoning can model theoretical approaches show signi�cant advantages over
proof theoretical ones (e.g., [AHMS02], [MML07]). The scalability requirement of (R4) is the
hardest one with the least precedent in existing systems. We will focus on it separately in
Sect. 1.3.2.

Course of Action Thus, exempting scalability, we have a somewhat complementary picture
with model and proof theoretical frameworks exhibiting di�erent strengths. And from that, we
draw the following more precise objective: We attempt to combine the set/model theoretical
framework of institutions and the type/proof theoretical framework of dependent type theory.

To that end, we (i) extend the concept of institutions with an abstract notion of proof
theory. Thus, we lay the ground to integrate type/proof theory into set/model theory. We call
the notion we obtain in this way �logic�. Conversely, we (ii) give a model theoretical semantics
and then a logic for for dependent type theory (DTT). Thus, we lay the ground to integrate
set/model theory into type/proof theory. Finally, we (iii) combine the two results by building a
universal logic based on DTT, which yields our logical framework.

Limitations When designing a logical framework, the decision what not to integrate is as
important as the decision what to integrate. Allowing for too many features makes the frame-
work too complex to implement or reason about or too abstract to be meaningful. The main
limitations of our framework are the following.

• Institutions favor two-valued logics. This does not exclude intuitionistic logics, which

27

1.3. MOTIVATION

admit truth value-based interpretations even if negation is not interpreted classically. But
it limits the applicability to fuzzy, linear, or paraconsistent logics even though these are
not excluded a priori.

• LF judgments obey the rules of contraction, weakening, and (whenever well-formed) ex-
change. This limits applications to substructural logics because their encodings become
less natural. Future work could replace LF with LLF ([CP02]) or CLF ([WCPW02]),
which were designed to overcome this drawback.

• Our notion of logic translation uses compositional maps between syntactical expressions,
which is a very reasonable abstraction. However, this excludes some interesting cases, in
particular, those proof translations where proof rules are mapped to admissible rules (as
opposed to derivable rules) such as cut elimination translations. While non-compositional
translations can be captured naturally in both model and proof theoretical frameworks,
a combination of the two is more complicated. Therefore, we defer such translations to
future work. For example, using the recently matured Delphin ([PS08]) instead of LF
seems promising.

1.3.2 Logical Knowledge Management

There are two directions within MKM: They correspond to the two possible bracketings of MKM.
Firstly, M(KM) applies mathematical methods to knowledge management problems in all areas
of science. This involves techniques such as formal languages and standardized interfaces. For
example, CML ([MRR03]) is a markup language for chemistry. Secondly, (MK)M develops and
applies knowledge management methods particularly suited for mathematics. This involves the
representation, storage, distribution, analysis, and display of mathematical content.

By creating the acronym LKM in analogy to MKM, we can succinctly express our second
core motivation. Like MKM, its meaning is twofold.

1.3.2.1 Logical (Knowledge Management)

No L(KM) in Practice From a practical point of view, the characteristic problem of logical
or formal methods is that their cost is high. To apply logical methods, all problems and their
solutions have to be stated fully formally. Only then can machines be used to �nd or verify
solutions. In practice, this is almost never done. The only area outside mathematics to which
it can realistically be applied at all is information technology, on which we will focus.

Requirements for information processing systems are stated in semi-formal or even fully
informal languages. And the vast majority of implementations is carried out in informal pro-
gramming languages, by which we mean languages with formal syntax but mainly informal
semantics like Java and C++. We will not go into the details here of the numerous attempts
at giving a formal semantics for these languages, such as [ABB+05]. And even programming
languages with a high degree of formality in their semantics like SML, which admit a very strong
static safety analysis, are rarely used in practice outside theoretical computer science.

As a tell-tale example, we can consider the �Common Criteria for Information Technology
Security Evaluation� ([Com98]), an international standard (ISO/IEC 15408) for computer secu-
rity. It de�nes seven �Evaluation Assurance Levels�. But only the highest of these levels (And
even the second-highest is rarely used.) evaluates a formally veri�ed design. And any Common
Criteria evaluation is only used in a situation with very high security requirements to begin
with.

Two Ways towards L(KM) in Practice Therefore, a crucial direction of past and future
research in L(KM) is how to make logical methods more applicable in practice. We will focus
on two promising ways how to do this.

28

1.3. MOTIVATION

Firstly, using inter-theory and inter-logic reasoning makes it possible to abstract from the
implementation details and concentrate the power of logic on the higher-level structure. This is
incidentally the most important area of veri�cation because errors in higher levels are typically
far more costly to �x. This can be seen as a top-down approach: Formal and highly structured
speci�cations are used at the higher levels of design and implementation and applied to abstrac-
tions of the actual veri�cation targets (e.g., documents or programs). Then logical methods can
be pushed down as far as time and cost constraints admit. We have provided an overview over
the numerous languages used for this purpose in Sect. 1.1.3.2.

And secondly, incorporating informal representations into logical reasoning can provide a
way to apply logical methods without the cost of full formalizations. This can be seen as a
bottom-up approach: As much formal markup of the actual veri�cation target is introduced
as the external constraints admit, and applications exploit whatever formal structure is present.
This approach has two important pragmatic advantages. Firstly, its appeal to users is higher
because it can provide them with immediate small but low-cost bene�ts such as dependency
checking, search, and management of change. And secondly, the simpler, less formal languages
are signi�cantly easier to learn, which means that implementation tasks can be assigned to
less quali�ed researchers whose time is less valuable. This approach is far less explored than
the former. OMDoc ([Koh06]) was a pioneer in this area by combining formal and informal
representations of mathematical knowledge.

Meeting in the Middle with Mmt We contribute to L(KM) by providing the framework
Mmt, which connects the top-down and the bottom-up approach.

The design of OMDoc su�ers from a bias towards the bottom-up approach. The semantic
markup it provides itself has no clear semantics because the speci�cation � despite its length �
is incomplete or vague in crucial aspects. In particular, this applies to the concepts of multiple
inheritance, which is at the core of the inter-theory reasoning, and semantic reference, which is
at the core of large-scale integration. Furthermore, in an attempt to keep OMDoc as appealing
to users as possible, many primitive notions were introduced, which if taken together make the
current OMDoc 1.2 speci�cation a formidable read. This severely slowed down the implemen-
tation of OMDoc applications, which are necessary to make the bulky XML representation
transparent to the user. A pointed way to phrase it would be that OMDoc currently combines
the human-unfriendliness of XML with the machine-unfriendliness of informal language.

A crucial design choice in the ongoing development of its successor OMDoc 2 was to intro-
duce a distinction between strict and pragmaticOMDoc. In analogy to the upcomingMathML
3 speci�cation ([ABC+03]), pragmatic OMDoc provides user-friendly apparently primitive no-
tions that are in fact de�ned by a possibly partial translation to strict OMDoc. And strict
OMDoc provides a lean markup language with a fully formal semantics while retaining an
expressivity high enough to naturally represent a wide variety of object languages. Mmt intro-
duces the language and its semantics that is the formal counterpart of the core of strict OMDoc
2.

1.3.2.2 (Logical Knowledge) Management

(LK)M in Practice Mathematical theories have been studied by mathematicians and logi-
cians in the search of a rigorous foundation for mathematical practice. They have been for-
malized as collections of symbol declarations, i.e., names for mathematical objects that are
particular to the theory, and axioms, i.e., logical formulas which state the laws governing the
objects described by the theory. A key research question was to determine conditions for the
consistency of mathematical theories.

It is one of the critical observations of logic that theories can be extended without endangering
consistency, if the added formulas can be proved from the axioms or provide de�nitions of newly
introduced symbols. This leads to the principle of conservative extension that are safe

29

1.3. MOTIVATION

for mathematical theories and that permit to narrow down possible sources for inconsistencies
to small sets of axioms. Even though this has theoretically been known to mathematicians
for almost a century, it has only been an explicit object of formal study and exploited by
mathematical software systems in the last decades.

And as seen in Sect. 1.1.3, (LK)M has had notable success in applying formal methods to
mathematics. However, (LK)M applications tend to have a major restriction, namely a lack of
scalability. A simple reason for this is that (LK)M applications implementing logics or even
logical frameworks are often only understood by relatively small numbers of people because of
the high degree of abstraction. Thus, resources to implement services for logical frameworks are
very limited.

In Sect. 1.3.1, we listed scalability as a requirement. And in Sect. 1.1.3.4, we indicated
that there may be possibilities to support logical reasoning on the inter-framework level. These
aspects combine to our goal of a generic scalable module system, for which we see applications
in areas such as content representation, web compatibility, documentation, and management of
change.

Content Representation Most (LK)M systems hold all their knowledge either in complex
data structures in main memory or in ASCII �les on the local �le system. And knowledge is only
accessible if in the former form. A central process is the loading of a �le, which involves reading
it from disk, parsing it, and building the internal data structures for the knowledge represented
in the �le. This does not scale to the situations when holding all accessible information in main
memory is ine�cient and when �le system paths are not expressive enough to organize theories
meaningfully.

On the other hand, operations such as storage, search, structural analysis, retrieval of doc-
ument fragments, aggregation of documents, or editing and viewing document parts could in
principle be delegated to other applications. But in most cases, these tasks require the use of the
non-scaling primary application because no other application is able to understand the syntax
used in an input �le. A simple solution for this problem is to use XML encodings, in which both
syntax and semantic structure are easily parsable.

While some languages o�er XML encodings such as Isabelle, Twelf, and Mizar, these are
typically not the best-developed component. For example, Isabelle � one of the most advanced
(LK)M applications � only o�ers a not o�cially documented partial encoding of the core
language. And most existing XML-encodings such as the one for Coq ([BC04]) are one-way
encodings, i.e., the system can output but not input the XML documents. Only the encodings
of Mizar ([TB85, Urb03]) and Matita can be processed in a more sophisticated way.

Another problem is that there are no scaling interface languages that can faithfully represent
the content structure on the inter-theory or even on the inter-logic level. Both mathematically
and pragmatically, the key problem here is to �nd an interface language that is so simple that
it is easy to translate out of it, but yet so expressive that it is easy to translate into it.

Web Compatibility One major hurdle for the web scalability of (LK)M applications is stan-
dards compliance. This means the rigorous use of URIs as identi�ers, of XML documents as
interface formats, and of OpenMath ([BCC+04]) or MathML ([ABC+03]) for the representa-
tion of mathematical objects. For example, all symbols of the main syntax (e.g., λ in a system
implementing lambda calculus) should be declared in OpenMath content dictionaries. Instead,
applications that provide XML encodings favor custom XML elements that introduce additional
complexity into the interfaces (e.g., an element <lambda>). The possibility to use URIs as iden-
ti�ers � a triviality in MKM � is not supported by most applications. As a consequence,
standard techniques for the referencing of document fragments fail.

This is aggravated by the fact that (LK)M systems are almost exclusively applied by highly
trained users, and the documentation is targeted at them. Therefore, it is almost impossible

30

1.3. MOTIVATION

for developers of knowledge management services to apply their techniques to logical languages.
On the other hand, the scarcity of resources often precludes developers of logical systems to
provide such services themselves.

Documentation The inline attribution of documentation implemented in languages such as
Javadoc ([Jav04]) is a matter of course in software engineering. However, most (LK)M systems
only provide the possibility to mark certain parts or lines as comments. Moreover, even though
most comments speak about mathematical objects, the comments cannot natively represent
them. This makes it hard to write content in a way that can be used to extract documentation
and interfaces. Exceptions are Isabelle ([Pau94]), which features a LATEX authoring component,
and Mizar ([TB85]), which generates journal articles from Mizar articles.

Management of Change In multi-user development situations, concurrent versioning sys-
tems such as CVS and SVN are indispensable. However, both compare text �les line by line,
which is not optimal for logical knowledge represented in text �les. There we often have a
distinction between semantically relevant and irrelevant changes. For example, changes such
as whitespacing, comments, α,β,η-conversion, redundant bracketing, and the order of declara-
tions are or can be semantically irrelevant. And such changes are often not locally constrained
by the line structure. Furthermore, semantically relevant changes typically have far-reaching
consequences that may not only a�ect other parts of the �le but also completely di�erent �les.

Intelligent versioning systems can in principle detect such changes and determine their se-
mantic relevance. If they are provided with dependency relations between document parts (or
means to infer them), they can derive which changes to propagate to which document parts.
However, such systems are very costly to design and implement, which makes them infeasible
for single systems, especially if they are maintained by small research groups.

Generic (LK)M Services It is an important observation that the services discussed above
do not or only partially depend on the speci�c logical system. Thus, they can be implemented
generically provided that appropriate representation languages are available. This was a ma-
jor motivation behind the development of OMDoc, which o�ers the most advanced generic
representation language applicable to mathematical knowledge. Furthermore, for a variety of
services, prototype implementations are already available.

However, OMDoc is not appropriate for logical knowledge: Due to their high cost, logical
methods are only used when correctness is paramount, and OMDoc is not formally rigorous
enough to be trustworthy. Furthermore, it lacks adequate support for the representation of the
logics themselves. Thus, translations between logics could be represented even less. This led to
a central motivation of the work presented here.

Bridging the Gap withMmt We want to contribute to (LK)M by bridging the gap between
logical knowledge and generic knowledge management services. Our system Mmt remedies the
shortcomings of OMDoc 1.2 by providing a simple fully formal language with a formal semantics
for knowledge representations. It uni�es the higher levels of logical reasoning by using the same
primitive notion � that of a theory � to represent logical frameworks, logics, and theories.
Similarly, it only uses one primitive notion � that of a theory morphisms � for inter-framework,
inter-logic, and inter-theory translations. Thus, it can be called a meta-meta-logical framework
in the sense that an Mmt speci�cation contains (or refers to) theories for the used logic and
logical framework.

Furthermore,Mmt o�ers a module system that combines the simplicity and the expressivity
requirements mentioned above. In particular, Mmt permits natural representations of all of the
module systems reviewed in Sect. 1.1.3.2 except for the higher-order systems and the complex

31

1.4. OUTLINE

hiding constructs. Furthermore, the same module system can be used on all levels of logical
reasoning.

1.4 Outline

Content In Part II, we focus on our �rst objective, the combination of model and proof theory.
As already laid out in Sect. 1.3.1, we pick the logical frameworks of institutions and dependent
type theory and combine them. First, we extend the concept of institutions with an abstract
notion of proof theory in Sect. 3 to obtain our de�nition of logic. In Sect. 4, we give a model
theoretic semantic for dependent type theory (DTT) and use it to de�ne a logic for DTT. And
in Sect. 5, we combine the two results and use the logic for DTT as a logical framework. This
re�ects the objectives described at the end of Sect. 1.3.1.

In Part. III, we focus on our second objective, logical knowledge management. In Sect. 6, we
develop Mmt as a module system for logical knowledge and as a meta-meta-logical framework.
In Sect. 7, we show how the logical framework obtained in Part. II is represented in Mmt. And
in Sect. 8, we demonstrate the scalability ofMmt by sketching the design of future applications.

We will begin with an introduction to and overview over the needed prerequisites in Sect. 2.

Dependencies We brie�y review the semantic dependency between the sections in order to
help readers who are only interested in parts of this text.

Sect. 2 reviews known concepts. Readers familiar with the basic de�nitions in institutions
and dependent type theory can skip it; however, they should have a look at Not. 2.1, 2.2, 2.19,
2.21, and 2.23. Furthermore, the examples introduced in Sect. 2.2 will serve as running examples
throughout Part II and Sect. 7.

Part II relies heavily on institutions as introduced in Sect. 2 and is self-contained with
respect to dependent type theory. Sect. 4 is self-contained except for Sect. 4.10 and can be read
independently. Readers with no background in category theory may try to skip Sect. 4.4 to 4.9.

Within Part III, Sect. 7 and 8 are quite independent. Sect. 6 and 8 do not rely on Part II.
And for Sect. 8, basic knowledge about XML is assumed. Readers with no background in type
systems may want to skip Sect. 6.3.

32

Chapter 2

Preliminaries

It is in the nature of this work to form a connection between rather remote �elds of mathe-
matics, namely set/model theory and type/proof theory. Furthermore, it is in the nature of
logical frameworks to be very abstract mathematically and demand a great deal of patience
and persistence from learners. In particular, both our starting points, the logical frameworks
of institutions and DTT, are typically not fully understood before completing a one-semester
course on them, and almost no student does so for both of them. Therefore, we will begin by
giving a gentle bottom-up introduction to both of them in Sect. 2.2, which only assumes the
basic notions of set theory.

Then Sect. 2.3 will list all necessary de�nitions in a technically precise way. Those de�nitions
form the o�cial basis of the following. Before that we brie�y list some general meta-level
conventions and notations in Sect. 2.1.

2.1 Basic Concepts

The following notations are used throughout this text.

Notation 2.1. We use the following basic notations on the meta-level.

• N and Z denote the natural and integer numbers. 0 is a natural number.

• For m,n ∈ Z, am, . . . , an denotes a �nite list or sequence of expressions. If m > n, it
denotes the empty sequence.

• Sometimes we write f(−) instead of f to stress that f is an unapplied function.

• If f is a function with domain D and A ⊆ D, we write f(A) for the set {f(a) | a ∈ A}.

• If f(a) is a function or functor, we write f(a)(b) for the curried application of f(a) to b.

• We use the meta-variable _ for arbitrary irrelevant expressions.

Notation 2.2. We frequently reserve letters as meta-variables for certain concepts. Within the
scope of such a reservation, the reserved letters denote instances of the respective concept unless
mentioned otherwise.

Notation 2.3. We use the following abbreviations throughout this text. They will be introduced
again when they are used, and we only collect them here for convenient lookup.

33

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

FOL �rst-order logic
ML modal logic
MLTT Martin-Löf type theory
DTT dependent type theory
LF the Edinburgh logical framework
MKM Mathematical Knowledge Management

2.2 Institutions and Dependent Type Theory, bottom-up

The semantic structure of this section is multi-dimensional. In the present linearization of the
dependency ordering between the sections, we follow the levels of logical reasoning: We describe
the intra-theory level in Sect. 2.2.1, the inter-theory level in Sect. 2.2.2, and the inter-logic level
in Sect. 2.2.3.

Each section has �ve subsections organized as follows. First we give an example for the
syntax, then an example for the model theory. Then we abstract from the examples to obtain
the model theoretical framework of institutions. Then we give an example for the proof theory,
and then we abstract from the syntax and the proof theory to obtain the proof theoretical
framework of dependent type theory. The structure is given in the table below, which we will
reproduce in several places to ease navigation.

We use theories for monoids and groups within FOL as examples on the intra-theory level.
On the inter-theory level, we translate from monoids to groups. Then we introduce modal logic
in Sect. 2.2.2.6 so that we can use a translation from ML to FOL as an example on the inter-logic
level.

2.2.1 The Intra-Theory Level

Intra-Theory Inter-Theory Inter-Logic
Syntax Example 2.2.1.1 2.2.2.1 2.2.3.1
Model Theory Example 2.2.1.2 2.2.2.2 2.2.3.2
Institutions 2.2.1.3 2.2.2.3 2.2.3.3
Proof Theory Example 2.2.1.4 2.2.2.4 2.2.3.4
Dependent Type Theory 2.2.1.5 2.2.2.5 2.2.3.5

2.2.1.1 Syntax

Formulas The motivation of FOL formulas is to provide formal equivalents for the natural
language making up the core of reasoning. Thus, FOL introduces, for example, the symbols ∧
and ∀ for �and� and �for all�. The formulas are certain strings that are built up inductively from
atomic formulas. Since the induction is independent of the speci�c choice of atomic formulas,
we give the induction steps �rst:

• Nullary connectives: tt (truth) and ff (falsity) are formulas.

• Unary connective: If F is a formula, then so is ¬F (negation).

• Binary connectives: If F and G are formulas, then so are (F ∧G) (conjunction), (F ∨G)
(disjunction), and (F ⇒ G) (implication).

• Quanti�ers: If F is a formula and x is a variable, then so are ∀xF and ∃xF .

Furthermore, we use F ≡ G (equivalence) as an abbreviation of (F ⇒ G) ∧ (G ⇒ F). Here
variables are a �xed collection of objects that serve as names. The precise choice for this
collection is irrelevant as long as there are in�nitely many and as long as none of them is a
symbol used anywhere else. For example, {xn | n ∈ N} can serve as the set of variables. In ∀xF

34

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

and ∃xF , every occurrence of x in F is called bound, variable occurrences in a formula that
are not bound are called free. A formula without free variables is called closed. The closed
formulas are the propositions (also called sentences).

Signatures It is a crucial feature that FOL does not commit to any speci�c choice of elemen-
tary mathematical objects or propositions. Rather, FOL is a family of languages that is indexed
by a collection of so-called signatures. A signature is a triple (Σp,Σf , arit) where

• Σf is a set of names (function symbols),

• Σp is a set of names (predicate symbols),

• Σf and Σp are disjoint,

• arit assigns to every function of predicate symbol a natural number (its arity).

The function symbols are place-holders for mathematical objects. They are used to build up the
terms, which represent mathematical objects. And the predicate symbols represent elementary
propositions about mathematical objects. They are used to build up the atomic formulas.
Furthermore, we use equality as a �xed predicate symbol. Then the terms and atomic formulas
are de�ned as follows:

• Every variable is a Σ-term.

• If f ∈ Σf and arit(f) = n and if t1, . . . , tn are Σ-terms, then f(t1, . . . , tn) is a Σ-term.

• If t1 and t2 are Σ-terms, than t1
.= t2 is an atomic Σ-formula.

• If p ∈ Σp and arit(p) = n and if t1, . . . , tn are Σ-terms, then p(t1, . . . , tn) is an atomic
Σ-formula.

For example, a signature ΣM for monoids is given by

• ΣM
f = {comp, unit},

• ΣM
p = {invertible},

• aritM : comp 7→ 2, unit 7→ 0, invertible 7→ 1.

The intended meaning is that comp is a binary operation on mathematical objects, unit a
constant object, and invertible a proposition about one object. A signature ΣG for groups is
obtained by adding a unary function symbol inv for the inverse of an object.

Theories Theories are pairs (Σ,∆) of a signature Σ and a set ∆ of Σ-sentences. The elements
of ∆ are called the axioms of the theory. For example, for the signature ΣM , a reasonable choice
∆M is the set containing the sentences

• ∀x1∀x2∀x3 comp(x1, comp(x2, x3))
.= comp(comp(x1, x2), x3),

• ∀x1 (comp(x1, unit) .= x1 ∧ comp(unit , x1)
.= x1),

• ∀x1 (invertible(x1) ≡ ∃x2(comp(x1, x2)
.= unit ∧ comp(x2, x1)

.= unit)).

Then we obtain a theory Monoid = (ΣM ,∆M). If we add the axiom

∀x1 comp(x1, inv(x1))
.= unit ,

we obtain a theory Group for groups.

35

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

Intra-Theory Inter-Theory Inter-Logic
Syntax Example 2.2.1.1 2.2.2.1 2.2.3.1
Model Theory Example 2.2.1.2 2.2.2.2 2.2.3.2
Institutions 2.2.1.3 2.2.2.3 2.2.3.3
Proof Theory Example 2.2.1.4 2.2.2.4 2.2.3.4
Dependent Type Theory 2.2.1.5 2.2.2.5 2.2.3.5

2.2.1.2 Model Theory

Models The model theoretical view on logic interprets the terms as mathematical objects.
Formulas are treated as propositions about the objects, their semantics is that they are true or
false. This is relative to a �xed but arbitrary interpretation I for the function and predicate
symbols. In the context of institutions, it is common to call the interpretations models. A model
I for a signature Σ = (Σf ,Σp, arit) provides interpretations for the symbols as follows:

• a set JιKI of mathematical objects,

• for every f ∈ Σf with arit(f) = n, a mapping JfKI : (JιKI)n → JιKI (where An denotes the
n-fold cartesian power of A with A0 = {∅}),

• for every p ∈ Σp with arit(f) = n, a relation JpKI ⊆ (JιKI)n.

For example, the integers are expressed as a model I = IntM of the signature ΣMby:

• JιKI = Z,

• JcompKI(a, b) = a + b,

• JunitKI = 0,

• JinvertibleKI = Z.

IntM is extended to a model IntG of the signature ΣG by adding the interpretation JinvKI(a) =
−a.

Satisfaction Clearly, every Σ-model I extends to a function from all closed terms to JιKI .
But I does not provide a way to interpret variables. Thus, assignments α into I are introduced:
They are mappings from the set of variables to JιKI . Then we can de�ne an interpretation
function J−KI

α from terms to JιKI as follows:

• JxKI
α = α(x) for a variable x,

• Jf(t1, . . . , tn)KI
α = JfKI(Jt1KI

α, . . . , Jt1KI
α) for f ∈ Σf (where the empty tuple in case

n = 0 is ∅),

Furthermore, we can de�ne the truth of a formula F in I under α, written I, α |= F .

• I, α |=Σ p(t1, . . . , tn) iff (Jt1KI
α, . . . , JtnKI

α) ∈ JpKI for p ∈ Σp,

• I, α |=Σ F ∧G iff I, α |=Σ F and I, α |=Σ G,

• I, α |=Σ F ∨G iff I, α |=Σ F or I, α |=Σ G,

• I, α |=Σ F ⇒ G iff I, α 6|=Σ F or I, α |=Σ G,

• I, α |=Σ ∀xF iff I, αx
a |=Σ F for all a ∈ JιKI ,

• I, α |=Σ ∀xF iff I, αx
a |=Σ F for some a ∈ JιKI .

36

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

Here αx
a denotes the assignment that is as α except that it maps x to a. If I, α |=Σ F , we say

that F holds in I or that I satis�es F under the assignment α. I, α 6|=Σ F denotes the opposite.
Finally, we say I |=Σ F if F holds under all assignments.

Then we can check whether IntM satis�es all axioms of the theory Monoid . And this is of
course the case. Thus, we say that IntM is a model of the theory Monoid . As another example,
we can see that even IntM |=ΣM ∀x invertible(x).

Intra-Theory Inter-Theory Inter-Logic
Syntax Example 2.2.1.1 2.2.2.1 2.2.3.1
Model Theory Example 2.2.1.2 2.2.2.2 2.2.3.2
Institutions 2.2.1.3 2.2.2.3 2.2.3.3
Proof Theory Example 2.2.1.4 2.2.2.4 2.2.3.4
Dependent Type Theory 2.2.1.5 2.2.2.5 2.2.3.5

2.2.1.3 Institutions

Institutions By abstracting from the model theory for FOL, we reach a preliminary de�nition
of an institution as follows. An institution is a tuple (Sig ,Sen,Mod , |=) such that

• Sig is a class, the class of signatures,

• Sen : Sig → SET is a mapping assigning to every signature a set, the set of sentences,

• Mod : Sig → CLASS is a mapping assigning to every signature a class, the class of
models,

• |= is a family of relations |=Σ for every signature Σ such that |=Σ ⊆ Mod(Σ)× Sen(Σ) is
a relation, the satisfaction relation between Σ-models and Σ-sentences.

Here, �class� is a concept of axiomatic set theory used for a large collection of sets. In particular,
we can have the class of all sets (but not the set of all sets). The class of all sets is denote SET .
And the collection of all classes is denoted CLASS.

This can be visualized as follows

Σ

Sen(Σ)

Mod(Σ)

Sen

Mod

|=Σ

Then it is obvious how to turn FOL into an institution FOL using the above material:

• SigFOL is the class of FOL-signatures,

• SenFOL assigns to a signature the set of closed formulas,

• ModFOL assigns to a signature the class of models,

• |=FOL is the satisfaction relation of FOL.

37

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

Note that SenFOL(Σ) only contains the Σ-sentences and not all Σ-formulas. Thus |=FOL
Σ can

be a relation between models and sentences without referring to assignments.
There is a second way to turn FOL into an institution. This institution is called the institu-

tion FOLTh of FOL-theories:

• Sig is the class of FOL-theories,

• Sen assigns to a theory (Σ,∆) the set of closed Σ-formulas,

• Mod assigns to a theory (Σ,∆) the class of Σ-models I such that I |=Σ F for all F ∈ ∆,

• |= is the satisfaction relation of FOL.

The construction of the institution of theories is possible for every institution.

Truth and Consequence Finally, for an arbitrary institution, the validity of a proposition
can be de�ned: The Σ-formula F is valid if it is satis�ed in all Σ-models. This is denoted by
|=Σ F , and we say that F is a Σ-theorem. To distinguish the model-dependent and the model-
independent notions of truth, we will use the names satisfaction and validity, respectively.

Furthermore, we can de�ne consequence between propositions: The Σ-formula F is a
consequence of the set of Σ-formulas ∆, if all models satisfying all formulas in ∆ also satisfy F .
This is written ∆ |= F , and we say that F is a (Σ,∆)-theorem. In particular, validity is the
special case of consequence for ∆ = ∅.

Intra-Theory Inter-Theory Inter-Logic
Syntax Example 2.2.1.1 2.2.2.1 2.2.3.1
Model Theory Example 2.2.1.2 2.2.2.2 2.2.3.2
Institutions 2.2.1.3 2.2.2.3 2.2.3.3
Proof Theory Example 2.2.1.4 2.2.2.4 2.2.3.4
Dependent Type Theory 2.2.1.5 2.2.2.5 2.2.3.5

2.2.1.4 Proof Theory

Judgments and Proofs The central concept of proof theory is that of judgments: They
act as the connection between propositions and proofs. In the simplest case a judgment asserts
the truth of a proposition. For a proposition F , this could be written as ` F or simply as F .
To reason about FOL, a more general form of judgments is needed, namely:

for all x1, . . . , xm : F1, . . . , Fn ` F

where the xi are variables and the Fi and F are formulas with free variable occurrences of at
most the variables x1, . . . , xm. This judgment is usually written as F1, . . . , Fn ` F , i.e., the
variables are left implicit. Its intuition is the following: If arbitrary �xed terms are substituted
for x1, . . . , xm, then the truth of the assumptions F1, . . . , Fn has as a consequence the truth of
F .

Proofs are special objects that provide evidence for a judgment. Every proof proves exactly
one judgment, and a judgment may or not have a proof. If p is a proof of J , we write p : J .

Rules and Calculi A (inference) rule is a relation between judgments. It is written as

J1 . . . Jn

J

for judgments Ji and J . The Ji are called the hypotheses and J the conclusion of the rule.
Intuitively, a rule acts as a proof constructor: It returns a new proof of J if applied to proofs pi

38

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

for each Ji. Thus, the hypotheses can be seen as input types and the conclusion as the output
type of the rule. By giving the rule a name, say R, it becomes possible to refer to the proof of
the conclusion as R(p1, . . . , pn) � this is how proofs become mathematical objects. If a rule has
no hypotheses, its conclusion is always true. Such rules are called (logical) axioms. Additional
(non-logical) axioms may be given as a theory. Clearly, all proofs must start with axioms.

A particular choice of rules is called a calculus, a deductive system, or an inference system.
More generally, a calculus C assigns to every theory (Σ,∆) a set of rules. There are various
calculi for FOL (some of which use very di�erent judgments), which have been shown to make
the same propositions true. We will use the natural deduction calculus to have a grounded
de�nition of C (Σ,∆), but we refer to [Gen34] and [ML96] for the actual rules and only mention
some example rules.

The rule
for all x1, . . . , xm : F1, . . . , Fn, F ` G

for all x1, . . . , xm : F1, . . . , Fn ` F ⇒ G

gives implication its meaning by saying what it means to derive an implication: If for arbitrary
�xed x1, . . . , xm the judgment that G is a consequence of F1, . . . , Fm, F has a proof, then the
judgment that F ⇒ G is a consequence of F1, . . . , Fn should also have a proof. Here Fi, F , and
G are arbitrary �xed Σ-formulas.

Similarly, the rule
for all x1, . . . , xm, x : F1, . . . , Fn ` F

for all x1, . . . , xm : F1, . . . , Fn ` ∀xF

gives the universal quanti�er its meaning: If there is a proof that establishes that F is a con-
sequence of F1, . . . , Fm for arbitrary �xed x1, . . . , xm, x, then there should also be a proof that
established that ∀xF is a consequence of F1, . . . , Fn.

These proof rules are also called introduction rules because the conclusion contains a
symbol (⇒ or ∀) that does not occur in the hypotheses. Introduction rules are used to derive
theorems. Dually, elimination rules are used to apply previously derived theorems. The
elimination rule for implication is

for all x1, . . . , xm : F1, . . . , Fn ` F ⇒ G for all x1, . . . , xm : F1, . . . , Fn ` F

for all x1, . . . , xm : F1, . . . , Fn ` G

which is also called modus ponens. It says that F ⇒ G and F together can be used to derive G.
The elimination rule for universal quanti�cation is

for all x1, . . . , xm : F1, . . . , Fn ` ∀xF

for all x1, . . . , xm : F1, . . . , Fn ` F [x/t]

It says that ∀xF can be used to derive F if an arbitrary term t is substituted for the variable x
of F .

As an example for a rule dealing with equality, we give the re�exivity rule:

for all x1, . . . , xm : F1, . . . , Fn ` s
.= s

Intra-Theory Inter-Theory Inter-Logic
Syntax Example 2.2.1.1 2.2.2.1 2.2.3.1
Model Theory Example 2.2.1.2 2.2.2.2 2.2.3.2
Institutions 2.2.1.3 2.2.2.3 2.2.3.3
Proof Theory Example 2.2.1.4 2.2.2.4 2.2.3.4
Dependent Type Theory 2.2.1.5 2.2.2.5 2.2.3.5

39

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

2.2.1.5 Dependent Type Theory

Abstracting from the proof theory for FOL, we obtain the principal design features of the proof
theoretical logical framework LF. (A rigid de�nition will be part of Sect. 4.) Being a type theory,
its objects are terms s and types S related via the typing relation s :S.

The most important operation of LF is the function type construction: For two types S and
S′, the type S → S′ is the type of functions from S to S′. Terms of type S → S′ are functions
that take an input of type S and return an output of type S′. In particular, function terms are
obtained by lambda abstraction: If t is a term of type S′ with a free variable x of type S, then
λx:S t is the function of type S → S′: It returns t[x/s] for every input s, the substitution of s
for x in t.

LF Languages Similar to FOL, LF is a family of languages. A speci�c LF language is obtained
by declaring type symbols and term symbols. In general, there is no need for strict de�nitions
of what a logic is. Logics, signatures, and theories are all represented as LF-languages. We will
explain this by representing our example FOL-theories in LF.

To represent the logic FOL, we declare two special type symbols ι for mathematical objects
and o for formulas. Then formulas are represented by declarations of symbols that return
formulas. This is straightforward for the connectives and equality:

tt :o ∧ :o → o → o ⇒:o → o → o
.=: ι → ι → o

ff :o ∨ :o → o → o ≡:o → o → o

Here → is right-associative, i.e., o → o → o is the type of functions taking two formulas as
arguments and returning a formula.

The declarations for the quanti�ers are more subtle:

∀ : (ι → o) → o
∃ : (ι → o) → o

Intuitively, a formula F in a free variable x can be seen as a function with input type ι and
output type o: Given a term t as input, F returns F [x/t]. Thus, quanti�cation is an operation
with input type ι → o and output type o. This method of representing quanti�ers is called
higher-order abstract syntax and is a principal feature of type theories. Its advantage is
that binding, α-renaming, and substitution of FOL can conveniently be de�ned using their LF
counterparts.

Then a speci�c FOL-signature is represented as follows:

• a function symbol f with arity n: a term symbol declaration f : ι → . . . → ι︸ ︷︷ ︸
n

→ ι,

• a predicate symbol p with arity n: a term symbol declaration symbol p : ι → . . . → ι︸ ︷︷ ︸
n

→ o.

For example, the signature for monoids is given by the declarations

ι :type comp : ι → ι → ι
o :type unit : ι

invertible : ι → o

Judgments as Types and Proofs as Terms Following the Curry-Howard correspondence
([CF58, How80]), LF represents all judgments as types. To represent a proof theory in LF,
appropriate type constructors have to be declared for the desired judgments. For example, for
FOL, we need a judgment for the truth of propositions. This is done by declaring a type:

true :o → type

40

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

true is called a type family: true is not a type itself, only after applying true to a formula,
it returns a type. For example, true tt is a type. Thus, types may depend on terms, hence
we speak of dependent types. All proofs are represented as terms. If a proof p proves the
judgment J , then LF represents this as p : J . For example, the terms of type true F are the
proofs of the formula F .

With this intuition, we can already represent theories in LF: We add to the representation
of the signature, constants that represent the axioms. For example, the representation of the
theory Monoid of monoids is obtained by adding the declarations:

assoc : true
(
∀λx1:ι ∀λx3:ι ∀λx3:ι (comp(x1, comp(x2, x3))

.= comp(comp(x1, x2), x3))
)

neutral : true
(
∀λx1:ι (comp(x1, unit) .= x1 ∧ comp(unit , x1)

.= x1)
)

def_invertible : true
(

∀λx1:ι (invertible(x1) ≡ ∃λx2:ι (comp(x1, x2)
.= unit ∧ comp(x2, x1)

.= unit)))
where we have used in�x notation for the formula constructors. An LF-language Group for
groups is obtained similarly.

Thus, we are able to represent terms, propositions, signatures, and axioms. However, we
are still missing the proof rules. Currently, the only proofs are the axioms. To represent a
calculus, we must �rst represent every judgment as a type. For example, for FOL, we represent
the judgment

for all x1, . . . , xm : F1, . . . , Fn ` F

as the type true F1 → . . . → true Fn → true F
Now we can represent every proof rule

J1 . . . Jn

J

with name R as a declaration R :J1 → . . . → Jn → J . This matches the intuition of proof rules
as proof constructors: R takes proofs of J1, . . . , Jn as input and returns a new proof of J as
output. To represent a logic, we need one such declaration for every proof rule.

In fact, when representing a rule, we can even omit those assumptions that are the same in
all judgments. Thus, we can represent the natural deduction rules for the implication of FOL
as follows:

⇒Intro : (true F → true G) → true(F ⇒ G)
⇒Elim : (true (F ⇒ G) → true F) → true G

Intuitively, ⇒ Intro says that if there is a function, say p, that returns a proof of G if provided
with a proof of F as input, then there is also a proof of F ⇒ G, namely ⇒Intro(p).

It is not as easy to represent the rules for the universal quanti�er. The hypothesis of the
introduction rule says: For an arbitrary x of type ι, there is a proof of type true F (x). This is
an example of a dependent function type: The return type true F (x) depends on the input
value x. In LF, such a dependent function type is written as Πx:ι (true F (x)).

Then the rules are represented as

∀Intro : (Πx:ι true F (x)) → true ∀λx:ι F
∀Elim : true ∀λx:ι F → (Πx:ι true F (x))

For a simpler example, consider the re�exivity rule:

refl :Πx:ι true(x .= x)

Here the type Πx:ι true(x .= x) takes an argument x of type ι, and its return type is the type of
proofs that x is equal to itself.

41

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

Truth and Consequence Finally, we can de�ne proof theoretical truth and consequence
as follows. The judgment J is true if there is a term of type J . And the judgment J is a
consequence of the judgments J1, . . . , Jn if there is a term of the type J1 → . . . → Jn → J . In
particular, in FOL, the formula F is true if there is a term of type true F .

2.2.2 The Inter-Theory Level

Intra-Theory Inter-Theory Inter-Logic
Syntax Example 2.2.1.1 2.2.2.1 2.2.3.1
Model Theory Example 2.2.1.2 2.2.2.2 2.2.3.2
Institutions 2.2.1.3 2.2.2.3 2.2.3.3
Proof Theory Example 2.2.1.4 2.2.2.4 2.2.3.4
Dependent Type Theory 2.2.1.5 2.2.2.5 2.2.3.5

2.2.2.1 Syntax

Signature Morphisms Signature and theory translations are called morphisms. Assume two
FOL-signatures Σ and Σ′. We want to de�ne the notion of a signature translation σ from Σ to
Σ′. The simplest de�nition is the following: A signature morphism σ : Σ → Σ′ is a mapping
that maps Σ-symbols to Σ′-symbols in a way that respects the arity. For example, we have a
signature morphism σMG : ΣM → ΣG, which is simply the identity for all symbols.

Signatures and signature morphisms have the following properties:

• There is a class of objects, the signatures.

• For every two objects Σ and Σ′, there is a class of morphisms from Σ to Σ′, the signature
morphisms.

• For every object Σ, there is an identity morphism idΣ : Σ → Σ, which is the identity on
all symbols.

• For two morphisms σ : Σ → Σ′ and σ′ : Σ′ → Σ′′, there is a composition morphism
σ′ ◦ σ : Σ → Σ′′, which arises by composing the maps of σ and σ′.

• The identity morphism behaves like a neutral element for composition.

• The composition is associative.

Category theory ([Lan98]) is the �eld of mathematics studying precisely such structures. And we
can summarize the above properties as: Signatures and signature morphisms form a category.

An intuition for categories is best obtained by thinking of an abstraction from sets. SET is
the category where the objects are the sets, and the morphisms from A to B are the mappings
from A to B. Identity and composition are obvious. Thus, category theory talks about sets
and mappings as atomic objects without referring to their speci�c internal structure. This
abstraction has proved extremely valuable because lots of other concepts, such as signatures,
naturally admit a category structure.

Sentence Translation A signature morphism σ can be extended to a translation Sen(σ)
from Σ-sentences to Σ′-sentences in a straightforward way. Here we overload the symbol Sen:
Firstly, it represents the mapping of signatures Σ to the set of sentences Sen(Σ); and secondly,
it represents the mapping of signature morphisms σ to sentence translations Sen(σ).

Sen(σ) maps from Sen(Σ) to Sen(Σ′): It maps every Σ-sentences F to itself except that
every function or predicate symbol in F is replaced with its image under σ. It is easy to see
that Sen(σ)(F) is indeed a Σ′-sentence.

Then Sen has the following properties:

42

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

• It maps signatures Σ to sets.

• If σ : Σ → Σ′, then Sen(σ) is a mapping from Sen(Σ) to Sen(Σ′).

• Sen(idΣ) is the identity mapping of the set Sen(Σ).

• The mapping Sen(σ′ ◦ σ) is equal to applying �rst Sen(σ) and then Sen(σ′).

In other words, Sen preserves the structure, and the identity and composition. In category
theory, we can summarize this by saying that Sen is a functor from Sig to SET .

Intra-Theory Inter-Theory Inter-Logic
Syntax Example 2.2.1.1 2.2.2.1 2.2.3.1
Model Theory Example 2.2.1.2 2.2.2.2 2.2.3.2
Institutions 2.2.1.3 2.2.2.3 2.2.3.3
Proof Theory Example 2.2.1.4 2.2.2.4 2.2.3.4
Dependent Type Theory 2.2.1.5 2.2.2.5 2.2.3.5

2.2.2.2 Model Theory

Model Reduction Consider the signature morphism σMG from the previous section. Intu-
itively, this morphism expresses the fact that every group is a monoid. For example, the group
IntG of the integers can also be considered as a monoid, namely IntM . We can de�ne the fol-
lowing model reduction. Assume a signature morphism σ : Σ → Σ′ and a Σ′-model I ′. Then we
can de�ne a Σ-model I := Mod(σ)(I ′) as follows: JsKI := Jσ(s)KI′ for every function or predicate
symbol s of Σ. Then, our example can be made precise as IntM = Mod(σMG)(IntG).

Intuitively, if U is the collection of all mathematical objects, then Σ-models can be considered
as mappings from Σ (which is essentially a set of symbols) to U . Since signature morphisms
σ : Σ → Σ′ are mappings from the symbols of Σ to the symbols of Σ′, we can understand model
reduction as composition as follows:

Σ Σ′ U
σ I ′

Mod(σ)(I ′) := I ′ ◦ σ

In general Mod(σ) has the following properties:

• For σ : Σ → Σ′, Mod(σ) is a mapping from Mod(Σ′) to Mod(Σ).

• Mod(idΣ) is the identity mapping of the class Mod(Σ).

• The mapping Mod(σ′ ◦ σ) is equal to applying �rst Mod(σ′) and then Mod(σ).

Note that Mod is structurally very similar to Sen, but not quite: Mod(σ) is a mapping in the
reversed direction, from Mod(Σ′) to Mod(Σ). In the language of category theory, this is stated
as saying that Mod is a contravariant functor from Sig to CLASS. The fact that Sen(σ)
and Mod(σ) go in opposite direction is generally called the adjunction between syntax and
semantics.

Contravariant functors are somewhat more complicated. In order to avoid them, we can
de�ne CLASSop to be just like CLASS but with all morphisms �ipped; then Mod is a normal
functor from Sig to CLASSop.

43

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

Model Morphisms Assume the signature ΣG and its model IntG. Another example of a
model is RatG, which is de�ned like IntG, except that we use the rational number instead of
the integers. IntG can be seen as a submodel of RatG. More precisely, we have:

• There is a map from JιKIntG

to JιKRatG

, namely the inclusion i.

• The unit and addition of RatG agree with those of IntG.

• If an element of JιKIntG

is invertible, it is also invertible if considered as an element of
JιKRatG

.

This can be generalized to obtain the notion of model morphisms as follows. Assume a
FOL-signature Σ and two Σ-models I and I ′. Then a mapping ϕ : JιKI → JιKI′ is called a model
morphism from I to I ′ if

• for all function symbols f in Σ and all x1, . . . , xn ∈ JιKI where n = arit(f):

ϕ
(
JfKI(x1, . . . , xn)

)
= JfKI′

(
ϕ(x1), . . . , ϕ(xn)

)
,

• for all predicate symbols p in Σ and all x1, . . . , xn ∈ JιKI where n = arit(p):

if (x1, . . . , xn) ∈ JpKI , then
(
ϕ(x1), . . . , ϕ(xn)

)
∈ JpKI′ .

Model morphisms admit an identity and a composition in the obvious way. And thus the
Σ-models and their model morphisms form a category.

The model reduction Mod(σ) can also reduce model morphisms. For example, take the above
model morphism i : IntG → RatG. Then i is also a model morphism from Mod(σMG)(IntG) =
IntM to Mod(σMG)(RatG) = RatM . And indeed it is possible to put for arbitrary model
morphisms Mod(σ)(ϕ) := ϕ. We omit this (non-trivial) step. Then Mod(σ) becomes a functor
from Mod(Σ′) to Mod(Σ).

Now category theory shows that the categories themselves admit the structure of a category
where the morphisms between two categories are given by the functors. CAT is the category of
categories. Then Mod becomes a contravariant functor from Sig to CAT .

Satisfaction Condition Translations are only interesting if truth is preserved along them.
To see what this means, take the signature morphism σMG, the ΣG-model IntG, and some
ΣM -formula F . Clearly, we cannot check the satisfaction of F in IntG because they live over
di�erent signatures. But there are two ways to use σMG to permit such a check: We can
translate F to ΣG via Sen(σMG) and check satisfaction over ΣG; or we can reduce IntG to ΣM

via Mod(σMG) and check satisfaction over ΣM . A straightforward induction over F shows that
both possibilities yield the same result.

In general, we can formulate this as the following condition on satisfaction: For all signature
morphisms σ : Σ → Σ′, all Σ′-models I ′ and all Σ-sentences F , we have

Mod(σ)(I ′) |=Σ F iff I ′ |=Σ′ Sen(σ)(F)

The involved expressions are visualized in the following diagram, where the nodes on the
right side are elements of the respective set or category on the left side.

Sen(Σ) Sen(Σ′)

Mod(Σ) Mod(Σ′)

|=Σ |=Σ′

Sen(σ)

Mod(σ)

F Sen(σ)(F)

Mod(σ)(I ′) I ′

44

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

Theory Morphisms Just like we can translate between signatures, we can also translate
between theories. Model-theoretically, a signature morphism σ : Σ → Σ′ is a theory morphism
from (Σ,∆) to (Σ′,∆′) if the following holds: If F ∈ ∆, then Sen(σ)(F) is a theorem of (Σ′,∆′).

This means that σ maps every axiom and therefore every theorem of (Σ,∆) to a theorem
of (Σ′,∆′). Thus, theory morphisms are theorem-preserving translations between theories. For
example, the observation that every theorem F over monoids is also a theorem over groups is
made precise by saying that σMG is a theory morphism from Monoid to Group.

Intra-Theory Inter-Theory Inter-Logic
Syntax Example 2.2.1.1 2.2.2.1 2.2.3.1
Model Theory Example 2.2.1.2 2.2.2.2 2.2.3.2
Institutions 2.2.1.3 2.2.2.3 2.2.3.3
Proof Theory Example 2.2.1.4 2.2.2.4 2.2.3.4
Dependent Type Theory 2.2.1.5 2.2.2.5 2.2.3.5

2.2.2.3 Institutions

Again, we can abstract from the above notions and reach the �nal de�nition of an institution.
An institution is a tuple (Sig ,Sen,Mod , |=) such that

• Sig is a category, the class of signatures and signature morphisms,

• Sen : Sig → SET is a functor assigning to every signature its sentences and to every
signature morphism its sentence translation,

• Mod : Sig → CAT op is a functor assigning to every signature its model category and to
every signature morphism its model reduction functor,

• |= is a family of relations |=Σ for every signature Σ such that |=Σ is a relation between
the Σ-models in Mod(Σ) and the Σ-sentences in Sen(Σ),

such that the satisfaction condition holds: For all signature morphisms σ : Σ → Σ′, all Σ′-models
I ′ and all Σ-sentences F , we have

Mod(σ)(I ′) |=Σ F iff I ′ |=Σ′ Sen(σ)(F).

The involved expressions can be visualized as follows

Σ Σ′

Sen(Σ) Sen(Σ′)

Mod(Σ) Mod(Σ′)

Sen

Mod

Sen

Mod

|=Σ |=Σ′
σ

Sen(σ)

Mod(σ)

Then we can summarize the properties of the syntax and the model theory of FOL by saying
that FOL forms an institution FOL = (SigFOL,SenFOL,ModFOL, |=FOL).

45

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

Adjunction between Syntax and Semantics For an arbitrary institution, the theories
and the theory morphisms form a category as well. Just like in Sect. 2.2.1.3, we can obtain
the institution of theories. Assume an institution I = (Sig ,Sen,Mod , |=). Then we obtain an
institution ITh = (Th,SenTh,ModTh, |=Th) by putting

• Th is the category of I-theories,

• SenTh acts like Sen but after dropping the set of axioms from a theory,

• ModTh(Σ,∆) is the class of (Σ,∆)-models of I, and ModTh(σ) = Mod(σ),

• |=Th is the appropriate restriction of |=.

The fact that ITh is an institution is not totally trivial. To show well-de�nedness, it must
be shown that for every theory morphism σ : (Σ,∆) → (Σ′,∆′) and every I ′ ∈ ModTh(Σ′,∆′),
we have ModTh(σ)(I ′) ∈ ModTh(Σ,∆).

This follows from the properties of theory morphisms and the satisfaction condition of I.
Intuitively, it means the following: Theory morphisms from (Σ,∆) to (Σ′,∆′) translate (Σ,∆)-
theorems to (Σ′,∆′)-theorems and reduce (Σ′,∆′)-models to (Σ,∆)-models. This is a manifes-
tation of one of the guiding principles of institutions, namely that of an adjointness between
syntax (theories) and semantics (models).

Intra-Theory Inter-Theory Inter-Logic
Syntax Example 2.2.1.1 2.2.2.1 2.2.3.1
Model Theory Example 2.2.1.2 2.2.2.2 2.2.3.2
Institutions 2.2.1.3 2.2.2.3 2.2.3.3
Proof Theory Example 2.2.1.4 2.2.2.4 2.2.3.4
Dependent Type Theory 2.2.1.5 2.2.2.5 2.2.3.5

2.2.2.4 Proof Theory

Derived Proof Rules If there is a proof, i.e., a �nite sequence of rule applications, leading
from the judgments J1, . . . , Jn to the judgment J , this proof is called a derived proof rule. The
name is justi�ed because adding the proof rule

J1 . . . Jn

J

is always possible without changing the derivable judgments.
For example, for FOL, the rule

for all x1, . . . , xm : F1, . . . , Fn, F, F ′ ` G

for all x1, . . . , xm : F1, . . . , Fn ` F ⇒ (F ′ ⇒ G)

is a derivable rule of C (Σ,∆): It is derived by composing two applications of the implication
introduction rule.

Theory Morphisms Similarly, to the extension of σ to Sen(σ), a FOL-signature morphism
σ : Σ → Σ′ extends to a translation from Σ-judgments to Σ′-judgments: For a judgment

J = for all x1, . . . , xm : F1, . . . , Fn ` F,

put
C (σ)(J) := for all x1, . . . , xm : C (σ)(F1), . . . ,C (σ)(Fn) ` C (σ)(F)

46

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

where the application of C (σ) to formulas is de�ned as for Sen(σ)
Then proof-theoretically, a signature morphism σ : Σ → Σ′ is called a theory morphism

from (Σ,∆) to (Σ′,∆′) if the following holds: For all proof rules

J1 . . . Jn

J

in C (Σ,∆),
C (σ)(J1) . . . C (σ)(Jn)

C (σ)(J)

is a derived proof rule of C (Σ′,∆′).
In particular, this means that σ maps every axiom of (Σ,∆) to a theorem of (Σ′,∆′). And

that implies that σ maps every theorem of (Σ,∆) to a consequence of (Σ′,∆′). Thus, theory
morphisms are theorem-preserving translations between theories. For example, the observation
that every theorem of F over monoids is also a theorem of Sen(σ)(F) over groups is made precise
by saying that σMG is a theory morphism from Monoid to Group. This de�nition is remarkably
similar to the model theoretical de�nition.

Intra-Theory Inter-Theory Inter-Logic
Syntax Example 2.2.1.1 2.2.2.1 2.2.3.1
Model Theory Example 2.2.1.2 2.2.2.2 2.2.3.2
Institutions 2.2.1.3 2.2.2.3 2.2.3.3
Proof Theory Example 2.2.1.4 2.2.2.4 2.2.3.4
Dependent Type Theory 2.2.1.5 2.2.2.5 2.2.3.5

2.2.2.5 in Dependent Type Theory

LF Translations Using LF, we are able to state the de�nition of proof theoretical theory
morphisms in a more precise way, namely by using translations between LF-languages. If two
LF-languages Σ and Σ′ are given, an LF-translation from Σ to Σ′ maps every symbol of Σ to a
term of Σ′.

LF-translations may not map symbols arbitrarily. Rather they must preserve types in the
following sense. For every Σ-term symbol c of type S, σ(c) must be a Σ′-term of type σ (S).
Here σ (S) is the extension of σ to S: σ replaces every Σ-symbol c in S with σ(c). Similarly,
every Σ-type symbol must be mapped to a Σ′-type.

Signature Morphisms For example, for a translation between two LF languages representing
FOL theories, the special type symbols ι and o are mapped to themselves. Similarly, the
connectives, the equality symbol, and the quanti�ers are mapped to themselves. A function
symbol f : ι → . . . → ι → ι must be mapped to any term of type

σ (ι → . . . → ι → ι) = ι → . . . → ι → ι,

and similarly for predicate symbols. Then the signature morphism σMG from Monoid to Group
can be expressed in LF as the LF translation that maps comp, unit , and invertible to themselves.

However, in LF, we can do something more general. Consider the symbol invertible of the
signature M for monoids. Usually this symbol is not part of the theory of monoids, and we
might wish to eliminate it, thus obtaining the signature M ′. Then there is an obvious signature
inclusion morphism from M ′ to M . However, it is intuitively clear that there is also a translation
in the opposite direction. This translation can also be formulated as an LF translation σMM ′

.
The type of invertible is ι → o, thus σMM ′

(invertible) must have type σ (ι → o) = ι → o. And
we can put

σMM ′
(invertible) := λx1:ι Finv (x1)

47

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

where Finv (x1) abbreviates the predicate that states that x1 has an inverse, i.e.,

Finv (x1) := ∃λx2:ι (comp(x1, x2)
.= unit ∧ comp(x2, x1)

.= unit).

Theory Morphisms Just like the notions of signature and theory are uni�ed as LF languages,
the notions of signature and theory morphism are uni�ed as LF translations. Via the Curry-
Howard correspondence, just like proof rules

J1 . . . Jn

J

are represented as declarations of constants of type J1 → . . . → Jn → J , the corresponding
derived proof rules are represented as composed terms of that type.

Since proof theoretical theory morphisms translate proof rules to derived proof rules, they
can be represented directly as LF translations. Such LF translations map constants (i.e., rules)
to terms (i.e., derived rules) of the appropriate types.

For example, for FOL, the truth judgment true and all rules are translated to themselves.
And in order for a speci�c signature morphism such as σMM ′

to become a theory morphism, all
axioms (i.e., rules without hypotheses) of σM must be translated to theorems (i.e., derived rules
without hypotheses) of σM ′

. This is trivial for all axioms except for def_invertible. It must be
mapped to a proof of type

σ
(
true

(
∀λx1:ι invertible(x1) ≡ Finv (x1)

))
= true

(
∀λx1:ι Finv (x1) ≡ Finv (x1)

)
where Finv is as above. And such a map is possible because in FOL there is a derived proof rule
that proves that every formula is equivalent to itself.

2.2.2.6 Modal Logic

In order to give an example of a logic translation in the next section, we will sketch the de�nition
of a fragment of propositional modal logic (ML). This can also serve as an exercise for the reader
because it de�nes a new logic using the two logical frameworks developed in the preceding
sections.

Syntax: Signatures and Sentences The signature category SigML is SET . For a signature
Σ, i.e., a set, the elements p ∈ Σ serve as the propositional constants. The Σ-sentences are built
up using the unary connectives ¬ and �, and the binary connective ⇒ as in the following LF
language:

o :type
¬ :o → o
⇒:o → o → o
� :o → o
p :o for all p ∈ Σ

A signature morphism, i.e., a mapping σ : Σ → Σ′ induces an LF translation σ′ by mapping every
p ∈ Σ to σ(p) and the remaining symbols to themselves. The sentence translation SenML(σ) is
the restriction of σ′ to the terms of type o.

For example, assume an ML-signature morphism σe : {p, q} → {a, b} mapping both p and q
to a. Then SenML(σe) maps the formula �(p ⇒ q) to �(a ⇒ a).

Model Theory: Models and Satisfaction Σ-models are Kripke-models ([Kri63]), i.e.,
triples (W, acc, I) where

• W is a non-empty set,

48

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

• acc is a binary relation on W ,

• I ⊆ Σ×W is a world-wise interpretation of the propositional variables.

Intuitively, W is a set of worlds and acc is an accessibility relation between worlds, i.e., acc(w,w′)
can be understood as a wormhole from w to w′. If acc is an ordering, the elements of W can also
be seen as points in time with acc(w,w′) expressing that w′ is in a future of w. All formulas
are interpreted in all worlds, but the interpretations in the worlds are not independent. In
particular, I gives the interpretation of the propositional constants: (p, w) ∈ I expresses that p
holds in world w.

For simplicity, we omit model morphisms, i.e., the identity morphisms are the only model
morphisms. Model reduction is de�ned by

ModML(σ)(W ′, acc′, I ′) = (W ′, acc′, {(p, w) | (σ(p), w) ∈ I ′}).

For example, K ′
e := (W ′, acc′, I ′) where W ′ = {w1, w2, w3}, acc′ = {(w1, w2), (w1, w3)}, and

I ′ = {(a,w1), (b, w2)} is a Σ′-model. Via σe, it is reduced to the Σ-model Ke := (W, acc, I) with
W := W ′, acc := acc′, and I = {(p, w1), (q, w1)}.

World-dependent satisfaction is de�ned by

• W, acc, I, w |=ML
Σ p iff (p, w) ∈ I for p ∈ Σ,

• W, acc, I, w |=ML
Σ ¬F iff W, acc, I, w 6|=Σ F ,

• W, acc, I, w |=ML
Σ F ⇒ G iff W, acc, I, w 6|=Σ F or W, acc, I, w |=ML

Σ G,

• W, acc, I, w |=ML
Σ �F iff W, acc, I, w′ |=ML

Σ F for all w′ such that (w,w′) ∈ acc,

Thus, � quanti�es over all worlds accessible from the current world, or over the future of the
current point. The satisfaction in a model is de�ned by

W, acc, I |=ML
Σ F iff W, acc, I, w |=ML

Σ F for all w ∈ W.

For example, with Ke from above, we have

Ke, w1 |=ML
{p,q} �(p ⇒ q)

because p ⇒ q holds both in w2 and in w3.
We show the satisfaction condition by proving by induction on F that for all w ∈ W ′

ModML(σ)(W ′, acc′, I ′, w) |=ML
Σ F iff W ′, acc′, I ′, w |=ML

Σ SenML(σ)(F).

The only non-trivial case is that of an atomic formula. So assume σ : Σ → Σ′, F = p ∈ Σ,
and (W ′, acc′, I ′) ∈ ModML(Σ′). Firstly, we translate F along σ and evaluate over Σ′: We
have SenML(σ)(F) = σ(p), and the satisfaction holds in w i� (σ(p), w) ∈ I ′. Secondly, we
reduce (W ′, acc′, I ′) to (W, acc, I) and evaluate over Σ: p holds in world w of the reduced model
i� (p, w) ∈ I where by de�nition (p, w) ∈ I i� (σ(p), w) ∈ I ′. Thus, the two conditions are
equivalent for atomic F .

Therefore, the syntax and model theory form an institution

ML := (SigML,ModML,ModML, |=ML).

49

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

Proof Theory: Judgments and Proof Rules The proof theory for a signature Σ is given
by extending the LF language from above with the following declarations, thus obtaining the
signature CML(Σ)

true : o → type
A : true

(
F ⇒ (¬F ⇒ G)

)
B : true

(
(F ⇒ G) ⇒ ((G ⇒ H) ⇒ (F ⇒ H))

)
C : true

(
(¬F ⇒ F) ⇒ F

)
MP : true(F ⇒ G) → true F → true G
Nec : true(F) → true(�F)
K : true

(
�(F ⇒ G) ⇒ (�F ⇒ �G)

)
Then the proofs of F are the terms of type true(F). This is the standard axiomatization of
the normal modal logic K ([HC96]) based on axioms for propositional logic that are due to
�ukasiewicz.

Then every signature morphism σ : Σ → Σ′ extends to an LF translation CML(σ) from
CML(Σ) to CML(Σ′), by mapping the symbols true through K to themselves.

The logical framework of dependent type theory has no analogue to an institution that
collects the syntax and the proof theory into a single object. In analogy to institutions, this
object could be the tuple (SigML,ModML, CML, true) where CML assigns proof theories to
signatures and true determines proof theoretical truth. Our logical framework will do something
similar.

2.2.3 The Inter-Logic Level

Intra-Theory Inter-Theory Inter-Logic
Syntax Example 2.2.1.1 2.2.2.1 2.2.3.1
Model Theory Example 2.2.1.2 2.2.2.2 2.2.3.2
Institutions 2.2.1.3 2.2.2.3 2.2.3.3
Proof Theory Example 2.2.1.4 2.2.2.4 2.2.3.4
Dependent Type Theory 2.2.1.5 2.2.2.5 2.2.3.5

2.2.3.1 Syntax

Signature Translation Assume an ML-signature Σ. We de�ne a FOL-signature Φ(Σ), which
contains:

• a unary predicate symbol @p for every p ∈ Σ,

• a binary predicate symbol Acc.

For example, for the ML-signature {p, q}, Φ({p, q}) contains unary predicate symbols @p and
@q, and a binary predicate symbol Acc. The intuition is that the universe JιKJ′

of Φ(Σ)-model
J ′ corresponds to the set W of worlds. Then Acc corresponds to acc, and the truth of @p(w)
corresponds to (p, w) ∈ I.

Φ can be extended to signature morphisms easily. If σ : Σ → Σ′ is an ML-signature mor-
phism, we de�ne a FOL-signature morphism Φ(σ) : Φ(Σ) → Φ(Σ′) as follows: @p of Φ(Σ) is
mapped to @σ(p) of Φ(Σ′), and Acc is mapped to Acc.

Φ has the structure-preserving properties of a functor, and thus we can summarize: Φ is a
functor from SigML to SigFOL.

Sentence Translation The idea behind Φ(Σ) is that it has enough structure to encode Kripke
models. Thus, the model theory of ML can be expressed using the syntax of FOL. This is
formalized by giving a family of mappings αΣ : SenML(Σ) → SenFOL(Φ(Σ)) for every Σ ∈

50

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

SigML. The translation must be done in two steps. The �rst step is a compositional translation
−w for a variable w:

• pw := @p(w),

• ¬F
w

:= ¬F
w
,

• F ⇒ G
w

:= F
w ⇒ G

w
,

• �F
w

:= ∀w′(Acc(w,w′) ⇒ F
w′

).

Then it is intuitively clear that if the FOL-universe is the set of worlds, F
w
expresses the truth

of F in world w. The second step is only applied once at the toplevel: We put

αΣ(F) := ∀wF
w
.

For example, we have

α{p,q}(�(p ⇒ q)) = ∀w
(
∀w′(Acc(w,w′) ⇒ (@p(w′) ⇒ @q(w′))

))
.

α has a structure-preserving property that is not so easy to pin down. Take the example
ML-signature morphism σe : Σ0 → Σ1 from above where Σ0 := {p, q} and Σ1 := {a, b}. Assume
we want to translate a sentence from Σ0 to Φ(Σ1), i.e., we compose the sentence translation
along σe and the sentence translation along α. Then there are two ways to do this as in the
following diagram:

SenML(Σ0) SenML(Σ1)

SenFOL(Φ(Σ0)) SenFOL(Φ(Σ1))

αΣ0

SenML(σe)

αΣ1

SenFOL(Φ(σe))

σe :

{
p 7→ a

q 7→ a

Φ(σe) :

@p 7→ @a

@q 7→ @a

Acc 7→ Acc

And this diagram commutes. For example, for �(p ∧ q), the translations yield

�(p ∧ q) �(a ∧ a)

∀w
(
∀w′(Acc(w,w′)

⇒ (@p(w′) ⇒ @q(w′))
)) ∀w

(
∀w′(Acc(w,w′)

⇒ (@a(w′) ⇒ @a(w′))
))

αΣ

SenML(σe)

αΣ′

SenFOL(Φ(σe))

In general, we have that for all ML-signature morphism σ : Σ → Σ′:

SenFOL(Φ(Σ)) ◦ αΣ = αΣ′ ◦ SenML(σ).

In the language of category theory, this means that α is a natural transformation from the
functor SenML to the functor SenFOL ◦ Φ. These functors are as in the following diagram:

SigML SigFOL

SET

Φ

SenML SenFOL

51

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

This diagram does not commute, i.e., SenML(Σ) 6= SenFOL(Φ(Σ)). But αΣ mediates between
these two sets.

Intra-Theory Inter-Theory Inter-Logic
Syntax Example 2.2.1.1 2.2.2.1 2.2.3.1
Model Theory Example 2.2.1.2 2.2.2.2 2.2.3.2
Institutions 2.2.1.3 2.2.2.3 2.2.3.3
Proof Theory Example 2.2.1.4 2.2.2.4 2.2.3.4
Dependent Type Theory 2.2.1.5 2.2.2.5 2.2.3.5

2.2.3.2 Model Theory

Model Reduction The model reduction formalizes the intuition how the FOL-models cor-
respond to the Kripke-models. Assume a Φ(Σ)-model J ′. We de�ne a Kripke-model βΣ(J ′) =
(W, acc, I) as follows:

• W = JιKJ′
,

• acc = JAccKJ′
,

• I = {(p, w) ∈ Σ×W | w ∈ J@pKJ′}.

For example, assume Σ = {p, q} and a Φ(Σ)-model J ′ with JιKJ′
= {w1, w2, w3}, JAccKJ′

=
{(w1, w2), (w1, w3)}, J@pKJ′

= {w1}, and J@qKJ′
= {w1}. Then βΣ(J ′) = Me from Sect. 2.2.2.6.

Dually to the naturality of α, β is a natural transformation from ModML to ModFOL ◦Φ as
in

SigML SigFOL

CAT op

Φ

ModML ModFOL

That means that for all ML-signature morphisms σ : Σ → Σ′, the following diagram (which
is a diagram in CAT) commutes:

ModML(Σ) ModML(Σ′)

ModFOL(Φ(Σ)) ModFOL(Φ(Σ′))

βΣ

ModML(σ)

βΣ′

ModFOL(Φ(σ))

Note that the naturality condition should technically be illustrated by a diagram in CAT op with
the same nodes, but all arrows �ipped. We choose the illustration in CAT so that all arrows
point in the intuitive direction, i.e., models are reduced from the lower right corner to the upper
left corner.

β has another important property: Every βΣ is surjective on objects, i.e., every Kripke-model
of Σ is in the image of βΣ. This can be seen easily. For example, above we picked J ′ such that
βΣ(J ′) = Me.

52

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

Satisfaction Condition Just like inter-theory translations, inter-logic translations should
preserve truth. It should not matter whether an ML-sentence F over Σ is translated and its
truth checked over Φ(Σ) in an FOL-model J ′, or whether the truth of F is checked over Σ in
the reduction of J ′.

Similarly to the inter-theory level, we obtain: For all ML-signatures Σ, all Σ-sentences F ,
and all Φ(Σ)-models J ′, we have

βΣ(J ′) |=ML
Σ F iff J ′ |=FOL

Φ(Σ) αΣ(F)

as in

SenML(Σ) SenFOL(Φ(Σ))

ModML(Σ) ModFOL(Φ(Σ))

|=ML
Σ

|=FOL
Φ(Σ)

αΣ

βΣ

F αΣ(F)

βΣ(J ′) J ′

Intra-Theory Inter-Theory Inter-Logic
Syntax Example 2.2.1.1 2.2.2.1 2.2.3.1
Model Theory Example 2.2.1.2 2.2.2.2 2.2.3.2
Institutions 2.2.1.3 2.2.2.3 2.2.3.3
Proof Theory Example 2.2.1.4 2.2.2.4 2.2.3.4
Dependent Type Theory 2.2.1.5 2.2.2.5 2.2.3.5

2.2.3.3 Institutions

Institution Comorphisms Abstracting from the translations of syntax and model theory,
we obtain the de�nition of translations between institutions. For historical reasons, these are
called institution comorphisms. An institution comorphism from I = (Sig ,Sen,Mod , |=) to
I′ = (Sig ′,Sen ′,Mod ′, |=′) is a triple (Φ, α, β) such that

• Φ : Sig → Sig ′ is a functor,

• α : Sen → Sen ′ ◦ Φ is a natural transformation,

• β : Mod → Mod ′ ◦ Φ is a natural transformation,

• for all I-signatures Σ, all Σ-sentences F , and all Φ(Σ)-models I ′:

βΣ(I ′) |=I
Σ F iff I ′ |=I′

Φ(Σ) αΣ(F).

An institution comorphism is said to have the model expansion property if every βΣ

is surjective on objects. For comorphisms with model expansion, we can prove the following
theorem that captures the intuition of a truth-preserving inter-logic translation. For all I theories
(Σ,∆) and all Σ-sentences F :

∆ |=I
Σ F iff αΣ(∆) |=I′

Φ(Σ) αΣ(F)

where αΣ(∆) = {αΣ(G) | G ∈ ∆}. This is called the borrowing theorem ([CM97]) because it
means that the institution I can borrow the truth de�nition (and thus a proof system) of the
institution I′.

53

2.2. INSTITUTIONS AND DEPENDENT TYPE THEORY, BOTTOM-UP

Intra-Theory Inter-Theory Inter-Logic
Syntax Example 2.2.1.1 2.2.2.1 2.2.3.1
Model Theory Example 2.2.1.2 2.2.2.2 2.2.3.2
Institutions 2.2.1.3 2.2.2.3 2.2.3.3
Proof Theory Example 2.2.1.4 2.2.2.4 2.2.3.4
Dependent Type Theory 2.2.1.5 2.2.2.5 2.2.3.5

2.2.3.4 Proof Theory

The proof translation from ML to FOL consists of a family τΣ of maps for every ML-signature
Σ. τΣ maps every judgment and every proof in CML(Σ) to a judgment or proof in CFOL(Φ(Σ).
Proof translations are tricky because they can be syntactically complex. Writing them down
without the support of a proof theoretical logical framework is so di�cult that it is hardly worth
doing at all. This is where LF shows its full strength as a logical framework. Therefore, we will
give the maps τΣ as LF translations right away in Sect. 2.2.3.5.

Intra-Theory Inter-Theory Inter-Logic
Syntax Example 2.2.1.1 2.2.2.1 2.2.3.1
Model Theory Example 2.2.1.2 2.2.2.2 2.2.3.2
Institutions 2.2.1.3 2.2.2.3 2.2.3.3
Proof Theory Example 2.2.1.4 2.2.2.4 2.2.3.4
Dependent Type Theory 2.2.1.5 2.2.2.5 2.2.3.5

2.2.3.5 Dependent Type Theory

Because in LF, both logics and theories are LF languages, no strict conceptual di�erence be-
tween logic translations and theory translations is needed. Assume that Φ translates every LF
language representing an I-signature to an LF language representing an I′-signature. Then a
proof translation between the calculi C I and C I′ is a family τΣ of LF translations from C I(Σ)
to C I′(Φ(Σ)).

Sentence Translation Since proofs contain formulas, we can only use LF to de�ne a proof
translation if we also represent the sentence translation in LF. For example, for an ML-signature
Σ, the translation of the formulas can be represented in LF as follows:

τΣ(o) := ι → o
τΣ(¬) := λf :ι→o λw:ι ¬f(w)
τΣ(⇒) := λf :ι→o λg:ι→o λw:ι (f(w) ⇒ g(w))
τΣ(�) := λf :ι→o λw:ι ∀λw′:ι (Acc(w,w′) ⇒ f(w′))
τΣ(p) := λw:ι @p(w) for p ∈ Σ

τΣ(true) := λf :ι→o true(∀λw:ι f(w))

Because τΣ(o) = ι → o, the symbols ¬, ⇒, and �, which take arguments of type o must be
translated to terms taking arguments of type ι → o. It is easy to see the translation is just such
that every Σ-proposition F is translated to λw:ι F

w
where F

w
is the syntax translation de�ned

in Sect. 2.2.3.1.
The most interesting part is the translation of the judgment true. Since its type in CML(Σ)

is o → type, its translation τΣ(true) must have type (ι → o) → type. Inspecting the value of
τΣ(true) shows that it represents exactly the toplevel step used in Sect. 2.2.3.1.

54

2.3. INSTITUTIONS, TOP-DOWN

Proof Translation Finally, the translation of the Σ-proofs to Φ(Σ)-proofs is handled by
extending τΣ to an LF translation from CML(Σ) to CFOL(Φ(Σ)) by adding translations for the
symbols A through K from Sect. 2.2.2.6. As on the inter-theory level, the proof rules must be
mapped to derived proof rules. This is tedious but straightforward, and we just give the only
trivial case as an example:

τΣ(o) := ⇒Elim.

2.3 Institutions, top-down

In this section, we introduce the main de�nitions regarding institutions in a formally precise way
for future reference and to make this text self-contained. This cannot replace an introductory
course on the subjects and is only intended to ground the following on exact foundations. In
particular, the section on category theory will probably only be readable to readers who already
know the content. We have conveyed the main intuitions behind these concepts as far as they
are relevant for this text in Sect. 2.2.

For more elaborate introductions, the standard reference for category theory is [Lan98],
and we also recommend [Awo06] as an introductory textbook. The original paper introducing
institutions is [GB92], and it is well-readable as an introductory text. The current state of the
art in institutions is collected in the upcoming book [Dia08].

We do not give a similar development for dependent type theory because we will introduce
our own variant in Sect. 4 anyway. The best references for the LF variant of dependent type
theory and its use as a logical framework are [HHP93], which introduces LF, and the handbook
article on proof-theoretical logical frameworks [Pfe01].

2.3.1 Category Theory

De�nition 2.4 (Foundation). As the foundation, we will use Mac Lane-Feferman set theory
([Lan69, Fef69]). In particular, there are three syntactic levels: sets, classes, and conglomerates.
Every set is a class, and every class is a conglomerate. Classes are collections of sets, and
conglomerates are collections of classes. For every property about sets, there is the class of all
sets with that property; and for every property about classes, there is the conglomerate of all
classes with that property. The axiom of choice is present for all three levels.

De�nition 2.5 (Categories). A category C is a tuple of

• a class |C| of objects,

• a class HomC(A,B) of morphisms from A to B for every two objects A,B,

• an identity morphism idA ∈ HomC(A,A) for every object A,

• a composition operation ◦ : HomC(B,C) × HomC(A,B) → HomC(A,C) for every three
objects A,B, C, which is written in in�x notation,

such that

• idB ◦ f = f and f ◦ idA = f for every morphism f ∈ HomC(A,B) (i.e., idA is a neutral
element for composition),

• h ◦ (g ◦ f) = (h ◦ g) ◦ f for every three morphisms f, g, h for which the compositions are
de�ned (i.e., when de�ned, composition is associative).

Notation 2.6 (Morphisms). If f is a morphism from A to B in a category that is clear from the
context, we write f : A → B. We also write A → B if f is clear from the context or to refer to
morphisms from A to B in general.

55

2.3. INSTITUTIONS, TOP-DOWN

Example 2.7 (Sets). The category SET has as objects the sets, as morphisms from A to B
the mappings from A to B, and as identity and composition the corresponding operations for
mappings.

Example 2.8 (Classes). The category CLASS has as objects the classes, as morphisms from
A to B the mappings from A to B, and as identity and composition the corresponding opera-
tions for mappings. Technically, CLASS is only a quasi-category because |CLASS| is a proper
conglomerate, i.e., not a class. We will drop this detail from our notation.

De�nition 2.9 (Opposite Category). For a category C, the category Cop has the same objects
and identities as C, but all morphisms and morphism composition are reversed. Precisely,

HomCop(A,B) := HomC(B,A)

and
g ◦C

op

f := f ◦C g.

De�nition 2.10 (Functors). For two categories C and C′, a functor F from C to C′ is a family
of mappings, all of which are denoted by F , such that

• F : |C| → |C′|,

• F : HomC(A,B) → HomC(F (A), F (B)) for every two objects A,B ∈ |C| (i.e., functors
map all structure of C to structure of C′),

• F (idA) = idF (A) for every object A ∈ |C| (i.e., functors preserve identities),

• F (g ◦ f) = F (g) ◦ F (f) for every two C-morphisms f, g for which composition is de�ned
(i.e., functors preserve composition).

Example 2.11 (Sets are Classes). The inclusion, which maps all sets and all mappings to them-
selves is a functor from SET to CLASS.
Example 2.12 (Identity and Composition of Functors). For every category C, the identity, which
maps all objects and morphisms to themselves, is a functor from C to C.

For every two functors F from C to C′ and F ′ from C′ to C′′, the composition F ′ ◦ F , which
maps all objects and morphisms of C by composing the corresponding mappings of F and F ′,
is a functor from C to C′′.
Example 2.13 (Category of Categories). The category CAT of categories has as objects cate-
gories, as morphisms from C to C′ the functors from C to C′, and as identity and composition
the operations from Ex. 2.12. Technically, CAT is only a quasi-category just like CLASS.
Example 2.14 (Forgetting Morphisms). The following is a functor: |−| : CAT → CLASS, which
maps every category C to its class of objects |C| and every functor to its restriction to objects.
It is called a forgetful functor because it �forgets� the morphisms of categories.

De�nition 2.15 (Diagrams). For a category C, a directed multi-graph in which the nodes are
labelled with objects of C, and the edges from A to B are labelled with C-morphisms from A to
B is called a (commuting) diagram over C i� the following holds: For every two paths from A
to B that consist of the edges (f1, . . . , fn) and (g1, . . . , gn), it holds that fn◦. . .◦f1 = gn◦. . .◦g1.

Notation 2.16 (Diagrams). Instead of spelling out a set of properties about morphisms in a
category, it is common and much easier to simply give a diagram and assert its commutativity.
All diagrams in this text will be commutative unless stated otherwise.

De�nition 2.17 (Pushout). Consider the following diagrams in a category C:

56

2.3. INSTITUTIONS, TOP-DOWN

A B1

B2

f1

f2

A B1

B2 P

f1

f2 p1

p2

A B1

B2 P

O

o1

o2

f1

f2 p1

p2

A B1

B2 P

O

f1

f2 p1

p2 o1

o2
h

We say that (P, p1, p2) as in the second diagram is a pushout of the �rst diagram i� for every
(O, o1, o2) as in the third diagram, there is a unique h as in the fourth diagram.

De�nition 2.18 (Natural Transformations). For two functors F and G from C to C′, a natural
transformation η from F to G is a family (ηA)A∈|C| of C′-morphisms ηA : F (A) → G(A) such
that for every C-morphism f : A → B the following diagram commutes:

F (A) F (B)

G(A) G(B)

ηA

F (f)

ηB

G(f)

For every functor F : C → C′, the family (idF (A))A∈|C| is a natural transformation from F to
itself. And for two natural transformations η : F → G and η′ : G → H between functors from
C to C′, the family (η′A ◦ ηA)A∈|C| is a natural transformation from F to H. Thus, the functors
from C to C′, the natural transformations between them, and these identities and composition
form a category.

Notation 2.19 (Composition of Functors and Natural Transformations). For a functor F :
C → C′, two functors G, G′ : C′ → C′′, and a natural transformation η : G → G′, the fam-
ily (ηF (A))A∈|C| is a natural transformation G ◦ F → G′ ◦ F as in the following (not necessarily
commutative) diagrams.

C C′ C′′

G(F (A))

G′(F (A))

F
G

G′

ηF (A)

We denote this natural transformation by ηF .
Similarly, for a functor F : C′ → C′′, two functors G, G′ : C → C′, and a natural transforma-

tion η : G → G′, the family (F (ηA))A∈|C| is a natural transformation F ◦G → F ◦G′ as in the
following (not necessarily commutative) diagrams.

C′′C C′

F (G(A))

F (G′(A))

F
G

G′

F (ηA)

We denote this natural transformation by F (η).

57

2.3. INSTITUTIONS, TOP-DOWN

Furthermore, in Sect. 4, we need the advanced concepts of indexed sets, �brations, locally
cartesian closed categories, pullbacks, and adjoint functors, and some proofs use the Yoneda
embedding and the Yoneda lemma, as well as sheaves and toposes. We will not de�ne these
notions and refer to the literature when they come up.

2.3.2 Institutions

De�nition 2.20 (Institutions). An institution consists of

• a signature category Sig ,

• a sentence functor Sen : Sig → SET ,

• a model category functor Mod : Sig → CAT op,

• and for every Σ ∈ |Sig |, a satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ).

These have to satisfy the satisfaction condition: For all signature morphisms σ : Σ → Σ′, all
Σ-sentences F , and all Σ′-models I ′, it holds that

Mod(σ)(I ′) |=Σ F iff I ′ |=Σ′ Sen(σ)(F).

Technically, Mod is only a (class-codable) quasi-functor because its codomain is a quasi-category,
but we will drop this from the notation.

Notation 2.21. We will always assume that institutions I or I′ are given as (Sig ,Sen,Mod , |=)
or (Sig ′,Sen ′,Mod ′, |=′), respectively, unless stated otherwise.

De�nition 2.22 (Comorphisms). An institution comorphism I → I′ consists of

• a functor Φ : Sig → Sig ′ translating signatures,

• a natural transformation α : Sen → Sen ′ ◦ Φ translating sentences,

• and a natural transformation β : Mod → Mod ′ ◦ Φ translating models,

such that for all Σ ∈ |Sig |, F ∈ Sen(Σ), I ′ ∈ |Mod ′(Φ(Σ))|

βΣ(I ′) |=Σ F iff I ′ |=Φ(Σ) αΣ(F).

INS denotes the category of institutions and institution comorphisms.

Notation 2.23. Our model category functor goes from Sig to CAT op whereas the literature
usually uses Mod : Sigop → CAT . Similarly, our βΣ is di�erent from the one used in the
literature. This is of course equivalent. Our notation has the advantage that Sen and Mod
have the same domain, which is more elegant when we add a proof category functor in Sect. 3.
The disadvantage is that for Σ → Σ′, the functor Mod(σ) : Mod(Σ) → Mod(Σ′) lives in CAT op

and has, intuitively, the wrong orientation. Therefore, we often identify Mod(σ) with its dual
functor Mod(Σ′) → Mod(Σ) in the category CAT . Diagrams involving the model functor are
always drawn in CAT .

De�nition 2.24 (Comma Category). For two functors Ui : Ci → D, the comma category
(U1 ↓ U2) has as objects tuples (A1, A2, a) for objects Ai ∈ |Ci|, and a D-morphism a : U1(A1) →
U2(A2). Its morphisms from (A1, A2, a) to (A′

1, A
′
2, a

′) are the pairs (f1, f2) for fi : Ai → A′
i

such that the following identity holds in A: a′ ◦ U1(f1) = U2(f2) ◦ a.

58

2.3. INSTITUTIONS, TOP-DOWN

De�nition 2.25 (General Institutions). Let U1 and U2 be as in Def. 2.24. Then a U1-U2-
institution over Sig is a functor from Sig into (U1 ↓ U2). And for two such institutions I, I′
over Sig and Sig ′, an U1-U2-institution comorphism consists of a functor Φ : Sig → Sig ′ and a
natural transformation ρ : I → I′ ◦ Φ. With the obvious identity and composition, these form
the category INS [U1, U2].

Example 2.26. Now INS can be recovered as a special case. Let REL be the category of classes
and relations, and let | − |r : CAT op → REL be the functor mapping categories to classes
and functors to relations. Let InclR : SET → REL be the inclusion functor. Then we have
INS ∼= INS [InclR, | − |r]. In particular, for every institution I, the satisfaction relation |= is
a natural transformation from InclR ◦ Sen to | − |r ◦Mod .

De�nition 2.27 (Modi�cations). If (Φ, ρ) and (Φ′, ρ′) are institution comorphisms from I to
I′, a modi�cation from (Φ, ρ) to (Φ′, ρ′) is a natural transformation m : Φ → Φ′ such that
I′(m) ◦ ρ = ρ′ (which is an identity between natural transformations from I to I′ ◦ Φ′).

Terminology 2.28. The concept of modi�cations introduced in [Dia02] where a weaker condition
was used. In [Tar96] a similar concept is called a representation map. Our de�nition is equivalent
to the one given in [Mos05].

59

2.3. INSTITUTIONS, TOP-DOWN

60

Part II

Combining Model and Proof Theory

61

Chapter 3

Logics and Logic Translations

3.1 Introduction

Institutions ([GB92, GR02]) provide an abstract model theoretical logical framework. In this
section, we will extend institutions with an abstract notion of proof theory. For that purpose, we
introduce proof categories in Sect. 3.2 and use them to de�ne logics. In Sect. 3.3, we generalize
the concept of institution comorphisms, i.e., translations between institutions, to logics. In
Sect. 3.4, we discuss two related frameworks that extend institutions with proofs: the general
logics of [Mes89] and the proof-theoretic institutions of [MGDT05, Dia06].

Our ultimate motivation is to give a logic for LF and use it as meta-logic as suggested in
[Tar96]. We will do that in Sect. 4 and Sect. 5.

3.2 Logics

3.2.1 Proof Categories

Notation 3.1 (Products). If a category has products over the index set N , we write (Fn)n∈N or
simply FN for that product. Similarly, we write pN for the universal morphism (pn)n∈N into
FN .

Then we de�ne proof categories as follows.

De�nition 3.2 (Proof Categories). A proof category is a category P that has products over
all index sets whose cardinality is at most |P |. A morphism between proof categories is a functor
preserving these products. The proof categories form a category PFCAT where identity and
composition are de�ned as for functors.

We think of the irreducible objects of P as judgments that can be assumed and proved.
And we think of a product FN in P as amulti-set of judgments. The intuition of a morphism
pM from EM to FN is that it provides a proof of every judgment Fn for n ∈ N assuming any
judgments among EM .

Example 3.3. We obtain a proof category functor Pf that maps every FOL-signature to a proof
category as follows. Assume a FOL-signature Σ. The proof category Pf (Σ) is the category of
families (Fn)n∈N where N is some �nite or countable set and Fn ∈ Sen(Σ) for all n ∈ N . In
other words, the objects of Pf (Σ) are the mappings N → Sen(Σ) for a set N . The morphisms
in Pf (Σ) from EM to FN are the families (pn)n∈N such that every pn is a natural deduction
proof of the sequent EMn ` Fn for some �nite Mn ⊆ M and any ordering of the formulas
in the family EMn . Then Pf (Σ) has countable products by taking disjoint unions of the index
sets.

63

3.2. LOGICS

In Def. 3.2, we only require products of limited cardinality. This is because formal systems
typically have countable sets of judgments. There we �nd it enough to have countable products.
Via the Curry-Howard correspondence ([CF58, How80]), countable products of judgments cor-
respond to a context declaring a countable set of variables, where the variables act as names for
hypotheses in the same way as the elements of the index sets do. For example, a morphism from
EM to FN can be a tuple pN of terms in context such that the context declares one variable for
each formula in EM and every pn has type Fn. Then proof categories become Lawvere categories
[Law63].

In general, we use the words judgment and proof in the widest possible sense. For example,
proofs could be proof terms or semantical arguments, and judgments can be typing judgments,
sequents, tableaux branches, or simply formulas. However, we commit a priori to a product
structure in the proof category: Therefore, there are always proofs from (F,G) to F (weakening),
from F to (F, F) (contraction), and from (F,G) to (G, F) (exchange). However, we do not see
that as a bias towards certain logical systems and, e.g., against substructural logics like linear
logic ([Gir87]): Such a restriction would only be the case if we intended to limit judgments to
be formulas.

In particular, our de�nition applies to formal systems presented as a basic grammar gener-
ating expressions, a set of judgments about these expressions, and an inference system axioma-
tizing the judgments. And in this situation, the set of multi-sets of judgments naturally admits
a product structure.

It is possible to relate the structure of the sentences or judgments of the logic to the structure
of the proof categories. For example, the proof categories of Ex. 3.3 have the property that for
�nite M a proof from (` Em)m∈M to ` F exists i� there is a proof from () to EM ` F .
Similar results have been obtained for other logics (e.g., [LS86], [BdP00]). We pursued a related
approach in [GMdP+07] and will not focus on this direction of research here.

3.2.2 Logics

We will now de�ne logics as institutions extended with proof categories. We will have a functor
Pf : Sig → PFCAT giving the proof category for every signature Σ ∈ |Sig |. Since the irre-
ducible objects of Pf (Σ) are not necessarily the sentences, we need to relate the sentences to the
proof theory in some way. For that purpose, we use a map valΣ : Sen(Σ) → |Pf (Σ)| assigning
to every sentence an object in the proof category.

The intuition is that proofs, i.e., Pf (Σ)-morphisms, from () to valΣ(F) represent the proofs
of F . Thus, we obtain the following analogy. Sen de�nes the syntax, i.e., the propositions
without regard for truth. Mod de�nes the model theory, and |= provides the model theoretical
de�nition of truth. And Pf de�nes the proof theory, and val provides the proof theoretical
de�nition of truth.

De�nition 3.4 (Logics). Assume the de�nitions from Ex. 2.25 and identify SET with its two
inclusions into CLASS and REL. Then a logic is a tuple I = (Sig ,Sen,Mod , |=,Pf , val) for
a category Sig , functors Sen : Sig → SET , Mod : Sig → CAT op, Pf : Sig → PFCAT , and
natural transformations |=: Sen → | − |r ◦Mod and val : Sen → | − | ◦ Pf .

Thus, a logic consists of a category of signatures Sig , a sentence functor Sen, a model
category functor Mod , a proof category functor Pf , and model and proof theoretical de�nitions
of truth |= and val . We call (Mod , |=) the model theory, and (Pf , val) the proof theory.
And we call |= the satisfaction relation and val the truth judgment.

The structure of a logic can be visualized as follows for a signature morphism σ : Σ → Σ′:

64

3.2. LOGICS

Sen(Σ) Sen(Σ′)

|Mod(Σ)|r |Mod(Σ)|r

|Pf (Σ)| |Pf (Σ)|

Sen(σ)

|Mod(σ)|r

|Pf (σ)|

|=Σ |=Σ′

valΣ valΣ′

This is not a diagram in the sense of category theory. But if we treat the sets Sen(Σ) and Sen(Σ′)
as classes, then all arrows represent maps between classes. And the lines without arrow tips
denote relations between classes. The naturality of val means that the lower half commutes.
And the naturality of |= means that the upper half commutes if regarded as a diagram in
the category of classes and relations. The latter is equivalent to the satisfaction condition of
institutions.

The symmetry between model and proof theory can be formalized by extending Def. 2.25.
Logics are the U -V -institutions where U and V are as follows. U : SET → REL×CLASS maps
a set S (namely, the set of sentences) to (S, S). And V : CAT op × PFCAT → REL × CLASS
maps a pair of a model and a proof category to itself but forgetting morphisms. Then the
properties of comma categories yield exactly the two naturality conditions on |= and val . More
precisely, we can state this as follows.

Lemma 3.5. The logics are in bijection with the U -V -institutions where U and V are as above.

Proof. For a logic (Sig ,Sen,Mod , |=,Pf , val), a U -V -institution is obtained by taking the func-
tor with domain Sig which maps a signature Σ to

(
Sen(Σ), (Mod(Σ),Pf (Σ)), (|=Σ, valΣ)

)
and a

signature morphism σ to
(
Sen(σ), (Mod(σ),Pf (σ))

)
. Conversely, a functor I : Sig → INS [U, V]

induces a logic by decomposing the tuples into their components.

3.2.3 Provability and Entailment

De�nition 3.6 (Consequence). For a given logic I, and sets A and B of Σ-sentences, A proves
B, written A `I

Σ B, i� there is a Pf (Σ)-morphism from Πval I
Σ(A) to Πval I

Σ(B). And A entails
B, written A |=I

Σ B, i� every model satisfying all sentences in A also satis�es all sentences in B.

Here ΠS denotes the product in Pf (Σ) of a set S of objects indexed by itself, and val I
Σ(A) is

the set {val I
Σ(E) | E ∈ A}. We have A `I

Σ B i� A `I
Σ {F} for all F ∈ B, and we write A `I

Σ F
if B = {F}. The same applies to entailment. We will drop the superscript I if it is clear from
the context.

Terminology 3.7 (Entailment). The notion of entailment has been used with several di�erent
meanings in the literature. Sometimes it means the proof theoretical concept, which we call
provability. And sometimes the right side of A |= B is interpreted as a disjunction so that it
corresponds to the use of ` in sequent calculi. We use entailment here for lack of a generally
accepted short name for model theoretic consequence.

De�nition 3.8 (Theories). Assume a logic I. The category of I-theories has:

• objects: pairs (Σ,∆) of an I-signature Σ and a set ∆ of Σ-sentences,

• morphisms from (Σ,∆) to (Σ′,∆′): signature morphisms σ : Σ → Σ′ such that

∆′ |=I
Σ′ Sen(Σ)(∆),

65

3.3. LOGIC TRANSLATIONS

• identity and composition: as for signature morphisms.

Proof-theoretically, we could alternatively de�ne the notion of theory morphism in terms of
the relation ` instead of |=.
Terminology 3.9 (Theories). The term theory is not used consistently in the literature. Some-
times theories (e.g., in [GB92]) are required to be closed under semantic consequence, i.e., (Σ,∆)
is only a theory if ∆ contains all sentences F such that ∆ |=Σ F . Then theories in our sense are
called presentations. The di�erence between the two de�nitions is not signi�cant because every
presentation uniquely determines a theory by adding all theorems to the set of axioms.

The most important properties of logics are the following:

De�nition 3.10 (Soundness and Completeness). A logic is strongly sound i� A `Σ B implies
A |=Σ B for all signatures Σ, and all sets of Σ-sentences A and B. If the property holds for
�xed A = ∅, the logic is called (weakly) sound. A logic is strongly complete or (weakly)
complete if the respective converse implication holds.

3.3 Logic Translations

3.3.1 Translations and Encodings

We distinguish � intuitively � between di�erent kinds of translations from a logic I to a logic
I′. Simple translations from I to I′ represent the formulas, proofs, and models of I as formulas,
proofs, and models, respectively, of I′. Such translations may have an inverse and the identity
is always a translation of a logic to itself. Encodings are a special case where parts of the
model or proof theory of I are represented using the syntax of I′. Thus, I′ acts as a meta-logic
that is used to talk about I. Encodings can not be inverted easily, and not all logics can encode
themselves.

The importance of encodings that given a universal logic, other logics are represented in it
using encodings. Thus, the same primitive notion � namely logic comorphisms � are used
both for translating between logics and for encoding logics in a �xed meta-logic. Instead of
meta-logic, we could also say universal logic or logical framework.

De�nition 3.11. A logic comorphism from I to I′ is a tuple (Φ, α, β, γ) for a functor Φ :
Sig → Sig ′ and natural transformations α : Sen → Sen ′ ◦ Φ, β : Mod → Mod ′ ◦ Φ, and
γ : Pf → Pf ′ ◦ Φ such that

1. for all Σ ∈ |Sig |, F ∈ Sen(Σ), M ′ ∈ |Mod ′(Φ(Σ))|:

βΣ(M ′) |=Σ F iff M ′ |=′
Φ(Σ) αΣ(F),

2. for all Σ ∈ |Sig |, F ∈ Sen(Σ):

γΣ(valΣ(F)) = val ′Φ(Σ)(αΣ(F)).

With the obvious choices for identity and composition, we obtain the category LOG of logics and
comorphisms. A forgetful functor LtoI (−) : LOG → INS is given by LtoI (Sig ,Sen,Mod , |=
,Pf , val) := (Sig ,Sen,Mod , |=) and LtoI (Φ, α, β, γ) := (Φ, α, β).

A comorphism between logics consists of a signature translation Φ : Sig → Sig ′, a sentence
translation αΣ : Sen(Σ) → Sen ′(Φ(Σ)), a model translation βΣ : Mod(Σ) → Mod ′(Φ(Σ))
(which lives in CAT op, i.e., is equivalent to βΣ : Mod ′(Φ(Σ)) → Mod(Σ) in CAT), and a proof
translation γΣ : Pf (Σ) → Pf ′(Φ(Σ)). Thus, the syntax and the proof theory are translated
from I to I′, whereas the model theory is translated in the opposite direction. The model
translation must preserve the satisfaction relation, and the proof translation must preserve the
truth judgment.

Then we can extend Lem. 3.5 as follows.

66

3.3. LOGIC TRANSLATIONS

Lemma 3.12. LOG and the category of U -V -institutions are isomorphic.

Proof. For a logic comorphism (Φ, α, β, γ), a U -V -institution morphism is obtained by taking
(Φ,m) where m maps every Σ to (αΣ, (βΣ, γΣ)). The inverse translation is accordingly.

3.3.2 Borrowing

An important application of institution comorphisms is to derive sentences of an institution I
using the proof system of a logic I′.

De�nition 3.13. An institution comorphism (Φ, α, β) : I → I′ admits model expansion
if for every I-signature Σ, βΣ is surjective on objects. We de�ne model expansion for logic
comorphisms accordingly.

The borrowing theorem ([CM97]) states that for institution comorphisms admitting model
expansion, α preserves and re�ects semantic consequence. Formally, this means

A |=Σ B iff αΣ(A) |=′
Φ(Σ) αΣ(B).

While the main application of borrowing is automated proof search, the borrowing result is
usually stated without reference to proof theory in the sense of automated theorem proving.
The following theorem recasts the result in terms of logics.

Theorem 3.14. Let I be an institution, let I′ be a logic, and let µ = (Φ, α, β) : I → LtoI (I′) be
an institution comorphism. Then we obtain a logic I∗ by extending I with Pf ∗ := Pf ′ ◦ Φ and
val∗ := val ′Φ ◦ α. Then

1. If I′ is (strongly) complete, I∗ is (strongly) complete.

2. If µ admits model expansion and I′ is (strongly) sound, then I∗ is (strongly) sound.

Proof. Firstly, that I∗ is indeed a logic, follows immediately. To prove (2), assume that µ admits
model expansion, and I′ is (strongly) sound. We need to prove the (strong) soundness of I∗. So
assume A `∗Σ B and a Σ-model I satisfying all formulas in A. The de�nition of Pf ∗ and val∗

yields A `∗Σ B iff αΣ(A) `′Φ(Σ) αΣ(B). Then the soundness of I′ and the surjectivity of βΣ on
objects yield A |=∗

Σ B. (1) is proved similarly.

3.3.3 Meta-Logics

In the context of institutions, the idea of meta-logics has been studied in, e.g., [Tar96]. The
idea is to use a universal institution in which other institutions are encoded via comorphisms.
Then comorphisms can be encoded in the universal institution as institution comorphism mod-
i�cations.

We assume an institution comorphism µ = (Φ, α, β) : I1 → I2 and two institution comor-
phisms µ1 = (Φ1, α1, β1) : I1 → I and µ2 = (Φ2, α2, β2) : I2 → I, which encode I1 of I2 in I.
Then µ is encoded as an institution comorphism modi�cation m from µ1 to µ2 ◦ µ.

m is a family of I-signature morphisms mΣ : Φ1(Σ) → Φ2(Φ(Σ)) for every Σ ∈ |Sig1| such
that the following diagrams commute for all Σ ∈ |Sig1|:

Sen1(Σ) Sen2(Φ(Σ))

Sen(Φ1(Σ)) Sen(Φ2(Φ(Σ)))

αΣ

α1
Σ

Sen(mΣ)

α2
Φ(Σ)

Mod1(Σ) Mod2(Φ(Σ))

Mod(Φ1(Σ)) Mod(Φ2(Φ(Σ)))

βΣ

β1
Σ

Mod(mΣ)

β2
Φ(Σ)

67

3.4. CONCLUSION

Here the right diagram is drawn in CAT so that all arrows point in the direction of model
reduction (see Not. 2.23).

Intuitively, mΣ is a signature morphism in the meta-institution such that the Sen(mΣ) has
the same e�ect as αΣ. This is particularly intuitive if the encodings α1

Σ and α2
Φ(Σ) are identities

or bijections. Similarly, the model reduction Mod(mΣ) must have the same e�ect as βΣ.
We obtain the de�nition of logic comorphism modi�cations by adding the corresponding

requirement for proof categories. More precisely, we have the following.

De�nition 3.15 (Modi�cations). Assume µ, µ1, and µ2 as above. A logic comorphism
modi�cation m from µ1 to µ2 ◦ µ is an institution comorphism modi�cation between the
corresponding institution comorphisms such that in addition the following diagram commutes.

Pf 1(Σ) Pf 2(Φ(Σ))

Pf (Φ1(Σ)) Pf (Φ2(Φ(Σ)))

γΣ

γ1
Σ

Pf (mΣ)

γ2
Φ(Σ)

3.4 Conclusion

We added a proof category functor to institutions that is very similar to the model category
functor. This similarity is a�rmed by a natural transformation singling out a proof judgment
for every sentence, which corresponds to the satisfaction relation. Thus, we obtain a striking
correspondence of models and proofs as well as of satisfaction and truth.

Our proof categories use judgments as objects and products of judgments to denote a set
of hypotheses. This has the e�ect that in the simplest cases, we obtain multi-sets of sentences
as the objects in the proof categories. It would be much simpler to use sets instead. Indeed,
our de�nition of proof categories is very similar to the one given in [MGDT05], which uses sets.
While multi-sets are somewhat more complicated, we use them to overcome a subtle di�culty
with the de�nition in [MGDT05].

This di�culty is due to a mistake we discovered in [Dia06]. There, a speci�cation language
is given which permits to construct proof categories in the sense of [MGDT05] inductively. This
yields an institutional notion of what it means to build proofs from proof rules that is very
similar to ours below. However, this does not work for signature translations that induce non-
injective sentence translations. Therefore, the �nal version of [Dia06] restricts the main theorem
to injective sentence translations.

To see what goes wrong, take a Σ-proof {p1, p2} from E to {F1, F2}. Here, intuitively,
pj is a proof of Fj for j = 1, 2. Further assume a translation σ : Σ → Σ′ that maps both
sentences F1 and F2 to F , but does not identify the proofs p1 and p2. Then σ cannot in-
duce a functor Pf (σ) : Pf (Σ) → Pf (Σ′) between the proof categories: Naturally, we have
Pf (σ)({F1, F2}) = {F}, but when de�ning the image of {p1, p2} under Pf (σ), there is no
canonical choice between {Pf (σ)(p1)} and {Pf (σ)(p2)}. Thus, the construction in [Dia06] is
only functorial if it is restricted to injective translations, which is enough in many situations but
unsatisfactory in general. Our de�nition avoids this problem: Using families instead of sets, we
have Pf (σ)((F1, F2)) = (F, F) and Pf (σ)((p1, p2)) = (Pf (σ)(p1),Pf (σ)(p2)).

Our de�nition of logic is also similar to the one given in [Mes89]. There the proof structure
is represented abstractly by an entailment system ` between sets of sentences and sentences.
This corresponds to our de�nition of provability, which is always an entailment system in the
sense of [Mes89].

68

3.4. CONCLUSION

A more concrete representation of proof structure is also given in [Mes89]: It adds to an
institution a category Str and a functor P : Th → Str , a functor proofs : Th → SET , and a
natural transformation π : proofs → Sen (where Sen is the functor Th → SET). A logic in our
sense always induces such a proof structure: For every theory (Σ,∆), take Str := PFCAT , and
P (Σ,∆) := Pf (Σ); then let proofs(Σ,∆) be the set of Pf (Σ)-morphisms whose domain is the
product of the set valΣ(∆) and whose codomain is valΣ(F) for some F ; �nally, π(Σ,∆) maps
every proof to that F . (Technically, that requires valΣ to be injective, but that is a reasonable
assumption in practice.) Our de�nition is less general but simpler and appears to us to be
more elegant: It only adds two concepts (Pf and val) instead of four and yields an appealing
symmetry of model and proof theory.

Acknowledgements While the de�nition of logic is ours, its conception owes to discussions
with R zvan Diaconescu, Joseph Goguen, Till Mossakowski, and Andrzej Tarlecki. An early
idea to use set-indexed families of sentences is due to Till Mossakowski.

69

3.4. CONCLUSION

70

Chapter 4

Dependent Type Theory

4.1 Introduction and Related Work

Martin-Löf type theory, MLTT, is a dependent type theory ([ML74]). The main characteristic
is that there are kinded function symbols that take terms as input and return types as output.
This is enriched with further type constructors such as dependent sum and product. The syntax
of dependent type theory is signi�cantly more complex than that of simple type theory because
well-formed types and terms and both their equalities must be de�ned in a single joint induction.

The semantics of MLTT is similarly complicated. In [See84], the connection between MLTT
and locally cartesian closed, LCC, categories was �rst established. LCC categories interpret
contexts Γ as objects JΓK, types in context Γ as objects in the slice category over JΓK, substitution
as pullback, and dependent sum and product as left and right adjoint to pullback. But this does
not address the di�culty that these three operations are not independent: Substitution of terms
into types is associative and commutes with sum and product formation, which is not necessarily
respected by the choices for the pullbacks and their adjoints. This is known as the coherence
or strictness problem. In incoherent models, equal types are interpreted as isomorphic, but
not necessarily equal objects such as in [Cur89]. In [Car86], coherent models for MLTT were
given using categories with attributes. And in [Hof94], a category with attributes is constructed
for every LCC category. Several other model classes and their coherence properties have been
studied in, e.g., [Str91] and [Jac90]. In [Pit00], an overview is given.

These model classes have in common that they are rather abstract and have a more com-
plicated structure than LCC categories. It is desirable to have simpler, more concrete models.
But it is a hard problem to equip a given LCC category with choices for pullbacks and adjoints
that are both natural and coherent. Our motivation is to �nd a simple concrete class of LCC
categories for which such a choice can be made, and which is still complex enough to be complete
for MLTT.

Mathematically, our main results can be summarized very simply: Using a theorem from
topos theory, it can be shown that MLTT is complete with respect to � not necessarily coherent
� models in the LCC categories of the form SET P for posets P . And for these rather simple
models, we can give a solution to the coherence problem. SET can be equipped with a coherent
choice of pullback functors, and hence the categories SET P can be as well. Deviating subtly
from the well-known constructions, we can make coherent choices for the required adjoints to
pullback. Finally, rather than working in the various slices SET P /A, we use the isomorphism
SET P /A ∼= SET ∫P A, where ∫P A is the Grothendieck construction: Thus we can formulate the
semantics of dependent types uniformly in terms of the simple categories of indexed sets SET Q

for various posets Q.
In addition to being easy to work with, this has the virtue of capturing the idea that a

dependent type S in context Γ is in some sense a type-valued function on Γ: Our models interpret

71

4.2. SYNTAX OVERVIEW

Signatures Σ ::= · | Σ, c :S | Σ, a : (Γ)type
Contexts Γ ::= · | Γ, x :S
Signature Morphisms σ ::= · | σ, c/s | σ, a/A
Substitutions γ ::= · | γ, x/s
Type families A,S ::= a | A γ | λx:S A | 1 | Id(s, s′) | Σx:S S′ | Πx:S S′

Terms s ::= c | x | ∗ | refl(s) | 〈s, s′〉 | π1(s) | π2(s) | λx:S s | s s′

Figure 4.1: Basic Grammar

Γ as a poset JΓK and S as an indexed set JΓ|SK : JΓK → SET . We speak of Kripke models because
these models are a natural extension of the well-known Kripke models for intuitionistic �rst-
order logic ([Kri65]). Such models are based on a poset P of worlds, and the universe is given
as a P -indexed set. This can be seen as the special case of our semantics when there is only one
base type.

In fact, our results are also interesting in the special case of simple type theory ([Chu40]).
Contrary to Henkin models [Hen50, MS89], and the models given in [MM91], which like ours
use indexed sets on posets, our models are standard: JΓ|S → S′K is the exponential of JΓ|SK and
JΓ|S′K. And contrary to the models in [Fri75, Sim95], our completeness result holds for theories
with more than only base types.

A di�erent notion of Kripke-models for dependent type theory is given in [Lip92], which is
related to [All87]. There, the MLTT types are translated into predicates in an untyped �rst-
order language. The �rst-order language is then interpreted in a Kripke-model, i.e., there is one
indexed universe of which all types are subsets. Such models correspond roughly to non-standard
set-theoretical models.

We give the syntax of MLTT in Sect. 4.2 and 4.3 and some categorical preliminaries in
Sect. 4.4. Then we derive the coherent functor choices in Sect. 4.5 and use them to de�ne the
interpretation in Sect. 4.6. We give our main results regarding the interpretation of substitution,
soundness, and completeness in Sect. 4.7, 4.8, and 4.9. In Sect. 4.10, we collect the pieces and
obtain a logic for dependent type theory.

4.2 Syntax Overview

The basic syntax for MLTT expressions is given by the grammar in Fig. 4.1. The vocabulary
of the syntax is declared in signatures and contexts: Signatures Σ declare globally accessible
names c for constants of type S and names a for kinded constants with a list Γ of argument
types. Contexts Γ locally declare typed variables x. Signature morphisms σ from Σ to Σ′ and
substitutions γ from Γ to Γ′ translate between the global and local vocabularies: σ provides a
Σ′-term or Σ′-type family for every Σ-symbol; and γ provides a Γ′-term for every variable in Γ.
We treat signatures, contexts, signature morphisms, and substitutions as lists, and occasionally
we will do an induction from the left. · represents the empty list in all four cases.

Relative to a signature Σ and a context Γ, there are three syntactical levels: kinds, kinded
type families, and typed terms. Types are type families of the kind type.

Type families are the type family constants a and lambda abstractions λx:S A. Base types
are formed by application A γ of a type family to a list of argument terms. The composed types
are the unit type 1, the identity types Id(s, s′), the dependent product types Σx:S T , and the
dependent function types Πx:S T . Terms are constants c, variables x, the element ∗ of the unit
type, the element refl(s) of the type Id(s, s), pairs 〈s, s′〉, projections π1(s) and π2(s), lambda
abstractions λx:S s, and function applications s s′. We do not need equality axioms s ≡ s′

because they can be given as constants of type Id(s, s′). For simplicity, we omit equality axioms
for types.

72

4.3. WELL-FORMED EXPRESSIONS

Judgment Intuition
` Σ Sig Σ is a well-formed signature
`Σ Γ Ctx Γ is a well-formed context over Σ
` σ : Σ → Σ′ σ is a well-formed signature morphism from Σ to Σ′

`Σ γ : Γ → Γ′ γ is a well-formed substitution over Σ from Γ to Γ′

Γ `Σ A : (Γ0)type type family A with kind Γ0 is well-formed over Σ and Γ
Γ `Σ A ≡ A′ type families A and A′ are equal over Σ and Γ
Γ `Σ s : S term s is well-formed with type S over Σ and Γ
Γ `Σ s ≡ s′ terms s and s′ are equal over Σ and Γ

Figure 4.2: Judgments

The judgments de�ning well-formed syntax are listed in Fig. 4.2.

Notation 4.1. It is common to use Σ as a meta-variable for signatures. And it is also common
to use Σ as a syntax symbol for dependent product types. Since these two uses of Σ can always
be disambiguated from the context, we will Σ in both cases.

Notation 4.2. We will adhere to the following conventions for meta-variable names for expres-
sions in context:

Context Term Type Type family
Γ s S A
Γ u Σx:S T
Γ f Πx:S T

Γ, x :S t T

If we need more than one such object, the second one will be primed. Substitutions γ will always
be from Γ to Γ′. Whenever one of these meta-variables is used, we assume implicitly that it
represents an expression of the corresponding syntactic class.

4.3 Well-Formed Expressions

Our formulation and notation follow that for LF in [Pfe01] closely: We use signatures � but
we add signature morphisms � and we use kinds, application, and lambda abstraction for type
families. The remaining type constructors are as given for MLTT in [See84]. Thus, we obtain a
system that subsumes both LF and MLTT.

Contrary to [Pfe01], we use a spine form for kinds: We write the kinding judgment A :
Πx1:S1 . . .Πxn:Sn

type of LF as A : (x1 :S1, . . . , xn :Sn)type so that we can use contexts instead
of kinds, which simpli�es the semantics. Nonetheless, we retain α-renaming in kinds.

We begin by giving the formal de�nitions regarding substitutions.

De�nition 4.3 (Substitution Application). The application of a substitution γ to a term,
type family, context, or substitution is de�ned as follows.

Substitution in terms:

γ(c) := c
γ(x) := s for x/s in γ
γ(∗) := ∗
γ(refl(s)) := refl(γ(s))
γ(〈s, s′〉) := 〈γ(s), γ(s′)〉
γ(π1(s)) := π1(γ(s))
γ(π2(s)) := π2(γ(s))
γ(λx:S t) := λx:γ(S) γx(t)
γ(f s) := γ(f) γ(s)

73

4.3. WELL-FORMED EXPRESSIONS

Substitution in types:
γ(1) := 1
γ(Id(s, s′)) := Id(γ(s), γ(s′))
γ(Σx:S T) := Σx:γ(S) γx(T)
γ(Πx:S T) := Πx:γ(S) γx(T)
γ(a) := a
γ(A γ0) := γ(A) γ(γ0)
γ(λx:S A) := λx:γ(S) γx(A)

Substitution in contexts:

γ(·) := ·
γ(x :S, Γ0) := x :γ(S), γx(Γ0)

Substitution in substitutions:

γ(·) := ·
γ(x1/s1, . . . , xn/sn) := x1/γ(s1), . . . , xn/γ(sn)

Here γx(−) abbreviates γ, x/x(−). The application to a variable x is unde�ned if γ does not
contain x/s. Such cases are excluded by the type system. For the case, where only one variable
is to be substituted in an expression e in context Γ, x :S, we de�ne

e[x/s] := (idΓ, x/s)(e).

De�nition 4.4 (Category of Contexts and Substitutions). We de�ne the identity substitution
of the Σ-context Γ = x1 :S1, . . . , xn :Sn by

idΓ := x1/x1, . . . , xn/xn.

We de�ne the composition of two substitutions by

γ′ ◦ γ := γ′(γ).

And we say that two substitutions x1/s1, . . . , xn/sn and x1/s1, . . . , xn/s′n from Γ to Γ′ are equal
if

Γ′ `Σ si ≡ s′i

for all i. Then the contexts and substitutions form a category.

Notation 4.5. We will use idΓ as a grammar-level abbreviation. Thus, we can use it as a
component of other substitutions, e.g., idΓ, γ0 : Γ,Γ0 → Γ.

De�nition 4.6 (Signature Morphisms). We de�ne identity and composition of signature mor-
phisms, and the application σ(−) of signature morphisms as for substitutions except that they
replace signature symbols and keep variables unchanged.

The rules for signatures, signature morphisms, contexts, and substitutions are given in
Fig. 4.3. A signature is a list of declarations of type families a or term constants c. For example
a : (Γ)type means that a can be applied to arguments with types given by Γ and returns a type.
The domain of a signature is de�ned by dom(·) = ∅, dom(Σ, a : (Γ)type) = dom(Σ) ∪ {a}, and
dom(Σ, c : S) = dom(Σ) ∪ {c}. To simplify the rules for signature morphisms, we assume that
the judgment ` σ : Σ → Σ′ is only meaningful when ` Σ Sig and ` Σ′ Sig have already been
established. Then a signature morphism σ from Σ to Σ′ provides a type family A over Σ for
every type family symbol a of Σ, and a term s over Σ′ for every term symbol c of Σ.

74

4.3. WELL-FORMED EXPRESSIONS

Σ·
` · Sig

` Σ Sig · `Σ S : type c 6∈ dom(Σ)
Σc

` Σ, c :S Sig

` Σ Sig `Σ Γ′ Ctx a 6∈ dom(Σ)
Σa

` Σ, a : (Γ′)type Sig

σ·
` · : · → Σ′

` σ : Σ → Σ′ · `Σ′ s : σ(S)
σc

` σ, c/s : Σ, c :S → Σ′

` σ : Σ → Σ′ · `Σ′ A : (σ(Γ0))type
σa

` σ, a/A : Σ, a : (Γ0)type→ Σ′

` Σ Sig
Γ·

`Σ · Ctx

`Σ Γ Ctx Γ `Σ S : type x 6∈ dom(Γ)
Γx

`Σ Γ, x :S Ctx

`Σ Γ′ Ctx
σ·

`Σ · : · → Γ′
`Σ γ : Γ → Γ′ Γ `Σ S : type Γ′ `Σ s : γ(S)

σx

`Σ γ, x/s : Γ, x :S → Γ′

Figure 4.3: Signatures, Signature Morphisms, Contexts, Substitutions

Contexts are similar to signatures except that they only declare variables ranging over
terms. The domain of a context is de�ned as for signatures. A substitution from Γ to Γ′ is a
list of terms in context Γ′ such that each term is typed by the corresponding type in Γ. Note
that in a context x1 :S1, . . . , xn :Sn, the variable xi may occur in Si+1, . . . , Sn.

Fig. 4.4 gives the formation rules for types and type families. Our rule for the application
of type families is di�erent from [Pfe01]. In context Γ, a type family A : (Γ0)type can be applied
to a list γ0 of argument terms and returns a type. γ0 must be such that idΓ, γ0 is a substitution
from Γ,Γ0 into Γ; that means that γ0 provides a list of terms in context Γ whose types match
those in Γ0. This corresponds to fully applying a type family to arguments in the typing system
of [Pfe01]. The partial application of a type family A : (x1 :S1, . . . , xn :Sn)type to a term s of
type S1 can be de�ned as an abbreviation; for example if A and s are closed, as

A s := λy2:γ(S2) . . . λyn:γ(Sn) (A γ)

where γ := x1/s, x2/y2, . . . , xn/yn.
We write Σx:S S′ and Πx:S S′ as S × S′ and S → S′, respectively, if x does not occur free in

S′. We also write the kinding judgment A : (x1 :S1, . . . , xn :Sn)type as A :type if n = 0, and as
A :S1 → . . . → Sn → type if the variables do not occur in the types.

Fig. 4.5 gives the term formation rules. The congruence and conversion rules for equality
of terms are given in Fig. 4.6. η-conversion, re�exivity, symmetry, transitivity, and congruence
rules for the other term constructors are omitted because they are derivable or admissible. In
particular, η-conversion is implied by functional extensionality efuncext . To make the rules easier
to read, we do not have a subexpression property for the equality judgment, i.e., we assume that
all terms occuring in Fig. 4.6 are well-formed without making that explicit in the rules.

Finally, Fig. 4.7 gives a simple axiomatization of equality of types and type families.

75

4.3. WELL-FORMED EXPRESSIONS

a : (Γ0)type in Σ `Σ Γ Ctx
Ta

Γ `Σ a : (Γ0)type

Γ, x :S `Σ A : (Γ0)type
Tλ

Γ `Σ λx:S A : (x :S, Γ0)type

Γ `Σ A : (Γ0)type `Σ idΓ, γ0 : Γ,Γ0 → Γ
Tapp

Γ `Σ A γ0 : type

`Σ Γ Ctx
T1

Γ `Σ 1 : type

Γ `Σ s : S Γ `Σ s′ : S
TId(−,−)

Γ `Σ Id(s, s′) : type

Γ, x :S `Σ T : type
TΣ

Γ `Σ Σx:S T : type

Γ, x :S `Σ T : type
TΠ

Γ `Σ Πx:S T : type

Figure 4.4: Type Families

Since we only have β and η-conversions, no type variables, and no type equality axioms, this is
very simple. In particular, equality of types is decidable i� the equality of terms is.

It is easy to see that the following rule is derivable from the rules for equality of types:

Γ `Σ S : type
γ = x1/s1, . . . , xn/sn

γ′ = x1/s′1, . . . , xn/s′n
Γ′ `Σ si ≡ s′i for i = 1, . . . , n

Γ′ `Σ γ(S) ≡ γ′(S)

We mention this rule explicitly because its soundness expresses our coherence result.
Finally, we list some structural properties of the formal system.

Lemma 4.7. We have the following subexpression properties:

• `Σ Γ Ctx implies

� ` Σ Sig, and

� Γ `Σ S : type for all x :S in Γ.

• `Σ γ : Γ → Γ′ implies

� `Σ Γ Ctx,

� `Σ Γ′ Ctx, and

� Γ′ `Σ s : γ(S) for every x/s in γ and x :S in Γ.

• Γ `Σ A : (Γ0)type and dom(Γ) ∩ dom(Γ0) = ∅ implies `Σ Γ,Γ0 Ctx.

• Γ `Σ s : S implies Γ `Σ S : type.

Proof. This is proved by a straightforward induction on the typing derivations.

Further properties such as weakening, exchange, and substitution could be established.

76

4.4. CATEGORICAL PRELIMINARIES

c :S in Σ `Σ Γ Ctx
tc

Γ `Σ c : S

`Σ Γ Ctx x :S in Γ
tx

Γ `Σ x : S

`Σ Γ Ctx
t∗

Γ `Σ ∗ : 1

Γ `Σ s : S
trefl(−)

Γ `Σ refl(s) : Id(s, s)

Γ `Σ s : S Γ, x :S `Σ T : type Γ `Σ t : T [x/s]
t〈−,−〉

Γ `Σ 〈s, t〉 : Σx:S T

Γ `Σ u : Σx:S T
tπ1

Γ `Σ π1(u) : S

Γ `Σ u : Σx:S T
tπ2

Γ `Σ π2(u) : T [x/π1(s)]

Γ, x :S `Σ t : T
tλ

Γ `Σ λx:S t : Πx:S T

Γ `Σ f : Πx:S T Γ `Σ s : S
tapp

Γ `Σ f s : T [x/s]

Figure 4.5: Terms

4.4 Categorical Preliminaries

In this section, we repeat some well-known de�nitions and results about indexed sets and �bra-
tions over posets (see e.g., [Joh02]). We assume the basic notions of category theory (see, e.g.,
[Lan98]). We use a set-theoretical pairing function (a, b) and de�ne tuples as left-associatively
nested pairs, i.e., (a1, . . . , an) abbreviates (. . . (a1, . . .), an).

De�nition 4.8 (Indexed Sets). POSET denotes the category of partially ordered sets. We
treat posets as categories and write p ≤ p′ for the uniquely determined morphism p → p′. If
P is a poset, SET P denotes the category of functors P → SET and natural transformations.
These functors are also called P -indexed sets.

It is often convenient to replace an indexed set A over P with the disjoint union of all sets
A(p) for p ∈ P . This is a special case of a construction by Mac Lane ([LM92]) usually called
the Grothendieck construction.

De�nition 4.9 (Grothendieck Construction). For an indexed set A over P , we de�ne a poset
∫P A := {(p, a) | p ∈ P, a ∈ A(p)} with

(p, a) ≤ (p′, a′) iff p ≤ p′ and A(p ≤ p′)(a) = a′.

We also write ∫A instead of ∫P A if P is clear from the context.

Using the Grothendieck construction, we can work with sets indexed by indexed sets: We
write P |A if A is an indexed set over P , and P |A|B if additionally B is an indexed set over
∫P A.

De�nition 4.10. Assume P |A|B. We de�ne an indexed set P |(A n B) by

(A n B)(p) = {(a, b) | a ∈ A(p), b ∈ B(p, a)}

and
(A n B)(p ≤ p′) : (a, b) 7→

(
a′, B

(
(p, a) ≤ (p′, a′)

)
(b)

)
for a′ = A(p ≤ p′)(a).

77

4.4. CATEGORICAL PRELIMINARIES

Γ `Σ v : Id(s, s′)
eId(−,−)

Γ `Σ s ≡ s′

Γ `Σ v : Id(s, s′) Γ `Σ v′ : Id(s, s′)
eid−uniq

Γ `Σ v ≡ v′

Γ `Σ s : 1
e∗

Γ `Σ s ≡ ∗
e〈−,−〉

Γ `Σ 〈π1(u), π2(u)〉 ≡ u

eπ1

Γ `Σ π1(〈s, s′〉) ≡ s
eπ2

Γ `Σ π1(〈s, s′〉) ≡ s′

eβ

Γ `Σ (λx:S t) s ≡ t[x/s]

Γ `Σ f ≡ f ′ Γ `Σ s ≡ s′
eapp

Γ `Σ f s ≡ f ′ s′

Γ `Σ f : Πx:S T Γ `Σ f ′ : Πx:S T Γ, y :S `Σ f y ≡ f ′ y
efuncext

Γ `Σ f ≡ f ′

Γ `Σ s : S Γ `Σ s ≡ s′ Γ `Σ S ≡ S′
etyping

Γ `Σ s′ : S′

Figure 4.6: Equality of Terms

And we de�ne a natural transformation πB : A n B → A by

(πB)p : (a, b) 7→ a.

De�nition 4.11 (Fibrations). A �bration over a poset P is a functor f : Q → P with the
following property: For all p′ ∈ P and q ∈ Q such that f(q) ≤ p′, there is a unique q′ ∈ Q such
that q ≤ q′ and f(q′) = p′. We call f normal i� f is the �rst projection of Q = ∫P A for some
P |A.

Technically, what we call �brations here are discrete op�brations, these are necessarily split.
The situation in a �bration is illustrated by the following diagram where the gray parts exist
uniquely in the black situation. In particular, if we keep q (and thus p) �xed, then q′ is a
function of p′.

p

q

p′
≤

f

q′
≤

f

For every indexed set A over P , the �rst projection ∫P A → P is a �bration. Conversely,
every �bration f : Q → P de�nes an indexed set over P by mapping p ∈ P to its preimage
under f . This leads to a well-known equivalence of indexed sets and �brations over P . If we
only permit normal �brations, we obtain an isomorphism as follows.

78

4.4. CATEGORICAL PRELIMINARIES

a : (Γ0)type in Σ
Ea

Γ `Σ a ≡ a

Γ `Σ S ≡ S′ Γ, x :S `Σ A ≡ A′

Eλ
Γ `Σ λx:S A ≡ λx:S′ A′

Eβ
Γ `Σ (λx:S A) (x/s, γ0) ≡ A[x/s] γ0

Γ `Σ A : (x1 :S1, . . . , xn :Sn)type γ = idΓ, x1/y1, . . . , xn/yn
Eη

Γ `Σ λy1:γ(S1) . . . λyn:γ(Sn) (A x1/y1, . . . , xn/yn) ≡ A

Γ `Σ A ≡ A′ γ0 = x1/s1, . . . , xn/sn

γ′0 = x1/s′1, . . . , xn/s′n
Γ `Σ si ≡ s′i for i = 1, . . . , n

Eapp

Γ `Σ A γ0 ≡ A′ γ′0

E1
Γ `Σ 1 ≡ 1

Γ `Σ s1 ≡ s′1 Γ `Σ s2 ≡ s′2
EId(−,−)

Γ `Σ Id(s1, s2) ≡ Id(s′1, s
′
2)

Γ `Σ S ≡ S′ Γ, x :S `Σ T ≡ T ′

EΣ
Γ `Σ Σx:S T ≡ Σx:S′ T ′

Γ `Σ S ≡ S′ Γ, x :S `Σ T ≡ T ′

EΠ
Γ `Σ Πx:S T ≡ Πx:S′ T ′

Figure 4.7: Equality of Type Families

Lemma 4.12. If we restrict the objects of POSET /P to be normal �brations and the mor-
phisms to be (arbitrary) �brations, we obtain a full subcategory Fib(P) of POSET /P . There
are isomorphisms

F (−) : SET P → Fib(P) and I(−) : Fib(P) → SET P .

Proof. It is straightforward to show that Fib(P) is a full subcategory. The identity in POSET
and the composition of two �brations are �brations. Thus, it only remains to show that if
f ◦ϕ = f ′ in POSET where f and f ′ are �brations and ϕ is a morphism in POSET , then ϕ is
a �bration as well. This is easy.

For A : P → SET , we de�ne the �bration F (A) : ∫P A → P by (p, a) 7→ p. And for a
natural transformation η : A → A′, we de�ne the �bration F (η) : ∫P A → ∫P A′ satisfying
F (A) ◦ F (η) = F (A′) by (p, a) 7→ (p, ηp(a)).

For f : Q → P , we de�ne an indexed set I(f) by I(f)(p) := {a | f(p, a) = p} and I(f)(p ≤
p′) : a 7→ a′ where a′ is the uniquely determined element such that (p, a) ≤ (p′, a′) ∈ Q. And for
a morphism ϕ between �brations f : Q → P and f ′ : Q′ → P , we de�ne a natural transformation
I(ϕ) : I(f) → I(f ′) by I(ϕ)p : a 7→ a′ where a′ is such that ϕ(p, a) = (p, a′).

Then it is easy to compute that I and F are inverse functors.

De�nition 4.13 (Indexed Elements). Assume P |A. The P -indexed elements of A are given
by

Elem(A) :=
{(

ap ∈ A(p)
)
p∈P

| ap′ = A(p ≤ p′)(ap) whenever p ≤ p′
}
.

We denote the P -indexed set that maps all p ∈ P to {∅} by 1P . Then the indexed elements
of A are in bijection with the natural transformations 1P → A. In particular, if P has a least

79

4.4. CATEGORICAL PRELIMINARIES

element p0, there is exactly one indexed element of A for every a0 ∈ A(p0). For a ∈ Elem(A),
we will write F (a) for the �bration P → ∫A mapping p to (p, ap).

Example 4.14. We exemplify the introduced notions by Fig. 4.8. P is a totally ordered set
visualized as a horizontal line with two elements p1 ≤ p2 ∈ P . For P |A, ∫A becomes a blob
over P . The sets A(pi) correspond to the vertical lines in ∫A, and ai ∈ A(pi). The action of
A(p ≤ p′) and the poset structure of ∫A are horizontal: If we assume A(p1 ≤ p2) : a1 7→ a2,
then (p1, a1) ≤ (p2, a2) in ∫A. In general, A(p1 ≤ p2) need not be injective or surjective. The
action of F (A) is vertical: F (A) maps (pi, ai) to pi.

For P |A|B, ∫B becomes a three-dimensional blob over ∫A. The sets B(pi, ai) correspond to
the dotted lines, and bi ∈ B(pi, ai). The action of B((p1, a1) ≤ (p2, a2)) and the poset structure
of ∫B are horizontal, and F (B) projects ∫B to ∫A.

∫P (A n B) is isomorphic to ∫ ∫P AB: Their elements di�er only in the bracketing, i.e.,
(pi, (ai, bi)) and ((pi, ai), bi), respectively. We have (ai, bi) ∈ (A n B)(pi), and (A n B)(p ≤
p′) : (a1, b1) 7→ (a2, b2). Thus, the sets (A n B)(pi) correspond to the two-dimensional gray
areas. Up to this isomorphism, the projection F (A n B) is the composite F (A) ◦ F (B).

Indexed elements a ∈ Elem(A) are families (ap)p∈P and correspond to horizontal curves
through ∫A such that F (a) is a section of F (A). The naturality of a means that one point of the
curve determines all points to the right of it. For example, ap1 = a1 requires ap2 = a2. Indexed
elements of B correspond to two-dimensional vertical areas in ∫B (intersecting the dotted lines
exactly once), and indexed elements of AnB correspond to horizontal curves in ∫B (intersecting
the gray areas exactly once).

∫(A n B) ∼= ∫B

(p1, a1, b1) (p2, a2, b2)

F (B)

∫A
(p1, a1) (p2, a2)

F (A)

p1 p2
P

bi ∈ B(pi, ai), B((p1, a1) ≤ (p2, a2)) = b2
(p1, a1, b1) ≤ (p2, a2, b2)
(ai, bi) ∈ (A n B)(pi)

ai ∈ A(pi), A(p1 ≤ p2)(a1) = a2
(p1, a1) ≤ (p2, a2)

p1 ≤ p2

Figure 4.8: Indexed Sets and Fibrations

We will use Lem. 4.12 frequently to switch between indexed sets and �brations. In particular,
we will use the following two corollaries.

Lemma 4.15. Assume P |A. Then

Elem(A) ∼= HomFib(P)(idP , F (A)) = {f : P → ∫P A | F (A) ◦ f = idP }.

80

4.5. OPERATIONS ON INDEXED SETS

and
SET P /A ∼= SET ∫A

Proof. Both claims follow from Lem. 4.12 by using Elem(A) = HomSET P (1P , A) as well as
Fib(P)/F (A) ∼= Fib(∫P A), respectively.

Finally, we say that a category is locally cartesian closed (LCC) if it and all of its slice
categories are cartesian closed (in particular, it has a terminal object). Then we have the
following well-known result.

Lemma 4.16. SET P is LCC.

Proof. The terminal object is given by 1P . The product is taken pointwise: A × B : p 7→
A(p) × B(p) and similarly for morphisms. The exponential object is given by: BA : p 7→
HomSET P (Ap, Bp) where Ap and Bp are as A and B but restricted to P p := {p′ ∈ P | p ≤ p′}.
BA(p ≤ p′) maps a natural transformation, which is a family of mappings over P p, to its
restriction to P p′ . This proves that SET P and so also Fib(P) is cartesian closed for any P . By
Lem. 4.15, we obtain the same for all slice categories.

4.5 Operations on Indexed Sets

Because SET P is LCC, we know that it has pullbacks and that the pullback along a �xed natural
transformation has left and right adjoints ([Hof94]). However, these functors are only unique
up to isomorphism, and it is non-trivial to pick coherent choices for them.

Pullbacks Assume P |A1 and P |A2 and a natural transformation h : A2 → A1. The pullback
along h is a functor SET P /A1 → SET P /A2. Using Lem. 4.15, we can avoid dealing with slice
categories of SET P and give a functor

h∗ : SET ∫A1 → SET ∫A2

and call it the pullback along h. h∗ is given by precomposition.

De�nition 4.17. Assume A1 and A2 indexed over P , and a natural transformation h : A2 → A1.
Then we put for B ∈ SET ∫A1

h∗B := B ◦ F (h) ∈ SET ∫A2 .

As usual we de�ne the action of h∗ on morphisms via the universal property of the pullback
(which is proved below). And we de�ne a natural transformation between P -indexed sets by

h n B : A2 n h∗B → A1 n B, (h n B)p : (a2, b) 7→ (hp(a2), b).

The application of h n B is independent of its second argument, which is only needed in the
notation to determine the domain and codomain of h n B.

Lemma 4.18 (Pullbacks). In the situation of Def. 4.17, the following is a pullback in SET P .

A2 n h∗B A1 n B

A2 A1

h n B

h

πh∗B πB

81

4.5. OPERATIONS ON INDEXED SETS

Furthermore, we have the following coherence properties for every natural transformation
g : A3 → A2:

idA1
∗B = B, idA1 n B = idA1nB ,

(h ◦ g)∗B = g∗(h∗B), (h ◦ g) n B = (h n B) ◦ (g n h∗B).

Proof. The following is a pullback in POSET :

∫A2 n h∗B ∫A1 n B

∫A2 ∫A1

(p, (a2, b)) (p, (hp(a2), b))

(p, a2) (p, hp(a2))

F (h n B)

F (h)

F (πh∗B) F (πB)

F (h n B)

F (h)

F (πh∗B) F (πB)

If we turn this square into a cocone on P by adding the canonical projections F (A2) and F (A1),
it becomes a pullback in Fib(P). Then the result follows by Lem. 4.12. The coherence properties
can be veri�ed by simple computations.

Equivalently, using the terminology of [Pit00], we can say that for every P the tuple

(SET P ,SET ∫A, A n B, πB , h∗B, h n B)

forms a type category (where A, B, h indicate arbitrary arguments). Then giving coherent
adjoints to the pullback means to show that this type category admits dependent sums and
products.

Adjoints To interpret MLTT, the adjoints to h∗, where h : A2 → A1, are only needed if h is
a projection, i.e., A1 := A, A2 := A n B, and h := πB for some P |A|B. We only give adjoint
functors for this special case because we use this restriction when de�ning the right adjoint.
Thus, we give functors

LB ,RB : SET ∫AnB → SET ∫A such that LB a πB
∗ a RB .

De�nition 4.19. We de�ne the functor LB as follows. For an object C, we put LBC :=
B n (C ◦ assoc) where assoc maps elements ((p, a), b) ∈ ∫B to (p, (a, b)) ∈ ∫A n B; and for a
morphism, i.e., a natural transformation η : C → C ′, we put

(LBη)(p,a) : (b, c) 7→ (b, η(p,(a,b))(c)) for (p, a) ∈ ∫A.

Lemma 4.20 (Left Adjoint). LB is left adjoint to πB
∗. Furthermore, for any natural transfor-

mation g : A′ → A, we have the following coherence property (the Beck-Chevalley condition)

g∗(LBC) = Lg∗B(g n B)∗C.

Proof. It is easy to show that LB is isomorphic to precomposition, for which the adjointness is
well-known. In particular, we have the following diagram in SET P :

(A n B) n C A n LBC

A n B

A

∼=

πLBC

πC

πB

82

4.5. OPERATIONS ON INDEXED SETS

The coherence can be veri�ed by direct computation.

The right adjoint is more complicated. Intuitively, RBC must represent the dependent func-
tions from B to C. The natural candidate for this is Elem(C) ∼= Hom(1∫B , C) (i.e., Hom(B,C)
in the simply-typed case), but this is not a ∫A-indexed set. There is a well-known construction
how to remedy this, but we use a subtle modi�cation to achieve coherence, i.e., the analogue of
the Beck-Chevalley condition. To do that, we need an auxiliary de�nition.

De�nition 4.21. Assume P |A|B, P |AnB|C, and an element x := (p, a) ∈ ∫A. Let yx ∈ SET P

and a natural transformation i : yx → A be given by

yx(p′) =

{
{∅} if p ≤ p′

∅ otherwise
ip′ : ∅ 7→ A(p ≤ p′)(a).

Then we de�ne indexed sets P |yx|Bx and P |yx n Bx|Cx by:

Bx := i∗B, Cx := (i n B)∗C

and put dx := ∫yx n Bx for the domain of Cx.

The left diagram in Fig. 4.9 shows the involved P -indexed sets, the right one gives the actions
of the natural transformations for an element p′ ∈ P with p ≤ p′. Coherence will hold because
Bx and Cx contain tuples in which a′ is replaced with ∅.

(yx n Bx) n Cx (A n B) n C

yx n Bx A n B

yx A

(i n B) n C

i n B

i

πCx

πBx

πC

πB

(∅, b′, c′) (a′, b′, c′)

(∅, b′) (a′, b′)

∅ a′

x := (p, a)
a′ := A(p ≤ p′)(a)

Figure 4.9: The Situation of Def. 4.21

De�nition 4.22. Assume P |A|B. Then we de�ne the functor RB : SET ∫AnB → SET ∫A as
follows. Firstly, for an object C, we put for x ∈ ∫A

(RBC)(x) := Elem(Cx).

In particular, f ∈ (RBC)(x) is a family (fy)y∈dx for fy ∈ Cx(y). For x ≤ x′ ∈ ∫A, we have
dx ⊇ dx′

and put
(RBC)(x ≤ x′) : (fy)y∈dx 7→ (fy)y∈dx′ .

Secondly, for a morphism, i.e., a natural transformation η : C → C ′, we de�ne RBη :
RBC → RBC ′ as follows: For x := (p, a) ∈ ∫A and f ∈ (RBC)(x), we de�ne f ′ := (RBη)x(f) ∈
(RBC ′)(x) by

f ′(p′,(∅,b′)) := η(p′,(a′,b′))(f(p′,(∅,b′))) for (p′, (∅, b′)) ∈ dx and a′ := A(p ≤ p′)(a).

83

4.5. OPERATIONS ON INDEXED SETS

Lemma 4.23 (Right Adjoint). RB is right adjoint to πB
∗. Furthermore, for every natural

transformation g : A′ → A, we have the following coherence property

g∗(RBC) = Rg∗B(g n B)∗C.

Proof. Assume P |A|B, P |A n B|C, and x = (p, a) ∈ ∫A. Let y(x) ∈ SET ∫A be the covariant
representable functor of x mapping x′ ∈ ∫A to a singleton i� x ≤ x′ and to the empty set
otherwise. Since we know the right adjoint exists, we can use the Yoneda lemma for covariant
functors to derive su�cient and necessary constraints for RB to be a right adjoint:

(RBC)(x) ∼= HomSET ∫A(y(x),RBC) ∼= HomSET ∫AnB (πB
∗y(x), C)

∼= HomFib(∫AnB)(F (πB
∗y(x)), F (C)).

Let i be as in Def. 4.21. Let Fib′(Q) be the category of (not necessarily normal) �brations on
Q. Then it is easy to check that F (i n B) seen as a �bration with domain dx and F (πB

∗y(x))
are isomorphic in Fib′(∫A n B). (They are not isomorphic in Fib(∫B) because the former is not
normal.) Using the fullness of Fib(Q), we obtain

(RBC)(x) ∼= HomFib′(∫AnB)(F (i n B), F (C))

= {f : dx → ∫C | F (C) ◦ f = F (i n B)}.

And using the de�nition of Cx as a pullback, we obtain

(RBC)(x) ∼= {f : dx → ∫Cx | F (Cx) ◦ f = iddx} ∼= Elem(Cx).

And this is indeed how RBC is de�ned. The value of RBC on morphisms is veri�ed similarly.
To show the coherence property, assume P |A′, g : A′ → A, and x′ := (p, a′) ∈ ∫A′. We

abbreviate as follows: a := gp(a′), x := (p, a), B′ := g∗B, and C ′ := (g n B)∗C. Furthermore,
we denote by i′ the natural transformation from Def. 4.21 used to construct the indexed sets
B′x′

and C ′x′
.

Now coherence requires g∗RBC = RB′C ′. And that follows if we show that

B′x′
= Bx and C ′x′

= Cx.

Using Lem. 4.18, this follows from g◦i′ = i, which is an equality between natural transformations
from yx = yx′

to A in SET P . And to verify the latter, assume o ∈ P . The maps go ◦ i′o and io
have domain ∅ or {∅}. In the former case, there is nothing to prove. In the latter case, put

a′o := i′o(∅) = A′(p ≤ o)(a′) and ao := io(∅) = A(p ≤ o)(a).

Then we need to show go(a′o) = ao. And that is indeed the case because of the naturality of g
as indicated in

a′ a′o

a ao

A′(p ≤ o)

gp go

A(p ≤ o)

The adjointness implies Elem(RBC) ∼= Elem(C). We spell out this isomorphism explicitly
because we will use it lateron.

84

4.6. MODEL THEORY

Lemma 4.24. Assume P |A|B and P |A n B|C. For t ∈ Elem(C) and x := (p, a) ∈ ∫A, let
tx ∈ Elem(Cx) be given by

(tx)(p′,(∅,b′)) = t(p′,(a′,b′)) where a′ := A(p ≤ p′)(a).

And for f ∈ Elem(RBC) and x := (p, (a, b)) ∈ ∫A n B, we have f(p,a) ∈ Elem(Cx); thus, we
can put

fx := (f(p,a))(p,(∅,b)) ∈ C(p, (a, b)).

Then the sets Elem(C) and Elem(RBC) are in bijection via

Elem(C) 3 t
sp(−)7−→ (tx)x∈∫A ∈ Elem(RBC)

and

Elem(RBC) 3 f
am(−)7−→ (fx)x∈∫AnB ∈ Elem(C)

Proof. This follows from the right adjointness by easy computations.

Intuitively, sp(t) turns t ∈ Elem(C) into a ∫A-indexed set by splitting it into components.
And am(f) glues such a tuple of components back together. Syntactically, these operations
correspond to currying and uncurrying, respectively.

Then we need one last notation. For P |A, indexed elements a ∈ Elem(A) behave like
mappings with domain P . We can precompose such indexed elements with �brations f : Q → P
to obtain Q-indexed elements of Elem(A ◦ f).

De�nition 4.25. Assume P |A, f : Q → P , and a ∈ Elem(A). a ∗ f ∈ Elem(A ◦ f) is de�ned
by: (a ∗ f)q := af(q) for q ∈ Q.

4.6 Model Theory

Using the operations from Sect. 4.5, the de�nition of the semantics is straightforward. To
demonstrate its simplicity, we will spell it out in an elementary way. The models are Kripke-
models, i.e., a Σ-model I is based on a poset P I of worlds, and provides interpretations JcKI

and JaKI for all symbols declared in Σ. I extends to a function J−KI , which interprets all Σ-
expressions. We will omit the index I if no confusion is possible. The interpretation is such
that

• for a context Γ, JΓK is a poset,

• for a substitution γ from Γ to Γ′, JγK is a poset morphism from JΓ′K to JΓK,

• for a type family A of kind Γ0, JΓ|AK is an indexed set on JΓ,Γ0K,

• in particular, for a type S, JΓ|SK is an indexed set on JΓK,

• for a term s of type S, JΓ|sK is an indexed element of JΓ|SK.

If Γ = x1 : S1, . . . , xn : Sn, an element of JΓK has the form (p, (a1, . . . , an)) where p ∈ P ,
a1 ∈ J·|S1K(p), . . . , an ∈ Jx1 : S1, . . . , xn−1 : Sn−1|SnK(p, (a1, . . . , an−1)). Intuitively, ai is an
assignment to the variable xi in world p. For a typed term Γ `Σ s : S, both JΓ|sK and JΓ|SK are
indexed over JΓK. And if an assignment (p, α) is given, the interpretations of s and S satisfy
JΓ|sK(p,α) ∈ JΓ|SK(p, α). This is illustrated in the left diagram in Fig. 4.10.

If γ is a substitution Γ → Γ′, then JγK maps assignments (p, α′) ∈ JΓ′K to assignments
(p, α) ∈ JΓK. And a substitution in types and terms is interpreted by pullback, i.e., composition.
This is illustrated in the right diagram in Fig. 4.10; its commutativity expresses the coherence.

85

4.6. MODEL THEORY

The poset P of worlds plays the same role as the various posets JΓK � it interprets the empty
context. In this way, P can be regarded as interpreting an implicit or relative context. This
is in keeping with the practice of type theory (and category theory), according to which closed
expressions may be considered relative to some �xed but unspeci�ed context (respectively, base
category).

For a type family and a kind Γ `Σ A : (Γ0)type with n variables in Γ0, JΓ|AK assigns a set
to every tuple (p, (α, a1, . . . , an)). Here p is a world, (p, α) is an assignment for Γ, and a1, . . . , an

are the values of the arguments that can be provided to A. This is illustrated in Fig. 4.11.
Sum types are interpreted naturally as the dependent sum of indexed sets given by the

left adjoint. And pairing and projections have their natural semantics. Product types are
interpreted as exponentials using the right adjoint. A lambda abstraction λx:S t is interpreted by
�rst interpreting t and then splitting it as in Lem. 4.24. And an application f s is interpreted by
amalgamating the interpretation of f as in Lem. 4.24 and using the composition from Def. 4.25.

∫JΓ|SK

JΓK JΓK

F (JΓ|SK)F (JΓ|sK)

id

JΓKJΓ′K

SET

JγK

JΓ|SKJΓ′|γ(S)K

Figure 4.10: Semantics of Terms, Types, and Substitution

De�nition 4.26 (Models). For a signature Σ, Σ-models are de�ned as follows:

• A model I for the empty signature · is a poset P I .

• A model I for the signature Σ, c : S consists of a Σ-model IΣ and an indexed element
JcKI ∈ Elem(J·|SKIΣ).

• A model I for the signature Σ, a : (Γ0)type consists of a Σ-model IΣ and an indexed set
JaKI over JΓ0KIΣ .

We call a model simple if P I is a singleton.

Simple models yield the naive, i.e., not indexed, set theoretical semantics of MLTT: Types
are interpreted as sets and terms as elements. This semantics is not complete in general, but
often simple models are all that one needs. Our semantics is sound for any poset P . And
completeness would still hold if we restricted P to complete Heyting algebras.

De�nition 4.27 (Model Extension). The extension of a model is de�ned by induction on the
typing derivations. We assume in each case that all occurring expressions are well-formed. For
example in the case for JΓ|f sK, f has type Πx:S T and s has type S.

• Contexts:
J·K := 1P JΓ, x :SK := JΓK n JΓ|SK

This de�nes JΓK as a P -indexed set, but we will usually use JΓK to refer to the induced
poset. Also, we usually omit the occurrence of ∅ in elements of these posets.

• Substitutions γ = x1/s1, . . . , xn/sn from Γ to Γ′:

JγK : (p, α′) 7→
(
p, (JΓ′|s1K(p,α′), . . . , JΓ

′|snK(p,α′))
)

for (p, α′) ∈ JΓ′K

86

4.7. SUBSTITUTION LEMMA

• Type families:

JΓ|aK := JaK ◦ JidΓ0K where `Σ idΓ0 : Γ0 → Γ,Γ0

JΓ|A γ0K := JΓ|AK ◦ JidΓ, γ0K

JΓ|λx:S AK := JΓ, x :S|AK

• Composed types:

JΓ|1K(p, α) := {∅}

JΓ|Id(s, s′)K(p, α) :=

{
{∅} if JΓ|sK(p,α) = JΓ|s′K(p,α)

∅ otherwise
JΓ|Σx:S T K := LJΓ|SKJΓ, x :S|T K

JΓ|Πx:S T K := RJΓ|SKJΓ, x :S|T K

JΓ|1K and JΓ|Id(s, s′)K are only de�ned on objects; their extension to morphisms is
uniquely determined.

• Elementary terms:

JΓ|cK(p,α) := JcKp, Jx1 :S1, . . . , xn :Sn|xiK(p,(a1,...,an)) := ai

• Composed terms:

JΓ|∗K(p,α) := ∅
JΓ|refl(s)K(p,α) := ∅
JΓ|〈s, s′〉K(p,α) := (JΓ|sK(p,α), JΓ|s

′K(p,α))
JΓ|πi(u)K(p,α) := ai where JΓ|uK(p,α) = (a1, a2)
JΓ|λx:S tK := sp(JΓ, x :S|tK)
JΓ|f sK := am(JΓ|fK) ∗ (assoc ◦ F (JΓ|sK))

Here assoc maps ((p, α), a) to (p, (α, a)).

Since the same expression may have more than one well-formedness derivation, the well-
de�nedness of Def. 4.27 must be proved in a joint induction with the proof of Thm. 4.31 below.
And because of the use of substitution, e.g., for application of function terms, the induction
must be intertwined with the proof of Thm. 4.28 as well.

4.7 Substitution Lemma

Theorem 4.28 (Substitution). Assume `Σ γ : Γ → Γ′. Then:

1. for a substitution `Σ γ′ : Γ′ → Γ′′: Jγ′ ◦ γK = JγK ◦ Jγ′K,

2. for a type family Γ `Σ A : (Γ0)type: JΓ′|γ(A)K = JΓ|AK ◦ Jγ, idγ(Γ0)K,

3. in particular, for a type Γ `Σ S : type: JΓ′|γ(S)K = JΓ|SK ◦ JγK

4. for a term Γ `Σ s : S: JΓ′|γ(s)K = JΓ|sK ∗ JγK.

For every substitution γ from Γ to Γ′, the POSET -morphism JγK : JΓ′K → JΓK induces a
natural transformation between the P -indexed sets induced by Γ and Γ′, which we denote by
I(JγK) in the sequel.

Before we prove Thm. 4.28, we establish two auxiliary lemmas.

87

4.7. SUBSTITUTION LEMMA

JΓ′, γ(Γ0)K

JΓ′K

JΓ,Γ0K

JΓK

SET

JγK

Jγ, idγ(Γ0)K

JidΓ′ , γ(γ0)K JidΓ, γ0K

JΓ′|γ(A)K JΓ|AK JΓ|A γ0K
JΓ′|γ(A) γ0K

Figure 4.11: Semantics of Type Families and Substitution

Lemma 4.29. Assume `Σ γ : Γ → Γ′ and Γ `Σ S : type and thus also

`Σ γ, x/x : Γ, x :S → Γ′, x :γ(S) .

Furthermore, assume the induction hypothesis of Thm. 4.28 for the involved expressions. Then
we have:

Jγ, x/xK = F (I(JγK) n JΓ|SK).

Proof. This follows from direct computation.

Lemma 4.30. Assume P |A|B, P |A n B|C, P |A′, a natural transformation g : A′ → A, and
t ∈ Elem(C). Then for x′ ∈ ∫A′:

sp(t ∗ F (g n B))x′ = sp(t)F (g)(x′).

Proof. This follows by direct computation.

Proof of Thm. 4.28.

Proof. The proofs of all subtheorems are intertwined in an induction on the typing derivations;
in addition, the induction is intertwined with the proof of Thm. 4.31.

For the case of a substitution γ′, assume γ = x1/s1, . . . , xn/sn and (p, α′′) ∈ JΓ′′K. Then ap-
plying the composition of substitutions, the semantics of substitutions, the induction hypothesis
for terms, and the semantics of substitutions, respectively, yields:

Jγ′ ◦ γK(p, α′′) = Jx1/γ′(s1), . . . , xn/γ′(sn)K(p, α′′) =
(
JΓ′′|γ′(si)K(p,α′′)

)
i=1,...,n

=
(
JΓ′|siKJγK(p,α′′)

)
i=1,...,n

= (JγK ◦ Jγ′K)(p, α′′)

The cases for type families are as follows:

• a: Clear because γ(a) = a and the semantics of a projects the context away.

• A γ0: Assume Γ `Σ A : (Γ0)type, and abbreviate Γ′0 := γ(Γ0). The commutativity of the
following diagram can be directly veri�ed:

Γ′,Γ′0

Γ′ Γ′

Γ,Γ0

ΓΓ
id

idΓ′ , γ(γ0)

id

idΓ, γ0

γ, idΓ′
0

γ

88

4.7. SUBSTITUTION LEMMA

Using the induction hypothesis for the composition of substitutions, the interpretation
turns it into a diagram in POSET . From that, we obtain the needed equality because
(using the semantics of application)

JΓ|A γ0K ◦ JγK = JΓ|AK ◦ JidΓ, γ0K ◦ JγK

and (using the de�nition of substitution, the semantics of application, and the induction
hypothesis, respectively)

JΓ′|γ(A γ0)K = JΓ′|γ(A) γ(γ0)K

= JΓ′|γ(A)K ◦ JidΓ′ , γ(γ0)K = JΓ|AK ◦ Jγ, idΓ′
0
K ◦ JidΓ′ , γ(γ0)K

• λx:S A: Applying the de�nition of substitution, the semantics of lambda abstraction, and
the induction hypothesis, respectively, we obtain:

JΓ′|γ(λx:S A)K = JΓ′|λx:γ(S) γx(A)K

= JΓ′, x :γ(S)|γx(A)K = JΓ, x :S|AK ◦ Jγx, idγx(Γ0)K

Then the needed equality follows from JΓ, x : S|AK = JΓ|λx:S AK and γx, idγx(Γ0) =
γ, idx:γ(S),γ(Γ0).

• 1: Trivial.

• Id(s, s′): This follows directly from the induction hypothesis for s and s′.

• Σx:S T : This follows directly by combining the induction hypothesis, Lem. 4.20, and
Lem. 4.29.

• Πx:S T : This follows directly by combining the induction hypothesis, Lem. 4.23, and
Lem. 4.29.

And for the cases of a term s, let us assume a �xed (p, α′) ∈ JΓ′K and (p, α) := JγK(p, α′).
Then we need to show

JΓ′|γ(s)K(p,a′) = JΓ|sK(p,a).

• c: Clear because γ(c) = c.

• x: Assume x occurs in position i in Γ, and let x/s be in γ. Further, assume α′ =
(a′1, . . . , a

′
n) and α = (a1, . . . , an). Then by the properties of substitutions: JΓ′|γ(x)K(p,α′) =

JΓ′|sK(p,α′) = ai. And that is equal to JΓ|xK(p,α).

• refl(s): Trivial.

• ∗: Trivial.

• 〈s, s′〉: Because γ(〈s, s′〉) = 〈γ(s), γ(s′)〉, this case follows immediately from the induction
hypothesis.

• πi(u) for i = 1, 2: Because γ(πi(s)) = πi(γ(s)), this case follows immediately from the
induction hypothesis.

• λx:S t: By the de�nition of substitution, the semantics of lambda abstraction, the induction
hypothesis, and Lem. 4.29, respectively, we obtain:

JΓ′|γ(λx:S t)K = JΓ′|λx:γ(S) γx(t)K = sp(JΓ′, x :γ(S)|γx(t)K)

= sp(JΓ, x :S|tK ∗ Jγ, x/xK)

= sp(JΓ, x :S|tK ∗ F (I(JγK) n JΓ|SK)).

89

4.8. SOUNDNESS

Furthermore, we have JΓ|λx:S tK = sp(JΓ, x :S|tK). Then the result follows by using
Lem. 4.30 and F (I(JγK)) = JγK.

• f s: We evaluate both sides of the needed equation. On the left-hand side, we obtain by
the de�nition of substitution, the semantics of application, and the induction hypothesis,
respectively:

JΓ′|γ(f s)K = JΓ′|γ(f) γ(s)K = am(JΓ′|γ(f)K) ∗ (assoc ◦ F (JΓ′|γ(s)K))

= am(JΓ|fK ∗ JγK) ∗ (assoc ◦ F (JΓ|sK ∗ JγK)).

To compute the value at (p, α′) of this indexed element, we �rst compute (JΓ|sK∗JγK)(p,α′),
say we obtain b. Then we can compute am(JΓ|fK ∗ JγK)(p,(α′,b)). Using the notation from

Lem. 4.24, this yields
(
JΓ|fK ∗ JγK

)(p,(α′,b))
, which is equal to (JΓ|fK(p,α))(p,(∅,b)).

On the right-hand side, we have by the semantics of application:

JΓ|f sK = am(JΓ|fK) ∗ (assoc ◦ F (JΓ|sK)).

When computing the value at (p, α) of this indexed element, we obtain in a �rst step
am(JΓ|fK)(p,(α,b)). And evaluating further, this yields (JΓ|fK(p,α))(p,(∅,b)).

Thus, the equality holds as needed.

4.8 Soundness

Theorem 4.31 (Soundness). Assume a signature Σ, and a context Γ. If Γ `Σ S ≡ S′ for two
well-formed types S, S′, then in every Σ-model:

JΓ|SK = JΓ|S′K ∈ SET JΓK .

And if Γ `Σ s ≡ s′ for two well-formed terms s, s′ of type S, then in every Σ-model:

JΓ|sK = JΓ|s′K ∈ Elem(JΓ|SK).

Proof. The soundness is proved by induction over all derivations; the induction is intertwined
with the proof of Thm. 4.28. An instructive example is the rule etyping . Its soundness states
the following: If JΓ|sK ∈ Elem(JΓ|SK) and JΓ|sK = JΓ|s′K and JΓ|SK = JΓ|S′K, then also JΓ|s′K ∈
Elem(JΓ|S′K). And this clearly holds.

Among the remaining rules for terms, the soundness of some rules is an immediate conse-
quence of the semantics. These are: all rules from Fig. 4.5 except for maybe tλ and tapp , and
from Fig. 4.6 the rules eId(−,−), eid−uniq , e∗, e〈−,−〉, eπ1 , eπ2 , and eapp .

The soundness of the rules tλ and tapp follows by applying the semantics and Lem. 4.24.
That leaves the rules eβ and efuncext , the soundness of which we will prove in detail.

For eβ , we interpret (λx:S t) s by applying the de�nition:

JΓ|(λx:S t) sK = am(JΓ|λx:S tK) ∗ (assoc ◦ F (JΓ|sK))

= am(sp(JΓ, x :S|tK)) ∗ (assoc ◦ F (JΓ|sK))

am(sp(JΓ, x : S|tK)) is equal to JΓ, x : S|tK by Lem. 4.24. Furthermore, we have t[x/s] = γ(t)
where γ = idΓ, x/s is a substitution from Γ, x : S to Γ. And interpreting γ yields JγK(p, α) =
(p, (α, JΓ|sK(p,α))), i.e., JγK = assoc ◦ F (JΓ|sK). Therefore, using Thm. 4.28 for terms yields

JΓ|t[x/s]K = JΓ, x :S|tK ∗ (assoc ◦ F (JΓ|sK)),

90

4.8. SOUNDNESS

which concludes the soundness proof for eβ .

To understand the soundness of efuncext , let us look at the interpretations of f in the contexts
Γ and Γ, y :S:

am(JΓ|fK) ∈ Elem(JΓ, x :S|T K), am(JΓ, y :S|fK) ∈ Elem(JΓ, y :S, x :S|T K).

Let γ be the inclusion substitution from Γ to Γ, y :S. Then JγK is the projection JΓ, y :SK → JΓK
mapping elements (p, (α, a)) to (p, α). Applying Thm. 4.28 yields for arbitrary (p, α) ∈ JΓK and
a′, a ∈ JΓ|SK(p, α):

am(JΓ, y :S|fK)(p,(α,a′,a)) = am(JΓ|fK)(p,(α,a)).

And we have

JΓ, y :S|yK(p,(α,a′)) = a′, and F (JΓ, y :S|yK)(p, (α, a′)) = (p, (α, a′), a′).

Putting these together yields

JΓ, y :S|f yK(p,(α,a′)) =
(
am(JΓ, y :S|fK) ∗ (assoc ◦ F (JΓ, y :S|yK))

)
(p,(α,a′))

= am(JΓ, y :S|fK)(p,(α,a′,a′)) = am(JΓ|fK)(p,(α,a′))

Therefore, the induction hypothesis applied to Γ, y :S `Σ f y ≡ f ′ y yields

am(JΓ|fK) = am(JΓ|f ′K).

And then Lem. 4.24 yields
JΓ|fK = JΓ|f ′K

concluding the soundness proof for efuncext .

Regarding the rules for types in Fig. 4.4 and Fig. 4.7, the soundness proofs are straightforward
except for Eβ and Eη. For Eβ , we apply the de�nition of the semantics on the left side:

JΓ|(λx:S A) (x/s, γ0)K = JΓ|λx:S AK ◦ JidΓ, x/s, γ0K = JΓ, x :S|AK ◦ JidΓ, x/s, γ0K

And on the right side, we apply Thm. 4.28 and the de�nition of the semantics:

JΓ|A[x/s] γ0K = JΓ|A[x/s]K ◦ JidΓ, γ0K = JΓ, x :S|AK ◦ JidΓ, x/s, idΓ0[x/s]K ◦ JidΓ, γ0K

And applying the de�nition of the composition of substitutions and its semantics as given in
Thm. 4.28, we see that the two sides are the same, which shows the soundness of Eβ .

For Eη, let Γ0 := x1 : S1, . . . , xn : Sn, Sy
i := γ(Si), Γy

0 := y1 : Sy
1 , . . . , yn : Sy

n, and γ0 :=
x1/y1, . . . , xn/yn; i.e., γ0 and Γy

0 express renaming the xi in Γ0 to yi. We apply on the left
side of the equation the de�nition of the semantics (twice) and Thm. 4.28 for the inclusion
substitution from Γ to Γ,Γy

0, respectively:

JΓ|λy1:S
y
1

. . . λyn:Sy
n

(A γ0)K = JΓ,Γy
0|A γ0K = JΓ,Γy

0|AK ◦ JidΓ,Γy
0
, γ0K

= JΓ|AK ◦ JidΓ, idΓ0K ◦ JidΓ,Γy
0
, γ0K

Here idΓ, idΓ0 is a substitution from Γ,Γ0 to Γ,Γy
0,Γ0, and idΓ,Γy

0
, γ0 is a substitution from

Γ,Γy
0,Γ0 to Γ,Γy

0. Then using JΓ,Γ0K = JΓ,Γy
0K reduces the above to JΓ|AK.

91

4.9. COMPLETENESS

4.9 Completeness

De�nition 4.32. We call a functor F : C → D LCC if C is LCC and if F preserves that structure,
i.e., F maps terminal object, products and exponentials in all slices C/A to corresponding
constructions in D/F (A). An LCC functor is called an LCC embedding if it is injective on
objects, full, and faithful.

Lemma 4.33. For every LCC category C, there are a poset P and an LCC embedding E : C →
SET P .

Proof. Clearly, the composition of LCC embeddings is an LCC embedding. We obtain E : C →
SET P as a composite E3 ◦ E2 ◦ E1. E1 : C → SET Cop

is the Yoneda embedding, which maps
A ∈ |C| to Hom(−, A). This is well-known to be an LCC embedding. E2 maps a presheaf on
C to a sheaf on a topological space S. E2 is the inverse image part of the spatial cover of the
topos SET Cop

of presheaves on C. This construction rests on a general topos-theoretical result
established in [BM99], and we refer to [Awo00] for the details of the construction of S, the
de�nition of E2, and the proof that E2 is an LCC embedding. Finally E3 : sh(S) → SET O(S)op

includes a sheaf on S into the category of presheaves on the poset O(S) of open sets of S. That
E3 is an LCC embedding, can be veri�ed directly. Finally, we put P := O(S)op so that E
becomes an LCC embedding into SET P .

De�nition 4.34 (Term-Generated). A Σ-model I is called term-generated if for all closed Σ-
types S and every indexed element e ∈ Elem(J·|SKI), there is a Σ-term s of type S such that
J·|sKI = e.

Theorem 4.35 (Model Existence). For every signature Σ, there is a term-generated model I
such that for all types Γ `Σ S : type

Elem(JΓ|SKI) 6= ∅ iff Γ `Σ s : S for some s,

and for all such terms Γ `Σ s : S and Γ `Σ s′ : S

JΓ|sKI = JΓ|s′KI iff Γ `Σ s ≡ s′.

Proof. It is well-known how to obtain a syntactical category C from Σ and Γ. The objects of
C are given by the set of all types S such that Γ `Σ S : type modulo the equivalence relation
Γ `Σ S ≡ S′. We will write [S] for the equivalence class of S.

The C-morphisms from [S] to [S′] are given by the terms f such that Γ `Σ f : S → S′

modulo the equivalence relation Γ `Σ f ≡ f ′. We will write [f] for the equivalence class of f .
It is straightforward to check that C is LCC (see, e.g., [See84]). For example, the exponential

ff1
2 of two slices Γ `Σ f1 : S1 → S and Γ `Σ f2 : S2 → S is given by

λu:U π1(u) where U := Σx:S

(
Σy1:S1 Id(x, f1 y1) → Σy2:S2 Id(x, f2 y2)

)
.

By Lem. 4.33 there are a poset P and an LCC embedding E : C → SET P . From those, we
construct the needed model I over P . Essentially, I arises by interpreting every term or type as
its image under E.

Firstly, assume a declaration c :S in Σ. Since C only uses types and function terms, E cannot
in general be applied to c. But using the type 1, every term c of type S can be seen as the
function term λx:1 c of type 1 → S. Therefore, we de�ne E′(c) := E(λx:1 c), which is an indexed
element of E(1 → S). Since Elem(E(1 → S)) and Elem(E(S)) are in bijection, E′(c) induces
an indexed element of E(S), which we use to de�ne JcKI .

Secondly, assume a declaration a : (Γ0)type in Σ. JaKI must be an indexed set over JΓ0KI . For
the same reason as above, E cannot always be applied to the symbol a. But E can be applied to

92

4.10. A LOGIC FOR DTT

a γ0 for every substitution γ0 from Γ into ·. And because E is full, the interpretations J·|a γ0KI

for all γ0 determine JaKI uniquely.
That I is term-generated, follows in a straightforward way from the fullness of E.
Finally, we must show that I has the two required properties. These follows easily from the

fullness and the faithfulness of E.

Theorem 4.36 (Completeness). For all terms Γ `Σ s : S and Γ `Σ s′ : S: If JΓ|sKI = JΓ|s′KI

holds for all Σ-models I, then Γ `Σ s ≡ s′.

Proof. This follows immediately from Thm. 4.35.

Functional Completeness The fact that the model I in Thm. 4.35 is term-generated can be
interpreted as functional completeness of the semantics: A natural transformation that exists in
every model is syntactically de�nable. To see what this means, let I be the model constructed
in Thm. 4.35, and assume a natural transformation η : J·|SKI → J·|S′KI for some Σ-types
S and S′. Then there exists a Σ-term f of type S → S′ such that η arises from J·|fKI as
follows. Put η′ := am(J·|fKI) ∈ Elem(Jx : S|S′KI). Then η′ maps pairs (p, a) to elements of
Jx :S|S′KI(p, a) = J·|S′KI(p) for a ∈ J·|SKI(p). Then we obtain η as ηp : a 7→ η′(p, a).

4.10 A Logic for DTT

In this section, we de�ne a logic D for DTT based on the syntax and semantics introduced
before. Using the propositions-as-types paradigm, the closed types are the sentences over a
given signature. The model theory is given by the models described in Sect. 4.6, and the proof
theory is given by the inference system of Sect. 4.3.

However, we add an empty type 0 to our type theory. Thus, we have the Curry-Howard
analogue to falsity and thus to �rst-order logic, in particular to negation. Since this introduces
the danger of inconsistencies, we have deliberately omitted this type in the preceding sections
so that we can encapsulate it here.

4.10.1 Syntax

In�nite Vocabularies It is desirable to be able to reason about in�nite signatures and con-
texts. Therefore, we use in�nite (albeit countable) lists of declarations. We use the following
notation for in�nite lists.

Notation 4.37 (In�nite Lists). We use D1, . . . to denote �nite or countably in�nite lists (including
the empty sequence). A pre�x of a list D1, . . . is a list D1, . . . , Dn for some n ∈ N (including
n = 0, in which case the pre�x is empty). The meta-variable X∗ always ranges over pre�xes of
X.

From now on, we use Σ, Γ, σ, and γ for in�nite signatures, contexts, signature morphisms,
and substitutions. Since our judgments can only talk about �nite lists, we generalize them to
the in�nite case.

De�nition 4.38. We de�ne for possibly in�nite Σ, Σ′, σ, Γ, Γ′, or γ:

• ` Σ Sig i� ` Σ∗ Sig for every pre�x Σ∗,

• ` σ : Σ → Σ′ i� ` Σ Sig and ` Σ′ Sig and for every pre�x σ∗ there are pre�xes Σ∗, Σ′∗

such that ` σ∗ : Σ∗ → Σ′∗,

• `Σ Γ Ctx i� ` Σ Sig and for every pre�x Γ∗ there is a pre�x Σ∗ such that `Σ∗ Γ∗ Ctx,

• `Σ γ : Γ → Γ′ i� `Σ Γ Ctx and `Σ Γ′ Ctx and for every pre�x γ∗ there are pre�xes Σ∗,
Γ∗, Γ′∗ such that `Σ∗ γ∗ : Γ∗ → Γ′∗,

93

4.10. A LOGIC FOR DTT

Type Formula
1 true
Id(s, s′) s ≡ s′

a x1/s1, . . . , xn/sn a(s1, . . . , sn)
S × S′ S ∧ S′

Σx:S T ∃x:S.T
S → S′ S ⇒ S′

(S → S′)× (S′ → S) S ⇔ S′

Πx:S T ∀x:S.T
0 false
S → 0 ¬S
¬S → ¬S′ → 0 S ∨ S′

Figure 4.12: Judgments as Types

• the judgments for typing, kinding, and equality are generalized accordingly.

Propositions as Types The type-constructors of MLTT internalize logical formulas via the
judgments-as-types principle as in Fig. 4.12. Since negation is not covered in MLTT, we add
a type 0, which is intended to correspond to falsity. Then negation can be introduced as an
abbreviation.

Therefore, we add the two rules from Fig. 4.13 to the syntax. These add the type 0 and
functions from it into every other type. Therefore, if 0 is inhabited, every type is inhabited
and in particular all terms of the same type are equal. We consider 0 and the terms !!S as an
(in�nite) set of extra signature symbols that are preserved by signature morphisms. Then it is
easy to see that Thm. 4.28, 4.31, and 4.36 also hold for this extended version of the type theory.

`Σ Γ Ctx
T0

Γ `Σ 0 : type

Γ `Σ S : type
t0

Γ `Σ!!S : 0 → S

E0
Γ `Σ 0 ≡ 0

Figure 4.13: The 0 type

De�nition 4.39 (Signatures). We de�ne the category SigD as follows.

• Objects: lists Σ of declarations such that ` Σ Sig.

• Morphisms from Σ to Σ′: lists σ of assignments such that ` σ : Σ → Σ′. Two signature
morphisms are equal i� they are equal component-wise.

• Identity and composition are de�ned in the obvious way.

De�nition 4.40 (Sentences). We de�ne a functor SenD : SigD → SET as follows:

• For Σ ∈ SigD, the set SenD(Σ) is the set of types S such that

· `Σ S : type

94

4.10. A LOGIC FOR DTT

modulo the equivalence relation
· `Σ S ≡ S′.

• For a signature morphism σ, the mapping SenD(σ) is given by σ(−).

4.10.2 Model Theory

Now we de�ne the model theoretical semantics of D by giving ModD and |=D.

De�nition 4.41 (Models). The Σ-models are de�ned by induction on Σ.

• For �nite Σ, models are de�ned as in Def. 4.26.

• For in�nite Σ, a Σ-model is an in�nite list such that every pre�x is a model of the corre-
sponding pre�x of Σ.

• We do not prescribe interpretations for the type 0 and the terms !!S ; as for Σ-symbols,
every model must provide interpretations for them.

Finally, we de�ne ModD(Σ) as the class of all Σ-models I satisfying that Elem(J0KI) = ∅. ModD

extends to a functor Sig → CAT op if we treat each model class ModD(Σ) as a discrete category.

Thus, Σ-models may interpret 0 in any way. Only when de�ning ModD(Σ), we throw away
all models for which 0 is inhabited. This way it is easier to reuse the results obtained before.
Note that we do not require models to satisfy J0K(p) = ∅ in every world p � only J0K as an
indexed set may not have indexed elements. Intuitively, this means that some worlds of the
Kripke model may be inconsistent as long as the model as a whole is consistent.

De�nition 4.42 (Model Reduction). For a signature morphism ` σ : Σ → Σ′, the mapping
ModD(σ) : ModD(Σ′) → ModD(Σ) is de�ned as follows. I ′ is mapped to I given by

• P I := P I′ ,

• JcKI := J·|σ(c)KI′ for term constants c,

• JaKI := J·|σ(a)KI′ for type family constants a.

This is well-de�ned because every signature morphism maps 0 to 0, and thus reduces models
in ModD(Σ′) to models in ModD(Σ).

De�nition 4.43 (Satisfaction). For a signature Σ ∈ ThD, the satisfaction relation between
Σ-models I and Σ-sentences, i.e., closed Σ-types S, is de�ned by

I |=D
Σ S iff Elem(J·|SKI) 6= ∅.

In particular, 0 holds in no model I ∈ ModD(Σ).
We de�ne the category ThD of D-theories in the usual way. The objects are pairs (Σ;∆) of

a signature Σ and a set ∆ of sentences.

4.10.3 Proof Theory

Now we de�ne the proof theoretical semantics of D by de�ning Pf D and valD. Pf D(Σ) is the
category of contexts and substitutions.

De�nition 4.44 (Proof Category). For every signature Σ ∈ |SigD|, Pf D(Σ) is given as follows.

• Objects: contexts Γ such that `Σ Γ Ctx and such that all types in Γ are closed.

95

4.10. A LOGIC FOR DTT

• Morphisms from Γ to Γ′: substitutions γ such that

`Σ γ : Γ′ → Γ

where two morphisms are equal if they are equal component-wise.

• Identity and composition are de�ned as for substitutions.

For a signature morphism σ form Σ to Σ′, the functor Pf D(σ) : Pf D(Σ) → Pf D(Σ′) is given
by

• on objects: Pf D(σ)(Γ) := σ(Γ),

• on morphisms: Pf D(σ)(γ) := σ(γ).

We write Γ `Σ S i� there is a term s such that Γ `Σ s : S. The morphisms in Pf D(Σ)
from Γ to Γ′ are substitutions from Γ′ to Γ. The point of the reversed direction is to follow
the style of Lawvere categories ([Law63]) by using as morphisms from Γ to Γ′ tuples of Γ-terms
typed according to Γ′. It is easy to show that the empty context is a terminal object in Pf D(Σ).
Furthermore, x :0 is initial. Products in Pf D(Σ) are obtained by merging contexts, in particular,
if Γ is �nite, Γ,Γ′ is a product of Γ and Γ′. We use Γ,Γ′ to denote products even if Γ is in�nite.

De�nition 4.45. For Σ ∈ |SigD|, we de�ne

valD
Σ(S) := x :S.

4.10.4 Collecting the Pieces

Finally, we can collect the de�nitions to obtain the logic D.

Theorem 4.46. (SigD,SenD,ModD, |=D,Pf D, valD) is a logic.

Proof. To show the satisfaction condition, assume ` σ : Σ → Σ′, as well as I ′ ∈ ModD(Σ) and
S ∈ Sen(Σ). Put I := Mod(σ)(I ′) and S′ := Sen(σ)(S). Then J·|SKI = J·|S′KI′ , and therefore
I |=D

Σ′ S iff I ′ |=D
Σ′ S′. The naturality of valD is obvious.

So far we have used the symbol ` in two di�erent ways: for provability in the logic D and in
the typing judgments de�ning D. We can reconcile these two uses in the following lemma.

Lemma 4.47. Let (Σ,∆) be a D-theory and `Σ Γ Ctx such that Γ = x1 :S1. . . and ∆ = {S1, . . .}.
Then for all S ∈ SenD(Σ):

∆ `D
Σ S iff Γ `Σ s : S for some s.

Proof. Clear.

Theorem 4.48 (Strong Soundness). D is strongly sound.

Proof. Assume Σ ∈ SigD, ∆ ⊆ SenD(Σ), and S ∈ SenD(Σ). Let Γ be a context declaring a
variable of type F for every sentence F ∈ ∆. Assume ∆ `D

Σ S. Then there must be a pre�x
Γ∗ = x1 : S1, . . . , xn : Sn and by Lem. 4.47 a term Γ∗ `Σ s : S. Then by Thm. 4.31, there is
e ∈ Elem(JΓ∗|SKI) for all Σ-models I. And if I ∈ ModD(Σ; ∆), there are ei ∈ Elem(J·|SiKI) for
all i. Then

p 7→ e(p,a1,...,an) where ai := (ei)p

is an indexed element of J·|SKI . Therefore, I |=D
(Σ;∆) S.

Theorem 4.49 (Strong Completeness). D is strongly complete.

96

4.11. CONCLUSION

Proof. Assume Σ ∈ SigD, ∆ ⊆ SenD(Σ), and S ∈ SenD(Σ). Assume ∆ |=D
Σ S. Then I |=D

(Σ;∆) S

for all I ∈ ModD(Σ; ∆). Let Γ be the context declaring a variable of type F for every sentence
F ∈ ∆, and let I be the Σ-model constructed for Γ in Thm. 4.35. There are two cases:

• Elem(JΓ|0KI) = ∅. Then I ∈ ModD(Σ). And clearly also I ∈ ModD(Σ;∆). Using the
assumption and Thm. 4.35, there is a term Γ `Σ s : S.

• Elem(JΓ|0KI) 6= ∅. Using Thm. 4.35, there is a term Γ `Σ s : 0. Then Γ `Σ!!S s : S.

In both cases, the result follows using Lem. 4.47.

The soundness and completeness of D can also be formulated in a way that is more balanced
between proof and model theory. From the proof theoretical point of view, the Σ-contexts are
the Σ-theories. Then the Grothendieck integral construction applied to the functor Pf D yields
the proof theoretical notion of the category of theories: An object of ∫SigDPf D is a pair (Σ; Γ)
such that `Σ Γ Ctx; and a morphism from (Σ; Γ) to (Σ′; Γ′) is a pair (σ; γ) such that

`Σ′ γ : Γ′ → σ(Γ).

Then soundness can be stated as a functor from ∫SigDPf D to ThD. This functor maps
(Σ, x1 :S1, . . .) to (Σ, {S1, . . .}) and (σ, γ) to σ. Stating completeness as a functor in the opposite
direction is not as elegant: For a model theoretical theory morphism σ, a proof theoretical theory
morphism (σ, γ) exists, but not uniquely. But if we identify all terms of the same type, then
γ is uniquely determined, and we obtain a pair of adjoint functors between the model and the
proof theoretical category of theories.

4.10.5 Subsystems

We can recover several systems as subsystems of D. We will do that by removing certain
signatures and signature morphisms from SigD, and certain contexts and substitutions from
Pf D(Σ). We call these four concepts the vocabulary concepts. We may also remove some types
from SenD(Σ). The de�nitions for |=D, |=D, and valD can be restricted accordingly. Note that
we only change the logic, not the underlying type theory. In particular, even if identity types are
removed from the signatures and contexts, they can still be used to reason about the equality
of terms.

Example 4.50. A logic for Martin-Löf Type Theory arises if all instances of vocabulary concepts
that rely on Tλ or T0 are removed, and all types that rely on T0 are removed from Sen(Σ). In
particular, all type families are constants or types. This yields the same well-formed instances
of the vocabulary concepts as the system used in [See84].

Example 4.51. A logic for LF arises if all instances of vocabulary concepts that rely on TΣ,
TId(−,−), T1, or T0 are removed. Furthermore, the corresponding types are removed from
SenD(Σ). This yields the same well-formed instances of the vocabulary concepts as the sys-
tem used in [See84].

4.11 Conclusion

We have presented a concrete and intuitive semantics for MLTT in terms of indexed sets on
posets. And we have shown soundness and completeness. Our semantics is essentially that
proposed by Lawvere in [Law69] in the hyperdoctrine of posets, �brations, and indexed sets on
posets, but we have made particular choices for which the models are coherent. Our models
use standard function spaces, and substitution has a very simple interpretation as composition.
The same holds in the simply-typed case, which makes our models an interesting alternative to

97

4.11. CONCLUSION

Henkin models. In both cases, we strengthen the existing completeness results by restricting
the class of models. Finally, we showed how this model theory leads to a logic for MLTT.

We assume that the completeness result can still be strengthened somewhat, e.g., to per-
mit equality axioms between types. In addition, it is an open problem to �nd an elementary
completeness proof, i.e., one that does not rely on topos-theoretical results.

Acknowledgements Steve Awodey suggested the research presented here. The main ideas,
in particular for the completeness result, are due to him. And while the speci�c de�nitions and
the remaining results are ours, the whole section bene�ted strongly from discussions with and
concrete advice by him. With the exception of Sect. 4.10, this section is the core of [AR08].

98

Chapter 5

Dependent Type Theory as a

Meta-Logic

In this section, we de�ne a logic L such that logic comorphisms into L capture the intuition
of logic encodings in LF. Building on D, we give the de�nition of the logic in Sect. 5.2. Then
we show how logics and logic translations are de�ned or encoded in L in Sect. 5.3 and 5.5,
respectively. Both are followed by example encodings in Sect. 5.4 and 5.6, respectively. In
Sect. 5.7 and 5.8, we summarize and discuss some directions for future research.

5.1 Introduction

No encodings of institutions, i.e, model theories, in LF have been studied before. But various
encodings that do not consider the model theory already exist. Examples for syntax encodings
of various fragments of �rst-order logic are given in [HHP93], [HST94], [AHMP92], [Pfe01], and
[Pfe00]. In [AHMP98], several possibilities are given to encode modal logics, which is di�cult
because of rules with more complex side conditions and the lack of straightforward natural
deduction. For higher-order logics, encodings are given in [HHP93] and [SS04]. The encodings
of propositional categorical logics in [GMdP+07] use the logic DFOL ([Rab06]) as a meta-logic,
which is itself encoded in LF.

We use a logic L for LF that is an extension of the subsystem of D given in Ex. 4.51. But
since one of the strengths of LF is its simplicity, we will take special care to add only a few simple
concepts and to make all additions as LF-compatible as feasible. To motivate the de�nition of
L, we look at an example LF-signature Σ encoding a fragment of FOL given in Fig. 5.1. There
are two important structural properties of the encoding that are not explicit in Σ.

i :type
o :type
⇒:o → o → o
∀ : (i → o) → o
true :o → type
⇒I :ΠF :o ΠG:o

(
(true F → true G) → true (⇒ F G)

)
⇒E :ΠF :o ΠG:o

(
true (⇒ F G) → true F → true G

)
∀I :ΠF :o

(
(Πx:i true (Fx)) → true (∀ F)

)
∀E :ΠF :o

(
true (∀ F) → Πx:i true (Fx)

)
Figure 5.1: Encoding of First-order Logic

99

5.2. A META-LOGIC FOR LF

Firstly, Σ has two parts: The �rst part declares symbols for the sorts (i), constants (not
shown in Fig. 5.1; e.g., comp : i → i → i for monoids), the type of formulas (o), connectives (⇒)
and binders (∀) of the encoded logic. These encode the domain of discourse, the syntax of FOL.
When giving a model theory for FOL, these symbols correspond to speci�c semantic objects.
In the simplest case, the sorts and constants correspond to sets and elements, respectively. The
type of formulas corresponds to the set of truth values, and the connectives and binders to
operation on the truth values. An assignment of semantic objects to the symbols is called a
model, a structure, or an interpretation. We call this part the object level of Σ. The second
part declares symbols for judgments (true) and proof rules (⇒I, ⇒E, ∀I, ∀E). These encode
an inference system that reasons about the object level. We call this part the judgment level.
Here and in most other cases, the judgment level refers to the object level, but not vice versa.

Secondly, Σ has two distinguished symbols: o and true. o is the object level type of propo-
sitions. true is the truth judgment: For a formula f , the type true f encodes the judgment �f
is true.�. And giving evidence or proof for this judgment means to give a term of type true f .
Thus, terms encode proofs. Semantically, the interpretation of o can be viewed as the set of
truth values. And the interpretation of true can be viewed as singling out some truth values,
the designated ones. These two symbols are special in that they encode the essence of logic:
propositions ans truth.

These two structural properties set apart logic encodings from other uses of LF. Currently
this structure is marked up implicitly using natural language in comments or even by the choice
of symbol names. But this is insu�cient for automated processing. Therefore, we will introduce
additional concepts to attach to a signature its structural semantics.

Furthermore, while Σ adequately encodes the syntax and proof theory of FOL, it falls short
of describing the model theory. This is a principal characteristic of LF: Some aspects of the
semantics cannot be described in it because it does not provide negation. For example, it is not
possible to exclude inconsistent models in which all formulas are true. Therefore, it is desirable
to use D-theories (instead of just D-signatures or just LF-signatures) to axiomatize the model
theory.

Intuitively, we arrive at the following:

• The objects L of SigL are tuples of D-theories (Σ;∆), an assignment of roles to the symbols
in Σ, and distinguished Σ-expressions o and true where true : o → type.

• SenL(L) is as SenD(Σ) but restricted to the image of the distinguished type family true.
Similarly, we could say that SenL(L) contains the terms of the distinguished type o.

• The proof category Pf L(L) is Pf D(Σ) but restricted to the judgment level types and
terms.

• The models of L are the models in ModD(Σ;∆), but restricted to the simple models and
using proof irrelevance when interpreting the judgment level.

• The truth judgment and the satisfaction relation are as for D.

5.2 A Meta-Logic for LF

Now we de�ne the logic L = (SigL,SenL,ModL, |=L,Pf L, valL). In the following we will de�ne
the components of L separately and �nally prove that it is a logic. We will use an encoding of
FOL as our running example.

5.2.1 Signatures

De�nition 5.1 (Role Assignments). A role assignment for a D-signature Σ is a map R that
assigns to every type family symbol of Σ one of sort and judgment. A role assignment is extended

100

5.2. A META-LOGIC FOR LF

to all type families as follows:

R(a γ0) := R(a)
R(λx:S A) := R(A)
R(Id(s, s′)) := judgment
R(1) := judgment
R(0) := judgment
R(Πx:S T) := R(T)

R(Σx:S T) :=

{
sort if R(S) = sort or R(T) = sort
judgment otherwise

And for a Σ-term s of type S, we extend R by

R(s) :=

{
object if R(S) = sort
proof if R(S) = judgment

The intuition is that objects and sorts form the object level, and proofs and judgments
the judgment level. Here, the case of sum types is interesting: Only when both S and T are
judgments, do we regard Σx:S T as a judgment. In particular, if S is a sort and T a judgment,
Σx:S T , which is Curry-Howard equivalent to an existential quanti�cation over S, is a sort �
intuitively, it is the subsort of S containing those elements for which T holds. Existential
quanti�cation is still possible: For all types S, a judgment expressing the inhabitation of S is
given by double-negating S.

Thus, we distinguish four roles for expressions. Furthermore, we distinguish atomic and
composed expressions. Then we have eight syntactic concepts.

Notation 5.2 (Meta-Variables). We use the following meta-variables for atomic (upper entry in
each �eld) and composed (lower entry in each �eld) expressions:

Terms Types and type families
Object level constant c sort symbol a

object s sort S, sort family A
Judgment level rule r judgment symbol j

proof p judgment J , judgment family −

Then we are ready to de�ne L-signatures.

De�nition 5.3 (Signatures). (Σ;∆;R; o; true) is an element of |SigL| i� it satis�es the following
conditions:

1. (Σ;∆) ∈ ThD where Σ is an LF-signature as de�ned in Ex. 4.51.

2. R is a role assignment for Σ.

3. For all constants c :S, all rules r :J , and all sort or judgment symbols of kind Γ0 in Σ, we
have that S, J , and Γ0 are produced by the following grammar

Γ0 ::= · | Γ0, x :S
S ::= a γ0 | J → S | Πx:S S
J ::= j γ0 | J → J | Πx:S J
a ::= sort symbol
j ::= judgment symbol
γ0 ::= substitution

101

5.2. A META-LOGIC FOR LF

4. o and true are such that
· `Σ o : type

is a sort and
· `Σ true : o → type

is a judgment family.

The restriction of Σ to LF-signatures re�ects our interest in logic encodings in LF; for the
model theory encoded by ∆, no restriction is used. Furthermore, D expressions are allowed in
o and true.
Example 5.4. The signature from Fig. 5.1 is extended to an L-signature as follows. ∆ contains
the axiom i, which states the non-emptiness of the universe. A role assignment is given by
making i and o sorts and true a judgment. Furthermore, o := o and true := true.

The intuition behind the grammar from Def. 5.3 is forti�ed by the following terminology.

Terminology 5.5 (Sorts and Judgments). We call

• sorts J → S: guarded sorts with guard J and sort S,

• sorts Πx:S S′: dependent function sorts with argument sort S and return sort S′,

• judgments J → J ′: hypothetical judgments with hypothesis J and conclusion J ′,

• judgments Πx:S J : parametric judgments taking a parameter of type S.

Furthermore, we call types of the form Σx:S J subsorts of S with de�ning predicate J .

Example 5.6. In Fig. 5.1, o → o → o is a function sort with two non-dependent arguments.
An example for a guarded sort is (true F) → i; an object of this sort would be a function
that returns a new individual if provided with a proof of F . An example for a subsort is
Σx:i (true (F x)), which encodes the sort of individuals x for which F is true. The type of ⇒I
is a hypothetical judgment with a hypothesis which is itself a hypothetical judgment. The type
of ∀I has a hypothesis which is a judgment parametric in i.

The point of the grammar in Item 3 of Def. 5.3 is to restrict the interdependence of object
and judgment level. Let us look at a special case �rst.

De�nition 5.7. (Σ;∆;R; o; true) ∈ |SigL| is called separated if Σ does not use the production
S ::= J → S.

If (Σ; ∆;R; o; true) is separated, the object level is independent of the judgment level in
the following sense: Dropping all judgment and rule declarations from Σ yields a well-formed
signature Σo; and if Γ `Σo S : type the S-terms over Σ and Σo are the same, i.e., the judgment
level does not add new object level terms. In the terminology of [Vir96], a separated signature
conforms to a dependency relation where proofs may not occur in judgment families, objects,
or sort families.

While separation is a natural property, it is too strong for logic encodings in general. The
most important example where this is insu�cient are logics where the well-formedness of propo-
sitions is itself axiomatized in a way that is mutually recursive with the axiomatization of truth.
For example, D is in this class: The well-formedness of the type Id(s, s′) depends on the ax-
iomatization of equality between types and thus equality between terms. For such logics, there
are two possible encodings. One way is to use o := Σx:o (wff x) where wff is the judgment for
well-formed formulas. Intuitively, the propositions are a subsort of some type o. This is used
in Ex. 5.31 below. Another way is to sacri�ce separation and use constants that take proofs as
arguments. This is used in Ex. 5.32 to encode a description operator, which takes a proof of
unique existence as an argument.

Notation 5.8 (Meta-Variables). We will use L and L′ as meta-variables for objects of SigL, and
we will always assume that they are given as L = (Σ;∆; R; o; true) and L′ = (Σ′;∆′;R′; o′; true ′),
respectively.

102

5.2. A META-LOGIC FOR LF

5.2.2 Signature Morphisms

De�nition 5.9 (Signature Morphisms). A SigL-morphism from L to L′ is a D-theory morphism
from (Σ;∆) to (Σ′;∆′) such that

1. σ respects the role assignment: Constants, sort symbols, rules, and judgment symbols are
mapped to objects, sort families, proofs, and judgment families, respectively.

2. σ respects o and true in the following sense: There is a term · `Σ′ k : σ(o) → o′, such that

· `Σ′ σ(true) ≡ λx:σ(o) (true ′ (k x)).

Identity and composition in SigL are inherited from ThD. That makes SigL a category.

It would be natural to require a SigL-morphism to satisfy the following stronger conditions
regarding o and true:

· `Σ′ σ(o) ≡ o′ and · `Σ′ σ(true) ≡ true ′.

Inter-theory translations typically satisfy these conditions. But they are too strong for inter-
logic translations. In the latter case, it is often useful to permit σ(o) 6≡ o′ and use a �xed term
k to bridge the gap between σ(o) and o′. Then σ(true) is determined by σ(o) and k. Of course,
k might simply be the identity. An example is given in Ex. 5.37 in Sect. 5.6.

Example 5.10. Based on the signature in Fig. 5.1, the FOL-signatures for monoids and groups
and a signature morphism between them are obtained naturally. This was already described in
Sect. 2.2.2.5. Indeed, this signature morphism maps o to o′ and true to true ′.

5.2.3 Sentences

The object part of the sentence functor is easy: The sentences are the terms f of type o modulo
equality. However, we will the types true f instead because that permits slightly more general
translations.

De�nition 5.11 (Sentences). The functor SenL : SigL → SET is de�ned by

SenL(L) := {true f | · `Σ f : o} modulo · `Σ true f ≡ true f ′

SenL(σ)(true f) := σ(true f)

5.2.4 Proof Theory

The proof theory of L is like the one of D except that only judgments are used.

De�nition 5.12 (Proof Categories). Pf L(L) is the full subcategory of Pf D(Σ) induced by those
contexts that declare only variables of judgment types. For a signature morphism σ : L → L′,
the proof translation functor Pf L(σ) is the appropriate restriction of Pf D(σ). The existence
and preservation of products are clear.

De�nition 5.13 (Truth). valL
L(F) := valD

Σ(F).

Example 5.14. Under the encoding of FOL in L, a proof from a set of formulas f1, . . . to a set
of formulas f ′1, . . . is a substitution from x1 : true f ′1, . . . to x1 : true f1, . . ., i.e., a family p1, . . .
of terms such that

x1 : true f ′1, . . . `Σ pi : true fi for i = 1,

And a sentence true f is valid if there is a closed term of type true f .

103

5.2. A META-LOGIC FOR LF

5.2.5 Model Theory

The set ∆ of an L-signature is not used in the de�nition of sentences or proof theory. It is
only used to limit the available models. Furthermore, we add axioms to ∆ that enforce proof
irrelevance, i.e., models must interpret all proofs of the same judgments in the same way.

De�nition 5.15 (Models). ModL is given as follows. ModL(L) is the full subcategory of
ModD(Σ; ∆,∆+) induced by the simple models; here ∆+ contains an axiom

Πx1:S1 . . .Πxn:Sn Πx:J Πx′:J Id(x, x′) where J := j idΓ0

for every judgment symbol j : (Γ0)type in Σ. ModL(σ) is the appropriate restriction of ModD(σ).

De�nition 5.16 (Satisfaction). For an L-signature L, a judgment J in context Γ, and an
L-model I, we de�ne:

I |=L
L Γ|J iff Elem(JΓ|JKI) 6= ∅.

In particular, this de�nes the satisfaction of L-sentences.
Notation 5.17. Since L-models are simple, we will always omit the unique p when writing
(p, α) ∈ JΓK.

Example 5.18. For FOL, models are interpretations of the signature from Fig. 5.1. The inter-
pretation of i is the universe, JoKI is the set of truth values. It can be reasonable to use further
axioms that make JoKI a set with two elements. But that is not necessary because JtrueKI

already singles out a subset of JoKI . Model-theoretically, this set can be regarded as the set of
designated truth values. It might seem necessary to add axioms that axiomatize the meaning of
⇒ and ∀. But these axioms are already present in form of the rules. Thus, we obtain a model
theoretical interpretation of the proof rules. For the satisfaction of a FOL-formula f , we obtain
I |=L

L ·|true f i� J·|true fKI 6= ∅, i.e., f is true i� J·|fKI is in the set of designated truth values.

5.2.6 Collecting the Pieces

Then we conclude the de�nition of L with the following result.

Theorem 5.19. L is a strongly sound logic.

Proof. This follows from the corresponding properties of D.

L cannot be complete because we restricted attention to simple models. For our current
motivation, the gained simplicity of the model theory outweighs the lack of completeness. We
will come back to that in Sect. 5.7.2.

Finally, we give a simple result that formalizes the intuition behind composed sorts and
judgments.

Theorem 5.20. For an L-signature L, a context Γ, an L-model I, and α ∈ JΓKI we have

1. Judgments are interpreted as booleans, and proofs are irrelevant, i.e., for all judgments J :
JΓ|JKI(α) is a singleton or empty.

2. Hypothetical judgments correspond to implication:

Iα |=L
L Γ|J → J ′ iff Iα 6|=L

L Γ|J or Iα |=L
L Γ|J ′.

3. Parametric judgments correspond to universal quanti�cation:

Iα |=L
L Γ|Πx:S J iff I(α,a) |=L

L Γ, x :S|J for all a ∈ JΓ|SKI(α).

104

5.3. DEFINING AND ENCODING LOGICS

4. Subsorts correspond to subsets:

JΓ|Σx:S JKI(α) ∼=
{
a ∈ JΓ|SKI(α) | I(α,a) |=L

L Γ, x :S|J
}
.

Proof. The �rst claims follow by a straightforward induction over the judgments. As an example,
we give the induction step for hypothetical judgments. From the induction hypothesis of Claim 1,
we know that JΓ|JKI(α) and JΓ|J ′KI(α) are a singleton or empty. Therefore, so is JΓ|J →
J ′KI(α), and it is empty i� the former is non-empty and the latter is. For parametric judgments,
it is shown similarly that there can be at most one element in JΓ|Πx:S JKI , and such an element
exists i� all JΓ, x :S|JKI are non-empty.

Claim 4: Because of Claim 1, if a ∈ JΓ|SKI(α), then JΓ|Σx:S JKI(α) contains at most one
pair (a, b). And it does so i� JΓ, x :S|JKI(α, a) is non-empty.

5.3 De�ning and Encoding Logics

L can be used both to encode logics and to de�ne them. A logic de�nition consists of a signature
category Sig and a functor Φ : Sig → SigL.

Theorem 5.21 (De�ning Logics). For every functor Φ : Sig → SigL,

L ◦ Φ := (Sig , SenL ◦ Φ, ModL ◦ Φ, |=L
Φ, Pf L ◦ Φ, valL

Φ)

is a strongly sound logic.

Recall Not. 2.19 regarding the composition of Φ and the natural transformations |= and val .

Proof. This follows immediately from Thm. 5.19 and basic properties of functors and natural
transformations.

Thus, a logic de�nition starts with a signature category and borrows all other notions from
L. A logic encoding starts with a whole logic I = (Sig ,Sen,Mod , |=,Pf , val) and a functor
Φ : Sig → SigL. That yields two logics I and L ◦ Φ. For the encoding to be useful, these have
to be related in some way. This is formalized by logic comorphisms.

De�nition 5.22 (Encoding Logics). An encoding of a logic I is a logic comorphism (Φ, α, β, γ) :
I → L.

While a logic comorphism expresses a certain structural similarity between I and L ◦Φ, it is
not enough to make the consequence relations equivalent. For that we need the following.

De�nition 5.23 (Adequacy). A logic encoding (Φ, α, β, γ) is called model-theoretically ad-
equate if it admits models expansion, i.e., each βΣ is surjective on objects. It is called proof-
theoretically adequate i� each γΣ is full, i.e., surjective on morphisms.

Proof theoretical adequacy is simply called adequacy in a proof theoretical setting. Actually,
to obtain Thm. 5.24, the fullness of γΣ can be relaxed: It is su�cient if πΣ ◦ γΣ is full where πΣ

is the projection that quotients Pf (Σ) into a poset.

Theorem 5.24. For a model- and proof-theoretically adequate logic encoding (Φ, α, β, γ) of I,
an I-signature Σ, and sets of sentences A,B ⊆ SenI(Σ):

A |=I
Σ B iff αΣ(A) |=L

Φ(Σ) αΣ(B)

A `I
Σ B iff αΣ(A) `L

Φ(Σ) αΣ(B)

105

5.4. EXAMPLES

Proof. The two results are independent and only require the respective adequacy assumption.
The model theoretical result is well-known and proved similarly to Thm. 3.14. The proof
theoretical result is easy to prove considering that γΣ is a functor Pf I(Σ) → Pf L(Φ(Σ)) and
that morphisms in the proof categories are used to de�ne provability. Note that in both cases,
the left-to-right implication holds even without adequacy.

Besides de�ning and encoding logics, there are intermediate cases: A logic can be partially
encoded and partially de�ned. For example, an institution can be encoded by an institution
comorphism, which can then be used to borrow the proof categories of L.

Theorem 5.25. If an institution comorphism (Φ, α, β) into LtoI (L) admits model expansion,
then (Sig I,SenI,Mod I, |=I,Pf L ◦ Φ, valL

Φ ◦ α) is a strongly sound logic.

Proof. This is a special case of Thm. 3.14.

This case is particularly interesting because it permits to use LF as a speci�cation language
for proof categories of a given institution.

5.4 Examples

Notation 5.26 (Twelf Syntax). When giving the examples, we will use the Twelf ASCII syntax
([PS99]) instead of the paper syntax for LF. It is de�ned as follows:

s :S s: S

A : (. . . , xi :Si, . . .)type A: ... {xi: Si} ... type

type type

A . . . , xi/si, . . . (A ... s1 ...)

λx:S A [x: S] A

Πx:S T {x: S} T

S → S′ S -> S'

λx:S t [x: S] t

f s f s

Furthermore, %infix a n c declares in�x notation for the symbol c with binding strength n
and associativity a. Similarly, pre�x notation is declared. Finally, the examples use implicit
arguments: If an unbound upper case variable X of type S′ occurs in S, then c :S abbreviates
c :ΠX:S′ S. When c is applied, the values of the implicit arguments are not provided to c; rather,
they are inferred from the context. Similarly, types of bound variables may be omitted because
they can be reconstructed.

Example 5.27 (FOL). We give an encoding (Φ, α, β, γ) of FOL in L.
Φ maps a FOL-signature Z to the L-signature (Σ;∆;R; o; true). Σ extends the signature

from Fig. 5.2 with constants f : i → . . . → i → i and p : i → . . . → i → o for the function and
predicate symbols in Z. This part is well-known (see, e.g., [Pfe00]). ∆ contains the axioms i
and ¬(true ff). The former states the non-emptiness of the universe, and the latter states that
there is no proof of ff , i.e., consistency. This also implies that JoK is not a singleton. R, o, and
true are as in Ex. 5.6. αZ is the obvious bijection. Furthermore, αZ extends to an encoding of
formulas with free variables by mapping all variables to themselves.

To de�ne βZ , assume an L-model I ′; we have to de�ne a FOL-model I := βZ(I ′). I consists
of a universe U I and interpretations sI for the function and predicate symbols in Z. For the
universe, we put U I := JiKI′ . For a function symbol f , we put f I := JfKI′ . For a predicate
symbol p taking n arguments, we put (u1, . . . , un) ∈ pI i� JtrueKI′(JpKI′(u1, . . . , un)) 6= ∅.

106

5.4. EXAMPLES

To show the satisfaction condition, assume a Z-formula F with free variables x1, . . . , xn, and
a Φ(Z)-model I ′. Let I := βZ(I ′), and u1, . . . , un ∈ U I . The satisfaction condition is a special
case of

I(u1,...,un) |=FOL
Z F iff I ′(u1,...,un) |=L

Φ(Z) x1 : i, . . . , xn : i | true αΣ(F).

This is shown by induction on F . The rules in Σ are used to establish the various cases. This
is easy to see using the intuition given by Thm. 5.20. The case for F = ff requires the axiom
¬(true ff), which implies Jtrue ff KI′ = ∅.

To show the model expansion property, assume a Z-model I. I induces to a Φ(Z)-model I ′

by putting JiKI′ := U I for the universe, JoKI′ = {∅, {∅}} for the truth values, and JsKI′ := sI

for a function or predicate symbol s. Furthermore, we interpret all connectives and quanti�ers
appropriately and put JtrueKI′ := id Then it is straightforward to check that all rules can be
interpreted and that βZ(I ′) = I.

γΣ maps from Pf FOL(Σ) as de�ned in Ex. 3.3 to Pf L(Φ(Σ)). γΣ maps a family (Fi)i∈I

to the context declaring xi : true αΣ(Fi) for all i ∈ I. And γΣ maps a family (pj)j∈J to the
substitution containing xj/pj for every j ∈ J . Here pj is the Curry-Howard representation of
the proof pj as an LF-term. Proof theoretical adequacy is easy to show.

% object level
i : type.
o : type.
tt : o.
� : o.
and : o −> o −> o. %in�x left 10 and.
or : o −> o −> o. %in�x left 10 or.
imp : o −> o −> o. %in�x left 10 imp.
not : o −> o. %pre�x 15 not.
forall : (i −> o) −> o.
exists : (i −> o) −> o.
eq : i −> i −> o. %in�x none 20 eq.

% judgment level
true : o −> type. %pre�x 0 true.

ttI : true top.
�E : true bot −> true A.

andI : true A −> true B −> true A and B.
andEl : true A and B −> true A.
andEr : true A and B −> true B.

orIl : true A −> true A or B.
orIr : true B −> true A or B.
orE : (true A −> true C) −> (true B −> true C) −> (true A or B −> true C).

impI : (true A −> true B) −> true A imp B.
impE : true A imp B −> true A −> true B.

notI : (true A −> true bot) −> true not A.

forallI : ({x} true A x) −> true forall A.
forallE : true forall A −> {x} true A x.

existsI : {x} true A x −> true exists A.
existsE : {x} (true A x −> true C) −> (true exists A −> true C).

re� : true X eq X.
sym : true X eq Y −> true Y eq X.
trans : true X eq Y −> true Y eq Z −> true X eq Z.
cong : true X eq Y −> true (F X) eq (F Y).

tnd : true A or not A.

Figure 5.2: Encoding of FOL

107

5.4. EXAMPLES

Example 5.28 (ML). Now we sketch an encoding (Φ, α, β, γ) of ML (as de�ned in Sect. 2.2.2.6) in
L. Φ maps a FOL-signature Z to the L-signature (Σ;∆;R; o; true). Σ extends the base signature
given in Fig. 5.3 with declarations of the form p :o for every boolean variable p ∈ Z. Contrary
to the encoding of FOL, the model theoretical semantics is unrelated to the interpretation of
the proof rules: While Σ declares formulas and proofs, there is nothing in Σ that would make
JoKI the set of functions from some set of worlds to the set {0, 1}. This was to be expected
because Kripke models are only one possible way to interpret modal logic. Therefore, we use
∆ to axiomatize the semantics, which is given in Fig. 5.4. The intended interpretation is for w
the set of worlds, for b the set {0, 1}, for the judgment acc the accessibility relation, and for v
the evaluation of formulas in worlds. Since ∆ is a model theoretical concept, we give it in the
syntax of Fig. 4.12. α, β, and γ are straightforward.

% object level
w : type.
b : type.
0 : b.
1 : b.
o : type.
v : o −> w −> b.
not : o −> o.
imp : o −> o −> o. %in�x left 10 imp.
box : o −> o.

% for all p ∈ Z
p : o.

% judgment level
true : o −> type.
acc : w −> w −> type.
A : true (F imp (not F imp G)).
B : true ((F imp G) imp ((G imp H) imp (F imp H))).
C : true ((not F imp F) imp F).
K : true (imp (imp (box (imp F G)) (box F)) (box G)).
MP : true (imp F G) −> true F −> true G.
Nec : true F −> true (box F).

Figure 5.3: Encoding of ML

w
¬0 ≡ 1
∀x:b.(x ≡ 0 ∨ x ≡ 1)
(v (not F) W) ≡ 1 ⇔ (v F W) ≡ 0
(v (F imp G) W) ≡ 1 ⇔ ((v F W) ≡ 0 ∨ (v G W) ≡ 1)
(v (F box G) W) ≡ 1 ⇔ ∀W ′:w.((acc W W ′) ⇒ (v F W ′))
true F ⇔ ∀W :w.(v F W) ≡ 1

Figure 5.4: Axiomatization of ML Models

Example 5.29 (HOL). We sketch an encoding of a higher-order logic with standard models.
Fig. 5.5 gives an LF signature that encodes formulas by o := tm o and the truth judgment
by true := true. This is an example where o is not a constant. It is easy to see that JlamKI

and J@KI are bijections between J·|tm (A ⇒ B)KI and the set of functions from J·|tm AKI to
J·|tm BKI .

It remains open how to de�ne variants of HOL with non-standard function spaces, i.e.,
Henkin models. It seems promising to use a variant of L where all those D-models I are used
for which P I has a least element. Then taking the interpretation of types in the least element

108

5.4. EXAMPLES

yields models that are very closely related to Henkin models, presumably the model classes are
in a natural bijection.

% object level
tp : type.
o : tp.
=> : tp −> tp −> tp. %in�x left 10 =>.
tm : tp −> type.
lam : (tm A −> tm B) −> tm (A => B).
@ : tm (A => B) −> (tm A −> tm B).
== : tm A −> tm A −> tm o.

% judgment level
true : tm o −> type. %pre�x 0 true.
re� : true S == S.
beta : true @ (lam F) S == F S.
eta : true lam (@ F) == F.

Figure 5.5: Encoding of HOL

As an example of an institution de�ned in LF, we give DFOL ([Rab06]).

Example 5.30 (DFOL). DFOL is de�ned by a functor Φ : Sig → SigL.
Sig is given as follows: Objects are the LF-signatures, which extend the base signature given

in Fig. 5.6 with declarations of the following form:

• Sort declarations: s :Πx1:tm s1 . . .Πxn:tm sn
S,

• Constant declarations: c :Πx1:tm s1 . . .Πxn:tm sn tm s,

• Predicate declarations: p :Πx1:tm s1 . . .Πxn:tm sn
o.

Morphisms are D-signature morphisms that are the identity for the symbols in ΣB . Actually,
Fig. 5.6 omits the proof rules. Those arise by extending the rules for �rst-order logic in a
straightforward way. Details are given in [Rab06].

Φ maps a Z ∈ |Sig | to (Z;∆;R; o; true) where ∆, R, o, true are given as follows. ∆ contains
only the axiom ¬(true ff). R makes S, tm, and o sorts, and true a judgment. o := o, and
true := true. Φ maps Sig-morphisms to themselves.

While [Rab06] uses LF to de�ne DFOL, it does not make use of the framework we have
presented here. Comparing the de�nitions in [Rab06] and Ex. 5.30 shows how we can extend
the elegance and simplicity of proof theoretical logic de�nitions in LF to model theoretical logics.

% object level
S : type.
tm : S −> type.
o : type.
tt : o.
� : o.
and : o −> o −> o.
or : o −> o −> o.
impl : o −> o −> o.
not : o −> o.
forall : (tm A −> o) −> o.
exists : (tm B −> o) −> o.
eq : tm A −> tm A −> o.

% judgment level
true : o −> type.

Figure 5.6: De�nition of DFOL

Ex. 5.29 already gave an example for an encoding where o is a composed sort and not just a
sort symbol. An even more complex case arises when we consider dependent type theory, e.g.,
by encoding D itself. We will not go into the details here and only give a fragment.

109

5.4. EXAMPLES

Example 5.31 (DTT). Fig. 5.7 gives a fragment of an encoding of D in L. On the object level, it
declares three syntactical sort symbols for terms, type families, and kinds, respectively, as well
as a constant tp for the special kind type. On the judgment level, it declares three judgments for
the well-formedness of kinds, the kinding of type families, and the typing of terms, respectively.
Here we have o := ΣS:tf (ofkind S tp), i.e., the sentences are those type families for which the
judgment that they are well-formed with kind tp holds. The subsort of well-formed terms of
type S is given by wft(S) := Σs:tm (oftype s S). And we have true := λp:o ¬¬wft(π1(p)), i.e.,
true assigns to every sentence p = 〈S,−〉 the judgment that there is a well-formed term of type
S. The double negation expresses the judgment that the sort wft(S) is inhabited.

% object level
tm : type.
tf : type.
kd : type.
tp : kd.
% judgment level
wfk : kd −> type.
ofkind : tf −> kd −> type.
oftype : tm −> tf −> type.

Figure 5.7: Encoding of DTT

Finally, we give an example of an extension of FOL with implicit de�nitions that we can use
to de�ne set theories. It is also an example of an L-signature that is not separated.
Example 5.32 (FOL with Implicit De�nitions). We de�ne a logic FOL with implicit de�nitions by
extending the signature in Fig. 5.2 with the declarations from Fig. 5.8. existsU is an abbreviation
for the quanti�er of unique existence. implDef takes two arguments, a formula f in a free
variable, and a proof of existsU f ; it returns a new individual. And implAx1 implAx2 give an
implicit de�nition its intended meaning. implDef can also be regarded as a description operator.

existsU : (i −> o) −> o = [f : i −> o] exists [x : i] (f x and forall [y : i] f y imp y eq x).
implDef : {f : i −> o} true existsU f −> i.
implAx1 : true (implDef F P) eq (implDef F P').
implAx2 : true F (implDef F P).

Figure 5.8: Implicit De�nitions

110

5.5. DEFINING AND ENCODING LOGIC TRANSLATIONS

5.5 De�ning and Encoding Logic Translations

Given two logics that are de�ned or encoded in L, we can de�ne or encode logic comorphisms
between them.

De�nition 5.33 (De�ning Comorphisms). For two functors Φi : Sig i → SigL where i = 1, 2, a
comorphism de�nition is a pair (Φ,m) where Φ : Φ1 → Φ2 is a functor and m : Φ1 → Φ2 ◦ Φ is
a natural transformation.

Theorem 5.34. If (Φ,m) is a comorphism de�nition from Φ1 to Φ2, then

(Φ,SenL(m),ModL(m),Pf L(m))

is a logic comorphism from L ◦ Φ1 to L ◦ Φ2.

Proof. This result does not depend on the details of L at all. It follows by basic operation on
categories using Lem. 3.5.

Thus, a comorphism between logics can be de�ned by giving a functor and a family of
L-morphisms. This is parallel to the de�nition of logics in L.

De�nition 5.35 (Encoding Comorphisms). Assume a logic comorphism µ : I1 → I2, and two
encodings µ1 and µ2 of I1 and I2. An encoding of µ is a logic comorphism modi�cation from µ1

to µ2 ◦ µ.

Thus, logics are encoded as logic comorphisms, and logic comorphisms are encoded as logic
comorphism modi�cations. Another way to think of such encodings is that instead of working
in the category LOG, we work in the slice category LOG/L.

5.6 Examples

We �nally come full circle by encoding the translation from modal logic to �rst-order logic in L.
Notation 5.36. A SigL-morphism from L to L′ is a mapping from Σ-symbols c to Σ′-terms s.
We write such a morphism σ as a list of pairs (c, σ(c)), and we use c => s as ASCII syntax for
such pairs.

Example 5.37 (Translating ML to FOL). To encode the comorphism µ (with signature transla-
tion Φ) from ML to FOL as given in Sect. 2.2.3, assume the encodings µ1 of ML (with signature
translation Φ1) and µ2 of FOL (with signature translation Φ2) as given in Ex. 5.28 and Ex. 5.27.
We need to give a logic comorphism modi�cation from µ1 to µ2 ◦ µ. More concretely, we need
for every ML-signature Z an SigL-signature morphism mZ from Φ1(Z) to Φ2(Φ(Z)). The pairs
comprising mZ are given in Fig. 5.9 where we omit the translations of the rules.

To check that mZ is a theory morphism, we need to show that the axioms of µ1(Z) hold
after their translation via mZ . We omit that step. The role preservation of mZ is easy to check.
Finally, Def. 5.9 requires a term k of type mZ(o) → o′, which in this case means (i → o) → o:
We have k = λf :i→o (forall f).

An important property of this encoding is the translation of o and true: We do not have
mZ(o) = o and mZ(true) = true. Instead, o is mapped to i → o. We can now explain the
remark after Def. 5.9 and argue why a stricter de�nition would not work. The term forall used
in mZ(true) above corresponds exactly to the last step of the de�nition of αΣ in Sect. 2.2.3.1:
There we de�ned αΣ(F) = ∀wF

w
.

More abstractly, the translation of formulas from ML to FOL is not compositional. It
consists of a compositional translation (namely F 7→ F

w
) followed by one toplevel step (namely

F
w 7→ ∀wF

w
). Such translations are typical when the semantics of one logic is encoded using

111

5.6. EXAMPLES

% object level
w => i
b => o
0 => �
1 => tt
o => i −> o
v => [f: i −> o] x
not => [f: i −> o] [x: i] (not (f x))
imp => [f: i −> o] [g: i −> o] [x: i] ((f x) imp (g x))
box => [f: i −> o] [x: i] forall [y: i] ((acc x y) imp (f y))

% for all p ∈ Z
p => @p

% judgment level
true => [f: i −> o] true (forall f)
acc => [x: i] [y: i] true (acc x y)
...

Figure 5.9: Encoding of the Translation from ML to FOL

the syntax of another logic. In those cases sentences are �rst translated to some syntactical
expressions (which is often a compositional translation); and a last step turns the intermediate
result into a sentence. The last step makes the whole translation non-compositional. And since
SigL-morphisms can only represent compositional translations, we need to accommodate for this
last step in some other way. Therefore, SenL uses the types true f as the sentences and not the
terms f as one might expect.

Another simple example for such a translation is a translation from many-valued propo-
sitional logic MVPL to �rst-order logic. The compositional part of the translation maps the
MVPL sentences to FOL terms. And a unary FOL-predicate Des is used to encode the des-
ignated truth values of MVPL. If o is the type of propositions in the encoding of MVPL, we
would have mZ(o) = i and mZ(true) = λx:i (true Des x).

As an example for the use of subsorts, we sketch a translation from HOL to ZFC. Here we
mean by ZFC the logic that arises from Ex. 5.32 by taking (i) only those signatures that contain
a binary in�x predicate symbol ∈ and the axioms of Zermelo-Fraenkel set theory with choice,
and (ii) only those signature morphisms that preserve ∈ and the axioms.

Example 5.38 (Translating HOL to ZFC). The translation (Φ,m) encodes the interpretation of
HOL in standard ZFC-models. First, we de�ne some abbreviations over ZFC:

• For a ZFC-term x of type i, let x := Σy:i (true y ∈ x), i.e., x abbreviates the subsort of
the ZFC-universe containing the elements of x.

• The function set constructor Func : i → i → i is implicitly de�nable in ZFC.

• For ZFC-terms x of type i (the domain) and f of type x → i (the function), a λ-abstraction
is implicitly de�nable in ZFC (by using the axiom of replacement), i.e., there is a term
func :Πx:i (x → i) → i.

Then we have for a HOL-signature Z that Φ(Z) contains a symbol of type i for every base
type of HOL. And the SigL-morphism mZ maps in particular:

• mZ(tp) = i, i.e., a type is mapped to an element of the ZFC-universe.

• mZ(tm) = λx:i x, i.e., a sort tm A is mapped to the subsort of i containing the elements
of mZ(A).

• mZ(⇒) = Func.

112

5.7. FUTURE WORK

• mZ(lam) = λf :A→B 〈func A (λx:A π1(f x)), p〉, i.e., HOL-λ-abstraction is mapped to the

λ-abstraction of ZFC. Here mZ(lam) has return type Func A B, and p is the ZFC-proof
that if f has domain A and B includes the image of f , then func A f is a function from
A to B.

Subsorts are needed in a lot of translations, e.g., when translating sorted �rst-order logic to
unsorted �rst-order logic. Another example for such translations are translations from a higher-
order logic in which every type is encoded as a separate LF-type to a higher-order logic in which
all types are encoded by the same type. The former is more convenient but only possible if
type-checking is decidable. An example for such a translation is the translation from HOL to
Nuprl ([Gor88, CAB+86, NSM01, SS04]). Our solution to this problem tries to be minimally
invasive to retain compatibility with existing LF encodings. Therefore, we did not consider a
framework that extends LF with explicit subtypes such as the one given in [AC01].

5.7 Future Work

5.7.1 Logical Libraries

So far our example representations of logics and logic translations do not go very deep. An
obvious next step is to use the framework to create a logical library. However, we �nd that
our framework does not scale to that level. Therefore, Part III will focus on designing a scalable
logical framework, in particular one that scales to the web.

Then future work can concentrate on using our scalable architecture as the basis of a logical
library. Such libraries have been worked on before, and it will be most bene�cial to merge our
architecture with existing ones. We intend to focus on two libraries in particular, the LF-based
proof theoretical library Logosphere ([PSK+03]), and the institution-based model theoretical
Hets system ([MML07]).

Hets As mentioned in Sect. 1.3.1, Hets ([MML07]) is a tool for the heterogeneous theory de-
velopment. It can work with translations on the inter-theory and inter-logic level. And since it
is parametric in the institution for the intra-theory level, it can act as a logical framework. How-
ever, currently Hets does not support the dynamic speci�cation of logics and logic translations
� these are hard-coded.

A natural extension would make Hets understand logic de�nitions in L. For that it will
be necessary to make the internal representations of logics instantiable so that new logics can
be created at run time. Then it is possible to parse logic de�nitions and generate the data
structures for new logics dynamically. Logic translations can be treated accordingly.

One important advantage of this is that L-de�nitions are purely declarative whereas the
current de�nitions in Hets are programmed. On the other hand, this makes Hets more expressive,
which is especially important for logic translations. We expect that extending our framework
to Delphin ([PS08]), a functional programming language based on LF, will provide a good
compromise.

This also o�ers another application, namely to use the modular development features of Hets
to build logics. For example, colimits such as pushouts can be used to combine di�erent logics
as in [Tar96] and [MTP97]. In Part III, we will pick up on the idea of using the same modular
development both for the inter-theory and the inter-logic level.

Finally, Hets can prove the correctness of inter-theory translations by combining internal
reasoning and calling external provers. But it does not o�er strong support for proof objects
and proof-checking. Here for L-de�ned logics, LF can act as a small trusted proof checker.

Logosphere The Logosphere database is designed to contain logics, logic translations, and
theorems with proofs. Currently, the database contains some logics, and users can upload

113

5.8. CONCLUSION

theorem �les via the web site. For the latter, the logic must be referenced, which is implemented
by interpreting a comment on the �rst line of the theorem �le as the �le name of the logic. Then
the two �les are concatenated and checked by the Twelf ([PS99]) implementation of LF. Retrieval
and Google-like search are planned but not implemented yet.

We see two ways how to extend Logosphere. Firstly, Logosphere works mainly on the intra-
theory level, and the support for the higher levels is not provided in a systematic way. Here the
techniques developed for institutions can provide the right intuitions. It is also a good example
of an application that can bene�t from a more scalable infrastructure, in particular techniques
for databases and search.

5.7.2 Completeness Analysis

When using L to de�ne a logic, it is a crucial question whether L ◦ Φ is complete. The same
question arises when encoding institutions as in Thm. 5.25. Completeness would always hold if
L were complete, but that is not the case due to the restriction to simple models.

We could extend L to a complete logic by admitting all Kripke models, but this would pose
further problems: Logic encodings in L must reduce all L-models, and this can be hard or even
impossible if there are too many models in the meta-logic. While some models can be thrown
out by using axioms, this is not always su�cient to obtain a comorphism into L. Furthermore,
the non-simple models can be regarded as an irrelevant artifact, for example when encoding
�rst-order logic.

However, in many situations it is irrelevant whether L is complete or not. The completeness
of the meta-logic is not a prerequisite for reasoning about the completeness of an encoded logic.
This is because only the signatures in the image of Φ are relevant for the completeness of L ◦Φ,
and completeness for that special case may be much easier to obtain than in general. In fact,
the completeness of L could even be a problem because it would always make L ◦ Φ complete,
which would preclude the encoding of incomplete logics.

The most promising direction of further research seems to be to use L as a framework in which
to carry out a general completeness proof for a large class of logics. Some completeness proofs
have been generalized in this way (e.g., in [Pet07] for Gödel-completeness in the framework of
institutions). L may help with such generic completeness proofs because it uni�es model and
proof theory in a logical framework and provides the concrete syntax needed to populate a
canonical model.

It might even be possible to reuse the canonical model we gave for D. For example, the
canonical model is always built upon a poset with a least element (in fact, it is a complete
Heyting algebra). It seems possible to reduce a D-Kripke model to a FOL-model or a Henkin
model of higher-order logic by evaluating all terms and types in this least element.

Another interesting idea is to restrict the interpretation of D-types S such that all J·|SKI(p ≤
p′) must be surjective. Such models are better behaved and can be reduced to the models of
an encoded logic more easily. (The technical reason is that for every p ∈ P I every element of
J·|SKI(p) occurs as a component in some indexed element of J·|SKI .) This property is preserved
by unit, product, and sum, but not by identity type formation. If D without identity types is
complete for such models, this might make completeness proofs much easier.

5.8 Conclusion

Our motivation was to combine model and proof theory. For that purpose, we introduced an
abstract de�nition of logic and logic translations. By extending institutions with abstract notions
of proofs and judgments, our development is conservative over the framework of institutions.
But institutions are too abstract to bene�t from the existing proof theoretical encodings, which
are most elegantly given in dependent type theory (DTT). Therefore, we obtained a model

114

5.8. CONCLUSION

theory for DTT. And we used that model theory to give a more concrete notion of proof theory
that is conservative over the Edinburgh logical framework (LF).

From the point of view of proof theory, we have given a model theoretical semantics for logic
encodings in LF by using institutions. And from the point of view of model theory, we have
given a speci�cation language for institutions by using LF. From a neutral point of view, these
results yield a logical framework that combines model theory and proof theory.

Thus, we can evaluate our requirements (R1) � (R3) from Sect. 1.3.1 in the positive.
However, as already indicated in Sect. 1.3.1 and 5.7.1, the scalability requirement (R4) requires
a separate investigation, for which we have reserved Part III.

As already argued in Sect. 1.3.1, our framework has some limitations. (i) Substructural log-
ics cannot be encoded naturally. This can be remedied in the future by using CLF ([WCPW02])
instead of LF as the base language. However, giving a model theory for CLF is complicated and
not understood yet. (ii) The support for non-compositional translations is limited. This can
be addressed by extending the notion of signature morphisms in L with translations that are
de�ned by case distinction and recursion. Since the signatures stay the same, the model theory
would not have to be changed. Such a language along with a Twelf-compatible implementation
has recently been developed ([PS08]), and we plan to integrate it into our framework. (iii) Our
de�nition of object and judgment level excludes interesting logic encodings, namely those where
the judgment level makes judgments about itself. Of course, some hierarchy of judgment levels
would be necessary to prevent this from being cyclic. The most important example are some
encodings of modal logic, for example one given in [AHMP98]: The �boxed assumptions judg-
ment� uses a judgment about proofs that asserts that a proof only used certain assumptions.
We exclude such encodings because we favor the gained simplicity. In particular, our de�nition
permits to use proof irrelevance. (iv) It remains to be seen whether stronger support for sub-
sorts will become necessary when attempting more complex translations. (v) The necessity to
restrict L to simple models is unappealing but has proved necessary so far. In Sect. 5.7.2, we
have outlined some ideas how to remedy this in the future.

Acknowledgements While the work presented in this section is original, it owes much to
discussions with Frank Pfenning and Till Mossakowski as well as Valeria de Paiva, Carsten
Schürmann, and Andrzej Tarlecki.

115

5.8. CONCLUSION

116

Part III

Logical Knowledge Management

117

Chapter 6

A Module System for Logical

Knowledge

6.1 Introduction

In this section, we introduce the module system Mmt for formal knowledge that addresses
the shortcomings of current systems. The main technical innovations are that we use a web-
scalable naming scheme, make theory morphisms �rst-class citizens, and introduce the notion
of meta-theories to account for logics and meta-logical frameworks.

Mmt is expressive enough to represent all modules systems presented in Sect. 1.1.3.2 except
for the higher-order systems and stronger forms of hiding. Our modules are called theories,
and we use named, interspersed imports, with free, explicit, partial instantiations. These are
called structures. We also provide for views, and theory morphisms are formed by com-
posing structures and views. Axioms are treated as special symbols following the Curry-Howard
correspondence, and we permit hiding. Mmt is de�ned by a formal abstract syntax, and for the
concrete syntax, we build on the OMDoc (Open Mathematical Documents, [Koh06]) format,
which already integrates much of the state of the art reviewed so far into a coherent content-
oriented markup format for mathematical knowledge.

In the rest of this section we will present the problems that motivated the work in this section
and preview our solutions.

Semantic Referencing In mathematical languages, we need to be able to refer to (i.e., iden-
tify) content objects in order to state the semantic relations. In principle, there are two ways to
access mathematical knowledge: by location (relative to a particular document or �le) and by
context (relative to a mathematical theory). The �rst one essentially makes use of the organiza-
tion structure of �le systems, and the second makes use of mathematical structuring principles
supplied by the representation format. Both approaches to resource identi�cation have their
justi�cation: Conceptually, resource identi�cation by location can be inherited from the XML
substratum and is desirable, since it can be readily mapped to current practice and transport
protocols of the internet. But resource identi�cation by location is brittle for content-oriented
formats, where the distribution of knowledge over �le system is a secondary consideration. It
is standard practice in mathematics to develop mathematical theories decentrally, and change
their location, e.g., by publishing them. Once there is a de�nition of a theory in place (e.g., in an
academic journal), other researchers add theorems to the theory in other documents. Further-
more, it is a necessary requirement for a representation format to be closed under concatenation
so that we can aggregate mathematical knowledge in databases, e.g., for computer-supported
learning. This breaks the other assumption in URI-based systems for identi�cation by location:

119

6.1. INTRODUCTION

that we can rely on document-unique identi�ers for document fragments.
The di�culty for resource identi�cation by context is that it should still be compatible with

the URI-based approach which is sometimes called the �plumbing of the Web�, since it mediates
all resource transport over the internet. Note that the OpenMath 2 standard ([BCC+04])
already pioneered resource identi�cation by context for symbols: A symbol is identi�ed by the
symbol name and content dictionary, which in turn is identi�ed by the CD name and the CD
base, i.e., the URI where the CD is located. A mapping from this symbol identi�cation triple
to a URI is only straightforward via the one-CD-one-�le restriction imposed by OpenMath,
which is too restrictive in general. The current OMDoc version 1.2 restricts theory names to
be document-unique enabling OpenMath-style resource identi�cation by context for symbols;
statement- and theory-level objects are relegated to identi�cation by location.

A major problem for identi�cation by content in OMDoc is that it uses unnamed imports
with renaming, which signi�cantly hinders multiple inheritance. Therefore, we introduce a new
way for reference by context that allows for multiple inheritance and hierarchic namespaces and
is easy to implement. Thus, every declaration including those that are imported from other
theories is uniquely identi�able by a URI. Reference by location is supported as a special case.

Libraries and Queries Our main concept is that of a library, which formalizes the idea of a
database for mathematical knowledge. All operations center around the current library. In par-
ticular, all references to named entities are resolved via special lookup functions that query the
library. This is an important aspect of the scalability of Mmt: It permits to distribute knowl-
edge management services over di�erent machines that interconnect via the lookup functions �
possibly indirectly with a component maintaining the library in between.

Furthermore, libraries serve to encapsulate state by storing the symbols de�ned in the context
so that implementations of speci�c object languages can focus on the mathematically challenging
parts, e.g., type inference and proof search.

Named Imports as Objects Consider the running example from Fig. 1.1. The theory
monoid is inherited twice by the theory ring. Thus, for example, the composition operation
of monoid must give rise to two di�erent operations in the theory ring, namely addition and
multiplication. This was not supported by OMDoc 1.2.

The integration of named imports into OMDoc has two consequences. Firstly, the theory
graph structure becomes more complicated and makes the need of a fully formalized notion
of well-formedness even bigger than it had been. And secondly, imports become much closer
conceptually to symbols. Thus, imports play a twofold role. On the level of theories, they
are morphisms that translate between theories. On the level of declarations, they behave like
symbols in that they have declarative character. The latter nature is more adequately captured
by calling them structures, and we are so far lacking a name that better re�ects their double
nature. O�cially, we will call them structures, and we will appeal to the import metaphor where
helpful for the intuition.

It is a crucial and novel feature of our system that this dual role of imports is fully captured
and utilized: Whenever possible, structures are treated like symbols, and we even changed our
ontology to re�ect this: We use the concept constant for symbols in the usual sense as they
are used to represent sorts, operations, etc., and we use the concept symbol to unify the con-
cepts constant and structure. In particular, structures are themselves subject to instantiations:
Instantiations map constants to terms and structures to theory morphisms.

To provide a clearer intuition for the instantiation of imports with theory morphisms, let us
look at the pseudo code fragment of the object-oriented program in the left part of Fig. 6.1. It
corresponds to the situation of Fig. 1.2. The class Order provides the interface of an ordering
relation, which is implemented by the class OrdNat for the ordered natural numbers. The
class OrdList provides the functionality of ordered lists after being instantiated with an object

120

6.1. INTRODUCTION

implementing the class Order. The constructor of Main declares �rst an instance n of OrdNat
and then uses it to obtain an instance l of OrdList that implements the ordered lists of natural
numbers. Thus, Main instantiates Order twice, namely via n and l.e. Furthermore, the second
instantiation passes n, which is itself an instantiation, as an argument to the constructor of
OrdList.

class Order {
...

}

class OrdNat implements Order {
...

}

class OrdList {
object e : Order
constructor OrdList(e : Order) {this.e := e}
...

}

class Main {
constructor Main {
object n = new OrdNat
object l = new OrdList(n)

}
}

<theory name="Order">
...

</theory>

<theory name="OrdNat">
...

</theory>

<view name="m" from="Order" to="OrdNat"/>
...

</view>

<theory name="OrdList">
<import name="e" from="Order"/>
...

</theory>

<theory name="Main">
<import name="n" from="OrdNat"/>
<import name="l" from="OrdList">
<maps name="e">Main/n ◦ m</maps>

</import>
</theory>

Figure 6.1: Instantiations

We apply this principle of instantiation to mathematical theories. In our mathematical
module system, using a simpli�ed version of its XML encoding (see Sect. 8.1), the above example
would look as in the right part of Fig. 6.1. Main imports from OrdNat and OrdList, and
OrdList imports from Order. The fact that OrdNat implements Order is expressed by an
explicit theory morphism m (which we call a view; in the terminology of development graphs, it
is a theorem link). Thus, there are two theory morphisms from Order to Main: the compositions
m1 := Main/l ◦ OrdList/e and m2 := Main/n ◦m. The semantics of the instantiation of e with
Main/n ◦ m in the import l is that m1 and m2 are equal. Note that m1 corresponds to the
dereferentiation l.e.

Meta-Theories We are interested in a representation system for mathematical knowledge
that is based on a structural view of formulas. It is one of the attractive features of such a system
that we can concentrate on structural issues and leave lexical ones to an external de�nition
mechanism like content dictionaries and theories. In particular, this allows us to operate without
choosing a particular foundational logical system, as we can just supply content dictionaries for
the symbols in the particular logic. Thus, logics and in the same way logical frameworks become
theories, and we speak of the logics-as-theories approach. This is particularly attractive in
a setting where the content dictionaries are allowed to be informally given in natural language
as it allows us to mimic mathematical practice where the meta-mathematics are usually given
that way.

But conceptually, it is helpful to distinguish levels here. To state a property in the theory
ring like commutativity of the operation ◦ over the base set R in ∀a, b ∈ R.a ◦ b = b ◦ a, we use
symbols ∀ and = from �rst-order logic together with ◦ and R from ring theory. Even though it
is structurally possible to just build a theory of rings by simply importing �rst-order logic, this
would fail to describe the meta-relationship between the theories. But this relation is crucial
when interpreting ring: The symbols of the meta-language are not interpreted because a �xed
interpretation is given in the context. Therefore we think of �rst-order logic as themeta-theory

121

6.1. INTRODUCTION

of the theory ring. And we permit every theory to refer to another theory as its meta-theory.

LF Isabelle

fol hol

monoid ring

meta meta

meta meta

m

m′

i

Figure 6.2: Meta-Theories

For example, in Fig. 6.2, the running example is
extended by adding meta-theories. The theory fol
for �rst-order logic is the meta-theory for monoid and
ring. And the theory LF for the logical framework
LF is the meta-theory of fol and the theory hol for
higher-order logic. Now the crucial advantage of the
logics-as-theories approach is that on all three levels
the same module system can be used: For example,
the morphisms m and m′ indicate possible transla-
tions on the levels of logical frameworks and logics,
respectively.

Hiding Hiding in formal speci�cations has been
studied in [ST88], [GR04], [CoF04], and [MAH06]. A
natural way to model hiding is by a symbol mapping µ : S → T where T contains the internally
used symbols and S contains the publicly visible ones. Often µ is an inclusion, e.g., in OMDoc
1.2. Hiding has the technical di�culty that usually T is given �rst and S is obtained from
T by hiding some symbols. Thus, the direction of the mapping µ is against the direction of
the development. This is responsible, for example, for the loss of �attenability in development
graphs with hiding ([MAH06]).

Our motivation is to integrate the main functionality of hiding while retaining conceptual
simplicity. Therefore, instead of using hiding maps µ : S → T , we model hiding by partial maps
from T to S, which are unde�ned for the symbols that are to be hidden. Thus, we are able
to treat hiding as a special case of instantiation. In particular, all our theory graphs remain
�attenable.

Hiding is usually applied to symbols whose values can be inferred from the other parts of
the speci�cation. For example, in the example in Fig. 1.3, the values of the hidden operations
are uniquely determined by the axioms. In general, it is reasonable to hide symbols added in
conservative extensions, i.e., symbols that have direct or indirect (via axioms) de�nitions. It is
also possible to hide symbols that are loosely axiomatized. To reason about such hidings, the
proof system given in [MAH06] uses an oracle for conservative extensions.

An important property of theory morphisms µ from S to T is that they induce a mapping
from S-expressions to T -expressions. This property is usually lost if µ uses hiding. However,
if µ hides a de�ned symbol c, it is still possible to map all S-objects to T -objects: c can be
replaced by its de�nition before applying µ. If c is only determined indirectly by axioms, this
is not always possible because the axiomatic characterization of c may or not be constructive.
However, an axiomatic de�nition can be turned into a direct one if the meta-theory of S and T
has a description operator. Similarly, if c is loosely axiomatized and hidden, it is still possible
to map c from S to T if there is a choice operator in T . Therefore, we contend that by using
meta-theories with description or choice operators, the above cases can be reduced to the hiding
of de�ned symbols.

Since it is easy to check syntactically whether a constant has a de�nition, it would be possible
to restrict hiding to de�ned constants. We go one step further and permit the hiding of any
constants. But we still retain the property that all morphisms µ extend to maps between the
objects: Whenever µ is applied to an object that contains an unde�ned hidden symbols, the
whole object is hidden. Of course, then we have to keep track of hidden objects.

Propositions as Types and Proofs as Terms We do not provide syntax for axioms and
proofs. Instead, we use the Curry-Howard correspondence ([CF58, How80]) in order to
express formulas and proofs as terms. Then the relation �p proves F � between proofs and

122

6.2. SYNTAX

formulas is reduced to the typing relation �p has type true F � where true is a type constructor
de�ned by the respective meta-theory, i.e., the logic. Declaring an axiom F is reduced to
declaring a constant of type true F . And declaring a theorem F with proof p is reduced to
declaring a constant of type true F with de�niens p. Furthermore, proof rules can be speci�ed as
constants as well if an appropriate meta-theory for a logical framework is used. That signi�cantly
reduces the conceptual complexity without losing expressivity.

6.2 Syntax

In this section we cover the syntactical aspects of our module system: We specify a formal syntax
for the Mmt module system that we use in the mathematical analysis of the Mmt language.

6.2.1 A Four-Level Model of Mathematical Knowledge

monoid
comp, unit

cgroup
mon, inv

ring
add
mult

integers
0,+,−

v2{
mon/comp 7→ +
mon/unit 7→ 0

}
or mon 7→ v1

inv 7→ −
cgroup?mon

ring?add

ring?mult
v1
comp 7→ +
unit 7→ 0

v2

import

view

Figure 6.3: Example

Example 6.1. We begin the exposition of our language with a simple motivating example that
already shows some of the crucial features of Mmt and that we will use as a running example:
Fig. 6.3 gives a theory graph for a portion of the algebraic hierarchy. The bottom node represents
the theory of monoids, which declares operations for composition and unit. (We omit the axioms
and the types here.) The theory cgroup for commutative groups arises by importing from monoid
and adding an operation inv for the inverse element. This theory does not have to declare the
operations for composition and unit again because they are imported from the theory of monoids.
The import is named mon, and it can be referenced by the quali�ed name cgroup?mon; it induces
a theory morphism from monoids to commutative groups.

Then the theory of rings can be formed by importing from monoid (via an import named
mult that provides the multiplicative structure) and from cgroup (via an import named add
that provides the additive structure). Because all imports are named, di�erent import paths
can be distinguished: By concatenating import and symbol names, the theory ring can access
the symbols add/mon/comp (i.e., addition), add/mon/unit (i.e, zero), add/inv (i.e., additive
inverse), mult/comp (i.e., multiplication), and mult/unit (i.e., one).

The node on the right side of the graph represents a theory for the integers declaring the
operations 0, +, and −. The fact that the integers are a monoid is represented by the view v1.
It is a theory morphism that is explicitly given by its interpretations of comp as + and of unit
as 0. (If we did not omit axioms, this view would also have to interpret all the axioms of monoid
as � using Curry-Howard representation � proof terms.)

The view v2 is particularly interesting because there are two ways to represent the fact
that the integers are a commutative group. Firstly, all operations of cgroup can be interpreted

123

6.2. SYNTAX

as terms over integers: This means to interpret inv as − and the two imported operations
mon/comp and mon/unit as + and 0, respectively. Secondly, v2 can be constructed along the
modular structure of cgroup and use the existing view v1 to interpret all operations imported by
mon. In Mmt, this can be expressed elegantly by the interpretation mon 7→ v1, which interprets
a named import with a theory morphism. The intuition behind such an interpretation is that
it makes the right triangle commute: v2 is de�ned such that v2 ◦ cgroup?mon = v1. Clearly,
both ways lead to the same theory morphism; the second one is conceptually more complex but
eliminates redundancy. (This redundancy is especially harmful when axioms are considered,
which must be interpreted as proofs.)

Ontology and Grammar We characterize mathematical theories on four levels: the docu-
ment,module, symbol, and object level. On each level, there are several kinds of expressions.
In Fig. 6.4, the relations between the Mmt-concepts of the �rst three levels are de�ned in an
ontology. The Mmt knowledge items are grouped into six primitive concepts. Documents
(Doc, e.g., the whole graph in Fig. 6.3) comprise the document level. Theories (Thy, e.g.,
monoid and integers) and views (V iw, e.g., v1 and v2) comprise the module level. And
�nally constants (Con, e.g., comp and inv) and structures (Str, e.g., mon and add) as well
as assignments to them (ConAss, e.g., inv 7→ −, and StrAss, e.g., mon 7→ v2) comprise the
symbol level.

In addition, we de�ne four unions of concepts: First modules (Mod) unite theories and
views, symbols (Sym) unite constants and structures, and assignments (Ass) unite the as-
signments to constants and structures. The most interesting union is that of links (Lnk): They
unite the module level concept of views and the symbol level concept of structures. Structures
being both symbols and links makes our approach balanced between the two di�erent ways to
understand them.

Con Str

Sym

ConAss StrAss

Ass

Thy Lnk V iw

Mod

Docsubconcept of

declared in

Figure 6.4: The Mmt Ontology

These higher three levels are called the
structural levels because they represent the
structure of mathematical knowledge: Doc-
uments are sets of modules, theories are sets
of symbols, and links are sets of assignments.
The actual mathematical objects are repre-
sented at the fourth level: They occur as ar-
guments of symbols and assignments. Mmt
provides a formalization of the structural
levels while being parametric in the speci�c
choice of objects used on the fourth level.

The declarations of the four levels along
with the meta-variables we will use to refer-
ence them are given in Fig. 6.5 and 6.6. The
Mmt knowledge items of the structural levels are declared with unquali�ed names (underlined
Latin letter) in a certain scope and referenced by quali�ed names (Latin letter). Greek letters
are used as meta-variables for composed expressions.

The grammar forMmt is given in Fig. 6.7 where ∗, +, |, and [−] denote repetition, non-empty
repetition, alternative, and optional parts, respectively. The rules for the non-terminals URI
and pchar are de�ned in RFC 3986. Thus, g produces a URI without a query or a fragment.
(The query and fragment components of a URI are those starting with the special characters ?
and #, respectively.) pchar, essentially, produces any Unicode character, possibly using percent-
encoding for reserved characters. (Thus, percent-encoding is necessary for the characters ?/#[]%
and all characters generally illegal in URIs.) In this section, we will describe the syntax ofMmt
and the intuition behind it in a bottom-up manner, i.e., from the object to the document level.
Alternatively, the following subsections can be read in top-down order.

124

6.2. SYNTAX

Level Declared concept
Document document g
Module theory T, S, R,M

view v
structure or view m

Symbol symbol s
constant c
structure h, i, j
assignment to a constant
assignment to a structure

Object variable x

Figure 6.5: Meta-Variables for References to Mmt Declarations

Variable Type
Λ library (list of document declarations)
γ document body (list of module declarations)
ϑ theory body (list of symbol declarations)
σ view/structure body (list of assignments to symbols)
ω term
µ morphism

Figure 6.6: Meta-Variables for Mmt Expressions

6.2.1.1 The Object Level

We distinguish two kinds of objects: terms and morphisms. Atomic terms are references to
declared constants, and general terms are built up from the constants via operations such as
application and binding as detailed below. Atomic morphisms are references to structures and
views, and general morphisms are built up using structures, views, identity, and composition as
detailed below.

TheMmt objects are typed. For terms, we do not distinguish terms and types syntactically:
Rather, typing is a binary relation on terms that is not further speci�ed by Mmt. Instead, it is
left to be determined by the foundation, andMmt is parametric in the speci�c choice of typing
relation. In particular, terms may be untyped or may have multiple types. For morphisms, the
domain theory doubles as the type. Thus, every morphism has a unique type.

Well-formedness of objects is checked relative to a home theory (see Sect. 6.3). For a term
ω, the home theory must declare or import all symbols that occur in ω. For a morphism, the
home theory is the codomain. Objects with home theory T are also called objects over T .
These relations are listed in Fig. 6.8.

Terms Mmt-terms are a generalization of a fragment of OpenMath objects ([BCC+04]).
They can be

• constants c declared or imported by the home theory,

• variables x declared by a binder,

• applications @(ω, ω1, . . . , ωn) of ω to arguments ωi,

• bindings β(ω1,Υ, ω2) by a binder ω1 of a list of variables Υ with scope ω2,

125

6.2. SYNTAX

Library Λ ::= Doc∗

Document Doc ::= g := {γ}
Document body γ ::= Mod∗

Module Mod ::= Thy | V iw

Theory Thy ::= T
[T]
:= {ϑ}

View V iw ::= v : T → T
[µ]
:= {σ} | v : T → T := µ

Theory body ϑ ::= Sym∗

Symbol Sym ::= Con | Str
Link body σ ::= Ass∗

Assignment Ass ::= ConAss | StrAss
Constant Con ::= c : ω := ω | c : ω | c := ω | c

Structure Str ::= i : T
[µ]
:= {σ} | i : T := µ

Ass. to constant ConAss ::= c 7→ ω
Ass. to structure StrAss ::= i 7→ µ
Term ω ::= > | c | x | ωµ | @(ω, ω+)

| β(ω, Υ, ω) | α(ω, ω 7→ ω)
Variable context Υ ::= · | Υ, ω if str(ω) of the form x
Morphism µ ::= idT | i | v | µ • µ
Document reference g ::= URI, no query, no fragment
Module reference T, v ::= g?T | g?v
Symbol reference c, i ::= T?c | T?i
Assignment reference a ::= v?c | v?i
Local name T , v, c, i ::= C+[/C+]∗

Variable name x ::= C+

Character C ::= pchar
URI, pchar see RFC 3986 [BLFM05]

Figure 6.7: The Grammar for Raw Mmt Expressions

• attributions α(ω1, ω2 7→ ω3) to a term ω1 with key ω2 and value ω3,

• morphism applications ωµ of µ to ω,

• special term >.

A term over T , may use the constant T?c to refer to a previously declared symbol c. And if i
is a previously declared structure instantiating S, and c is a constant declared in S, then T may
use T?i/c to refer to the imported constant. By concatenating structure names, any indirectly
imported constant has a unique quali�ed name.

The attributions of OpenMath mean that every term can carry a list of key-value pairs
that are themselves OpenMath objects. In particular, attributions are used to attach types to
bound variables. In OpenMath, the keys must be symbols, which we relax to obtain a more
uniform syntax. Because OpenMath speci�es that nested attributions are equivalent to a single
attribution, we can introduce attributions of multiple key-value pairs as abbreviations:

α(ω, ω1 7→ ω′1, . . . , ωn 7→ ω′n) := α(. . . (α(ω, ω1 7→ ω′1), . . .), ωn 7→ ω′n)

We use the auxiliary function str(·) to strip toplevel attributions from terms, i.e.,

str(α(ω,_)) = str(ω) str(ω) = ω otherwise.

126

6.2. SYNTAX

Atomic object Composed object Type Checked relative to
Terms constant term term home theory
Morphisms structure/view morphism domain codomain

Figure 6.8: The Object Level

This is used in the grammar to make sure that only attributed variables and not arbitrary terms
may occurs in the context bound in a binding.

The special term > is used for terms that are inaccessible because they refer to constants that
have been hidden by a structure or view. > is also used to subsume hidings under assignments
(see below).

Example 6.2 (Continued). The running example only contains the atomic terms given by sym-
bols. Composed terms arise when types and axioms are covered. For example, the type of the
inverse in a commutative group is @(→, ι, ι). Here → represents the function type constructor
and ι the carrier set. These two constants are not declared in the example. Instead, we will
add them later by giving cgroup a meta-theory, in which these symbols are declared. A more
complicated term is the axiom for left-neutrality of the unit:

ωe := β(∀, α(x, oftype 7→ ι),@(=,@(e?monoid?comp, e?monoid?unit, x), x)).

Here ∀ and = are further constants that must be declared in the so far omitted meta-theory. The
same applies to oftype, which is used to attribute the type ι to the bound variable x. We assume
that the example is located in a document with URI e. Thus, for example, e?monoid?comp is
used to refer to the constant comp in the theory monoid.

Morphisms Morphisms are built up by compositions µ1 • µ2 of structures i, views m, and
the identity idT of T . Here µ1 is applied before µ2, i.e., • is composition in diagram order.
Morphisms are not used in OpenMath, which only has an informal notion of theories, namely
the content dictionaries, and thus no need to talk about theory morphisms. A morphism ap-
plication ωµ takes a term ω over S and a morphism µ from S to T , and returns a term over
T . Similarly, a morphism over S, e.g., a morphism µ′ from R to S becomes a morphism over
T by taking the composition µ′ • µ. The normalization given below will permit to eliminate all
morphism applications.

Example 6.3 (Continued). In the running example, an example morphism is

µe := e?cgroup?mon • e?v2.

It has domain e?monoid and codomain e?integers. The intended semantics of the term ωe
µe

is that it yields the result of applying µe to ωe, i.e.,

β(∀, α(x, oftype 7→ ι),@(=,@(+, 0, x), x)).

Here, we assume µe has no e�ect on those constants that are inherited from the meta-theory.
We will make that more precise below.

6.2.1.2 The Symbol Level

We distinguish symbol declarations and assignments to symbols. Declarations are the con-
stituents of theories: They introduce named objects, i.e., the constants and structures. Sim-
ilarly, assignments are the constituents of links: A link from S to T can be de�ned by a
sequence of assignments that instantiate constants or structures declared in S with terms or
morphisms, respectively, over T . This yields four kinds of knowledge items which are listed in
Fig. 6.9. Both constant and structure declarations are further subdivided as explained below.

127

6.2. SYNTAX

Declaration Assignment
Terms of a constant Con to a constant c 7→ ω
Morphisms of a structure Str to a structure i 7→ µ

Figure 6.9: The Statement Level

Declarations There are two kinds of symbols:

• Constant declarations c : τ := δ declare a constant c of type τ with de�nition δ.
Both the type and the de�nition are optional yielding four kinds of constant declarations.
If both are given, then δ must have type τ . In order to unify these four kinds, we will
sometimes write ⊥ for an omitted type or de�nition.

• Structure declarations i : S
[µ]
:= {σ} declare a structure i from the theory S de�ned

by assignments σ. Such structures can have an optional meta-morphism µ (see below).
Alternatively, structures may be introduced using an existing morphism: i : S := µ,
which simply means that i serves as an abbreviation for µ; we call these structures de�ned
structures. While the domain of a structure is always given explicitly (in the style of a
type), the codomain is always the theory in which the structure is declared. Consequently,
if i : S := µ is declared in T , µ must be a morphism from S to T .

In well-formed theory bodies (see Sect. 6.3), the declared or imported names must be unique.

Assignments Parallel to the declarations, there are two kinds of assignments that can be
used to de�ne a link m:

• Assignments to constants of the form c 7→ ω express that m maps the constant c of
S to the term ω over T . Assignments of the form c 7→ > express that the constant c is
hidden, i.e., m is unde�ned for c.

• Assignments to structures of the form i 7→ µ for a structure i declared in S and a
morphism µ over (i.e., into) T express that m maps the structure i of S to µ. This results
in the commuting triangle S?i •m = µ.

Both kinds of assignments must type-check. For a link m with domain S and codomain T
de�ned by among others an assignment c 7→ ω, the term ω must type-check against τm where
τ is the type of c declared in S. This ensures that typing is preserved along links. For an
assignment i 7→ µ where i is a structure over S of type R, type-checking means that µ must be
a morphism from R to T .

Virtual Symbols Intuitively, the semantics of a structure i with domain S declared in T is
that all symbols of S are imported into T . For example, if S contains a symbol s, then i/s is
available as a symbol in T . In other words, the slash is used as the operator that dereferences
structures. Another way to say it is that structures create virtual or induced symbols. This
is signi�cant because these virtual symbols and their properties must be inferred, and this
is non-trivial because it is subject to the translations given by the structure. While these
induced symbols are easily known to systems built for a particular formalism, they present
great di�culties for generic knowledge management services.

Similarly, every assignment to a structure induces virtual assignments to constants. Con-
tinuing the above example, if a link with domain T contains an assignment to i, this induces
assignments to the imported symbols i/s. Furthermore, assignments may be deep in the fol-
lowing sense: If c is a constant of S, a link with domain T may also contain assignments to the

128

6.2. SYNTAX

virtual constant i/c. Of course, this could lead to clashes if a link contains assignments for both
i and i/c; links with such clashes are not well-formed.

Example 6.4 (Continued). The symbol declarations in the theory cgroup are written formally
like this:

inv : @(→, ι, ι) and mon : e?monoid := {}.

The latter induces the virtual symbols e?cgroup?mon/comp and e?cgroup?mon/unit.
Using an assignment to a structure, the assignments of the view v2 look like this:

inv 7→ e?integers?− and mon 7→ e?v1.

The latter induces virtual assignments for the virtual symbols e?cgroup?mon/comp as well as
e?cgroup?mon/unit. For example, e?cgroup?mon/comp is mapped to e?monoid?compe?v1.

The alternative formulation of the view v2 arises if two deep assignments to the virtual
constants are used instead of the assignment to the structure mon:

mon/comp 7→ e?integers? + and mon/unit 7→ e?integers?0

6.2.1.3 The Module Level

The module level consists of two kinds of declarations: theory and view declarations.

• Theory declarations T
[M]
:= {ϑ} declare a theory T de�ned by a list of symbol declara-

tions ϑ, which we call the body of T . Theories have an optional meta-theory M .

• View declarations v : S → T
[µ]
:= {σ} declare a link v from S to T de�ned by a list

of assignments σ. If S has a meta-theory M , a meta-morphism µ from M to T must
be provided. Just like structures, views may also be de�ned by an existing morphism:
v : S → T := µ.

Meta-Theories Above, we have already mentioned that theories may have meta-theories and
that links may have meta-morphisms. Meta-theories provide a second dimension in the graph
induced by theories and links. If M is the meta-theory of T , then there is a special structure
instantiating M in T , which we denote by T?... M provides the syntactic material that T can
use to de�ne the semantics of its symbols: T can refer to a symbol s of M by T?../s. While
meta-theories could in principle be replaced with structures altogether, it is advantageous to
make them explicit because the conceptual distinction pervades mathematical discourse. For
example, systems can use the meta-theory to determine whether they understand a speci�c
theory they are provided as input.

Because theories S with meta-theory M implicitly import all symbols of M , a link from S to
T must provide assignments for these symbols as well. This is the role of the meta-morphism:
Every link from S to T must provide a meta-morphism, which must be a morphism from M
to T . De�ned structures or views with de�nition µ do not need a meta-morphism because a
meta-morphism is already implied by the meta-morphisms of the links occurring in µ.

Example 6.5 (Continued). An Mmt theory for the logical framework LF could be declared like
this

lf := {type, funtype, . . .}

where we only list the constants that are relevant for our running example. If this theory is
located in a document with URI m, we can declare a theory for �rst-order logic in a document
with URI f like this:

fol
m?lf
:= {i : ??../type, o : ??../type, equal : @(??../funtype, ??i, ??i, ??o), . . .}

129

6.2. SYNTAX

Here we already use relative names (see Sect. 8.1.2) in order to keep the notation readable:
Every name of the form ??s is relative to the enclosing theory: For example, ??i resolves to
f?fol?i. Furthermore, we use the special structure name .. to refer to those constants inherited
from the meta-theory. Again we restrict ourselves to a few constant declarations: types i and o
for terms and formulas and the equality operation that takes two terms and returns a formula.

Then the theories monoid, cgroup, and ring can be declared using f?fol as their meta-
theory. For example, the declaration of the theory cgroup �nally looks like this:

cgroup
f?fol
:=

{
inv : @(??../../funtype, ??i, ??i), inv : e?monoid

e?cgroup?..
:= {}

}
Here ../../funtype refers to the function type constant declared in the meta-theory of the
meta-theory. And the structure mon must have a meta-morphism with domain f?fol and
codomain e?cgroup. This is trivial because the meta-theory of e?cgroup is also f?fol: The
meta-morphism is simply the implicit structure e?cgroup?.. via which e?cgroup inherits from
f?fol.

A more complicated meta-morphism must be given in the view v1 if we assume that the
meta-theory of integers is some other theory, i.e., a representation of set theory.

Structures and Views Both structures and views from S to T are de�ned by a list of
assignments σ that assigns T -objects to the symbols declared in S. And both induce theory
morphisms from S to T that permit to map all objects over S to objects over T . The major
di�erence between structures and views is that a view only relates two �xed theories without
changing either one. On the other hand, structures from S to T occur within T because they
change the theory T . Structures have de�nitional �avor, i.e., the symbols of S are imported
into T . In particular, if σ contains no assignment for a constant c, this is equivalent to copying
(and translating) the declaration of c from S to T . If σ does provide an assignment c 7→ ω, the
declaration is also copied, but in addition the imported constant receives ω as its de�niens.

Views, on the other hand, have theorem �avor: σ must provide assignments for the symbols
of S. If a constant c : τ represents an axiom stating τ , giving an assignment c 7→ π means that
π is a proof of the translation of τ .

Therefore, the assignments de�ning a structure may be (and typically are) partial whereas a
view should be total. This leads to a crucial technical di�culty in the treatment of structures:
Contrary to views from S to T , the assignments by themselves in a structure from S to T do
not induce a theory morphism from S to T � only by declaring the structure do the virtual
symbols become available in T that serve as the images of (some of) the symbols of S. This is
unsatisfactory because it makes it harder to unify the concepts of structures and views.

Therefore, we admit partial views as well. As it turns out, this is not only possible,
but indeed desirable. A typical scenario when working with views is that some of the speci�c
assignments making up the view constitute proof obligations and must be found by costly
procedures. Therefore, it is reasonable to represent partial views, namely views where some
proof obligations have already been discharged whereas others remain open. Thus, we use
hiding to obtain a semantics for partial views: All constants for which a view does not provide
an assignment are implicitly hidden, i.e., > is assigned to them.

If a link m from S to T is applied to an S-constant that is hidden, there are two cases: If the
hidden symbol has a de�nition in S, it is replaced by this de�nition before applying the link. If
it does not have a de�nition, it is mapped to >. Hiding is strict: If a subterm is mapped to >,
then so is the whole term. In that case, we speak of hidden terms.

6.2.1.4 The Document Level

Document declarations are of the form g := {γ} where γ is a document body and g is a URI
identifying the document. The meaning of a document declaration is that γ is accessible via

130

6.2. SYNTAX

the name g. Since g is a URI, it is not necessarily only the name, but can also be the primary
location of γ. By forming lists of documents, we obtain libraries, which represent mathematical
knowledge bases. Special cases of libraries are single self-contained documents and the internet
seen as a library of Mmt documents.

Documents provide the border between formal and informal treatment: How documents are
stored, copied, cached, mirrored, transferred, and combined is subject to knowledge management
services that may or may not take the mathematical semantics of the document bodies in the
processed documents into account. For example, libraries may be implemented as web servers,
�le systems, databases, or any combination of these. The only important thing is that they
provide the query interface described below.

Theory graphs are the central notion of Mmt. The theory graph is a directed acyclic
multigraph. The nodes are all theories of all documents in the library. And similarly, the edges
are the structures and views of all documents. Then theory morphisms can be recovered as the
paths in the theory graph.

6.2.2 Querying a Library

Mmt is designed to scale to a mathematical web. This means that we de�ne access functions to
Mmt libraries that have the form of HTTP requests to a RESTful web server [Fie00]. Speci�-
cally, there is a lookup function that takes a library Λ and a URI U as arguments and returns
an Mmt fragment Λ(U). This speci�es the behavior of a web server hosting an Mmt library
in response to GET requests. Furthermore, all possible changes to an Mmt library can be for-
mulated as POST, PUT, and DELETE requests that add, change, and delete knowledge items,
respectively.

It is non-trivial to add such a RESTful interface to formal systems a posteriori. It requires
the rigorous use of URIs as identi�ers for all knowledge items that can be the object of a change.
And it requires to degrade gracefully if the documents in a library are not in the same main
memory or on the same machine. In large applications, it is even desirable to load only the
relevant parts of a document into the main memory and request further fragments on demand
from a low-level database service. In Mmt, web-scalability is built into the core: All operations
on a library Λ including the de�nition of the semantics only depend on the lookup function
Λ(−) and not on Λ itself. In particular, two libraries that respond in the same way to lookup
requests are indistinguishable by design. Therefore, Mmt scales well to web-based scenarios.

As a motivating example, we trace the lookup of the name g?T?i1/ . . . /in/s. First, g is
looked up returning a document. Within this document, a theory with name T is looked up
returning a theory g?T , let us call it S0. Then a structure named i1 is looked up in this theory's
body. If this structure has domain S1, a structure named i2 is looked up in the body of S1,
and so on. This means to successively look up the structure Sr−1?ir, i.e., g?T?i1/ . . . /ir with
domain Sr for r = 1, . . . , n. Finally, the lookup algorithm �nds the symbol Sn?s.

This symbol is not yet the result of the lookup � rather, it must be translated back along the
traversed structures. In the example, it must be translated along the morphism µ := Sn−1?in •
. . . • S0?i1. For a constant declaration s : τ := δ, this means to apply µ to τ and δ ultimately
returning the constant i1/ . . . /in/s : τµ := δµ. And for a structure declaration s : R := {σ},
this means to take the composition Sn?s • µ and thus to return i1/ . . . /in/s : R := Sn?s • µ.

In the following we will give the formal de�nition of the lookup by specifying the functions
listed in Fig. 6.10. These functions de�ne the domain and the result of the lookup, grouped
according to the level of the looked up knowledge item.

Document and Module Level The lookup of a document in a library Λ is straightforward:

Λ(g) := γ if g := {γ} in Λ

And we de�ne Doc(Λ) as the set of document names g for which Λ(g) is de�ned.

131

6.2. SYNTAX

Doc(Λ) the set of valid document names over Λ
Λ(g) the lookup of g ∈ Doc(Λ)
Thy(Λ) the set of valid theory names over Λ
Mor(Λ) the set of valid link names over Λ
Λ(x) the lookup of x ∈ Thy(Λ) ∪Mor(Λ)
ConΛ(T) the set of valid unquali�ed constant names over T ∈ Thy(Λ)
StrΛ(T) the set of valid unquali�ed structure names over T ∈ Thy(Λ)
SymΛ(T) union of ConΛ(T) and StrΛ(T)
ΛT (s) the lookup of s ∈ SymΛ(T)
SymΛ(m) the set of unquali�ed names instantiated by m ∈ Mor(Λ)
Λm(s) the lookup of s ∈ SymΛ(m)

Figure 6.10: Lookup Functions for a Library Λ

Similarly, Λ(−) is a partial map from module names to module declarations. To conserve
space, we will adopt a more compact notation for this. For theory names T , Λ(T) is a pair
([M], ϑ) of the meta-theory and the theory body occurring in the declaration of T . We also
put metaΛ(T) := M and bodyΛ(T) := ϑ. For view names v, Λ(v) is a 4-tuple (S, T, [µ], B)
of domain, codomain, meta-morphism, and body, and we put domΛ(m) := S, codΛ(m) := T ,
metaΛ(m) := µ, bodyΛ(m) := B. Here, B is a list of assignments or a morphism depending on
how the view is de�ned; in the latter case µ is the meta-morphism implicitly given by B.

We unify the cases with and without meta-theories by using square brackets. If the optional
M or µ is missing, we leave metaΛ(T) or metaΛ(m) unde�ned and write −.

The double nature of structures as being both links and symbols is re�ected in the fact that
structures can also be addressed by module names and returned as the result of module level

lookups. If there is a structure declaration i : S
[µ]
:= {σ} in a theory g?T , then Λ(g?T/i) returns

(S, g?T , [µ], σ) and similarly for de�ned structures.
Formally, we can de�ne this as follows:

Λ(g?T) := ([M], ϑ) if T
[M]
:= {ϑ} in Λ(g)

Λ(g?v) := (S, T, [µ], σ) if v : S → T
[µ]
:= {σ} in Λ(g)

Λ(g?v) := (S, T,metaΛ(µ), µ) if v : S → T := µ in Λ(g)
Λ(g?T/..) := (metaΛ(g?T), g?T ,−, ·)
Λ(g?T/i) := (S, g?T , [µ], σ) if i : S

[µ]
:= {σ} in bodyΛ(g?T)

Λ(g?T/i) := (S, g?T ,metaΛ(µ), µ) if i : S := µ in bodyΛ(g?T)
Λ(g?T/i/h) := (R, T, [µ • g?T?i], S?h • g?T?i) if domΛ(g?T/i) = S, Λ(S?h) = (R,S, µ,_)

In the order listed, the cases look up theories, views de�ned by assignments and morphisms,
meta-imports, and declared, de�ned, and imported structures. Meta-imports are implicit struc-
tures with the special name ..: This is a structure instantiating the meta-theory of T , it is used
so that T can access the symbols of its meta-theory. The case of imported structures is the most
interesting one: The theory T imports from the theory S via a structure i, and S imports from
the theory R via a structure h. This produces an imported structure i/h in the theory T . Its
semantics is that of the composition S?h • T?i as shown in the following diagram.

TSR

metaΛ(R)

T?iS?h
µR?..

132

6.2. SYNTAX

Now we could use the lists of assignments of bodyΛ(T?i) and bodyΛ(S?h) and compute their
composition to obtain bodyΛ(g?T/i/h). However, by doing so we would destroy the modular
structure. Therefore, we use the value S?h • T?i in order to defer the computation of the
composition as long as reasonable and to give implementations control over when to compute
it. A further advantage is that the lookup functions become signi�cantly easier to implement.

For the example from the beginning of this section, the lookup of g?T/i1/ . . . /in would yield

(Sn, S0,−, Sn−1?in • . . . • S0?i1).

We denote by Thy(Λ) the set of module names for which the lookup returns a theory decla-
ration, and by Mor(Λ) the set of module names for which the lookup returns a link declaration.

Finally, we extend the functions metaΛ(−), domΛ(−), and codΛ(−) to morphisms. For the
latter two, this is done in the obvious way. metaΛ(−) is de�ned by

metaΛ(idg?T) := g?T/.. if metaΛ(g?T) de�ned
metaΛ(m • µ) := metaΛ(m) • µ

Thus, we have that if µ is a morphism from S to T and metaΛ(S) = M , then metaΛ(µ) is a
morphism from M to T .

Symbol Level Intuitively, the lookup of a symbol name T?s returns the declaration of that
symbol. To emphasize that this lookup is done in a theory, we will usually write ΛT (s) instead
of Λ(T?s). Similarly, the lookup of an assignment name v?s returns the assignment to s by the
view v, and we write Λv(s) instead of Λ(v?s).

The above-mentioned double nature of structures is crucial here. A structure i declared in
g?T can be accessed both as Λ(g?T?i) and as Λ(g?T/i) � the former emphasizes the symbol,
the latter the link nature of a structure. However, both names di�er in the way in which they
can be further dereferenced: The lookup Λ(g?T?i/s) returns the imported symbol i/s of the
theory g?T , whereas Λ(g?T/i?s) returns the assignment to the symbol s by the structure g?T/i.
In particular, the former is always de�ned if such a structure is present, whereas the latter is
only de�ned if g?T/i provides an assignment to s.

Again we use a more compact notation for the declarations and assignments returned by
the lookup functions. If ΛT (s) returns a constant declaration c : τ := δ, we simply write
ΛT (s) = (τ, δ). Similarly, if it returns a structure, we use the same abbreviation as above. And
if the lookup in a link m returns an assignment s 7→ ω or s 7→ µ, we write Λm(s) = ω and
Λm(s) = µ, respectively. We use ⊥ if the type or de�nition of a constant is omitted or if no
assignment is present in a link.

Lookup in Theories For the lookup of constant names in a theory, we �rst give an auxiliary
de�nition that does not take hiding into account. Assume a theory T = g?T ∈ Thy(Λ) with
bodyΛ(T) = ϑ. Then ΛT

∗ (c) is de�ned by:

ΛT
∗ (c) := (τ, δ) if c : τ := δ in ϑ

ΛT
∗ (i/c) :=

{
(τT?i, δ′) if δ′ 6= ⊥
(τT?i, δT?i) otherwise

}
S = domΛ(g?T/i), ΛS

∗ (c) = (τ, δ), δ′ = Λg?T/i(c)

ΛT
∗ (../c) := (τT?.., δT?..) if M = metaΛ(T), ΛM

∗ (c) = (τ, δ)

The �rst case is trivial: It looks up declared constants. For imported constants (second case),
two subcases must be distinguished: If there is an assignment for c in i � i.e., δ′ 6= ⊥ �, that
assignment is used as the de�nition (�rst subcase). Otherwise, the de�nition of c is translated
along i (second subcase). In both cases, the type is translated. Here we can avoid a special
treatment of the cases δ = ⊥ and τ = ⊥ by agreeing that ⊥µ is just another way to say ⊥.

133

6.2. SYNTAX

To handle hiding, we have to hide all constants that depend on hidden constants. This means
the actual lookup function ΛT (−) agrees with ΛT

∗ (−) except that it is de�ned only for a smaller
set of names. The recursive check whether a term is hidden is handled by the normalization
function (see Sect. 6.2.3) which maps ω to ω: If ω = >, then ω is a hidden term. Therefore, we
�nally de�ne

ΛT (c) := ΛT
∗ (c) if ΛT

∗ (c) = (τ, δ), τ 6= >, δ 6= >.

Finally, the lookup of structure names in theories is de�ned by appealing to the module level
lookup above: Λ(g?T?i) := Λ(g?T/i).

Lookup in Links Now we de�ne Λm(c) for m ∈ Mor(Λ), domΛ(m) = S, and constant names
c ∈ ConΛ(S). We put bodyΛ(m) =: B which can be either a list of assignments σ or a morphism
µ. Then we de�ne:

Λm(c) := (S?c)µ if B = µ
Λm(c) := ω if c 7→ ω in B = σ
Λm(../c) := (M?c)µ if metaΛ(S) = M, metaΛ(m) = µ

Λm(i/c) := (R?c)µ if i 7→ µ in B = σ, domΛ(S?i) = R

The intuitions are as follows. If B = µ, then µ is applied to c (�rst case). If B = σ and there
is an assignment for c in σ, it is returned (second case). If S has a meta-theory, then the meta-
morphism is used to translate constants of the meta-theory (third case). The most interesting
case arises when the argument to Λm(−) is of the form i/c and there is an assignment i 7→ µ
for i: Then µ is applied to R?c where R is the domain of i. To be well-formed (see Sect. 6.3),
the second and the fourth case must be mutually exclusive.

The lookup of structure names in links is de�ned accordingly.

Example 6.6 (Continued). If Λ is a library containing the three documents with URIs m, f , and
e from the running example, we obtain the following lookup results:

• Λ(e?monoid) = (f?fol, ϑ) where ϑ contains the declarations for comp and unit,

• Λ(e?cgroup/mon) = (e?monoid, e?cgroup, e?cgroup?.., ·),
i.e., e?cgroup/mon is a morphism from e?monoid to e?cgroup with the meta-morphism
e?cgroup?.. and without any assignments,

• Λe?monoid(unit) = (e?monoid?../i, ⊥),
i.e., the theory monoid has a constant unit with type e?monoid?../i and no de�nition,

• Λe?cgroup(mon/unit) = (e?monoid?../ie?cgroup?mon
, ⊥),

i.e., the type of the virtual constant mon/unit arises by translating the type from the
source theory along the importing structure,

• Λe?cgroup/mon(unit) = ⊥,
i.e., the lookup is unde�ned because the structure e?cgroup/mon does not have an assign-
ment for unit,

• the lookup Λe?v2(mon/unit) yields e?integers?0 if the variant with the deep assignment
mon/unit 7→ e?integers?0 is used to de�ne v2, and e?monoid?unite?v1 if the variant with
the structure assignment mon 7→ e?v1 is used.

Uniqueness of Names To avoid confusions, we already mention Lem. 6.12 from Sect. 6.3.6,
which states that for all well-formed libraries (see Sect. 6.3) and all Mmt names the lookup is
either unde�ned or uniquely determined. If the lookup is applied to an ill-formed library, we rule
for the sake of de�niteness that the left-most possible name resolution be preferred if multiple
resolutions are possible.

134

6.2. SYNTAX

In order to ensure this name uniqueness, the type system will use some auxiliary functions.
Firstly, Nam−(−) is the set of unquali�ed names that are already declared in a scope. NamΛ(g)
is the set of theory or view names declared in Λ(g). NamΛ(T) is the set of symbol names
declared in bodyΛ(T) (excluding virtual symbols). And for a link m, NamΛ(m) is the set of
names for which there are assignments in bodyΛ(m) (excluding virtual assignments).

And secondly, the pre�xes of an unquali�ed name are its initial /-terminated segments:

pref (n1/ . . . /nr) := {n1, n1/n2, . . . , n1/ . . . /nr}.

We will sometimes apply pref (−) to a set Nam−(−) to obtain the set of all pre�xes of names
declared in a scope.

6.2.3 Normalization

Assume a library Λ and a term ω over Λ. We write ωΛ for the normal form of ω, and we
will omit Λ if it is clear from the context. Normalization eliminates all morphism applications,
expands all de�nitions, and enforces the strictness of hiding (A term with a hidden subterm is
also hidden.). Thus, the normalization provides the Mmt-speci�c part of the axiomatization of
equality. It is also an important theoretical result that the Mmt-concepts can be eliminated.

For a �xed library Λ, we give the algorithm by structural induction on ω, grouping the cases
in three groups. The normalization results in an error if ω contains references to symbols for
which the lookup is not de�ned.

1. The algorithm works from the inside of the term to the outside: First all subterms are
normalized, and if one of them yields >, the whole term normalizes to >. If a constant,
has a de�nition, it is expanded.

> := >
x := x

T?c :=

undefined if ΛT (c) undefined
δ if ΛT (c) = (_, δ), δ 6= ⊥
T?c otherwise

@(ω1, . . . , ωn) :=

{
@(ω1, . . . , ωn) if ωi 6= > for all i

> otherwise

β(ω1, x1, . . . , xn, ω2) :=

{
β(ω1, x1, . . . , xn, ω2) if ωi 6= > and xi 6= > for all i

> otherwise

α(ω1, ω2 7→ ω3) :=

{
α(ω1, ω2 7→ ω3) if ωi 6= > for all i

> otherwise

2. The case of morphism applications ωµ is de�ned by two subinductions: �rst on the struc-
ture of µ, where all links in µ are applied separately, starting from the inside; and then
for a single link m on the structure of ω.

ωidT := ω

ωµ•µ′ := ωµµ′

>m := >
xm := x

@(ω1, . . . , ω3)
m := @(ω1

m, . . . , ω3
m)

β(ω1,Υ, ω2)
m := β(ω1

m,Υm, ω2
m)

α(ω1, ω2 7→ ω3)
m := α(ω1

m, ω2
m 7→ ω3

m)

135

6.3. WELL-FORMED MMT EXPRESSIONS

Here Υm abbreviates component-wise morphism application to a list of attributed vari-
ables.

3. Finally, the most interesting subcase is the application of a link m to a constant c = S?c.
Let ΛS(c) := (_, δ) and Λm(c) = δ′. (If the former lookups is unde�ned or if the lookup
Λ(m) is unde�ned, the normalization remains unde�ned.) Three cases are distinguished:

• If δ 6= ⊥, then c has a de�niens that is expanded before m is applied. This has two
reasons: The image of c under m is not provided by an assignment in m, instead it is
induced by the application of m to δ. Furthermore, if c is hidden by m, then c must
be eliminated before applying m.

• If δ = ⊥, then c is unde�ned. If m provides an assignment for c, i.e., δ′ 6= ⊥, then c
normalizes to δ′.

• If δ = δ′ = ⊥, we distinguish two subcases:

� If m refers to a structure, e.g., m = T?i, the intended semantics of partiality is
that c is imported by m. Therefore, cm normalizes to the name of the imported
constant: T?i/c. (Actually, the normalization is called one more time on T?i/c
to make sure that that name has a de�ned lookup.)

� If m is a view, the intended semantics of partiality is that c is hidden. Therefore,
cm normalizes to >.

Formally, we write this as:

cm :=

δm if δ 6= ⊥
δ′ if δ = ⊥, δ′ 6= ⊥{

T?i/c if m structure
> if m view

}
if δ = δ′ = ⊥

In implementations, it is reasonable and easy to avoid the expansion of de�nitions in the
�rst group of cases. We do it here in order to formalize the Mmt-semantics of de�nitions.

6.3 Well-formed Mmt Expressions

In this section we present an inference system to de�ne the well-formed or validMmt expres-
sions. The organization of the inference system is top-down. That means there is one primary
judgment B Λ for well-formed libraries. All other judgments are secondary and axiomatize how
well-formed libraries can be extended with documents, modules, symbols, and assignments can
be added to a library (see Fig. 6.11). All such extensions occur in the right-most positions.
Thus, the inference system can be seen as the speci�cation of an Mmt parser. In particular, all
information in Λ is processed in one left-to-right pass over a library.

The remaining judgments in Fig. 6.11 de�ne well-formed terms and morphisms relative to a
library and a home theory or to domain and codomain, respectively. Terms are also relative to
a variable context, which we omit if it is empty. The two judgments for equality and typing of
terms are special because Mmt is parametric in them: Their de�nition is given by a foundation
Φ, which is provided externally so that Mmt can be instantiated with any speci�c non-modular
object language. Therefore, all judgments from Fig. 6.11 are actually parametric in Φ. But
since Φ is always �xed, we omit it from the notation. The details of Φ are given in Sect. 6.3.4.2.
We will explain the auxiliary judgments, given in Fig. 6.12, when they become relevant.

We will introduce the rules for the judgments in a mutual induction in the next sections
according to Fig. 6.11.

136

6.3. WELL-FORMED MMT EXPRESSIONS

Judgment Intuition Section
B Λ Λ is a well-formed library. 6.3.2
Λ B Doc The document Doc can be added at the end of Λ. 6.3.2
Λ BMod The module Mod can be added at the end of the last

document of Λ.
6.3.2

Λ B Sym The symbol Sym can be added at the end of the last
theory of Λ.

6.3.3

Λ B Ass The assignment Ass can be added to the link at the
end of Λ.

6.3.3

Λ; Υ BT ω ω is a structurally well-formed term over Λ with vari-
ables from Υ and with home theory T .

6.3.4.1

Λ B µ : S → T µ is a well-formed morphism from S to T . 6.3.4.3
Λ BT ω ≡ ω′ The well-formed terms ω and ω′ are equal over Λ and

T .
6.3.4.2

Λ BT ω : ω′ ω is a well-formed term of well-formed type ω′ over
Λ and T .

6.3.4.2

Figure 6.11: Main Judgments of Mmt

Judgment Intuition Section
Λ Bg n new The module name n can be added to the document

g.
6.3.2

Λ BT s new The symbol name s can be added to the theory T . 6.3.3
Λ Bm s new An assignment for the symbol name s can be added

to the link m.
6.3.3

Λ BT ω |m ω′ A constant with de�niens ω can be mapped to ω′ by
the link m.

6.3.3

Λ BT i |m µ : R Structure i with domain R can be mapped to µ by
the morphism m.

6.3.3

Figure 6.12: Auxiliary Judgments of Mmt

6.3.1 Adding Knowledge Items to Libraries

Our inference system is such that the initial segment of every document, theory, view, or struc-
ture is already part of the library as soon as it is checked: First, an empty document, theory,
view, or structure is added to the library, and then it is extended step by step. This is possible
because later document fragments can never invalidate an already checked initial segment.

In order to write these extensions with a more compact notation, we introduce the abbrevi-
ation Λ + X for the operation of adding the knowledge item X in the right-most position of the
library Λ. Formally, we write for a document declaration Doc

Λ + Doc := Λ, Doc,

for a module Mod

Λ, g := {γ} + Mod := Λ, g := {γ, Mod} ,

for a symbol Sym

Λ, g :=
{

γ, T
[M]
:= {ϑ}

}
+ Sym := Λ, g :=

{
γ, T

[M]
:= {ϑ, Sym}

}
,

137

6.3. WELL-FORMED MMT EXPRESSIONS

and for an assignment Ass

Λ, g :=
{

γ, v : S → T
[µ]
:= {σ}

}
+ Ass := Λ, g :=

{
γ, v : S → T

[µ]
:= {σ, Ass}

}
,

Λ, g :=
{

γ, T
[M]
:=

{
ϑ, i : S

[µ]
:= {σ}

}}
+ Ass :=

Λ, g :=
{

γ, T
[M]
:=

{
ϑ, i : S

[µ]
:= {σ, Ass}

}}
.

Thus, every library can be written as ·+ X1 + X2 + . . . (where + associates to the left).
Furthermore, we put

lastDoc (_, g := {_}) := g

lastThy
(
_, g :=

{
_, T

[_]
:= {_}

})
:= g?T

lastLink
(
_, g :=

{
_, v : _→ _

[_]
:= {_}

})
:= g?v

lastLink
(
_, g :=

{
_, T

[_]
:=

{
_, i : _

[_]
:= {_}

}})
:= g?T?i

Intuitively, these functions give the name of the right-most document, theory, or link in Λ.
Then a typical rule of the inference system is

Λ B g := {γ} Λ + g := {γ} BMod
Mod

Λ B g := {γ, Mod}

Its verbalization is: If g := {γ} can be added to Λ, and if after adding it, Mod can be added
to g := {γ}, then g := {γ, Mod} can be added to Λ. Then the intelligence of the inference
system lies mainly with the judgment Λ B Mod, which de�nes which modules may be added,
and with its analogues for symbols and assignments.

Instead of this top-down structure, a bottom-up system could be used. This would �rst
type-check expressions of a lower level and then encapsulate and name them to form expressions
of a higher level. When checking the library

Λ, g := {γ, T := {ϑ, c : τ := β(ω, Υ, ω1)}} ,

typical judgments would have the form

Λ B γ Λ; γ B ϑ Λ; γ;ϑ B ω Λ; γ;ϑ; Υ B ω1.

It turned out that this yields an inconvenient formulation. Besides the four-partite contexts,
the problem is that the names of documents, theories, and views as well as the meta-theories
and meta-morphisms occur at the beginning of a declaration. It is more intuitive and closer to
implementations if all information is processed in left-to-right order and stored in the context,
and if the context is identi�ed with the current library.

6.3.2 Document and Module Level

The rules for the construction of libraries and documents are given in Fig. 6.13. The rules Lib∅
and Doc construct a library by successively adding well-formed documents. And similarly, the
rules Doc∅ and Mod construct a document by successively adding well-formed modules.

The rules for the construction of theories and views are given in Fig. 6.14. The rules Thy∅
and Sym construct theories by successively adding well-formed symbols. The rules V iw∅ and
V iwAss construct views by successively adding well-formed assignments. Alternatively, V iwµ

138

6.3. WELL-FORMED MMT EXPRESSIONS

Lib∅
B ·

B Λ Λ B Doc
Doc

B Λ + Doc

B Λ g 6∈ Doc(Λ)
Doc∅

Λ B g := {·}

Λ B g := {γ} Λ + g := {γ} BMod
Mod

Λ B g := {γ, Mod}

Figure 6.13: Structure of Libraries and Documents

adds a view that is de�ned by an existing morphism. In all rules we unify the cases with and
without meta-theories by using square brackets: For example, Thy∅ handles empty theories
with or without meta-theory, and in the former case there is one additional premise. V iw∅
makes sure that views from a theory S are only possible if a well-formed morphism µ from a
possible meta-theory is given.

The judgment Λ Bg n new de�ned in rule newg clari�es which modules names are still
available in a document. This is the case if a module name n satis�es two conditions: Firstly,
no pre�x of n may already have been declared. This is expressed by pref (n) ∩ NamΛ(g) = ∅.
And secondly, n may not occur as a pre�x of any name already declared. This is expressed
by n 6∈ pref (NamΛ(g)). We will give examples for these conditions below when describing
the corresponding rule for declarations in a theory. This rule also ensures that only the last
document may be extended.

In addition to rule newg, rule new′
g permits names T/n even if the pre�x T is already

declared. Such names are only permitted if n is not resolvable in T . The usefulness of this
rule is that structures i from S over T can be turned into views T/i. This is relevant for the
�attening (see Sect. 6.4).

6.3.3 Symbol Level

The symbol level rules de�ne which symbols may be added to theories and which assignments
may be added to links, see Fig. 6.15 and Fig. 6.16.

Symbol Declarations In Fig. 6.15, the rule Con says that constant declarations c : τ := δ
are well-formed if δ has type τ (which implies that the two are well-formed), and if c does not
clash with existing names. To avoid case distinctions, we use ⊥ to indicate that τ or δ are
omitted and assume that the typing judgment about τ and δ is de�ned in such cases as well.
This gives the foundation the possibility to reject unde�ned or untyped constants.

The rules for structures correspond to those for views: Str∅ and StrAss construct structures
by successively adding well-formed assignments. Alternatively, Strµ adds a structure that is
de�ned by an existing morphism. Again we use square brackets to unify the cases when importing
from theories with or without meta-theories.

The judgment Λ BT s new de�ned in rule newT governs which symbol names can be declared.
A name s must satisfy two conditions to be available for a new symbol: Firstly, no pre�x of s
may already have been declared. This is expressed by pref (s) ∩ NamΛ(T) = ∅. For example,
if s = i/c, and a structure i has already been declared, a declaration of s could clash with a
constant c imported via i. Even if no such c exists, such names are forbidden because they
would make name resolution (and management of change) ine�cient. And secondly, s may not
occur as a pre�x of any name already declared. This is expressed by s 6∈ pref (NamΛ(T)). For
example, if s/c is already declared, no declaration for s is allowed.

At this point the reader may wonder why names of the form s/c should be legal at all. Indeed,
it would be much easier to forbid any names containing slashes. However, the �attening (see

139

6.3. WELL-FORMED MMT EXPRESSIONS

B Λ Λ Bg T new [M ∈ Thy(Λ)]
Thy∅

Λ B T
[M]
:= {·}

Λ B T
[M]
:= {ϑ} Λ + T

[M]
:= {ϑ} B Sym

Sym

Λ B T
[M]
:= {ϑ, Sym}

B Λ Λ Bg v new S ∈ Thy(Λ) T ∈ Thy(Λ) [Λ B µ : metaΛ(S) → T]
V iw∅

Λ B v : S → T
[µ]
:= {·}

Λ B v : S → T
[µ]
:= {σ} Λ + v : S → T

[µ]
:= {σ} B Ass

V iwAss

Λ B v : S → T
[µ]
:= {σ,Ass}

B Λ Λ Bg v new Λ B µ : S → T
V iwµ

Λ B v : S → T := µ

g = lastDoc (Λ) pref (n) ∩NamΛ(g) = ∅ n 6∈ pref (NamΛ(g))
newg

Λ Bg n new

g = lastDoc (Λ) n 6∈ SymΛ(g?T) n 6∈ pref (NamΛ(g))
new′

g
Λ Bg T/n new

Figure 6.14: Structure of Theories and Views

Sect. 6.4) will replace a structure i with lists of symbols for names of the form i/c. Therefore,
we permit such names.

Assignments to Symbols Fig. 6.16 gives the most important rules, the ones governing
assignments. ConAss is used to add an assignment c 7→ δ′ to the last link m in γ, where m has
domain S and codomain T . In the simplest case, c is declared in S, but it is also permitted that
c is of the form i/c′, i.e., arises from a structure into S. The rule has �ve premises. The �rst
one assumes a well-formed library Λ. The second one executes three lookups in Λ; in particular,
it looks up the type τ and de�nition δ of c. The third premise guarantees that there is no
assignment for c in m already. The fourth premise type-checks δ′ against the translation of τ
along m. Since τ usually contains other symbols declared in S, the translation of τ to T must
use the assignments already provided in m. The �fth hypothesis and rule M|Con govern the
relationship between the S-de�niens δ and the T -de�niens δ′: If δ = ⊥, i.e., c is not de�ned,
any assignment is permitted; otherwise, the translated old de�niens δm must be equal to the
new one δ′; �nally, in both cases c may be hidden, i.e., δ = >.

As before, to avoid case distinctions, we handle the cases of omitted τ or δ in a constant
declaration by putting τ = ⊥ or δ = ⊥ even though ⊥ is not a well-formed term. We agree that
⊥m is just another way to say ⊥, and we permit the judgment Λ BT ⊥ |m δ′ (which always
holds). Then this rule also motivates the notation for ⊥ and >: Intuitively, they are the least

140

6.3. WELL-FORMED MMT EXPRESSIONS

B Λ Λ BT c new Λ BT δ : τ
Con

Λ B c : τ := δ

B Λ Λ BT i new S ∈ Thy(Λ) [Λ B µ : metaΛ(S) → T]
Str∅

Λ B i : S
[µ]
:= {·}

Λ B i : S
[µ]
:= {σ} Λ + i : S

[µ]
:= {σ} B Ass

StrAss

Λ B i : S
[µ]
:= {σ,Ass}

B Λ Λ BT i new Λ B µ : S → T
Strµ

Λ B i : S := µ

T = lastThy (Λ) pref (s) ∩NamΛ(T) = ∅ s 6∈ pref (NamΛ(T))
newT

Λ BT s new

Figure 6.15: Declarations in a Theory

and greatest element of an ordering (in which all other non-equal terms are incomparable). Then
assignments to de�ned constants are well-formed if the new de�nition is at least as great as the
old one.

R S T
S?i m

µ

Figure 6.17: Semantics of i 7→ µ

The rule StrAss is very similar to ConAss: It permits
to add an assignment i 7→ µ of a morphism to a structure.
The intuition of such an assignment is that it makes the
diagram on the right commute. All premises correspond
exactly to those of the rule ConAss. In particular, R
corresponds to τ as the type of i. Then the fourth premise
checks the type of µ against R.

To understand the last premise and its de�nition by
rule M|Str, �rst note that m is de�ned by a partial list
of assignments, i.e., not totally determined yet. Further note that if S?i and µ are given, it is
not necessarily possible to �nd any morphism m such that the diagram commutes. Then the
intuitive meaning of the auxiliary judgment Λ BT S?i |m µ : R is: In the situation of Fig. 6.17,
the morphism µ can be factored as S?i•m′ in a way such that m′ agrees with m for all arguments
for which m is already determined.

Λ BT S?i |m µ : R is de�ned in rule M|Str. Here we use double square brackets to indicate
hypothetical judgments in order to distinguish them from optional parts. The hypothesis checks
for all constants c in R that are imported via i whether they may be rede�ned to the result of
applying µ to c. This rule is very ine�cient because all constants of R must be checked. Below
we will supplement it with a more e�cient variant that exploits the theory graph structure.

Finally, the rule newm is essentially the same as the analogous rule for theories. The rule
de�nes which names are not already a�ected by assignments in m. An assignment for a name s is
permitted if the following two conditions hold. Firstly, there may not already be an assignment
for a pre�x of s. For example, an assignment i 7→ µ determines the assignments to all constants
i/c, which may therefore not be instantiated separately anymore. Secondly, s may not occur
as a pre�x of any name for which there already is an assignment. For example, if s = i/c, and

141

6.3. WELL-FORMED MMT EXPRESSIONS

B Λ

m = lastLink (Λ)
Λ(m) = (S, T,_,_)

ΛS(c) = (τ, δ)
Λ Bm c new Λ BT δ′ : τm Λ BT δ |m δ′

ConAss
Λ B c 7→ δ′

δ = ⊥ or Λ BT δm ≡ δ′ or δ′ = >
M|Con

Λ BT δ |m δ′

B Λ

m = lastLink (Λ)
Λ(m) = (S, T,_,_)

domΛ(S?i) = R
Λ Bm i new Λ B µ : R → T Λ BT S?i |m µ : R

StrAss
Λ B i 7→ µ

[[
ΛS(i/c) = (_, δ)

]]
...

Λ BT δ |m R?cµ

M|Str
Λ BT S?i |m µ : R

m = lastLink (Λ) pref (s) ∩NamΛ(m) = ∅ s 6∈ pref (NamΛ(m))
newm

Λ B s new

Figure 6.16: Assignments in a Link

there is an assignment for i, then the assignments to s is already determined by the assignments
to i.

Theory-Level Reasoning As mentioned above, we give an alternative rule for the judgment
Λ BT S?i |m µ : R:[[

ΛS(i/c) = (_, δ), c declared in R
]]

...
Λ BT δ |m R?cµ

[[h declared in R]]
...

Λ BT S?i/h |m R?h • µ : Q
M|Str

Λ BT S?i |m µ : R

Here the �rst hypothesis is as in rule M|Str but restricted to constants declared in R. All
constants imported into R are handled by the second hypothesis, which recurses for every
structure declared in R. It is easy to see that this rule is derivable from M|Str: Unwinding the
recursion leads to exactly the same set of hypotheses.

Thus, there is no e�ciency gain yet. But in this form, we can apply the knowledge about the
theory graph to avoid some recursive calls. For example, it is simple to add reasoning about the
equality of morphisms using rules for associativity, identity elimination, and de�nition expansion.
Then if S?i/h • m ≡ R?h • µ, we can immediately infer Λ BT S?i/h |m R?h • µ : Q without
going into a recursive call.

142

6.3. WELL-FORMED MMT EXPRESSIONS

Thus, we decompose a judgment about all constants in R into separate judgments about the
constants declared locally in R and the structures into R, and then discharge the judgments
about structures by arguing about the theory graph. This approach is very similar to the
decomposition of global theorem links in development graphs ([AHMS99]).

6.3.4 Object Level

6.3.4.1 Structural Well-Formedness of Terms

The inference rules in Fig. 6.18 formalize the notion of a structurally well-formed term. This is a
level of validation between the context-free grammar check (as used in OMDoc or OpenMath)
and the type checking in formal systems. Structural well-formedness means that a term only
uses symbols and variables that are in scope; but it does not say anything about a possible
semantics of the term. Our rules mainly follow the OpenMath standard but restricted to a
home theory T and a context Υ. Only symbols over T or variables declared in Υ may occur in
well-formed terms.

The rule Tβ is particularly interesting since it is not totally clear how to interpolate the
treatment of bound variables from the OpenMath standard to an inference system using vari-
able contexts. We chose the least restrictive interpretation and permit every bound variable to
occur in the attributions of every other variable bound by the same binding operation. This
is useful to represent mutually recursive let bindings. However, we forbid duplicate variable
names within the same binding operation since they are hardly useful anyway and can easily be
confusing in the presence of attributions. Note that Tβ checks the well-formedness of the bound
variables; and since Mmt only uses closed terms, we do not need a judgment for well-formed
contexts in T>, TV ar, and TCon.

The rules T> and Tµ formalize our extensions of OpenMath: The special term > is a
well-formed term, and morphisms move terms between theories. We use Υµ to abbreviate the
component-wise application of a morphism to a list of variables.

T ∈ Thy(Λ)
T>

Λ; Υ BT >

x ∈ Υ T ∈ Thy(Λ)
TV ar

Λ; Υ BT str(x)

c ∈ ConΛ(T)
TCon

Λ; Υ BT T?c

Λ; Υ BT ωi
T@

Λ; Υ BT @(ω1, . . . , ωn)

Λ; Υ BT ω Υ′ = x1, . . . , xn
str(xi) ∈ Var

str(xi) 6= str(xj) for i 6= j

Λ; Υ,Υ′ BT xi

Λ; Υ,Υ′ BT ω′
Tβ

Λ; Υ BT β(ω, Υ′, ω′)

Λ; Υ BT ωi
Tα

Λ; Υ BT α(ω1, ω2 7→ ω3)

Λ; Υ BS ω Λ B µ : S → T
Tµ

Λ; Υµ BT ωµ

Figure 6.18: Well-formed Terms

143

6.3. WELL-FORMED MMT EXPRESSIONS

6.3.4.2 Typing and Equality of Terms

The rules given so far do not address the typing and equality of terms, i.e., we do not derive the
judgments

Λ; Υ BT ω ≡ ω′ and Λ;Υ BT ω : ω′.

This follows an essential design choice in OpenMath and OMDoc, which do not commit
to any particular formal system for these judgments. We stay parametric in the type system
by using a concept we call foundations. Foundations provide an abstraction from those (non-
modular) formal systems that can be speci�ed in terms of judgments for typing and equality.

An intuition for foundations is as follows: Any formal or software system Sys that uses or
implementsMmt must provide a set D of theory names and a foundation Φ for D. The names in
D constitute the theories that Sys understands. These theories should be declared in a library
Λ0 that is published as the interface of Sys. Then the input of Sys consists of documents that
are well-formed relative to Λ0. In this way a wide variety of formal systems can be represented
in Mmt.

De�nition 6.7. For a set D of URIs and a library Λ, we de�ne the meta-import from D to T
by

miΛD(T) := T?../ . . . /..

where the number N(T) of repetitions of .. is given by

N(T) :=

{
0 if T ∈ D

N(metaΛ(T)) + 1 otherwise

Thus, miΛD(T) is obtained by traversing the meta-theories of T until a theory M ∈ D is
found. Then miΛD(T) is the morphism from M to T via which M is a meta-theory of T . The
intuition behind miΛD(T) is that if i = miΛD(T), a foundation for D must know the semantics of
i/c, because it refers to the symbol c in a theory within D.

De�nition 6.8. For a set D of URIs, an Mmt foundation Φ is a component that de�nes for
the following input:

• a meta-import i := miΛD(T) from some M ∈ D to some theory T declared in some library
Λ,

• the lookup function for Λ,

• two terms ω and ω′ that are well-formed over Λ and T ,

two yes/no values, which we denote by

ΦΛ,i(ω ≡ ω′) and ΦΛ,i(ω : ω′).

De�nition 6.9. We say that a foundation for D covers a library Λ if miΛD(T) is de�ned for
all theories in Λ.

Relative to a foundation Φ for D, equality and typing are de�ned as follows. Whenever
the judgment Λ BT ω ≡ ω′ or Λ BT ω : ω′ is encountered in a library Λ covered by Φ, the
meta-import i := miΛD(T) of T is determined. Then Φ is called with the lookup functions for Λ
and i, ω and ω′ as input. The lookup functions are passed to Φ so that Φ can call back to Mmt
in order to look up all symbols it encounters in ω and ω′. Formally, this is de�ned by the rules
in Fig. 6.19.

Only the lookup function of Λ are passed to Φ, not Λ itself. In implementations, this is sim-
ply a pointer to a callback function. This is crucial to achieve scalability because sophisticated

144

6.3. WELL-FORMED MMT EXPRESSIONS

Λ BT ω Λ BT ω′ i = miΛD(T) ΦΛ,i(ω ≡ ω′)
T≡

Λ BT ω ≡ ω′

Λ BT ω Λ BT ω′ i = miΛD(T) ΦΛ,i(ω : ω′)
T:

Λ BT ω : ω′

Figure 6.19: Equality and Typing

management services and optimizations can be implemented in a foundation-independent way.
Then the implementation of the speci�c foundation only needs to implement the core function-
ality of type and equality checking. In particular, a foundation-independent implementation of
Mmt can handle the tasks of parsing, storing, updating, and querying the current library and
thus encapsulate the global state. Furthermore, it remains transparent to the foundation how
the current library is distributed both over local short and long term storage media and the
internet.

While our main motivation is the use of Mmt as an interface language for software systems,
we do not assume in general that a foundation is decidable. A foundation may also axiomatize
undecidable judgments of equality and typing. But of course, not every foundation is useful, and
some choices have to be excluded. Therefore, we employ the following conditions on foundations.

De�nition 6.10. A foundation Φ is called regular if it satis�es the following conditions for
any Λ it covers and any T ∈ Thy(Λ):

• if ΦΛ,i(ω1 : ω2), and Λ′ arises from Λ by adding documents, theories, or views in a well-
formed way, then also ΦΛ′,i(ω1 : ω2), and similarly for equality,

• equality is re�exive, symmetric, and transitive,

• equality is congruent with respect to application, binding, and attribution, and if ω 6= >
then ΦΛ,i(ω ≡ ω),

• equality respects α-renaming: If x′1, . . . , x
′
n, and ω′1 arise from x1, . . . , xn, and ω1 by parallel

capture-avoiding substitution of every reference to the variable xi with a reference to x′i,
then

ΦΛ,i(β(ω, x1, . . . , xn, ω1) ≡ β(ω, x′1, . . . , x
′
n, ω′1))

• typing and equality are related via

ΦΛ,i(ω1 : ω2) ΦΛ,i(ω1 ≡ ω′1) ΦΛ,i(ω2 ≡ ω′2)

ΦΛ,i(ω′1 : ω′2)

• if ΛT (c) = (τ,_), then ΦΛ,i(T?c : τ) for the appropriate i,

• > is only equal to itself,

• > is typed by every term, and only > is typed by >.

In Def. 6.10, all requirements are intuitively plausible except for the last one. > must have
every type so that in rule ConAss constants of every type can be hidden. This also means that
> is a proof of everything and thus can be used as a place holder for every undischarged proof
obligation.

145

6.3. WELL-FORMED MMT EXPRESSIONS

In rule Con, we called the type-checking judgment even though the arguments τ and δ
might be omitted. Permitting that the inputs to the typing judgments can also be ⊥, gives the
foundations the freedom to decide what kind of constant declarations may be added. This is
described in Fig. 6.20.

Instance E�ect
ΦΛ,i(⊥ : ⊥) theories may declare unde�ned, untyped constants
ΦΛ,i(⊥ : ω) theories may declare unde�ned constants of type ω
ΦΛ,i(ω : ⊥) theories may de�ne untyped constants as ω

Figure 6.20: Special Cases in Foundations

For regular foundations, the terms ω and ω′ can always be normalized without changing
ΦΛ,i(ω : ω′) or ΦΛ,i(ω ≡ ω′). Therefore, we can normalize ω and ω′ before passing them to
the foundation. And since regular foundations make equality a congruence relation, it is also
possible to always normalize the type and de�nition returned by lookup calls of the form ΛT (c).
Then it is possible to use a foundation in such a way that it will never encounter any morphisms,
and the only necessary lookups are the ones of the form ΛT (c). And since normalization does
not depend on the foundation, a regular foundation does not have to handle � and not even
understand � morphisms at all. Then Mmt yields a module system for every non-modular
language for which we can give a regular foundation.

Example 6.11. An important example is the default foundation ΦDef for the set of all possible
theory names. ΦDef can be used by systems if the semantics of a theory cannot be determined
otherwise. It is de�ned as follows:

• (ΦDef)Λ,i(ω ≡ ω′) i� ω and ω′ are identical modulo α-renaming of bound variables,

• (ΦDef)Λ,i(ω : ω′) according to:

ω\ω′ ⊥ ω >
⊥ + + -
ω + - -
> + + +

Thus, equality is syntactical equality with α-conversion. And no non-degenerate typing relation
holds. ΦDef is regular and covers all libraries.

Foundations are an important tool to use Mmt as an interface language between software
systems. For a translation from a system A and B, an export from A to Mmt would be
implemented as a part of A. The output would refer to a meta-theory MA for the logic underlying
A and be interpreted with respect to a foundation for {MA}. The foundation is documented
separately or within MA using informal annotations (see also Sect. 6.5.7). Then an import
from Mmt is implemented as part of B. The semantics of MA is hard-coded in this import.
Of course, some information may be lost when �ltering through Mmt compared to a direct
translation from A to B. But a translation via Mmt will typically be much easier than the
direct translation � in particular, the feasibility threshold may lie in between the two ways to
implement the translation.

6.3.4.3 Morphisms

Fig. 6.21 shows the rules for the construction of morphisms. The rule Mm handles links. Mid

andM• give identity and composition of morphisms. Composition • is written in diagrammatic
order, i.e., from the domain to the codomain.

146

6.3. WELL-FORMED MMT EXPRESSIONS

Λ(m) = (S, T,_,_)
Mm

Λ B m : S → T

T ∈ Thy(Λ)
Mid

Λ B idT : T → T

Λ B µ : R → S Λ B µ′ : S → T
M•

Λ B µ • µ′ : R → T

Figure 6.21: Morphisms

6.3.5 Validity Levels

Thus, we obtain three levels of validity for Mmt documents. This induces the corresponding
validity notions for OMDoc documents if only the fragment of OMDoc is considered that lies
within the image of the XML-encoding of Mmt given in Sect. 8.1.

• A document that conforms to the Mmt grammar (i.e., is produced from Doc) is called
OMDoc-valid. OMDoc-validity can be checked by standardized XML validation.

• A document Doc is structurally well-formed or Mmt-valid relative to the library Λ if
Λ B Doc holds with respect to the inconsistent foundation, i.e., the foundation in which
the typing and equality judgments always hold.

• Φ-validity is de�ned like Mmt-validity but with respect to a foundation Φ.

Then Φ-validity implies Mmt-validity, and that implies OMDoc-validity. A system is called
OMDoc, Mmt, or Φ-aware if it can identify documents that are invalid with respect to the
corresponding validity level.

6.3.6 Structural Properties

Lemma 6.12 (Uniqueness of Names). For well-formed Λ and any g, T , m, s: Λ(g), Λ(T),
Λ(m), ΛT (s), and Λm(s) are either unde�ned or uniquely determined.

Proof. This follows easily by inspecting the rules newg, newT , and newm.

In particular, names within a scope (i.e., a library, document, theory, structure, or view) are
always unique, and the order of documents, declarations, or assignments within the same scope
is transparent to the lookup functions.

Theorem 6.13 (Subexpression Property). We have the following subexpression properties:

1. Assume B Λ. Then any subexpression of Λ that arises by dropping the right-most docu-
ment, declaration, or assignment is also a well-formed library.

2. Assume B Λ and Λ BT ω and a subterm ω′ of ω. Let Υ be the concatenation of the
contexts in the binders governing ω′ (starting with the outermost binder) or the empty
context if there is none. Let S be the domain of the morphism in the innermost morphism
application governing ω′ or T if there is none. Then Λ; Υ BS ω′.

3. Assume B Λ and Λ B µ : S → T and a subexpression µ′ of µ with domain S′ and codomain
T ′. Then Λ B µ′ : S′ → T ′.

Proof. These follow by straightforward inductions on the derivations.

147

6.4. LIBRARY TRANSFORMATIONS

We do not establish a subterm property for terms with free variables. This is possible, too,
but less interesting because libraries cannot contain terms with free variables.

Lemma 6.14 (Uniqueness of Derivations). For every judgment, there is at most one derivation.

Proof. This follows easily by inspecting the rules.

Theorem 6.15 (Decidability). If there is a decidable foundation that covers all theories in Λ,
then the judgment B Λ is decidable. In particular, it is decidable for the default foundation
ΦDef .

Proof. This is easy to see because the inference rules are designed to specify the implementation
of the decision procedure.

Theorem 6.16 (Weakening). Assume a regular foundation. Let Λ and Λ′ be two well-formed
libraries such that Λ′ arises from Λ by adding documents, theories, or views. Then the judg-
ments for well-formed terms and morphisms, typing, and equality with respect to Λ imply their
analogues with respect to Λ′.

Proof. Clearly every derivation over Λ becomes a derivation over Λ′ by replacing every occur-
rence of Λ with Λ′. The cases for typing and equality judgments follow from the regularity of
the foundation.

6.4 Library Transformations

6.4.1 Modular and Flat Libraries

The representation of theory graphs introduced in the last section is geared towards expressing
mathematical knowledge in its most general form and with the least redundancy: constants
can be shared by inheritance (i.e., via imports), and terms can be moved between theories
via morphisms. This style of writing mathematics has been cultivated by the Bourbaki group
([Bou68, Bou74]) and lends itself well to a systematic development of theories.

However, it also has drawbacks: Items of mathematical knowledge are often not where or
in the form in which we expect them, as they have been generalized to a di�erent context. For
example, a constant c need not be explicitly represented in a theory T , if it is induced as the
image of a constant c′ under some import into T .

In this section, we introduce operations on libraries to �atten a library. In particular, this in-
volves adding all induced knowledge items to every theory thus making all theories self-contained
(but hugely redundant between theories). For a givenMmt-library Λ, we can view the �attening
of Λ as its semantics, since �attening eliminates the speci�c Mmt-representation infrastructure
of imports, meta-theories, and morphisms, and reduces theories to collections of constants, pos-
sibly with types and de�nitions, which conforms to the non-modular logical view of theories.
Formally, we de�ne �at libraries as follows.

De�nition 6.17. A library Λ is called �at if it does not contain meta-theories, structures, mor-
phism applications, or hidings, i.e., it is produced by the restricted grammar given in Fig. 6.22
(where the productions for names are omitted).

6.4.2 Equivalence of Libraries

De�nition 6.18. Two libraries Λ and Λ′ are called structurally equivalent if the following
holds:

• Doc(Λ) = Doc(Λ′),

148

6.4. LIBRARY TRANSFORMATIONS

Λ ::= Doc∗

Doc ::= g := {γ}
γ ::= Mod∗

Mod ::= Thy | V iw
Thy ::= T := {ϑ}
V iw ::= v : T → T := {σ} | v : T → T := µ
ϑ ::= Con∗

σ ::= ConAss∗

Con ::= c : ω := ω | c : ω | c := ω | c
ConAss ::= c 7→ ω
ω ::= c | x | @(ω, ω+) | β(ω, Υ, ω) | α(ω, ω 7→ ω)
Υ ::= · | Υ, ω if str(ω) of the form x
µ ::= idT | i | v | µ • µ

Figure 6.22: The Grammar for Raw Mmt Expressions

• Thy(Λ) = Thy(Λ′),

• Mor(Λ) = Mor(Λ′),

• for all T ∈ Thy(Λ): ConΛ(T) = ConΛ′
(T),

• for all m ∈ Mor(Λ): domΛ(m) = domΛ′
(m) and codΛ(m) = codΛ′

(m).

Note that structural equivalence implies that a theory T has the same constant names i/c
in both Λ and Λ′, but leaves open whether a constant of name i/c is declared or whether a
constant c is imported via a structure i. The intuition behind structural equivalence of libraries
is given by the following lemma: Structurally equivalent libraries have the same objects.

Lemma 6.19. Assume two structurally equivalent libraries Λ and Λ′ that are well-formed for
a �xed foundation. Then for all S, T ∈ Thy(Λ):

• Λ BT ω i� Λ′ BT ω,

• Λ B µ : S → T i� Λ′ B µ : S → T .

Proof. This follows by a straightforward induction on the derivations.

Having the same objects does not say that two libraries are semantically equivalent. For ex-
ample, two theories might have the same constants but with di�erent types. The next de�nition
re�nes this.

De�nition 6.20. Two structurally equivalent libraries Λ and Λ′ are called semantically equiv-
alent if the following holds:

• For all T ∈ Thy(Λ) and all c ∈ ConΛ(T) such that ΛT (c) = (τ, δ) and Λ′T (c) = (τ ′, δ′):

δ
Λ
and δ′

Λ′

as well as τΛ and τ ′
Λ′

are identical up to α-variants.

• For all m ∈ Mor(Λ) and all c ∈ ConΛ(domΛ(m)):

Λm(c)
Λ
and Λ′m(c)

Λ′

are identical up to α-variants.

Intuitively, if a regular foundation is used, then semantically equivalent libraries are indis-
tinguishable by the lookup functions. That is formalized in the following result:

149

6.4. LIBRARY TRANSFORMATIONS

Theorem 6.21. Assume two semantically equivalent libraries Λ and Λ′ and a regular founda-
tion. Then for all g and γ:

B Λ, g := {γ} iff B Λ′, g := {γ} .

Proof. Assume a well-formedness derivation D for B Λ, g := {γ}. Let D′ arise from D by
replacing every Λ with Λ′. We claim that every subtree of D′ is a well-formedness derivation for
its respective root. Then in particular, D′ is a well-formedness derivation for B Λ′, g := {γ}.
This is shown by induction on D. The induction steps for most rules are trivial because the
library only occurs as a �xed parameter. For the rules regarding new names, the induction
step follows from the structural equivalence. And for the rules T: and T≡, it follows from the
semantical equivalence and the regularity of the foundation.

This provides systems working with Mmt libraries with an invariant for semantically indis-
cernible library transformations. Systems maintaining libraries can apply such transformations
to increase the e�ciency of storage or lookup without a�ecting their outward appearance. Fur-
ther applications are management of change systems (e.g., [AHMS02, MK08]), which are given
an easily implementable criterion to analyze the semantic relevance of a change.

Of course, Def. 6.20 is just a su�cient criterion for semantic indistinguishability. If a foun-
dation adds equalities between terms, then libraries that are distinguished by Def. 6.20 become
equivalent with respect to that foundation. But the strength of Def. 6.20 and Thm. 6.21 is
that they are foundation-independent. Therefore, semantic equivalence can be implemented by
low-level knowledge management services and tools that do not know about the semantics of
the objects they are processing.

The most important example of semantically equivalent libraries are reorderings.

Theorem 6.22. If Λ and Λ′ are well-formed libraries that di�er only in the order of documents,
modules, symbols, or assignments, then they are semantically equivalent.

Proof. Clear since the lookup functions are insensitive to reorderings.

However, note that not all reorderings preserve the well-formedness of libraries.

6.4.3 Flattening

In the following we give several instances of semantic equivalence. Taken together, they permit
to transform every Mmt-library into a semantically equivalent �at one.

Flattening Meta-Theories Intuitively, declaring a meta-theory M of T is just a special way
of importing M . Thus, we can drop the meta-relation and add a structure with domain M at
the beginning of T . This is made precise in the following lemma.

Lemma 6.23. Assume a well-formed library

Λ = Λ0, g :=
{

γ0, S
M
:= {ϑ} , γ1

}
, Λ1

where M has no meta-theory. Let Λ′ be obtained as follows:

• S
M
:= {ϑ} is replaced with S := {.. : M := {·}, ϑ},

• every view v : g?S → T
µ
:= {σ} anywhere in Λ is replaced with v : g?S → T :=

{.. 7→ µ, σ},

• every structure i : g?S
µ
:= {σ} anywhere in Λ is replaced with i : g?S := {.. 7→ µ, σ}.

150

6.4. LIBRARY TRANSFORMATIONS

Then Λ′ is well-formed and Λ and Λ′ are semantically equivalent.

Proof. Since we give the new structure the special name .., all references to the meta-import
g?T?.. in Λ are also well-formed in Λ′. For the same reason, all references from within T to
names of M stay well-formed. Similarly, the replacement of meta-morphisms with assignments
retains semantic equivalence. Then the details of the proof are straightforward.

Flattening Structures Intuitively, importing from a theory S is just an abbreviation of
copying and translating the body of S. Thus, a structure i : S := {_} can be replaced with
a translated copy of bodyΛ(S). Since we need to preserve the uniqueness of names, we replace
every symbol name s of S with i/s. For example c : τ := ⊥ becomes i/c : τ ′ := ⊥, where
τ ′ arises from τ by changing all names referring to symbols of S to the newly generated names.
Then references to c of S via the structure i take the same form as references to the new symbol
i/c. If i has an assignment c 7→ δ, we generate a de�ned constant: i/c : τ ′ := δ.

Lemma 6.24. Let T := g?T , and assume a well-formed library

Λ = Λ0, g :=
{

γ0, T
[M]
:= {ϑ0, i : S := {σ}, ϑ1} , γ1

}
, Λ1

such that the morphism T?i does not occur in σ or ϑ1 (Symbols of the form T?i/s may occur.)
and such that S has no meta-theory and bodyΛ(S) does not contain structures. Let Λ′ be obtained
as follows:

1. i : S := {σ} is replaced with the list of declarations containing i/c : τ := δ for every c
such that ΛT (i/c) = (τ, δ) (in some order that makes it well-formed).

2. T/i : S → T := {σ′} is added before γ1 where σ′ contains c 7→ T?i/c for every constant
c declared in bodyΛ(S).

3. Every assignment i 7→ µ in a link m with domain T is replaced with the list of assignments
containing i/c 7→ ω for every c such that ΛT?i(c) = ω.

4. Every assignment j/i 7→ µ in a link from T ′ such that T ′?j has domain T is treated as in
Case 3.

5. If m = g′?T ′?i′ is a structure with domain T , all occurrences of the imported structure
g′?T ′?i′/i are replaced with g?T/i •m, and a view g′?T ′/i′/i from S to g′?T ′ is added as
in Case 2.

Then Λ′ is well-formed and Λ and Λ′ are semantically equivalent.

Proof. Straightforward. (Note that hiding is covered by appealing to ΛT (−) in Step 1.)

Lem. 6.24 is limited to the case where S does not declare any structures. Therefore, struc-
tures into S must be �attened recursively before a structure from S can be �attened. However,
the �attening of structures leads to an exponential blow-up, which should be prevented when-
ever possible. The lemma is given here for its conceptual clarity but should not be implemented
literally. Instead, a generalized version of Lem. 6.24 is possible, which permits structure dec-
larations in the body of S. Then a structure h importing from R to S can be translated to a
structure i/h : R := µ where µ = bodyΛ(T?i/h). In particular, if σ contains h 7→ µ′, then
µ = µ′.

Another important enhancement that is relevant in practice is that δ and τ in Case 1 of
Lem. 6.24 do not have to be normalized. Rather, it is su�cient to remove all occurrences of
T?i. And the latter is more e�cient and preserves more modular structure.

In Lem. 6.24, we exclude occurrences of the structure T?i after its declaration. All such
occurrences can be eliminated using other �attening steps as seen below. Thus, we �rst eliminate
all references to T?i and then its declaration. It is still easy for an implementation to �atten all
structures using only one pass over the library.

151

6.4. LIBRARY TRANSFORMATIONS

Flattening Terms Flattening terms means to replace terms with their normalization.

Lemma 6.25. Assume a well-formed library containing a constant declaration c : τ := δ. Let
Λ′ arise from Λ by replacing c : τ := δ with c : τ := δ.

Then Λ′ is well-formed and Λ and Λ′ are semantically equivalent.

Proof. Clear.

Lemma 6.26. Assume a well-formed library containing an assignment c 7→ ω to a constant.
Let Λ′ arise from Λ by replacing c 7→ ω with c 7→ ω.

Then Λ′ is well-formed and Λ and Λ′ are semantically equivalent.

Proof. Clear.

Flattening Hiding Hiding is �attened by omitting knowledge items that refer to >.

Lemma 6.27. Assume a well-formed library containing a constant c : _ := > or c : > := _.
Let Λ′ arise from Λ by omitting that constant.

Then Λ′ is well-formed and Λ and Λ′ are semantically equivalent.

Proof. The lookup Λg?T (c) is not de�ned so that g?T?c cannot occur in any term. Neither can
it be instantiated by a link since rule ConAss also depends on the lookup to exist. Therefore,
the result follows immediately.

Lemma 6.28. Assume a well-formed library containing a view with an assignment c 7→ >. Let
Λ′ arise from Λ by omitting that assignment.

Then Λ′ is well-formed and Λ and Λ′ are semantically equivalent.

Proof. Clear because the semantics of partial views is de�ned by hiding.

Flattening Libraries Finally, we obtain:

Theorem 6.29. Every library is semantically equivalent to a �at one.

Proof. This is easy to show by iteratively applying the above lemmas.

Note that the �attened library of a library Λ contains views for all elements of Mor(Λ),
but these views are not used anywhere (and could thus be dropped). Of course, the size of the
�attened library is exponential in the height of the theory graph. This reminds of the importance
of modular theory design and of implementations that preserve the modular structure in their
internal data structures.

Finally, note that the existence of the �attened library is in fact trivial. We can construct it
immediately as follows: Given a library Λ, for every T ∈ Thy(Λ), we take a theory T and �ll it
with declarations c : τ := δ for every ΛT (c) = (τ, δ). Similarly, for every link m ∈ Mor(Λ), we
take a view m and �ll it with assignments according to Λm(−).

The most important practical aspect of the �attening is not its existence but that it can be
applied �exibly: Single equivalence transformations can be carried out without �attening the
whole library. Thus, the modular structure can be preserved as long as possible or necessary,
and the exponential blowup is avoided.

152

6.5. FUTURE WORK

6.5 Future Work

The version ofMmt presented here is a core language. Nothing more can be expected (or should
be attempted for that matter) when designing a language from scratch. There are several non-
trivial extensions � some envisioned, some already designed � that will prove important in the
future. An important observation in this respect is the extensibility of Mmt: Now that a fully
formal syntax for a core language is given, more complex features can be easily added step by
step.

Some of these features, such as roles, structured proofs, and informal documents, can be
seen as reconstructing OMDoc 1.2 in a fully formal setting. Others, such as functors and
abstractions, go beyond OMDoc 1.2. In this section, we give an overview over these upcoming
developments, ordered by descending maturity of the ideas.

6.5.1 Implementation

Before extending the language, we will focus on an implementation. Since one of our main
concerns is scalability, it is important to feed back practical experiences into the language
design process. The implementation will read in an Mmt library (using the XML syntax from
Sect. 8.1), validate it, and �atten it. A plugin architecture will be used to handle foundations.

In fact, the upcoming implementation is already the second implementation round. A �rst
fully functional prototype was developed in an earlier stage and has recently become largely
obsolete. For example, the switch from a bottom-up to a top-down inference system was made
after experimenting with the prototype. Another lesson learned from the prototype was the use
of the Curry-Howard correspondence in order to reduce the number of primitive concepts.

The most important short-term goal of the implementation is to achieve a design of the
internal data structures that combines the modular and the �attened view. Neither extreme
scales to large input sizes. Therefore, the �exible �attening results from Sect. 6.4 are crucial.

6.5.2 Small Conservative Changes

Renaming upon Imports After importing via i : S := {σ}, it is often desirable to access
a symbol c of S without using the quali�er i. For example, when importing from monoid to
group via an import mon, it is confusing to say mon/comp instead of simply comp. Therefore, we
permit an additional kind of assignments, namely

Ass ::= c c′

An import declaration i : S := {σ} where σ contains c c′ is well-formed if a constant of
name c′ could be declared after i. And then its semantics is that c′ abbreviates i/c.

Conservative Extensions of Theories Extensions of theories with de�ned constants �
which include theorems by the Curry Howard correspondence (see Sect. 6.5.3) � are often done
outside the theory. For example, a theory T is de�ned �rst, then views in and out of T are
obtained that eventually lead to an important theorem that should be added to the theory.
Another example is that a user provides a small core theory, e.g., for ZFC, that is enriched step
by step and by di�erent authors with new de�nitions.

Currently, this is only possible by de�ning a new theory which imports T and then adds a
new symbol. But it is desirable, to add the symbol directly to T so that existing views from T
can be used to move it into other theories. Since the only requirement for such an operation is
that a fresh name is chosen for the new symbol of T , this feature can easily be added to Mmt.

153

6.5. FUTURE WORK

6.5.3 Roles

Judgments as Types and Proofs as Terms Mmt does not provide syntax for axioms, proof
rules, or judgments. Instead, these concepts are subsumed by constants and terms via the Curry-
Howard correspondence. However, it is often desirable to treat constants di�erently depending
on whether they are intended to represent mathematical objects or axioms, in particular, when
interfacing to a system that does not use the Curry-Howard correspondence (which includes
most humans).

Therefore, we introduce the concept of semantic roles. Constants may be declared to have
one of the roles listed in Fig. 6.23. These roles correspond to those of Def. 5.1. While the roles
can be used for various management services, they are transparent to the formal de�nition of
Mmt.

Value roles Type roles
Objects term sort
Judgments proof judgment

Figure 6.23: Semantic Roles

Thus, the axioms, assertions, and proofs of non-Curry-Howard (nCH) languages (such as
OMDoc 1.2) are subsumed by Mmt constants. Fig. 6.24 gives the correspondence between
Mmt constants and nCH concepts. In particular, the de�nition of an Mmt constant with role
�proof� corresponds to the proof of an nCH theorem, and proof checking is reduced to type
checking. In particular, the requirement that views must provide well-typed assignments for
every constant means that a view must provide a proof in the codomain theory for every axiom
of the domain theory. This is exactly the de�ning property of theory morphisms.

Note that the restriction to Curry-Howard languages is no loss of generality. Every language
that talks about formulas and proofs can be made into a Curry-Howard language by adding a
new constant true with role �judgment�. Then the relation that p proves F can be regarded as
the typing relation p :true F .

Typed by atomic judgment Typed by composed judgment
Unde�ned axiom proof rule
De�ned theorem derived proof rule, proof

Figure 6.24: Axioms and Theorems

6.5.4 Unnamed Imports

The structures of Mmt arose out of the need to provide a rigorous foundation for OMDoc.
OMDoc used unnamed imports with instantiations, and this led to di�culties with disam-
biguating multiple imports. To alleviate the ensuing necessity of renaming,Mmt replaced them
with structures as named imports.

We now know that this was not the complete solution yet. A disadvantage of named imports
is that multiple imports are always di�erent, and references to imported symbols need to be
quali�ed with the import name. In many cases this is not satisfactory, in particular when
importing theories that should not be instantiated. For example, a theory for the natural
numbers may be imported in theories S and S′. If a theory T imports both S and S′, the two
copies of the natural numbers must be explicitly equated. This is unnatural because it would
not make sense to have two di�erent copies of the natural numbers.

154

6.5. FUTURE WORK

Therefore, it is not the right decision to replace OMDoc 1.2 imports with the new Mmt

structures. Rather, the OMDoc 1.2 imports should be kept aside the new structures � except
that the old imports should not carry morphisms anymore. Thus, the syntax of Mmt should
be extended with productions

ϑ ::= Imp∗, Sym∗

Imp ::= import S

where import S represents an unnamed import from S.
The relation �T imports from S� can be formalized as an ordering S ≤ T on the theory

names. Then if R ≤ S, (i) views from S to T are only well-formed if also R ≤ T , and (ii) if T
declares a structure of type S, this forces R ≤ T (but not necessarily S ≤ T). It does not matter
how often and along which path T imports S: All such unnamed imports are indistinguishable.
This is re�ected in the way how T can refer to the imported symbols: T refers to a symbol s of
S simply by S?s.

6.5.5 Subtheories

A previous version ofMmt already permitted subtheories, i.e., theory declarations that occur in
other theories. The principal idea of the semantics of subtheories is that a subtheory S := {ϑ}
occurring within the body of a theory g?T is equivalent to a toplevel theory g?T/S

M
:= {ϑ}.

Here M is the part of g?T that precedes the declaration of S. Thus, S can refer to all symbols
s of T declared before S via ../s. Views or imports from T ignore the subtheories of T .

Theories can import from their own subtheories so that they provide an alternative way to
represent local functions: Subtheories and their instantiations can be used to represent func-
tion declarations and applications, respectively. It can also be very convenient to have global
parameters, i.e., some symbols declared at the beginning of a theory that are shared by several
subtheories.

Another application of subtheories is that they can serve as a general scoping mechanism.
A theory T can contain a subtheory for anything that locally declares new symbols that should
not be copied when T is imported. Examples for such scoping constructs in mathematical
documents are examples and exercises but also theorems and proofs.

However, the decision that the list of T -declarations preceding S should comprise the meta-
theory of S turned out to be unfortunate. In particular, this de�nition behaves very badly under
reorderings. Therefore, we dropped subtheories for now. A promising redesign will consider
only those symbols preceding S that are actually used in S as the meta-theory. However,
this requires a stronger dependency analysis than employed so far: The meta-theory has to be
computed because S may depend on symbols that do not occur literally in ϑ. Since such a formal
dependency calculus will be needed for the management of change anyway (see Sect. 8.4), we
defer the reintroduction of subtheories.

6.5.6 Functors

Mmt can represent functors via the pushout semantics employed by various module systems,
e.g., OBJ ([GWM+93]). That means that a functor from a theory S to a theory T consists of a
triple (i, F, o) where:

• F is a theory, the main expression representing the functor.

• i is a structure from S in F with no assignments. This structure imports the input interface
S into the functor as uninstantiated symbols.

• o is a morphism from T to F . This morphism yields an interpretation of the output
interface T in terms of F .

155

6.5. FUTURE WORK

T

S F

C := {ϑ, h : F := {i 7→ µ}}

o
F?i

µ C?h

Consider the diagram on the right where C
represents the local context, in which the functor
(i, F, o) is applied to the morphism µ from S to C
(i.e., to a morphism µ of type S over C). This is
done by declaring a structure h : F := {i 7→ µ},
which instantiates the input interface S with the
concrete interpretation of S via µ. And the result
of this application is the morphism o • C?h, which
is a morphism from T to C.

While this yields an elegant representation of functors, it is not all that is desirable. Mmt
is foundation-independent, and foundation-speci�c functors typically require a slightly di�erent
form. For example, the category of monoids can be represented as a theory M inMmt (say with
�rst-order logic as the meta-theory). And every speci�c monoid can be represented as a theory
morphism from M to ZFC where ZFC is a theory for the speci�c foundation � e.g., Zermelo-
Fraenkel set theory � in which the monoid is expressed. Similarly, groups are represented as
theory morphisms from a theory G to ZFC.

Then the well-known theory morphism from M to G induces a model reduction functor from
the category of groups to the category of monoids. This functor � like all model reduction
functors � can be easily expressed in Mmt by composition. However, other functors cannot,
e.g., the functor in the opposite direction assigning to every monoid its unit group. The latter
functor takes a morphism G → ZFC as input and returns a morphism M → ZFC. Very
similar situations arise with other kinds of functors, e.g., SML functors have the same form with
a theory SML instead of ZFC.

For that purpose, a stronger module system based on lambda abstractions over morphisms
was developed in ([Aga08]). A typical expression in this language looks like this: λm : M →
ZFC.σ : G → ZFC, which has type (M → ZFC) ⇒ (G → ZFC). This module system uses a
simpli�ed version of Mmt that has still to be merged into the main version.

A generalized version could permit to combine statement level λ-abstraction over morphisms
and object level λ-abstraction over terms. This could also remedy the problem that currently
no quanti�cation over morphisms is possible. For example, it is desirable to have an axiom of
the form �For all x of type τ over T there is a view from S to T that maps the constant c of S
to x.�.

6.5.7 Informal Documents

One of the strongest aspects of OMDoc is that it scales to the case where informal methods
must be used because a fully formal treatment is not feasible. Thus, adding informal elements to
Mmt is an important extension. However, this must be done in a controlled way: Too generous
a relaxation of the syntax makes the format unintelligible for machines and thus useless. Three
kinds of informal languages are particularly useful: natural language, programming languages,
and program output.

In a �rst step, informal elements should only occur at the object level, i.e., terms and
morphisms could be given informally. For example, constant de�nitions could be in semi-formal
or informal natural language, which is especially useful for proofs (see also Sect. 6.5.8). This
can be realized by adding a production ω ::= (Txt|ω)∗ where Txt is any string representing
sentence fragments in natural language. For example, a semi-formal quanti�cation typical of
mathematical documents could be expressed as

β(for all , α(x, with the property that 7→ P (x)), we have that Q(x)).

Similarly, a semi-formal or informal speci�cation of a software system could be expressed as
a theory T that declares a constant of type R for every requirement R. Then views out of T
must provide proofs for these requirements. Since the requirements are informal, the correctness

156

6.5. FUTURE WORK

of such a proof � be it formal or informal � cannot be checked, but checking whether it is
present or whether it changed compared to the last version is already extremely useful.

Software programs can be represented in Mmt by representing, e.g., classes as theories and
�elds of a class as symbols. Invariants and other formal or informal comments can be attached
to implementations as theorems. Then views from a speci�cation to a program can relate every
function symbol to the function implementing it, and every axiom to a proof. Here the proofs
consist of natural language possibly referring to the theorems given about the implementation.

6.5.8 Structured Proofs

CurrentlyMmt only supports proof terms. This is in contrast to the elaborate markup language
for structured proofs provided by OMDoc 1.2. However, the formal semantics of the latter is
unclear (but see [Coe05] for a partial semantics), and an important future project will be to
extend the formal semantics of Mmt to structured proofs.

Such proofs will be trees with judgments as nodes and proofs connecting every node with its
children. Via the Curry-Howard treatment of judgments and proofs, it becomes possible to use
terms for both judgments and proofs. This goes beyond OMDoc 1.2, which does not formalize
the notion of inference rules.

This will be particularly useful in conjunction with informal documents as described in
Sect. 6.5.7. Then arbitrary proof steps can be written informally. Simple examples of informal
proof steps are references to the literature, omitted simple steps, or conjectures. If there are
formal judgments that act as interfaces for the informal proofs by giving the assumptions and
conclusion of the proof fragment formally, a validation of the whole proof relative to the correct-
ness of the informal steps is possible. It is even possible to use �exible trust levels that permit
researchers to select which informal steps a proof checker should accept.

We will look at two kinds of informal proof steps in more detail: borrowing steps and prover
traces. These are interesting because they are relatively close to formal proof steps and are
routine accepted as quasi-formal by many practitioners.

Borrowings translate proof goals to a di�erent logic. Typically, the translation of the proof
goals is signi�cantly easier than the proof that the borrowing is sound. In principle, there are
two ways how to establish the soundness of borrowing: proof theoretically by translating the
obtained proof back to the original logic, or model theoretically by exhibiting a model translation
between the two logics.

The model theoretical argument is usually much easier to carry out than the proof theo-
retical argument, but it is always semi-formal. Furthermore, often the translated proof goal is
discharged using an automated prover that does not even return a proof that could be veri�ed,
let alone translated back. However, in practice researchers consider borrowing proofs as rela-
tively reliable even though a formal soundness proof is missing (e.g., in [BPTF07] and [Bro06]).
In such situations, the soundness of borrowing can be given as an informal proof and a speci�c
application of borrowing as a formal proof step. This is the starting point for the investigation
of the concept of heterogeneous proof terms, which combine formal and informal reasoning and
logic translations.

Prover traces are the output produced by automated provers: Many of these return struc-
tured information, from which � in principle � a formal proof can be constructed. But in
practice it is often far too expensive to do that. However, it is possible to treat the output or
the log �le as an informal proof, which is particularly interesting if the used axioms are marked
up. In the latter case the Mmt dependency analysis could use this information, e.g., for the
management of change.

In the last two examples, �exible trust levels would mean that users can con�gure which
logic translations and which automated provers they consider trustworthy.

157

6.5. FUTURE WORK

6.5.9 Abstractions

Finally, we mention an important concept that is not fully understood yet. Consider a theory
ZFC for set theory, in which the natural numbers are de�ned, and assume we want to interpret
the natural numbers in some other theory, e.g., a theory ring0 for rings with characteristic 0.
There could be a theory Nat, which imports ZFC and declares constants for 0, succ, and each
of the Peano axioms. All of these would be de�ned constants, including those for the Peano
axioms, which are theorems in set theory. Intuitively, there is a view from Nat to ring0 which
maps 0 to 0 and succ to the function adding 1.

But currently this is impossible to express. The symbols of Nat are de�ned in terms of
ZFC, and they cannot be instantiated by a view. To interpret them in ring0, we would need a
view from ZFC to ring0, which is not possible. What is needed here is to somehow �unde�ne�
the natural numbers in a way that forgets their de�nition in terms of ZFC but keeps their
properties. In particular it should only unde�ne the Peano axioms, and not every property
proved about the natural numbers. This should result in a new theory, from which a view into
ring0 can be given.

Another possibility to express the relation between Nat and ring0 is to introduce a new
theory that de�nes the natural numbers axiomatically and then give views from it into Nat and
ring0. This is related to the hiding of ASL ([SW83]).

A similar problem arises when giving a view from the real numbers R of HOL Light ([Har96])
to the real numbers R′ of Isabelle/HOL ([NPW02]). Both use type theoretical foundations (in
fact, essentially the same one), in which the real numbers are de�ned. But no view can map
R to R′ because the two systems use di�erent de�nitions of the real numbers. Here, we would
want to translate all constants of R to their analogues in R′ irrespective of their de�nitions.
(This problem was addressed in [OS06], but no formal notion of soundness was used because
the translated theorems were reproved in Isabelle.)

Somewhat di�erent but still related is the feature of re�ection. Some languages are able
to represent themselves. For example, assume a theory DTT for dependent type theory that
declares untyped, unde�ned constants, e.g., for type and lambda. Then there is a theory DTTr

with meta-theory DTT that declares the same constants, but using DTT -terms as types. For
example, DTTr would declare a symbol type : DTTr?../type := ⊥. To express re�ection, we
would have to exhibit a view from DTTr to DTT . This view would have to map DTTr?type
to DTT?type and thus con�ate DTTr?type and DTTr?../type; but then it cannot preserve
typing anymore (except for degenerate cases).

We contend that �nding a simple solution that covers such applications will provide valuable
insights into the nature of translations.

Acknowledgments The work presented here is the result of a collaboration with Michael
Kohlhase and together with Sect. 7 core of a joint paper ([RK08]). We collaborated with Elena
Agapie on problems related to Sect. 6.5.6 ([Aga08]).

158

Chapter 7

Representing Foundations and

Logics in Mmt

It is clear from the de�nitions that most formal systems can be represented in Mmt. As exam-
ples, we give a type theoretical and a set theoretical foundation using DTT and ZFC in Sect. 7.1
and 7.2. Then in Sect. 7.3, we go one step further and represent the logical framework L of Sect. 5
inMmt. This constitutes the climax of this text where type and set theoretical foundations and
model and proof theoretical logical frameworks are uni�ed inMmt as a foundation-independent
meta-framework. We conclude the formal investigation of Part II in Sect. 7.4.

7.1 DTT as a Foundation

We give a foundation for dependent type theory. For some appropriate URI g, we use the
document below to describe DTT. The given symbols give the necessary declarations for the
Edinburgh Logical Framework, LF ([HHP93, Pfe01]). The horizontal dots indicate further
symbols depending on the speci�c variant of DTT chosen; the same treatment can be applied
to all subsystems of DTT as de�ned in Sect. 4.

g := {DTT := {type, kind, lambda, Pi, oftype, . . .}}

Thus, the theory DTT := g?DTT only declares untyped, unde�ned symbols for the basic opera-
tions of DTT. Application is not needed because we can express it using the application ofMmt.
oftype is needed to ascribe types to variables in binders. The document g should be made acces-
sible at a reasonable location, e.g., by picking http://cds.omdoc.org/logical_frameworks/

dtt.omdoc for g and answering requests for that URL with an Mmt-aware database. Using the
extensions of Sect. 6.5.7, the semantics of these symbols can be attached in natural language.

Then we give a foundation ΦDTT for the set {DTT} of theory names. It is de�ned as follows.

• (ΦDTT)Λ,i(ω ≡ ω′) according to the αβη-equality of DTT.

• (ΦDTT)Λ,i(ω : ω′) according to:

ω\ω′ ⊥ ω′ >
⊥ - `DTT ω′ : type or `DTT ω′ : kind -
ω - `DTT ω : ω′ -
> + + +

This means that ⊥ type-checks against those terms that are well-formed types and kinds in
DTT. This permits to declare typed or kinded constants in theories. > type-checks against
every term as required for regular foundations. And for the remaining terms, typing is
reduced to the typing and kinding judgment of DTT.

159

http://cds.omdoc.org/logical_frameworks/dtt.omdoc
http://cds.omdoc.org/logical_frameworks/dtt.omdoc

7.2. ZFC AS A FOUNDATION

Here, the judgments `DTT ω ≡ ω′ and `DTT ω : ω′ hold i� the corresponding judgments for
the used variant of dependent type theory hold for closed expressions. These judgments are the
ones given in Sect. 4 with a small modi�cation of the rules:

• @(ω1, ω2) is treated as ω1 ω2.

• β(i/lambda, α(x, i/oftype 7→ ω), ω′) is treated as λx:ω ω′.

• β(i/Pi, α(x, i/oftype 7→ ω), ω′) is treated as Πx:ω ω′.

• Similar adjustments for the other term, type family, and kind constructors present in the
speci�c variant of DTT used.

• The rules Ta of Fig. 4.4 and tc of Fig. 4.5 (which are the only syntax formation rules that
use the signature Σ) are replaced with

ΛT (c) = (τ,_) ` Γ Ctx

Γ ` T?c : τ
.

These modi�cations make the judgments `DTT ω ≡ ω′ and `DTT ω : ω′ independent of a
particular signature because all name lookups of constants are handled via the foundation-
independent Mmt-lookup ΛT (−). Here Λ is the global state and T de�nes the current scope.
Because no signature needs to be maintained by the foundation, the implementation of ΦDTT is
not only straightforward, but in fact easier than a stand-alone implementation. On the downside,
no advanced features like the reconstruction of implicit arguments can be handled. Finally, we
have:

Lemma 7.1. ΦDTT for full dependent type theory as introduced in Sect. 4 is regular. It is
decidable if restricted to LF.

Proof. Regularity is straightforward. Decidability is a basic result about LF (see, e.g., [HHP93]).

7.2 ZFC as a Foundation

Now we sketch a foundation for set theory. We will not go into the details so that our presentation
applies to a variety of set theories, e.g., Zermelo-Fraenkel set theory with choice.

Let ST be the URI of a theory for set theory. ST declares at least a constant Set for the
collection of all sets, constants for the basic operations of �rst-order logic, implicit de�nitions,
elementhood, and the axioms, and other constants for the basic notions of the speci�c set theory.
A foundation ΦST for {ST} is given by:

• (ΦST)Λ,i(ω ≡ ω′) according to:
ω\ω′ ω′ >

ω ω
.= ω′ provable -

> - +

• (ΦST)Λ,i(ω : ω′) according to:

ω\ω′ ⊥ ω′ >
⊥ - - -
ω - at least if ω is a set and ω′ = ST?Set -
> + + +

Here the equality of ΦST is de�ned with reference to provability in the logic of the set theory,
e.g., FOL with implicit de�nitions. Of course, this foundation is not decidable (unless the chosen
set theory is inconsistent). As to the typing relation, there is a variety of possibilities how to

160

7.3. REPRESENTING A LOGICAL FRAMEWORK IN MMT

use some typing system in set theory (e.g., ZFC could be de�ned as in Ex. 5.38), and we do
not intend to go into the details here. But the important thing it that all expressions denoting
sets have type ST?Set. Therefore, any theory with meta-theory ST can introduce constants
of type ST?Set that have some set as a de�niens, but it cannot introduce unde�ned constants.
This is how set theory is usually developed as a large conservative extension of a small (possibly
inconsistent) theory. Details can be found in any textbook on axiomatic set theory (e.g., [HJ84]).

Having a foundation for set theory permits to integrate the OpenMath standard content
dictionaries ([BCC+04]) intoMmt. This is non-trivial becauseMmt focuses on logical theories,
which usually have uninterpreted constants, whereas the standard content dictionaries provide
declarations (with types and de�nitions in natural language) for the constants occurring in math
curricula of schools and undergraduate university courses. The latter is (more or less explicitly)
based on some set theory. So we can say: The OpenMath standard content dictionaries can
be understood as Mmt-theories with an appropriate meta-theory for set theory.

7.3 Representing a Logical Framework in Mmt

In the previous sections, we introduced theories DTT and ST and Mmt foundations for them.
Building on that, we can now represent the logic encodings in L given in Sect. 5 in Mmt. In
short, logics and logical theories are represented as Mmt theories with meta-theory DTT , and
models are represented as Mmt theory morphisms into ST .

The following descriptions are visualized in Fig. 7.1. Using DTT , we de�ne the theory

log
DTT
:= {o : type := ⊥, true : o → type := ⊥}

de�ned in some document g such that Log := g?log. Here we use LF syntax instead of the more
verbose Mmt syntax to represent the types. Then a logic is represented as a theory L with
meta-theory DTT along with a morphism l from Log to L. This corresponds to an L signature
(Σ;∆;R; o; true) where Σ and ∆ are given by L, and o and true are given by l. To present R,
we need the extension ofMmt with role assignments that was already announced in Sect. 6.5.3.

Theories of a logic (L, l) are represented asMmt theories T with meta-theory L. And theory
morphisms from an (L, l)-theory S to an (L, l)-theory T are represented as Mmt morphisms µ
from S to T . The sorts, terms, judgments, and proofs are explicitly represented by constants
declared in L, possibly enriched by further constants in T . Then the Mmt terms over T
(typed according to the foundation ΦDTT) give the sentences, judgments, and proofs over T . In
particular, Log?truel•T?.. represents the truth judgment in T . Sentence, judgment, and proof
translation along µ is given by morphism application in Mmt.

Models of the theories S and T are represented as Mmt theory morphisms into ST . Here
di�erent variants of set theories can be chosen for ST depending on the set theory in which
the models are expressed, for example Tarski-Grothendieck set theory for models described
in the Mizar system ([Tar38, Bou64, TB85]). More generally, arbitrary theories can be used
to express the models, e.g., type theoretical foundations such as in Isabelle/HOL ([NPW02]).
Model reduction along µ of a T -model I ′ to an S-model I is simply morphism composition in
Mmt.

Satisfaction of a T -formula ω in a model I ′ is represented by the equality in ST (as de�ned

by the foundation ΦST). If the term @(Log?truel•T?.., ω)
I′

is equal to the empty set, then ω is
false.

Similarly, logic comorphisms from (L, l) to (L′, l′) can be represented by an Mmt morphism
ν from L to L′ (which does not necessarily satisfy l • ν = l′ according to Def. 5.9). In simple
cases, the translation of T to (L′, l′) is a theory T ′ with meta-theory L′ whose body only consists

of an import from T , namely i : T
ν•T ′?..

:= {·}. Then the inter-logic sentence translation from
T to T ′ and model reduction from T ′ to T are induced by the morphism T ′?i just like in the

161

7.3. REPRESENTING A LOGICAL FRAMEWORK IN MMT

DTT

Log

L L′

S T T ′

ST

Log?..

L?.. L′?..

l

ν

S?.. T?..

µ

I := µ • I ′ I ′

l′

T ′?..

T ′?i

inter-framework level

inter-logic level

inter-theory level

model theory

Figure 7.1: Logics in Mmt

inter-theory case. It is also possible to compose the inter-theory translation µ and the inter-logic
translation T ′?i.

Thus, we represent logical theories as pairs of a theory and its meta-theory and translations
between them as pairs of a morphism and a meta-morphism. This is very similar to the use of
Grothendieck institutions ([Dia02, Mos05]) in the context of institutions. Our approach is less
expressive regarding the kinds of inter-logic translations; on the other hand, it extends elegantly
to the case of inter-framework translations.

Example 7.2. The translation from ML to FOL of Ex. 5.37 can be directly represented in this
way. L and L′ are the Mmt representations of the theories for ML and FOL given in Fig. 5.3
and 5.2. And ν is the Mmt representation of the morphism given in Fig. 5.9. The assignment
of T ′ and T ′?i to T corresponds to the assignment of Φ(T) and mT in the logic comorphism
modi�cation given in Ex. 5.37.

There are some limitations to our approach. It remains open for now how to represent
in Mmt the model morphisms and the translation of (L, l)-theory morphisms to (L′, l)-theory
morphisms (for which a pushout should be used). Furthermore, more complex logic comorphisms
cannot be represented easily: The translation from ML to FOL has the special property that
the constants of T are in bijection with those of Φ(T). But this need not be the case in general.
For example, in the translation from DFOL of Ex. 5.30 to FOL given in [Soj08], Φ(T) contains
one constant for every constant of T plus a variety of other constants de�ned by clauses of the
form �For all constants c of type τ of T , Φ(T) contains�. Even after introducing complex
functors as outlined at the end of Sect. 6.5.6, this cannot be represented.

And �nally, there is no way to specify which Mmt-theories with meta-theory L should be
considered logical theories. And a similar argument holds for the models. For example, if (L, l)
represents FOL, then only function and predicate symbols should be declared in T . But currently
every well-formed declaration is allowed. It is an interesting direction of future research to limit
the theories T by declaration patterns. These patterns could then also be used when specifying
translations thus solving both problems at the same time.

162

7.4. CONCLUSION

7.4 Conclusion

In Sect. 6, we introduced Mmt, a module system for logical knowledge. Its most characteristic
features are that it represents logical frameworks, logics, logical theories, and their translations
uniformly as theories and theory morphisms in a way that we call the logics-as-theories
approach, and that it is generic in the underlying non-modular language in a way that we call
foundation-independence.

The logics-as-theories approach yields a two-dimensional structure of theories mediated by
theory morphisms. Along one dimension, theories represent the levels of logical reasoning:
logical frameworks, logics, and theories. Along the other dimension, theories are interconnected
by theory morphisms that represent instantiations and translations of the module system. This
provides an e�cient and simple way of maintaining logical knowledge in highly modularized
form.

At the same time the module system is conservative over the underlying non-modular lan-
guage. This foundation-independence is realized by relegating the information about typing
and equality, which captures the semantics of a language represented in Mmt, to extraneous
components. This creates an interface that encapsulates on the one side the intelligence-heavy
formalizations of typing and equality of speci�c foundations, and on the other side the global
state that is maintained and manipulated by low-intelligence knowledge management systems.
Since Mmt can relegate the semantics to foundations, the design becomes very extensible while
still retaining a formal semantics, and we outlined some future extensions that can make Mmt
signi�cantly more expressive.

These two features makeMmt highly �exible and expressive. Many modular languages from
distinct areas of mathematics and computer science can be represented naturally in Mmt. At
the same time, the syntax of Mmt is rather lean: It is geared towards capturing the structural
properties of the theories and their translations as well as their aggregation in documents and
libraries. Many advanced features that would otherwise complicate the language � such as
recursion, pattern matching, or implicit de�nitions � can be added when needed by using
appropriate meta-theories or meta-meta-theories.

In Sect. 7, we showed how both set/model and type/proof theoretical logical reasoning in
general as well as logic encodings in the speci�c logical framework L can be represented elegantly
in Mmt. While there are still some limitations (e.g., model morphisms and the signature
translation in complex logic comorphisms),Mmt goes a long way in representing logics and logic
translations. In particular, Mmt captures the most important aspects for logical reasoning:
propositions and model and proof theory, and the translations of propositions, models, and
proofs on all levels of logical reasoning.

An important consequence of the design of Mmt is that it becomes e�cient to implement
and maintain a web-scalable architecture for Mmt. This scalability lets Mmt utilize the full
potential that module systems have over non-modular developments. And the extent to which
this is possible with Mmt is one of the main contributions of this work. We will look at this in
more detail in Sect. 8.

Acknowledgments The work presented here is the result of a collaboration with Michael
Kohlhase and together with Sect. 6 core of a joint paper ([RK08]). A very early version appeared
as [Rab07].

163

7.4. CONCLUSION

164

Chapter 8

Towards a Web-Scale Infrastructure

for Logical Knowledge

The module system presented in Sect. 6 is an integral part of the upcoming OMDoc 2 doc-
ument format, which will supersede OMDoc 1.2 ([Koh06]). Following practice in MathML
([ABC+03]), OMDoc 2 will consist of a strict and a pragmatic language. Pragmatic OMDoc
will be of similar �avor as OMDoc 1.2 and will be (partially) elaborated into strict OMDoc.
For logical knowledge, mainly the strict variant is important.

Mmt constitutes the formal abstract syntax corresponding to the strict OMDoc 2 language.
And in this section, we sketch our vision for the concrete XML-based infrastructure for Mmt.
Sect. 8.1 gives the RelaxNG grammar ([CM01]) for the XML syntax and de�nes the XML
encoding of Mmt in it. Sect. 8.2, 8.3, and 8.4 present the design of the three most promising
applications of generic logical knowledge management services to Mmt: persistent storage,
presentation, and management of change.

8.1 Strict OMDoc 2

8.1.1 XML Syntax

A somewhat simpli�ed version of our proposed strict OMDoc 2 syntax is given by the RelaxNG
([CM01]) grammar listed in Fig. 8.1. It already accounts for the addition of unnamed imports
(see Sect. 6.5.4) and semantic roles (see Sect. 6.5.3). The grammar for objects is omitted because
it is the same as for OpenMath.

The XML grammar mostly follows the abstract grammar. Documents are omdoc elements
with a theory graph, i.e., theory and view elements as children. The children of theories are
constant and structure. And the children of views and structures are maps (assignment to a
constant or structure). We also allow for imports children of theories that represent unnamed
import declarations.

Both terms and morphisms are represented by OpenMath elements (mterm and mmorph in
the XML grammar). And all names of theories are URIs. The grammar does not account for
the well-formedness of objects and names. In particular, well-formedness (see Sect. 6.3) is not
checked at this level.

Formally, we de�ne an encoding function E(−) that maps Mmt-expressions to sequences of
XML elements. The precise de�nition of E(−) is given in Fig. 8.3 and 8.4 where we assume
that the following namespace bindings are in e�ect:

xmlns="http://www.omdoc.org/ns/omdoc"
xmlns:om="http://www.openmath.org/OpenMath"

165

8.1. STRICT OMDOC 2

default namespace omdoc = "http://www.omdoc.org/ns/omdoc"

#useful abbreviations
from.attrib = attribute from {ModuleName}
to. attrib = attribute to {ModuleName}
name.attrib = attribute name {xsd:string}
ModuleName = URI

start = omdoc

#document level
omdoc = element omdoc {theorygraph}
theorygraph = theory∗ & view∗

#module level
theory = element theory {name.attrib, metatheory?, theorybody}
metatheory = attribute metatheory {ModuleName}
theorybody = object∗ & structure∗ & imports∗

view = element view {name.attrib, from.attrib, to. attrib , linkbody}
metamorphism = element metamorphism {mmorph}
linkbody = (metamorphism?, conass∗ & strass∗) | element de�nition {mmorph}

imports = element imports {from.attrib}

#symbol level
constant = element constant {name.attrib, attribute semrole {semrole}?, type?, de�nition ?}
semrole = "term" | "sort" | "proof" | "judgment"
type = element type {mterm}
de�nition = element de�nition {mterm}

structure = element structure {name.attrib, from.attrib , linkbody}

conass = element conass {name.attrib, mterm}
strass = element strass {name.attrib, mmorph}

#object level
mterm = mobj
mmorph = mobj

#include external scheme to de�ne syntax for objects
mobj = grammar {include "openmath3.rnc"}

Figure 8.1: RelaxNG Scheme

166

8.1. STRICT OMDOC 2

Library E(Doc1, . . . , Docn) E(Doc1) . . . E(Docn)
Document E(g := {Mod1, . . . ,Modn}) <omdoc>E(Mod1) . . . E(Modn)</omdoc>

Theory E(T
[M]
:= {Sym1, . . . , Symn})

<theory name="T" [metatheory="E(M)"]>
E(Sym1) . . . E(Symn)

</theory>

View E(v : S → T
[µ]
:= {σ})

<view name="v" from="E(S)" to="E(T)">
[<metamorphism>E(µ)</metamorphism>]
E(σ)

</view>

E(i : S → T := µ)

<view name="i" from="E(S)" to="E(T)">
<de�nition>
<OMOBJ>E(µ)</OMOBJ>

</de�nition>
</view>

Figure 8.3: XML Encoding of Document and Module Level

And we assume the following content dictionary with cdbase http://cds.omdoc.org/omdoc/

mmt.omdoc, which is itself given as an OMDoc theory:

<omdoc>
<theory name="mmt">
<constant name="hidden"/>
<constant name="identity"/>
<constant name="composition"/>

</theory>
</omdoc>

We abbreviate the OMS elements referring to these symbols by OMDoc(identity) etc.
The encoding of the structural levels is straightforward. The encoding of objects is a gener-

alization of the XML encoding of OpenMath objects. We use the OMS element of OpenMath
to refer to symbols, theories, views, and structures. The symbol with name OMDoc(hidden) is
used to encode the special term >. To encode morphisms, OMDoc(identity) takes a theory
as an argument and returns a morphism. OMDoc(composition) takes a list of structures and
views as arguments and returns their (left-associative) diagram order composition. Morphism
application is encoded by reusing the OMA element from OpenMath.

OMS-triple E(g?m?s) base="g" module="m" name="s"

E(g?m) base="g" module="m"

URI E(g?m?s) g?m?s
E(g?m) g?m

Figure 8.2: XML Encoding of Names

The encoding of names is giv-
ing separately in Fig. 8.2 on the
right. There are two di�erent ways
to encode names. In OMS elements,
triples (g,m, s) of document, mod-
ule, and symbol name are used,
albeit with more �tting attribute
names. These triples correspond
to the (cdbase, cd, name) triples of the OpenMath standard ([BCC+04]). We also use them to
refer to module level names by omitting the name attribute. When names occur in attribute
values, their URIs are used.

8.1.2 Relative Names

In practice it is very inconvenient to always give quali�ed names. Therefore, we de�ne relative
references as a relaxation of the syntax that is elaborated into the o�cial syntax.

A relative reference consists of three optional components: a document reference g, a
module reference m and a symbol reference s. We write relative references as triples (g,m, s)
where we write ⊥ if a component is omitted. g must be a URI reference as de�ned in RFC
3986 ([BLFM05]) but without query or fragment. m and s must be unquali�ed names, i.e.,
slash-separated non-empty sequences of names. Furthermore, m and s may optionally start

167

http://cds.omdoc.org/omdoc/mmt.omdoc
http://cds.omdoc.org/omdoc/mmt.omdoc

8.1. STRICT OMDOC 2

Constant E(c : [τ] := [δ])

<constant name="c">
[<type>
<OMOBJ>E(τ)</OMOBJ>

</type>]
[<de�nition>
<OMOBJ>E(δ)</OMOBJ>

</de�nition>]
</constant>

Structure E(i : S
[µ]
:= {σ})

<structure name="i" from="E(S)">
[<metamorphism>E(µ)</metamorphism>]
E(σ)

</structure>

E(i : S := µ)

<structure name="i" from="E(S)">
<de�nition>
<OMOBJ>E(µ)</OMOBJ>

</de�nition>
</structure>

Assignments E(Ass1, . . . , Assn) E(Ass1) . . . E(Assn)

E(c 7→ ω)
<conass name="E(c)">
<OMOBJ>E(ω)</OMOBJ>

</conass>

E(i 7→ µ)
<strass name="E(i)">
<OMOBJ>E(µ)</OMOBJ>

</strass>

Term E(c) <om:OMS E(c)/>

E(x) <om:OMV name="x"/>

E(>) OMDoc(hidden)

E(ωµ) <om:OMA>E(µ) E(ω)</om:OMA>

E(@(ω1, . . . , ωn)) <om:OMA>E(ω1) . . . E(ωn)</om:OMA>

E(β(ω1, x1, . . . , xn, ω2))

<om:OMBIND>
E(ω1)
<om:OMBVAR>

E(x1) . . . E(xn)
</om:OMBVAR>
E(ω2)

</om:OMBIND>

E(α(ω1, ω2 7→ ω3))
<om:OMATTR>
<om:OMATP>E(ω2) E(ω3)</om:OMATP>
E(ω1)

</om:OMATTR>

Morphism E(idT)
<om:OMA>

OMDoc(identity)
<om:OMS E(T)/>

</om:OMA>

E(µ1 • . . . • µn)
<om:OMA>

OMDoc(composition)
E(µ1) . . . E(µn)

</om:OMA>

E(i) <om:OMS E(i)/>

E(v) <om:OMS E(v)/>

Figure 8.4: XML Encoding of Symbol and Object Level

168

8.2. A SMART LOGICAL DATABASE

with a slash, which is used to distinguish absolute module and symbol references from relative
ones.

An absolute reference, which serves as the base of the resolution, is an Mmt-name G,
G?M , or G?M?S. Then the resolution of relative references is a partial function that takes a
relative reference R = (g,m, s) and an absolute reference B as input and returns anMmt-name
resolve(B,R) as output. It is de�ned as follows:

• If g 6= ⊥, then possible starting slashes of m and s are ignored and

� if R = (g,m, s): resolve(B,R) = (G + g)?m?s,

� if R = (g,m,⊥): resolve(B,R) = (G + g)?m,

� if R = (g,⊥,⊥): resolve(B,R) = G + g,

where G+g denotes the resolution of the URI reference g relative to the URI G as de�ned
in RFC 3986 ([BLFM05]).

• If g = ⊥ and m 6= ⊥, then a possible starting slash of s is ignored and

� if R = (⊥,m, s): resolve(B,R) = G?M + m?s,

� if R = (⊥,m,⊥): resolve(B,R) = G?M + m,

where M + m resolves m relative to M : If M is not de�ned or if m starts with a slash,
M + m is m with a possible starting slash removed; otherwise, it is M/m.

• If g = m = ⊥ and M is de�ned, then resolve(B,R) = G?M?S + s, where S + s is de�ned
like M + m above.

• resolve(B,R) is unde�ned otherwise.

Relative references can also be encoded as URIs: The triple (g,m, s) is encoded as g?m?s.
If components are omitted, they are encoded as the empty string. Trailing (but not leading) ?
characters can be dropped. For example,

• (g,m,⊥) is encoded as g?m,

• (⊥, /m, s) is encoded as ?/m?s,

• (⊥,⊥, s) is encoded as ??s,

This encoding can be parsed back uniquely by splitting a URI into up to three components
around the separator ?.

8.2 A Smart Logical Database

An Mmt library Λ can be physically represented by a �le system or a web server where every
document corresponds to one �le. An Mmt-aware database can provide the name lookup from
Sect. 6.2.2 as a service and permit to retrieve the XML encoding of the lookup of an arbitrary
name. In particular, anMmt-library can be implemented as a restful web server ([Fie00]). Such
a server would answer HTTP GET requests with the result of the corresponding lookup. This
is made precise in Fig. 8.5, where we also use URIs of the form g?v?c to retrieve the lookup in
a view g?v. We will look at PUT, POST, and DELETE requests in Sect. 8.4.

Among the advanced services that a smart database could o�er are search, ABox extraction,
presentation, �attening, and document aggregation.

For GET requests, the retrieval from a smart database is possible by hashing URIs. But
for object level retrievals, more complex algorithms must be employed. To search for terms

169

8.2. A SMART LOGICAL DATABASE

URI Lookup XML element of encoding
g Λ(g) omdoc

g?T T
[M]
:= {ϑ} if Λ(g?T) = ([M], ϑ) theory

g?v v : S → T
[µ]
:= {B} if Λ(g?v) = (S, T, [µ], B) view

g?T?c c : τ := δ if ΛT (c) = (τ, δ) constant

g?T?i i : S
[µ]
:= {B} if Λ(g?T?i) = (S, T, [µ], B) structure

g?v?c Λm(c) conass

g?v?i Λm(i) strass

Figure 8.5: Answers to HTTP GET Requests

that conform to a certain pattern (both by uni�cation or generalization), the substitution tree
indexing of ([K�06]) can be applied, possibly in a way optimized for Mmt. There are numerous
applications of such queries, e.g., the search for applicable lemmas during theorem proving.

The retrieval of morphisms between two theories can be reduced to a path search in the
theory graph. More generally, one is interested in retrieving all such morphisms that agree with
a given partial morphism. The latter is a crucial research question in inter-theory reasoning:
When building a view from S to T , where S contains i : R := {σ}, one is interested in
�nding all morphisms µ from R to T that agree with a certain partial morphism m as in the
judgment Λ BT S?i |m µ : R. Those are available for assignments i 7→ µ, which are needed
when trying to �nd a view. This corresponds to �nding decompositions of global theorem links
in the development graph calculus [AHMS99]).

A service for ABox extraction would accept as input a theory, document, or directory
in the database. Then it would compute and return the assertional box for it according to an
appropriateMmt document ontology in some description logic ([BCM+03]). The output format
would be, e.g., RDF triples ([RDF04]). Such a service is important for the smart navigation
through a library. In an OMDoc ontology, individuals are represented by URIs, and the on-
tology contains unary predicates for documents, theories, views, modules, constants, structures,
symbols, assignments to constants, assignments to structures, assignments, and links, and the
following binary relations between URIs X and Y :

• X is a module declared in document Y ,

• theory X has meta-theory M (transitive),

• theory X has unnamed import from Y (transitive),

• X is a symbol declared in theory Y ,

• X is an assignment declared in link Y ,

• link X has domain Y ,

• link X has codomain Y ,

• symbol X arises by importing symbol Y ,

• symbol X occurs in the declaration of symbol Y (transitive).

These binary relations are the starting point of a dependency calculus used to axiomatize a
semantic dependency ordering between the URIs (see Sect. 8.4).

A presentation service (see Sect. 8.3) retrieves a document (fragment) and �lters it through
a presentation engine that applies mathematical notations and other syntax transformations.

170

8.3. PRESENTING LOGICAL KNOWLEDGE ON THE WEB

The expected output format of the presentation can be selected by additional parameters, e.g.,
the content type of the GET request.

A �attening service �lters a retrieved theory through an implementation of the �attening
from Sect. 6.4. Such a service could also respond to the request of a structure with the ap-
propriate translation of the imported theory. Similarly, a document aggregation service also
retrieves all knowledge items that are referenced by a theory. But instead of using them to
�atten the requested theory, the theories and views are recombined into a new self-contained
document.

8.3 Presenting Logical Knowledge on the Web

The presentation of documents is conceptually more complex than one might expect at �rst. In
principle, the presentation process is a recursive function that transforms the content-oriented
representation of the document into human- or machine-readable formats. To permit a �exible
presentation, the presentation process must be parametric in the speci�c cases of this recursion
so that users can in�uence the presentation. We call these cases notations. OMDoc 1.2
already allowed the user to specify notations, and the syntax for notations will be completely
redesigned in OMDoc 2.

The question how to choose a speci�c notation is non-trivial. Some of the most important
problems are:

• A few notations common in mathematics require non-compositional presentation functions,
e.g., the notation sin2 x for (sinx)2.

• Di�erent target formats may require di�erent notations, e.g., • for HTML and
\bullet for Latex. But, some notations are independent of the target format, e.g., asso-
ciativity of •.

• The presentation must generate brackets according to operator precedences. And the
placement of brackets must itself be �exible, e.g., f(x) or (f x).

• Notations must be chosen according to user preferences including the inference of notations
according to the system's knowledge about the user, e.g., Ck

n or
(
n
k

)
for the binomial

coe�cient.

• Depending on the de�nition of notations, imported notations may have to be translated.

• There may be con�icting notations for the same expression, e.g., notations may be provided
by the presented document itself (possibly via imports) or by the user or system requesting
the presentation.

• Notations may have to be adapted dynamically when viewing (as opposed to statically
when generating) the presentation, e.g., users could be asked to select a notation when
the system was unable to decide among con�icting notations.

• Parts of the presentation must be elidable, i.e., users must be able to switch certain objects
on or o�, e.g., redundant brackets or implicit arguments.

• Di�erent parts of a document may require di�erent notations, e.g., when dropping brackets
after proving associativity.

• Some functions are �exary in the sense that they take a list of �exible length of arguments,
e.g., the associative binary operator • ofMmt is treated as a �exary operator in the XML
encoding to avoid nested applications.

171

8.3. PRESENTING LOGICAL KNOWLEDGE ON THE WEB

• Users may wish to specify notations for all theories with a certain meta-theory, e.g.,
(f x1 . . . xn) for all applications of constants f declared in a theory with meta-theory
DTT (and for arbitrary n).

• There are various complex notations such as ellipses x1, . . . , xn (possibly multi-dimen-
sionally) and Andrews' dot ∀x.F ∧G = ∀x(F ∧G).

These problems were investigated in two di�erent ways in [KLR07] and [KMR08] and proto-
type implementations were developed for both. Building on these experiences, we will develop
a presentation system along the following basic design choices.

• The presentation algorithm takes as input a set of notations � the extensional presen-
tation context � from which the notations are chosen.

• Notations consist of two parts:

� The pattern part consists of three values:

∗ The for-value is a URI that gives a document, theory, view, or symbol name.
The notation applies to all Mmt entities whose name starts with this URI, i.e.,
notations for theories apply to all symbols of the theory. More speci�c for-values
take precedence.

∗ The role-value is a reference to a production of the Mmt syntax. The notation
applies to all Mmt expressions with this toplevel production.

∗ The icontext-value is a key-value list that is used to further restrict the appli-
cability of the notation intensionally. Possible keys are the output format, and
the ID of the user requesting the presentation. The presentation algorithm takes
such a list of key-value pairs � called the intensional presentation context
� as an additional input, and only notations with a matching icontext are in
scope.

� The rendering part contains the desired output element in the syntax of the re-
spective output format. This part may recursively call the presentation algorithm
on the components of the presented object. For example, a notation for a constant
declaration can recurse into name, type, and de�nition. The syntax will be mainly
declarative. Only very limited operations will be permitted, e.g., testing whether a
de�nition is present or not. Non-compositional translations will only be added later.

� The rendering part may alternatively contain a declarative description of the presen-
tation using key-value pairs with the keys �operator symbol�, ��xity�, �left bracket�,
�right bracket�, �bracket style�, �separator�, �number of implicit arguments�. Omitted
key-value pairs are inherited from notations with a more general for-value.

• EveryMmt document or theory may provide both two further extensional and two further
intensional presentation contexts. One of each is a default context that has lower priority
than the one passed as input to the presentation algorithm; and the other one has a higher
priority and cannot be overridden by the user.

• In every step, the presentation algorithm �rst computes the extensional context and selects
from it a set of applicable notations. Then the intensional context is used to select a
notation among those. If ambiguities remain, a heuristic is used, and the user may choose
the notation when viewing the document.

• Input and output precedences are used to permit mix�x notations with dynamic bracket
placement.

172

8.4. MANAGEMENT OF CHANGE

• Notations are not intelligent. In particular, they are not translated along imports. If
references are needed within the rendering part, they are relative to the for-value so that
they do not require translation.

• The rendering part may classify certain parts of the output as elidable with an integer
elidability level. Output fragments with positive elidability levels may be switched on
and o� when viewing the document by providing elision thresholds. Elidable parts are
grouped, typical groups are brackets, type ascriptions to variables, implicit arguments,
and quali�ed symbol names.

8.4 Management of Change

In Sect. 8.2, we described HTTP GET requests sent to an Mmt-aware server. More generally,
we can provide a restful interface ([Fie00]) to an Mmt-aware database by de�ning PUT, POST
(i.e., update) and DELETE requests. Such requests are the basic changes that users can apply to
a library. The study of these changes is closely connected to a non-obvious but crucial property
of the inference system forMmt-well-formedness: The rules can be understood as preconditions
for special PUT requests.

For example, the rule Doc can be understood as a PUT request putting the expression γ
at URI g. Adding a theory T := {ϑ} to the document g via the rule Mod can be seen as a
PUT request at URI g?T . Similarly, adding views, symbols, and assignments can be understood.
These PUT requests are special in that they always add at the end of the library, e.g., a constant
can only be added at the end of a theory occurring at the end of the document occurring at
the end of the library. Such PUT requests are always harmless in that they cannot a�ect parts
of the already validated library. For example, adding a constant to a theory in the middle of a
library may invalidate proofs that do not cover the new case.

Another challenge in this context is that, e.g., adding an import from S to a theory T in the
middle of a library is ill-formed if S occurs after T ; but it may be possible to employ semantically
equivalent reorderings that move S in front of T so that the import becomes well-formed. If
libraries are considered modulo semantic equivalence (and they should be), then checking the
preconditions of such PUT requests is signi�cantly harder than for the special PUT requests
acting at the end.

The solution to these problems is to introduce transactions and dependencies. A transaction
is a sequence of PUT, GET, DELETE, and POST requests. In particular, a library can be seen
as a sequence of PUT requests: There is one PUT request for every declaration in the order in
which they occur in the library. Then the semantic equivalence of reorderings of declarations can
be stated as a commutativity property of PUT requests. The view of libraries as transactions
has the advantage that it can be directly generalized to GET, DELETE, and POST requests
using techniques known from databases. And the dependency is a binary relation between
URIs such that �B depends on A� expresses that changes to A may a�ect the well-formedness
of B (see also Sect. 8.2).

Then libraries can be manipulated by applying transactions to them. This provides a very
powerful interface language both for humans and for software systems: All communication
between systems can be expressed in terms of transactions. This provides the foundation of
e�ective management of change because the amount of data to be communicated and processed
can be restricted to transactions and thus to changes. The central open research questions in
this situation are the following:

• When are two transactions equivalent in the sense that have the same e�ect on any library
(up to semantic equivalence)? For example, reordering GET requests does not change the
e�ect of a transaction, and neither does dropping duplicate DELETE requests.

173

8.5. CONCLUSION

• When is the application of a transaction to a well-formed library well-formed? Since the
library is typically big and the transaction small, the naive solution of validating the
resulting library is ine�cient. For example, for PUT or DELETE requests at the end of
the library, this can be answered much more easily.

• If the answer to the previous question is �no�, which parts of the library or of the transaction
would have to be changed so that it is �yes�? The e�ect of every non-GET request must
potentially be propagated along the dependency relation.

8.5 Conclusion

The goals of Part III were threefold. Firstly, in Sect. 1.3.1, we demanded a scalable infrastruc-
ture for the logical framework based on L we developed in Part II. Mmt is the core of this
infrastructure. As seen in Sect. 7.3, we can represent all levels of logical reasoning in Mmt,
both in terms of proof theory and of model theory. Mmt is neutral with respect to the set/type
theory distinction making it applicable to problems from both domains.

Of course, this apparent greatness has a downside: The coupling between Mmt and L is
rather loose. Mmt libraries must be type-checked by implementations in which the knowledge
about the foundation is hard-coded as we saw in Sect. 7.1 and 7.2. And as we remarked at the
end of Sect. 7.3, not all features of a logic encoding in L can be speci�ed in Mmt.

However, this is not necessarily a disadvantage: While Mmt may seem as a complex lan-
guage looking at the inference system in Sect. 6.3, the complexity stems from the consequent
use of fully formal de�nitions. The actual input syntax given in Sect. 6.2 is remarkably simple as
witnessed by the straightforward XML grammar we gave in Sect. 8.1. This simplicity is crucial
for scalability: Scalability means that algorithms that handle huge input sizes cannot be only be
designed but also implemented and maintained e�ciently. And here Mmt is extremely strong:
The simplicity of the language and the strict separation between the underlying foundation
and the Mmt concepts on top of it yield a variety of foundation-independent results. These
results include the maintenance of libraries and the lookup functions (Sect. 6.2.2, Sect. 8.2), the
concept of semantic equivalence (Sect. 6.4), and the yet-to-be-developed management of change
(Sect. 8.4). These foundation-independent results signi�cantly lower the bar for implementa-
tions, both in terms of person years and in terms of quali�cation levels of the implementers.

Secondly, in Sect. 1.3.2.1, we demanded a knowledge management infrastructure that em-
ploys logical methods. WhileMmt is only a �rst step in this direction, the relatively simple inte-
gration of informal elements (Sect. 6.5.7, 6.5.8) yields a promising way to build the manipulation
of informal documents both in mathematics and in software engineering on a formally rigorous
base. Here the combination of the fully formal structuring concepts ofMmt and the foundation
independence, which scales to informal foundations, is an important factor: It provides the lee-
way to degrade gracefully; and in particular Mmt can combine machine-understandability with
informal reasoning better than OMDoc 1.2.

And thirdly, in Sect. 1.3.2.2, we demanded a knowledge management infrastructure for logical
knowledge. Here Mmt as a meta-meta-logical framework is at its best. In Sect. 8, we sketched
the design of a variety of services that reach or go beyond the state of the art of comparable
services as they are implemented for any single logical system. Using Mmt, these services are
not only possible, but in some respects generic implementations based onMmt are in fact easier:
This is becauseMmt separates the highly di�cult and foundation-dependent logical sphere and
the relatively simpler foundation-independent knowledge management sphere.

Furthermore, while Mmt is not a universal logic such as L, it can be used as an interface
language using translations as outlined in Sect. 6.3.4.2. The combination of formal seman-
tics and foundation-independence enable Mmt to represent a wide variety of languages. And

174

8.5. CONCLUSION

this is possible in a way that preserves modular structure: Most of the concepts described in
Sect. 1.1.3.2 can be expressed naturally. On the other hand � and that is non-trivial � Mmt

is relatively easy to interpret: Translations out of Mmt are much easier than translations out
of any other of the described module systems. Thus, Mmt can serve as a standardized interface
language for modular systems: expressive enough to make translations into it easy, and simple
enough to make translations out or it easy. In particular, two students educated in systems A
and B, respectively, can e�ectively implement translations from A to Mmt and from Mmt to
B, whereas they might be unable to implement a direct translation together.

Finally, however complex some aspects of Mmt may be, understanding Mmt is arguably
easier than understanding the intricacies of logical systems, let alone their implementations.
That creates a scarcity of resources for research groups maintaining logical systems that, together
with the work-intensive maintenance of compatibility between releases, creates a high threshold
for the addition of knowledge management services. Here a strong pragmatic advantage ofMmt
is that Mmt services can be e�ciently implemented by students. For example, in the imminent
future, we will implement the software framework for the services presented in Sect. 8, which in
particular includes the interfaces between them. And after an initial high workload, incremental
improvements can be delegated to student projects.

Acknowledgments While the designs outlined in Sect. 8 represent the author's own under-
standings and conceptualizations, the general research area intersects strongly with that of the
KWARC group at Jacobs University Bremen. Therefore, the presented material is connected
to joint work and discussions with the other members of the group and their independent re-
search results in a way that can hardly be resolved. In particular, Michael Kohlhase had many
of the original ideas or participated in shaping them. Vyacheslav Zholudev recently started
designing an OMDoc-aware database ([Zho08]). Andrei Ioniµ implemented a prototype of an
Mmt-aware database. Ioan �ucan, Constantin Jucovschi, and �tefan Anca have implemented
a MathML-aware search engine ([K�06]). Christoph Lange has worked on an ontology for
OMDoc 1.2. We collaborated with Michael Kohlhase, Christoph Lange, Christine Müller, and
Normen Müller for work on presentation, which was published as [KLR07] and [KMR08]. Fi-
nally, Normen Müller has reimplemented the SVN client in a way that can support Mmt-aware
management of change ([MK08]).

175

8.5. CONCLUSION

176

Bibliography

[ABB+05] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. Schmitt. The KeY Tool. Software and
System Modeling, 4:32�54, 2005. 28

[ABC+03] R. Ausbrooks, S. Buswell, D. Carlisle, S. Dalmas, S. Devitt, A. Diaz, M. Frou-
mentin, R. Hunter, P. Ion, M. Kohlhase, R. Miner, N. Poppelier, B. Smith, N. Soif-
fer, R. Sutor, and S. Watt. Mathematical Markup Language (MathML) Version
2.0 (second edition). Technical report, World Wide Web Consortium, 2003. See
http://www.w3.org/TR/MathML2. 24, 29, 30, 165

[ABI+96] P. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning, and H. Xi. TPS:
A Theorem-Proving System for Classical Type Theory. Journal of Automated
Reasoning, 16(3):321�353, 1996. 17

[AC01] D. Aspinall and A. Compagnoni. Subtyping Dependent Types. Information and
Computation, 266(1�2):273�309, 2001. 113

[Aga08] E. Agapie. Representing Functors in a Web-Scalable Module System, 2008. Bach-
elor's thesis, Jacobs University Bremen. 2, 156, 158

[AHMP92] A. Avron, F. Honsell, I. Mason, and R. Pollack. Using typed lambda calculus
to implement formal systems on a machine. Journal of Automated Reasoning,
9(3):309�354, 1992. 27, 99

[AHMP98] B. Avron, F. Honsell, M. Miculan, and C. Paravano. Encoding modal logics in
logical frameworks. Studia Logica, 60(1):161�208, 1998. 27, 99, 115

[AHMS99] S. Autexier, D. Hutter, H. Mantel, and A. Schairer. Towards an Evolutionary
Formal Software-Development Using CASL. In D. Bert, C. Choppy, and P. Mosses,
editors, WADT, volume 1827 of Lecture Notes in Computer Science, pages 73�88.
Springer, 1999. 20, 26, 143, 170

[AHMS02] S. Autexier, D. Hutter, T. Mossakowski, and A. Schairer. The Development Graph
Manager Maya (System Description). In H. Kirchner and C. Ringeissen, editors,
Algebraic Methods and Software Technology, 9th International Conference, pages
495�502. Springer, 2002. 21, 27, 150

[All87] S. Allen. A Non-Type-Theoretic De�nition of Martin-Löf's Types. In D. Gries, ed-
itor, Proceedings of the Second Annual IEEE Symp. on Logic in Computer Science,
LICS 1987, pages 215�221. IEEE Computer Society Press, 1987. 72

[AR08] S. Awodey and F. Rabe. Kripke Semantics for Martin-Löf Type Theory. To be sub-
mitted, see http://kwarc.eecs.iu-bremen.de/frabe/Research/LamKrip.pdf,
2008. 2, 98

177

http://www.w3.org/TR/MathML2
http://kwarc.eecs.iu-bremen.de/frabe/Research/LamKrip.pdf

BIBLIOGRAPHY

[ArX94] arXiv.org e-print archive, 1994. http://www.arxiv.org. 23

[Awo00] S. Awodey. Topological representation of the lambda-calculus. Mathematical Struc-
tures in Computer Science, 10(1):81�96, 2000. 92

[Awo06] S. Awodey. Category Theory. Oxford University Press, 2006. 55

[Bar91] H. Barendregt. Introduction to Generalized Type Systems. Journal of Functional
Programming, 1(2):125�154, 1991. 13

[BC04] Y. Bertot and P. Castéran. Coq'Art: The Calculus of Inductive Constructions.
Springer, 2004. 15, 17, 20, 27, 30

[BCC+04] S. Buswell, O. Caprotti, D. Carlisle, M. Dewar, M. Gaetano, and M. Kohlhase.
The Open Math Standard, Version 2.0. Technical report, The Open Math Society,
2004. See http://www.openmath.org/standard/om20. 24, 30, 120, 125, 161, 167

[BCF+97] C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,
M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt, J. Siekmann, and
V. Sorge. ΩMEGA: Towards a mathematical assistant. In W. McCune, editor, Pro-
ceedings of the 14th Conference on Automated Deduction, pages 252�255. Springer,
1997. 17

[BCM+03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003. 17, 170

[BdP00] G. Bierman and V. de Paiva. On an Intuitionistic Modal Logic. Studia Logica,
65:383�416, 2000. 15, 64

[Ber37] P. Bernays, 1937. Seven papers between 1937 and 1954 in the Journal of Symbolic
Logic. 13

[Béz05] J. Béziau, editor. Logica Universalis. Birkhäuser Verlag, 2005. 15

[BF85] J. Barwise and S. Feferman, editors. Model-Theoretic Logics. Springer-Verlag,
1985. 16

[BLFM05] Tim Berners-Lee, Roy. Fielding, and L. Masinter. Uniform resource identi�er
(URI): Generic syntax. RFC 3986, Internet Engineering Task Force, 2005. 126,
167, 169

[BM99] C. Butz and I. Moerdijk. Topological representation of sheaf cohomology of sites.
Compositio Mathematica, 2(118):217�233, 1999. 92

[Bou64] N. Bourbaki. Univers. In Séminaire de Géométrie Algébrique du Bois Marie -
Théorie des topos et cohomologie étale des schémas, pages 185��217. Springer,
1964. 13, 17, 161

[Bou68] N. Bourbaki. Theory of Sets. Elements of Mathematics. Springer, 1968. 17, 148

[Bou74] N. Bourbaki. Algebra I. Elements of Mathematics. Springer, 1974. 17, 148

[BPTF07] C. Benzmüller, L. Paulson, F. Theiss, and A. Fietzke. The LEO-II Project. In
Automated Reasoning Workshop, 2007. 17, 23, 157

[Bro07] L. Brouwer. Over de grondslagen der wiskunde. PhD thesis, Universiteit van
Amsterdam, 1907. English title: On the Foundations of Mathematics. 13, 15

178

http://www.arxiv.org
http://www.openmath.org/standard/om20

BIBLIOGRAPHY

[Bro06] C. Brown. Combining Type Theory and Untyped Set Theory. In U. Furbach
and N. Shankar, editors, International Joint Conference on Automated Reasoning,
pages 205�219. Springer, 2006. 23, 157

[CAB+86] R. Constable, S. Allen, H. Bromley, W. Cleaveland, J. Cremer, R. Harper, D. Howe,
T. Knoblock, N. Mendler, P. Panangaden, J. Sasaki, and S. Smith. Implementing
Mathematics with the Nuprl Development System. Prentice-Hall, 1986. 15, 20, 23,
113

[Can83] G. Cantor. Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein
mathematisch-philosophischer Versuch in der Lehre des Unendlichen. Mathema-
tische Annalen, 1883. 12

[Car86] J. Cartmell. Generalized algebraic theories and contextual category. Annals of
Pure and Applied Logic, 32:209�243, 1986. 71

[CELM96] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, Proceedings of the First International Workshop on Rewrit-
ing Logic, volume 4, pages 65�89, 1996. 21, 26

[CF58] H. Curry and R. Feys. Combinatory Logic. North-Holland, Amsterdam, 1958. 15,
40, 64, 122

[CH88] T. Coquand and G. Huet. The Calculus of Constructions. Information and Com-
putation, 76(2/3):95�120, 1988. 13, 15, 22, 27

[CH00] R. Constable and J. Hickey. Nuprl's Class Theory and Its Applications. In F. Bauer
and R. Steinbruggen, editors, Foundations of Secure Computation, pages 91�115.
IOS Press, 2000. 22

[Chu40] A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic
Logic, 5(1):56�68, 1940. 13, 15, 21, 23, 27, 72

[CM97] M. Cerioli and J. Meseguer. May I Borrow Your Logic? (Transporting Logical
Structures along Maps). Theoretical Computer Science, 173:311�347, 1997. 22, 53,
67

[CM01] J. Clark and M. Makoto. RELAX NG Speci�cation, 2001. By the Organization for
the Advancement of Structured Information Standards (OASIS). http://relaxng.
org/. 165

[Coe05] C. Sacerdoti Coen. Explanation in Natural Language of λ̄µµ̃-Terms. In
M. Kohlhase, editor, Mathematical Knowledge Management, pages 234�249.
Springer, 2005. 157

[CoF04] CoFI (The Common Framework Initiative). Casl Reference Manual, volume 2900
(IFIP Series) of LNCS. Springer, 2004. 20, 26, 122

[Com98] ISO/IEC Standard 15408. Common Criteria for Information Technology Security
Evaluation, 1998. See http://www.commoncriteriaportal.org/. 28

[Coq08] Coq library, 2008. http://coq.inria.fr/library-eng.html. 27

[CP02] I. Cervesato and F. Pfenning. A Linear Logical Framework. Information and
Computation, 179(1):19�75, 2002. 28

179

http://relaxng.org/
http://relaxng.org/
http://www.commoncriteriaportal.org/
http://coq.inria.fr/library-eng.html

BIBLIOGRAPHY

[CS03] K. Claessen and N. Sorensson. New techniques that improve MACE-style �nite
model �nding. In CADE-19 Workshop on Model Computation - Principles, Algo-
rithms, Applications, 2003. 17

[Cur89] P. Curien. Alpha-Conversion, Conditions on Variables and Categorical Logic. Stu-
dia Logica, 48(3):319�360, 1989. 71

[dB70] N. de Bruijn. The Mathematical Language AUTOMATH. In M. Laudet, editor,
Proceedings of the Symposium on Automated Demonstration, volume 25 of Lecture
Notes in Mathematics, pages 29�61. Springer, 1970. 15

[Dia02] Razvan Diaconescu. Grothendieck institutions. Applied Categorical Structures,
10(4):383�402, 2002. 59, 162

[Dia06] R. Diaconescu. Proof systems for institutional logic. Journal of Logic and Compu-
tation, 16(3):339�357, 2006. 63, 68

[Dia08] R. Diaconescu. Institution-independent Model Theory. Birkhäuser, 2008. 26, 55

[Far00] W. Farmer. An Infrastructure for Intertheory Reasoning. In D. McAllester, editor,
Conference on Automated Deduction, pages 115�131. Springer, 2000. 17

[Fef69] S. Feferman. Set-theoretical foundations of category theory. In S. Mac Lane, editor,
Reports of the Midwest Category Seminar III, pages 201�247. Springer, 1969. 55

[Fef05] S. Feferman. Predicativity. In S. Shapiro, editor, The Oxford Handbook of Phi-
losophy of Mathematics and Logic, pages 590�624. Oxford University Press, 2005.
13

[FGT92] W. Farmer, J. Guttman, and F. Thayer. Little Theories. In D. Kapur, editor,
Conference on Automated Deduction, pages 467�581, 1992. 17

[FGT93] W. Farmer, J. Guttman, and F. Thayer. IMPS: An Interactive Mathematical Proof
System. Journal of Automated Reasoning, 11(2):213�248, 1993. 20

[Fie00] R. Fielding. Architectural Styles and the Design of Network-based Software Archi-
tectures. PhD thesis, University of California, Irvine, 2000. 131, 169, 173

[Fra22] A. Fraenkel. The notion of 'de�nite' and the independence of the axiom of choice.
1922. 13

[Fre79] G. Frege. Begri�sschrift: eine der arithmetischen nachgebildete Formelsprache des
reinen Denkens. 1879. 11

[Fre84] G. Frege. Die Grundlagen der Arithmetik, Eine logisch-mathematische Unter-
suchung über den Begri� der Zahl. 1884. English title: Foundations of Arithmetic,
A Logico-Mathematical Enquiry into the Concept of Number. 13

[Fri75] H. Friedman. Equality Between Functionals. In R. Parikh, editor, Logic Collo-
quium, pages 22�37. Springer, 1975. 72

[FS88] J. Fiadeiro and A. Sernadas. Structuring theories on consequence. In Recent Trends
in Data Type Speci�cation, pages 44�72. Springer, 1988. 26

[GB86] J. Goguen and R. Burstall. A study in the foundations of programming methodol-
ogy: speci�cations, institutions, charters and parchments. In D. Pitt, S. Abramsky,
A. Poigné, and D. Rydeheard, editors, Workshop on Category Theory and Com-
puter Programming, pages 313�333. Springer, 1986. 26

180

BIBLIOGRAPHY

[GB92] J. Goguen and R. Burstall. Institutions: Abstract model theory for speci�cation
and programming. Journal of the Association for Computing Machinery, 39(1):95�
146, 1992. 15, 16, 21, 22, 26, 55, 63, 66

[Gen34] G. Gentzen. Untersuchungen über das logische Schlieÿen. Math. Z., 39, 1934.
English title: Investigations into Logical Deduction. 39

[Gir71] J. Girard. Une extension de l'interpretation de Gödel à l'analyse, et son application
à l'élimination des coupures dans l'analyse et la théorie des types. In J. Fenstad,
editor, 2nd Scandinavian Logic Symposium, pages 63�92. North-Holland, 1971. 13

[Gir87] J. Girard. Linear Logic. Theoretical Computer Science, 50:1�102, 1987. 15, 64

[GJJ96] J. Gosling, W. Joy, and G. Steele Jr. The Java Language Speci�cation. Addison-
Wesley, 1996. 20

[GMdP+07] J. Goguen, T. Mossakowski, V. de Paiva, F. Rabe, and L. Schröder. An Institutional
View on Categorical Logic. International Journal of Software and Informatics, 1(1),
2007. 2, 16, 64, 99

[Göd31] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme. Monatshefte für Mathematik und Physik, 38:173�198, 1931.
English title: On Formally Undecidable Propositions Of Principia Mathematica
And Related Systems. 14

[Göd40] K. Gödel. The Consistency of Continuum Hypothesis. Annals of Mathematics
Studies, 3:33�101, 1940. 13

[Gor88] M. Gordon. HOL: A Proof Generating System for Higher-Order Logic. In
G. Birtwistle and P. Subrahmanyam, editors, VLSI Speci�cation, Veri�cation and
Synthesis, pages 73�128. Kluwer-Academic Publishers, 1988. 17, 113

[GR02] J. A. Goguen and G. Rosu. Institution morphisms. Formal Aspects of Computing,
13:274�307, 2002. 63

[GR04] J. Goguen and G. Rosu. Composing Hidden Information Modules over Inclusive In-
stitutions. In O. Owe, S. Krogdahl, and T. Lyche, editors, From Object-Orientation
to Formal Methods, Essays in Memory of Ole-Johan Dahl, pages 96�123. Springer,
2004. 122

[GWM+93] J. Goguen, Timothy Winkler, J. Meseguer, K. Futatsugi, and J. Jouannaud. In-
troducing OBJ. In Joseph Goguen, editor, Applications of Algebraic Speci�cation
using OBJ. Cambridge, 1993. 20, 26, 155

[Hal03] T. Hales. The �yspeck project, 2003. See http://code.google.com/p/flyspeck/.
17

[Hal05a] T. Hales. A proof of the the Kepler conjecture. Annals of Mathematics, 162:1065�
1185, 2005. 17

[Hal05b] T. Hales. The jordan curve theorem in HOL light, 2005. See http://www.math.

pitt.edu/~thales/. 17

[Har96] J. Harrison. HOL Light: A Tutorial Introduction. In Proceedings of the First
International Conference on Formal Methods in Computer-Aided Design, pages
265�269. Springer, 1996. 17, 23, 158

181

http://code.google.com/p/flyspeck/
http://www.math.pitt.edu/~thales/
http://www.math.pitt.edu/~thales/

BIBLIOGRAPHY

[HC96] G. Hughes and M. Cresswell. A New Introduction to Modal Logic. Routledge, 1996.
50

[Hen50] L. Henkin. Completeness in the Theory of Types. Journal of Symbolic Logic,
15(2):81�91, 1950. 72

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logics. Journal
of the Association for Computing Machinery, 40(1):143�184, 1993. 13, 15, 26, 27,
55, 99, 159, 160

[Hil00] D. Hilbert. Mathematische Probleme. Nachrichten von der Königlichen
Gesellschaft der Wissenschaften zu Göttingen, pages 253�297, 1900. 13

[Hil26] D. Hilbert. Über das Unendliche. Mathematische Annalen, 95:161�90, 1926. 13

[HJ84] K. Hrbacek and T. Jech. Introduction to Set Theory. Marcel Dekker Inc., New
York, 1984. 161

[Hof94] M. Hofmann. On the Interpretation of Type Theory in Locally Cartesian Closed
Categories. In CSL, pages 427�441. Springer, 1994. 71, 81

[Hor98] I. Horrocks. The FaCT System. In H. de Swart, editor, Automated Reasoning with
Analytic Tableaux and Related Methods, TABLEAUX, pages 307�312. Springer,
1998. 17

[Hor08] L. Horsten. Philosophy of Mathematics. In E. Zalta, editor, The Stanford Ency-
clopedia of Philosophy. The Metaphysics Research Lab, Stanford, 2008. 13

[How80] W. Howard. The formulas-as-types notion of construction. In To H.B. Curry:
Essays on Combinatory Logic, Lambda-Calculus and Formalism, pages 479�490.
Academic Press, 1980. 15, 40, 64, 122

[HS00] U. Hustadt and R. Schmidt. MSPASS: Modal Reasoning by Translation and
First-Order Resolution. In R. Dyckho�, editor, Automated Reasoning with Ana-
lytic Tableaux and Related Methods, International Conference (TABLEAUX 2000),
pages 67�71, 2000. 23

[HST94] R. Harper, D. Sannella, and A. Tarlecki. Structured presentations and logic repre-
sentations. Annals of Pure and Applied Logic, 67:113�160, 1994. 26, 27, 99

[HW06] F. Haftmann and M. Wenzel. Constructive Type Classes in Isabelle. In T. Al-
tenkirch and C. McBride, editors, TYPES conference, pages 160�174. Springer,
2006. 22

[Isa08] Isabelle library, 2008. http://isabelle.in.tum.de/dist/library/index.html.
27

[Jac90] B. Jacobs. Categorical Type Theory. PhD thesis, Catholic University of the Nether-
lands, 1990. 71

[Jav04] Javadoc Tool, 2004. Part of the Java 2 SDK, see http://java.sun.com/j2se/

javadoc/. 31

[JM93] B. Jacobs and T. Melham. Translating dependent type theory into higher order
logic. In M. Bezem and J. Groote, editors, Typed Lambda Calculi and Applications,
pages 209�29, 1993. 23

182

http://isabelle.in.tum.de/dist/library/index.html
http://java.sun.com/j2se/javadoc/
http://java.sun.com/j2se/javadoc/

BIBLIOGRAPHY

[Joh02] P. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Oxford
Science Publications, 2002. 77

[KLR07] M. Kohlhase, C. Lange, and F. Rabe. Presenting Mathematical Content with
Flexible Elisions. In Proceedings of the OpenMath/JEM workshop, 2007. 2, 172,
175

[KMR08] M. Kohlhase, C. Müller, and F. Rabe. Notations for Living Mathematical Docu-
ments. In S. Autexier and J. Campbell and J. Rubio and V. Sorge and M. Suzuki
and F. Wiedijk, editor, Mathematical Knowledge Management, volume 5144 of
Lecture Notes in Computer Science, pages 504�519, 2008. 2, 172, 175

[Koh06] M. Kohlhase. OMDoc: An Open Markup Format for Mathematical Documents
(Version 1.2). Number 4180 in Lecture Notes in Arti�cial Intelligence. Springer,
2006. 25, 29, 119, 165

[Kri63] S. Kripke. Semantical analysis of modal logic I. Normal modal propositional calculi.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9:67��96,
1963. 16, 48

[Kri65] S. Kripke. Semantical Analysis of Intuitionistic Logic I. In J. Crossley and
M. Dummett, editors, Formal Systems and Recursive Functions, pages 92�130.
North-Holland, 1965. 72

[K�06] M. Kohlhase and I. �ucan. A Search Engine for Mathematical Formulae. In T. Ida,
J. Calmet, and D. Wang, editors, Arti�cial Intelligence and Symbolic Computation,
pages 241�253. Springer, 2006. 170, 175

[KWP99] F. Kammüller, M. Wenzel, and L. Paulson. Locales � a Sectioning Concept for
Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, editors,
Theorem Proving in Higher Order Logics. Springer, 1999. 22

[Lan69] S. Mac Lane. One universe as a foundation for category theory. In S. Mac Lane,
editor, Reports of the Midwest Category Seminar III, pages 192�200. Springer,
1969. 55

[Lan98] S. Mac Lane. Categories for the working mathematician. Springer, 1998. 42, 55,
77

[Law63] F. Lawvere. Functional Semantics of Algebraic Theories. PhD thesis, Columbia
University, 1963. 64, 96

[Law69] W. Lawvere. Adjointness in Foundations. Dialectica, 23(3�4):281�296, 1969. 97

[Lew18] C. Lewis. A Survey of Symbolic Logic. University of California Press, 1918. 15

[Lip92] James Lipton. Kripke Semantics for Dependent Type Theory and Realizability
Interpretations. In J. Myers and M. O'Donnell, editors, Constructivity in Computer
Science, Summer Symposium, pages 22�32. Springer, 1992. 72

[LM92] S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic. Lecture Notes in
Mathematics. Springer, 1992. 77

[LS86] J. Lambek and P. Scott. Introduction to Higher-Order Categorical Logic, volume 7
of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1986.
16, 26, 64

183

BIBLIOGRAPHY

[�uk20] J. �ukasiewicz. O logice trojwartosciowej. Ruch Filozo�cny, 5:170�171, 1920.
English title: On three-valued logic. 15

[MAH06] T. Mossakowski, S. Autexier, and D. Hutter. Development graphs - Proof man-
agement for structured speci�cations. J. Log. Algebr. Program, 67(1�2):114�145,
2006. 20, 122

[McL06] S. McLaughlin. An Interpretation of Isabelle/HOL in HOL Light. In N. Shankar
and U. Furbach, editors, Proceedings of the 3rd International Joint Conference
on Automated Reasoning, volume 4130 of Lecture Notes in Computer Science.
Springer, 2006. 23

[Mes89] José Meseguer. General logics. In H.-D. Ebbinghaus et al., editors, Proceedings,
Logic Colloquium, 1987, pages 275�329. North-Holland, 1989. 16, 26, 63, 68, 69

[MGDT05] T. Mossakowski, J. Goguen, R. Diaconescu, and A. Tarlecki. What is a logic? In
J. Béziau, editor, Logica Universalis, pages 113�133. Birkhäuser Verlag, 2005. 16,
26, 63, 68

[MK08] N. Müller and M. Kohlhase. Fine-Granular Version Control & Redundancy Reso-
lution, 2008. To be submitted. 150, 175

[ML74] P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In Proceedings
of the '73 Logic Colloquium. North-Holland, 1974. 13, 15, 27, 71

[ML96] P. Martin-Löf. On the meanings of the logical constants and the justi�cations of
the logical laws. Nordic Journal of Philosophical Logic, 1(1):3�10, 1996. 15, 27, 39

[MM91] J. Mitchell and E. Moggi. Kripke-style Models for Typed Lambda Calculus. Annals
of Pure and Applied Logic, 51(1�2):99�124, 1991. 72

[MML07] T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set. In O.
Grumberg and M. Huth, editor, TACAS 2007, volume 4424 of Lecture Notes in
Computer Science, pages 519�522, 2007. 20, 22, 27, 113

[Mos99] T. Mossakowski. Speci�cations in an Arbitrary Institution with Symbols. In
D. Bert, C. Choppy, and P. Mosses, editors, Workshop on Recent Trends in Al-
gebraic Development Techniques, pages 252�270. Springer, 1999. 26

[Mos05] T. Mossakowski. Heterogeneous Speci�cation and the Heterogeneous Tool Set,
2005. Habilitation thesis, see http://www.informatik.uni-bremen.de/~till/.
21, 22, 59, 162

[MRR03] P. Murray-Rust and H. Rzepa. Chemical Markup, XML and the Worldwide Web.
Part 4. CML Schema. Journal of Chemical Information and Computer Sciences,
43(3):757�772, 2003. 28

[MS89] J. Mitchell and P. Scott. Typed lambda calculus and cartesian closed categories.
In Categories in Computer Science and Logic, volume 92 of Contemporary Mathe-
matics, pages 301�316. Amer. Math. Society, 1989. 72

[MTHM97] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The De�nition of Standard
ML, Revised edition. MIT Press, 1997. 20

[MTP97] T. Mossakowski, A. Tarlecki, and W. Pawlowski. Combining and Representing Log-
ical Systems. In E. Moggi and G. Rosolini, editors, Category Theory and Computer
Science, pages 177�196. Springer, 1997. 23, 26, 113

184

http://www.informatik.uni-bremen.de/~till/

BIBLIOGRAPHY

[Nip02] T. Nipkow. Structured Proofs in Isar/HOL. In H. Geuvers and F. Wiedijk, editors,
TYPES conference, pages 259�278. Springer, 2002. 17, 27

[NPW02] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL � A Proof Assistant for
Higher-Order Logic. Springer, 2002. 17, 23, 158, 161

[NSM01] P. Naumov, M. Stehr, and J. Meseguer. The HOL/NuPRL proof translator - a
practical approach to formal interoperability. In 14th International Conference on
Theorem Proving in Higher Order Logics. Springer, 2001. 23, 27, 113

[Odl95] A. Odlyzko. Tragic loss or good riddance? The impending demise of traditional
scholarly journals. International Journal of Human-Computer Studies, 42:71�122,
1995. 23

[ORS92] S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Veri�cation System. In
D. Kapur, editor, 11th International Conference on Automated Deduction (CADE),
pages 748�752. Springer, 1992. 15, 17, 20

[OS97] S. Owre and N. Shankar. The formal semantics of PVS. Technical Report SRI-
CSL-97-2, SRI International, 1997. 20

[OS06] S. Obua and S. Skalberg. Importing HOL into Isabelle/HOL. In N. Shankar and
U. Furbach, editors, Proceedings of the 3rd International Joint Conference on Au-
tomated Reasoning, volume 4130 of Lecture Notes in Computer Science. Springer,
2006. 23, 158

[Pau94] L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in
Computer Science. Springer, 1994. 15, 20, 27, 31

[Pea89] G. Peano. The principles of arithmetic, presented by a new method. 1889. 11

[Pei85] C. Peirce. On the Algebra of Logic: A Contribution to the Philosophy of Notation.
American Journal of Mathematics, 7:180�202, 1885. 11

[Pet07] M. Petria. An Institutional Version of Gödel's Completeness Theorem. In
T. Mossakowski, U. Montanari, and M. Haveraaen, editors, Algebra and Coalgebra
in Computer Science, Second International Conference, CALCO, pages 409�424.
Springer, 2007. 114

[Pfe00] F. Pfenning. Structural cut elimination: I. intuitionistic and classical logic. Infor-
mation and Computation, 157(1-2):84�141, 2000. 27, 99, 106

[Pfe01] F. Pfenning. Logical frameworks. In Handbook of automated reasoning, pages
1063�1147. Elsevier, 2001. 15, 27, 55, 73, 75, 99, 159

[Pit00] A. Pitts. Categorical Logic. In S. Abramsky, D. Gabbay, and T. Maibaum, ed-
itors, Handbook of Logic in Computer Science, Volume 5. Algebraic and Logical
Structures, chapter 2, pages 39�128. Oxford University Press, 2000. 71, 82

[Pri02] G. Priest. Paraconsistent logic. In D. Gabbay, editor, Handbook of Philosophical
Logic. Kluwer, 2002. 15

[PS99] F. Pfenning and C. Schürmann. System description: Twelf - a meta-logical frame-
work for deductive systems. Lecture Notes in Computer Science, 1632:202�206,
1999. 15, 27, 106, 114

185

BIBLIOGRAPHY

[PS08] A. Poswolsky and C. Schürmann. Practical programming with higher-order en-
codings and dependent types. In European Symposium on Programming, 2008. To
appear. 28, 113, 115

[PSK+03] F. Pfenning, C. Schürmann, M. Kohlhase, N. Shankar, and S. Owre. The Logo-
sphere Project, 2003. http://www.logosphere.org/. 23, 113

[PSS02] F. Pelletier, G. Sutcli�e, and C. Suttner. The Development of CASC. AI Commu-
nications, 15(2-3):79�90, 2002. 17

[Rab06] F. Rabe. First-Order Logic with Dependent Types. In N. Shankar and U. Fur-
bach, editors, Proceedings of the 3rd International Joint Conference on Automated
Reasoning, volume 4130 of Lecture Notes in Computer Science, pages 377�391.
Springer, 2006. 2, 99, 109

[Rab07] F. Rabe. OMDoc Theory Graphs Revisited. In Proceedings of the Open-

Math/JEM workshop, 2007. 2, 163

[RDF04] RDF Core Working Group of the W3C. Resource Description Framework Speci�-
cation, 2004. http://www.w3.org/RDF/. 170

[Rey74] J. Reynolds. Towards a Theory of Type Structure. In Paris Colloq. on Program-
ming, pages 408�425. Springer, 1974. 13

[RK08] F. Rabe and M. Kohlhase. A Web-Scalable Module System for Mathematical
Theories. To be submitted, see http://kwarc.info/frabe/Research/mmt.pdf,
2008. 2, 158, 163

[Rob50] A. Robinson. On the application of symbolic logic to algebra. In Proceedings of the
International Congress of Mathematicians, pages 686�694. American Mathematical
Society, 1950. 16

[Rus01] B. Russll. Recent work in the philosophy of mathematics. International Monthly,
1901. 12

[Rus08] B. Russell. Mathematical Logic as Based on the Theory of Types. American
Journal of Mathematics, 30:222�262, 1908. 13

[RV02] A. Riazanov and A. Voronkov. The design and implementation of Vampire. AI
Communications, 15:91�110, 2002. 17

[Sch01] S. Schulz. System Abstract: E 0.61. In R. Goré, A. Leitsch, and T. Nipkow, editors,
International Joint Conference on Automated Reasoning, pages 370�375. Springer,
2001. 17

[See84] R. Seely. Locally cartesian closed categories and type theory. Math. Proc. Cam-
bridge Philos. Soc., 95:33�48, 1984. 15, 71, 73, 92, 97

[Sim95] A. Simpson. Categorical completeness results for the simply-typed lambda-calculus.
In M. Dezani-Ciancaglini and G. Plotkin, editor, Typed Lambda Calculi and Appli-
cations, pages 414�427, 1995. 72

[Soj08] K. Sojakova. Translating Dependently-Typed Logic to First-Order Logic, 2008.
Bachelor's thesis, Jacobs University Bremen. 2, 162

[Sol95] Ron Solomon. On �nite simple groups and their classi�cation. Notices of the AMS,
pages 231�239, February 1995. 24

186

http://www.logosphere.org/
http://www.w3.org/RDF/
http://kwarc.info/frabe/Research/mmt.pdf

BIBLIOGRAPHY

[SS04] C. Schürmann and M. Stehr. An Executable Formalization of the HOL/Nuprl
Connection in the Metalogical Framework Twelf. In 11th International Conference
on Logic for Programming Arti�cial Intelligence and Reasoning, 2004. 23, 99, 113

[SST92] D. Sannella, S. Sokolowski, and A. Tarlecki. Toward Formal Development of Pro-
grams from Algebraic Speci�cations: Parameterisation Revisited. Acta Informat-
ica, 29(8):689�736, 1992. 26

[ST88] D. Sannella and A. Tarlecki. Speci�cations in an arbitrary institution. Information
and Control, 76:165�210, 1988. 20, 26, 122

[Str91] T. Streicher. Semantics of Type Theory. Springer-Verlag, 1991. 71

[SW83] D. Sannella and M. Wirsing. A Kernel Language for Algebraic Speci�cation and
Implementation. In M. Karpinski, editor, Fundamentals of Computation Theorya-
tional, pages 413�427. Springer, 1983. 20, 158

[Tar33] A. Tarski. Poj¦cie prawdy w j¦zykach nauk dedukcyjnych. Prace Towarzystwa
Naukowego Warszawskiego Wydzial III Nauk Matematyczno-Fizycznych, 34, 1933.
English title: The concept of truth in the languages of the deductive sciences. 16

[Tar38] A. Tarski. Über Unerreichbare Kardinalzahlen. Fundamenta Mathematicae,
30:176�183, 1938. 13, 17, 161

[Tar96] A. Tarlecki. Moving between logical systems. In M. Haveraaen, O. Owe, and
O.-J. Dahl, editors, Recent Trends in Data Type Speci�cations. 11th Workshop on
Speci�cation of Abstract Data Types, volume 1130 of Lecture Notes in Computer
Science, pages 478�502. Springer Verlag, 1996. 23, 26, 59, 63, 67, 113

[TB85] A. Trybulec and H. Blair. Computer Assisted Reasoning with MIZAR. In A. Joshi,
editor, Proceedings of the 9th International Joint Conference on Arti�cial Intelli-
gence, pages 26�28, 1985. 17, 23, 30, 31, 161

[TV56] A. Tarski and R. Vaught. Arithmetical extensions of relational systems. Compositio
Mathematica, 13:81�102, 1956. 16

[Urb03] J. Urban. Translating Mizar for First Order Theorem Provers. In A. Asperti,
B. Buchberger, and J. Davenport, editors, Mathematical Knowledge Management,
pages 203�215. Springer, 2003. 23, 30

[vH67] J. van Heijenoort. From Frege To Gödel: A Source Book in Mathematical Logic,
1879-1931. Harvard Univ. Press, 1967. 12

[Vir96] R. Virga. Higher-order superposition for dependent types. In H. Ganzinger, edi-
tor, Proceedings of the 7th International Conference on Rewriting Techniques and
Applications, pages 123�137. Springer, 1996. 102

[vN25] J. von Neumann. Eine Axiomatisierung der Mengenlehre. Journal für die reine
und angewandte Mathematik, 154:219�240, 1925. 13

[WBH+02] C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobalt, and D. Topic.
SPASS Version 2.0. In A. Voronkov, editor, Conference on Automated Deduction,
pages 275�279. Springer, 2002. 17

[WCPW02] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A Concurrent Logical Frame-
work I: Judgments and Properties. Technical Report CMU-CS-02-101, Department
of Computer Science, Carnegie Mellon University, 2002. 28, 115

187

BIBLIOGRAPHY

[Wey18] H. Weyl. Das Kontinuum, Kritische Untersuchungen über die Grundlagen der
Analysis. 1918. English title: The Continuum: A Critical Examination of the
Foundation of Analysis. 13

[Wie03] F. Wiedijk. Comparing mathematical provers. In A. Asperti, B. Buchberger, and
J. Davenport, editors, Proceedings of Mathematical Knowledge Management, pages
188�202. Springer, 2003. 17

[WR13] A. Whitehead and B. Russell. Principia Mathematica. Cambridge University Press,
1913. 13

[Zad65] L. Zadeh. Fuzzy sets. Information and Control, 8(3):338�353, 1965. 15

[Zal08] E. Zalta. The stanford encyclopedia of philosophy, 2008. http://plato.stanford.
edu/. 12

[ZBM31] Zentralblatt MATH, 1931. http://www.zentralblatt-math.org. 23

[Zer08] E. Zermelo. Untersuchungen über die Grundlagen der Mengenlehre I. Mathema-
tische Annalen, 65:261�281, 1908. English title: Investigations in the foundations
of set theory I. 13

[Zho08] V. Zholudev. Towards Distributed Mathematical Knowledge Management, 2008.
PhD research proposal, Jacobs University Bremen. 175

188

http://plato.stanford.edu/
http://plato.stanford.edu/
http://www.zentralblatt-math.org

	I Introduction and Preliminaries
	1 Introduction
	1.1 Formal Languages for Mathematics
	1.1.1 Logic(s)
	1.1.2 Logical Frameworks
	1.1.3 Logical Reasoning

	1.2 Semi-Formal Languages for Mathematics
	1.2.1 Mathematical Knowledge in Traditional Form
	1.2.2 Mathematical Knowledge on the Web

	1.3 Motivation
	1.3.1 Combining Model and Proof Theory
	1.3.2 Logical Knowledge Management

	1.4 Outline

	2 Preliminaries
	2.1 Basic Concepts
	2.2 Institutions and Dependent Type Theory, bottom-up
	2.2.1 The Intra-Theory Level
	2.2.2 The Inter-Theory Level
	2.2.3 The Inter-Logic Level

	2.3 Institutions, top-down
	2.3.1 Category Theory
	2.3.2 Institutions

	II Combining Model and Proof Theory
	3 Logics and Logic Translations
	3.1 Introduction
	3.2 Logics
	3.2.1 Proof Categories
	3.2.2 Logics
	3.2.3 Provability and Entailment

	3.3 Logic Translations
	3.3.1 Translations and Encodings
	3.3.2 Borrowing
	3.3.3 Meta-Logics

	3.4 Conclusion

	4 Dependent Type Theory
	4.1 Introduction and Related Work
	4.2 Syntax Overview
	4.3 Well-Formed Expressions
	4.4 Categorical Preliminaries
	4.5 Operations on Indexed Sets
	4.6 Model Theory
	4.7 Substitution Lemma
	4.8 Soundness
	4.9 Completeness
	4.10 A Logic for DTT
	4.10.1 Syntax
	4.10.2 Model Theory
	4.10.3 Proof Theory
	4.10.4 Collecting the Pieces
	4.10.5 Subsystems

	4.11 Conclusion

	5 Dependent Type Theory as a Meta-Logic
	5.1 Introduction
	5.2 A Meta-Logic for LF
	5.2.1 Signatures
	5.2.2 Signature Morphisms
	5.2.3 Sentences
	5.2.4 Proof Theory
	5.2.5 Model Theory
	5.2.6 Collecting the Pieces

	5.3 Defining and Encoding Logics
	5.4 Examples
	5.5 Defining and Encoding Logic Translations
	5.6 Examples
	5.7 Future Work
	5.7.1 Logical Libraries
	5.7.2 Completeness Analysis

	5.8 Conclusion

	III Logical Knowledge Management
	6 A Module System for Logical Knowledge
	6.1 Introduction
	6.2 Syntax
	6.2.1 A Four-Level Model of Mathematical Knowledge
	6.2.2 Querying a Library
	6.2.3 Normalization

	6.3 Well-formed MMT Expressions
	6.3.1 Adding Knowledge Items to Libraries
	6.3.2 Document and Module Level
	6.3.3 Symbol Level
	6.3.4 Object Level
	6.3.5 Validity Levels
	6.3.6 Structural Properties

	6.4 Library Transformations
	6.4.1 Modular and Flat Libraries
	6.4.2 Equivalence of Libraries
	6.4.3 Flattening

	6.5 Future Work
	6.5.1 Implementation
	6.5.2 Small Conservative Changes
	6.5.3 Roles
	6.5.4 Unnamed Imports
	6.5.5 Subtheories
	6.5.6 Functors
	6.5.7 Informal Documents
	6.5.8 Structured Proofs
	6.5.9 Abstractions

	7 Representing Foundations and Logics in MMT
	7.1 DTT as a Foundation
	7.2 ZFC as a Foundation
	7.3 Representing a Logical Framework in MMT
	7.4 Conclusion

	8 Web-Scale Infrastructure
	8.1 Strict OMDoc 2
	8.1.1 XML Syntax
	8.1.2 Relative Names

	8.2 A Smart Logical Database
	8.3 Presenting Logical Knowledge on the Web
	8.4 Management of Change
	8.5 Conclusion

