
A Scalable Module System

Florian Rabea, Michael Kohlhasea

aJacobs University Bremen, Computer Science, Germany

Abstract

Symbolic and logic computation systems ranging from computer algebra systems
to theorem provers are finding their way into science, technology, mathematics
and engineering. But such systems rely on explicitly or implicitly represented
mathematical knowledge that needs to be managed to use such systems effec-
tively.

While mathematical knowledge management (MKM) “in the small” is well-
studied, scaling up to large, highly interconnected corpora remains difficult.
We hold that in order to realize MKM “in the large”, we need representation
languages and software architectures that are designed systematically with large-
scale processing in mind.

Therefore, we have designed and implemented the Mmt language – a mod-
ule system for mathematical theories. Mmt is designed as the simplest possible
language that combines a module system, a foundationally uncommitted for-
mal semantics, and web-scalable implementations. Due to a careful choice of
representational primitives, Mmt allows us to integrate existing representation
languages for formal mathematical knowledge in a simple, scalable formalism.
In particular, Mmt abstracts from the underlying mathematical and logical
foundations so that it can serve as a standardized representation format for a
formal digital library. Moreover, Mmt systematically separates logic-dependent
and logic-independent concerns so that it can serve as an interface layer between
computation systems and MKM systems.

Email addresses: f.rabe@jacobs-university.de (Florian Rabe),
m.kohlhase@jacobs-university.de (Michael Kohlhase)

URL: http://kwarc.info/frabe/ (Florian Rabe), http://kwarc.info/kohlhase/
(Michael Kohlhase)

Preprint submitted to Elsevier December 17, 2012

Contents

1 Introduction 4

2 Features of Knowledge Representation Languages 6
2.1 Scoping Constructs . 6
2.2 Inheritance . 8
2.3 Realizations . 10
2.4 Semantics . 13
2.5 Genericity . 13
2.6 Degree of Formality . 14
2.7 Scalability . 15

3 Central Features of MMT 16

4 Related Work 26

5 Syntax 34
5.1 Grammar . 34
5.2 Identifiers . 36
5.3 The Object Level . 36
5.4 The Symbol Level . 38
5.5 The Module Level . 40
5.6 Secondary Modules . 42

6 Well-formed Expressions 46
6.1 Induced Declarations . 46
6.2 Judgments . 51
6.3 Inference Rules for the Structural Levels 52
6.4 Inference Rules for Morphisms 55
6.5 Inference Rules for Terms . 56

7 Formal Properties 56
7.1 Normal Terms . 57
7.2 Regular Foundations . 60
7.3 Structural Well-Formedness . 65
7.4 Structural Equivalence . 66
7.5 Flattening . 68

8 Specific Foundations 71
8.1 OpenMath . 71
8.2 The Edinburgh Logical Framework (LF) 72
8.3 Set Theory (ZFC) . 73

9 Web-Scalability 73
9.1 Documents and Libraries . 74
9.2 URI-based Addressing . 75

2

10 Implementations 77
10.1 The MMT Reference API . 77
10.2 TNTbase – a Scalable Mmt-Compliant Database 79
10.3 Twelf – an Mmt-Compliant Logical Framework 80

11 Conclusion and Future Work 81
11.1 The Mmt Language . 81
11.2 Beyond Mmt . 83
11.3 Applying Mmt . 86

3

1. Introduction

Mathematics is one of the oldest areas of human knowledge and provides
science with modeling tools and a knowledge representation regime based on
rigorous language. However, mathematical knowledge has become far too vast
to be understood by one person – it has been estimated that the total amount
of published mathematics doubles every ten to fifteen years [Odl95]. Indeed,
for example, Zentralblatt Math [ZBM31] maintains a database of more than 3
million reviews for articles from 3500 journals from 1868 to 2012.

The currently practiced way to organize mathematical knowledge is to have
humans build a cognitive representation of the contents in their minds and
to communicate their results in natural – i.e., informal – language with inter-
spersed formulas. This process is well-suited for doing mathematics “in the
small” where human creativity is needed to create new mathematical insights.
But the sheer volume of mathematical knowledge precludes this approach from
organizing mathematics “in the large”: Except for prestige projects such as
the classification of finite simple groups [Sol95], collaboration in mathematics is
largely small-scale.

This leads to increasing specialization and missed opportunities for knowl-
edge transfer, and the question of supporting the management and dissemina-
tion of mathematical knowledge in the large remains difficult. This problem
has been tackled in the field of mathematical knowledge management (MKM),
which uses explicitly annotated content as the basis for mathematical software
services such as semantics-based searching and navigation. MKM in the large
has been pioneered in the field of formal methods in software engineering, where
a sound logical foundation and the incorruptibility of computers are combined to
verify computer systems. These computer-aided proofs rely on large amounts of
formal knowledge about the programming language constructs and data struc-
tures, and the productivity of formal methods is restricted in practice by the
effectivity of managing this knowledge.

We currently see five obstacles for large scale computerized MKM:

Informality As computer programs still lack any real understanding of math-
ematics, human mathematicians must make structures in mathematical knowl-
edge sufficiently explicit. This usually means that the knowledge has to be
formalized, i.e., represented in a formal, logical system. While it is generally
assumed that all mathematical knowledge can in principle be formalized, this
is so expensive that it is seldom even attempted.

Logical Heterogeneity One of the advantages of informal, but rigorous math-
ematics is that it does not force the choice of a formal system. There are many
formal systems, each optimized for expressing and reasoning about different
aspects of mathematical knowledge. All attempts to find the “mother of all
logical systems” (and convince others to use it) have failed. Even though logics
themselves can be made the objects of mathematical investigation and even
of formalization (in logical frameworks), we do not have scalable methods for

4

efficiently dealing with heterogeneous, i.e., multi-logic, presentations of math-
ematical knowledge.

Foundational Assumptions Logical heterogeneity is not only a matter of
optimization because different developments of mathematical knowledge make
different foundational assumptions. The vast majority of classical mathemat-
ics has been formulated in axiomatic set theory following a platonist philoso-
phy. And technical differences between set theories, like Zermelo-Fraenkel or
Gödel-Bernays often do not matter. But there are other foundations such as
those rejecting the axiom of choice, impredicative definitions, or the principle
of excluded middle. Corresponding developments often take a more formalist
stance and use different foundations such as higher-order logic or construc-
tive type theory. These alternative foundations have become important in
computer-supported formalized mathematics, where almost all proof assistants
use foundations that are different from each other and different from classical
set theory.

Modularity Modern developments of mathematical knowledge are highly mod-
ular. They take pains to identify minimal sets of assumptions so that results are
applicable at the most general possible level. This modularity and the math-
ematical practice of “framing”, i.e., of viewing objects of interest in terms of
already understood structures, must be supported to even approach human
capabilities of managing mathematical knowledge in computer systems.

Global Scale Mathematical research and applications are distributed glob-
ally, and mathematical knowledge is highly interlinked by explicit and implicit
references. Therefore, a computer-supported management system for math-
ematical knowledge must support global interlinking and framing as well as
management algorithms that scale up to very large (global) data sets.

In this paper we contribute to a uniform solution of four of the five challenges
(all but the first1): We give a globally scalable module system for mathematical
theories (Mmt) that abstracts from and mediates between different logics and
foundations. With this, we lay a conceptual and technical foundation for formal
MKM in the large.

Because our solution draws intuitions from the fields of mathematics, formal
methods, and knowledge management, we give a comprehensive overview over
the relevant language features and introduce a terminology for them in Section 2.
This gives us a solid footing to describe the central design choices underlying
Mmt in Section 3 and to compare the existing system to each other and to
Mmt in Section 4.

This is followed by the technical aspects of Mmt. First we describe the
formal syntax in Section 5. Then we define its semantics by giving an inference

1We have already solved the integration of formal and informal mathematical knowledge
in the OMDoc format, whose formal part is a predecessor of the work presented in this paper.
We plan to integrate this solution with the much stronger formal basis of Mmt in the future.

5

system for well-formed expressions in Section 6 and discuss the meta-theoretical
properties of Mmt in Section 7. The syntax and semantics of Mmt are para-
metric in what we call foundations, and we look at particular foundations in
Section 8.

Finally, we discuss the web scalability of Mmt in Section 9 and our imple-
mentations in Section 10 and conclude in Section 11.

2. Features of Knowledge Representation Languages

In this section, we develop a taxonomy for modular representation languages
for mathematical knowledge. We will use this vocabulary in Section 3 to intro-
duce the main features of Mmt and in Section 4 to compare existing module
systems to each other and to Mmt.

The concepts we introduce are well-established in existing module systems.
However, their names vary widely and individual names are heavily overloaded
in the literature. Therefore, we give the names used for these concepts in various
module systems in Figure 1, 2 and 3 in Section 2.1, 2.2, and 2.3, respectively.
We will discuss these module system in detail in Section 4.

By a module system, we mean a formal language that provides constructs
to express high-level design patterns such as namespaces, imports, parametric-
ity, encapsulation, etc. Very often the modular features of a language can be
separated from the non-modular ones. In that case, we call the fragment con-
taining no modularity the base language. Typical base languages are logics,
type theories, or programming languages. Almost all declarative base languages
can be viewed as sequences of declarations (usually of concepts for describing
the respective objects and of statements about them). Base language and mod-
ule system can be designed together or independently, and in the latter case
the module system may be designed before or after the base language. We will
sometimes use the phrase modular expression to distinguish expressions of
the module system from those of the base language.

2.1. Scoping Constructs

Module systems typically feature one or both of two main scoping constructs,
for which we will use the names package and module. If both are present, the
modules are declared within the packages, and a package can be seen as a group
of modules. Figure 1 lists some synonyms commonly used in module systems.

Packages provide scopes for the grouping of related toplevel declarations
into – possibly nested – components. The main purpose of packages is name-
space management: Packages have names, and their named toplevel dec-
larations are identified by a qualified name: a pair of a package name and a
declaration name. This facilitates reuse and distribution of declarations over
files and networks. Often the packaging structure is transparent to the seman-
tics of the language; in that case the only semantics of packages is that they
identify and locate the available toplevel declarations.

We distinguish open and closed packaging. With open packages, all pack-
ages can refer to the toplevel declarations of all other packages via qualified

6

Synonym Used in
for package

cd base OpenMath
document OMDoc, Mmt
library OBJ, CASL, PVS, Coq, Agda
theory Isabelle2

package Java
namespace Twelf, XML

for primary modules
content dictionary OpenMath
theory OMDoc, OBJ, IMPS, PVS, Mmt
specification ASL, CASL
node development graphs
locale Isabelle
module type Coq
module Agda
signature SML, Twelf
class Java

Figure 1: Synonyms for Scoping Constructs

names. With closed packages, import declarations are necessary as only explic-
itly imported declarations are accessible. In both cases, import declarations are
often used to make the imported declarations available without qualification.

When locating package declarations, we speak of logical package identi-
fiers if package identifiers are independent of physical locations as given by file
systems, databases, and networks; otherwise, we speak of physical identifiers.
With logical identifiers, the location of resources requires a resolution algorithm
that maps logical identifiers to physical locations. This resolution can be rele-
gated to an extra-linguistic catalog. Catalogs provide an abstraction layer that
makes the distribution of resources over physical locations transparent to the
language and avoids conflicts due to naming conventions of operating systems
and storage solutions. Using URI-based package identifiers, logical identifiers
can be made globally unique to support global interlinking.

Like packages, modules are scoped groups of declarations. But contrary to
packages, modules are opaque to the language semantics and are used to realize
modular design patterns such as inheritance, instantiation, and hiding. For
example, moving a declaration between packages has no semantic consequences
except that references to the moved declaration must be updated. But a module
has a meaning itself that will be affected if a declaration is removed or added.

2For Isabelle, the analogy is not as clear as for the other systems. We discuss this in
Section 4.

7

For example, a mathematical theory should be represented as a module because
moving axioms between theories changes the semantics; a mathematical paper
should be represented as a package because some parts may be moved to other
papers without affecting the semantics.

Module systems provide at least one kind of module declarations, which we
call the primary modules: the ones that correspond to mathematical theories.
They may also provide a number of secondary modules, in particular the ones
we discuss in Section 2.3.

Languages provide a number of different types of declarations that may occur
in the primary kind of module. The most typical declarations are sorts and
types, constants and values, operations and functions, and predicates. These
are usually named. Further examples of named or unnamed declarations are
axioms, theorems, inference rules, abbreviations, or notations for parsing and
printing. A named declaration within a module can often be identified as a
triple of package name, module name, and declaration name.

As special cases, we obtain languages that feature only packages or only
modules. In the former case, every package can be considered to contain a
single unnamed module; this is the case in many XML-related languages where
the packages are called namespaces such as in XQuery [W3C07]. In the latter
case, all modules together can be considered as a single unnamed package; this
is the case in SML where a configuration file is used to list the files over which
the modules are distributed. We will call the latter single-package module
systems.

2.2. Inheritance

Synonym Used in
for named import

parameter OBJ
import Isabelle
module Coq
structure SML, Mmt, Twelf
aggregation Java

for unnamed import
import OMDoc, OBJ, PVS, Isabelle
definitional link development graphs
extension CASL, IMPS, Java
inclusion Coq, SML, Twelf

Figure 2: Synonyms for Inheritance between Primary Modules

In the simplest case, inheritance is a binary relation between modules,
which is usually seen as an inheritance graph whose nodes are the modules and
whose edges make up the inheritance relation. The individual edges are called
imports: If T inherits from S, then T imports all knowledge items of S, which

8

then become available in T . An important distinction is whether the individual
imports are named or unnamed. In the former case, the name of the import
is available to refer to (i) the imported module as a whole, or (ii) the imported
knowledge items via qualified names. Figure 2 lists some synonyms module
systems commonly use for named and unnamed imports.

Inheritance may lead to a diamond situation when the same module is
imported in two different ways. The language may identify multiple imports
of the same module or distinguish them. If all imports are named, multiply
imported knowledge items can be referred to by different qualified names; this
makes the distinguish-semantics natural. Similarly, if all imports are unnamed,
multiply imported knowledge items have the same name so that the identify
semantics is natural. In practice, one often wants to combine distinction and
identification. If distinction is the default, sharing declarations are used to force
the identification of some multiply imported knowledge items. If identification
is the default, renaming declarations are used to force the distinction of some
multiply imported knowledge items. Both paradigms are equally expressive,
since identifiers can always be renamed.

A related problem is the import name clash, which arises when unnamed
imports import from different modules which happen to contain knowledge items
with the same local name (i.e. the name in the module). In large-scale devel-
opments, this is a very typical situation, which can be difficult to detect. Here
module systems may signal an error, the knowledge item imported first can be
shadowed by the one imported later, the name of the module can be used to
form a unique qualified name, or overload/identify-semantics can be used.
In the latter case, overloading resolution is used to disambiguate a reference to a
knowledge item; and knowledge items that cannot be distinguished in this way
(e.g., because they have the same types) are identified.

A more complex form of inheritance is instantiation. It means that when
importing S into T , some names declared in S may be mapped to expressions
of T . This set of mappings can be seen as the passing of argument values over
T to parameters of S. If instantiations are possible, multiple imports of the
same module with different instantiations should be distinguished. Therefore,
the distinguish-semantics is more natural. But it is also possible to identify two
imports iff they use the same instantiations.

Module systems differ as to what kind of mappings are allowed in instanti-
ations. Some systems only allow the map of S-symbols to T -symbols. This has
the advantage that it is easier to check whether a map is well-typed. Other sys-
tems allow mapping symbols to composed expressions. And systems with named
imports and realizations can permit realization maps (see Section 2.3).

Another difference is which symbols or imports may be instantiated: We
speak of a free instantiation if arbitrary symbols or imports can be instantiated.
Free instantiations must explicitly associate some names of S with expressions
of T . And we speak of interfaced instantiation if the declarations of S are
divided into two blocks, and only the declarations in the first block — the
interface — are available for instantiations. Interfaced instantiations are often
implicit: The order of declarations in the interface of S must correspond to

9

the order of provided T -expressions. Furthermore, instantiations may be total
or partial: Total instantiations provide expressions for all symbols or imports
in (the interface of) S. Finally, some systems restrict inheritance to axioms;
in such systems, imports must carry instantiations for all symbols; we speak of
axiom-inheritance.

A further distinction regards the relation between the imports and the other
declarations. We speak of separated imports if all imports must be given at
the beginning of the module; otherwise, we call them interspersed imports.
Separated imports are conceptually easier, but less expressive: At the beginning
of a module, less syntactic material is available to form expressions that can be
used in instantiations.

More general forms of imports permit hiding and filtering of declarations.
Both are similar syntactically but not semantically. When importing from S
to T , filtering a declaration of S means to exclude that declaration from the
import. Hiding is more complicated – one way to think of it is that if a dec-
laration is hidden, it is still imported but rendered inaccessible. In both cases,
it is necessary to maintain a dependency relation between declarations: If a
declarations is hidden or filtered, so must be all declarations that depend on it.

Hiding can be quite difficult to formalize but has an elegant interpretation in
the context of algebraic specification. There, it is used to represent the hiding
of implementation details or auxiliary constants. For example, implementations
of a specification S must also implement the hidden functions of S, but are
considered equal if they differ only in the implementation of hidden functions.
We speak of simple hiding in this case.

Complex hiding arises if not only declarations, i.e., atomic expressions, can
be hidden but composed expressions as well. Syntactically, a complex hiding
from S to T can be seen as a morphism from T to S in a category of specifi-
cations. Then simple hiding is the special case where S is a fragment of T and
the morphism maps every S-symbol to itself. Complex hiding has the appeal
that instantiation and hiding become dual to each other.

2.3. Realizations

Many module systems use a concept that we will call realization. Its treat-
ment varies substantially between systems, which makes it more difficult to
describe abstractly. The common intuition is that we can often think of a pri-
mary module as a specification, an interface, or a behavioral description. Then
the realizations are the objects that conform to such a specification. Very often
it is fruitful to consider the primary modules as types and apply the intuitions
of type theory to them. Then a realization is a value that is typed by a primary
module.

For example, in SML, the structures are the realizations of the signatures.
In Java, the instances of a classes are its realizations. In logic, the models are
the realizations of the theories. In formal specification, the implementations are
the realizations of the specifications.

10

Synonym Used in
for grounded realization

interpretation Isabelle
(not parametrized) module Coq
(toplevel) structure SML
instance Java

for view
theory-inclusion OMDoc
view OBJ, CASL, Mmt, Twelf
morphism ASL
postulated link development graphs
interpretation IMPS

for functor
sublocale Isabelle
(parametrized) module Coq
functor SML

Figure 3: Synonyms for Secondary Modules

In practice, realizations of a primary module S are often given in terms of
some context C. Then the realization must provide values over C for all symbols
declared in S. Three special cases are of particular importance and frequently
occur as secondary modules, i.e., other kinds of declarations that can occur
in packages besides the primary modules from Figure 1.

Firstly, if C is the empty context – or more precisely: the global environment
implicitly determined by the base language – we speak of grounded realizations.
For example, in formal specification, the grounded realizations of S are the
programs implementing S; the implicit global environment is given by the built-
in datatypes and values of the programming language. In logic, the grounded
realizations are the models of S; the implicit global environment is given by the
foundation of mathematics, e.g., set theory. If we think of the primary modules
as types, then we can think of the grounded realizations as values of these types.

Secondly, if C is another module T , we speak of views from S to T . Views
are closely associated with the intuitions of category theory: Many declarative
languages can be naturally formulated as categories with the primary modules as
objects and views as morphisms. Views permit framing in the following sense: A
view from S to T interprets all declarations of S in terms of T and thus frames
T from the perspective of S. Views yield a homomorphic extension that
maps expressions over S to expressions over T : All symbols in an S-expression
are replaced with their T -definition provided by the view. In logic, such views
were introduced as relative interpretations in [End72].

Thirdly, if C is a formal context binding a list of named declarations, we
speak of functors with parameter list C and return type S. Functors are
closely associated with the intuitions of type theory: If modules are seen as

11

types and realizations as values, then functors are the module-level analogue
of functions. Thus, functors can be used to compute with realizations. For
example, if r(x) is a realization of T that is given in terms of a realization x of
S, then λ-abstraction yields a functor λx : S.r(x). Then functor application
maps a realization of S to a realization of T by β-reduction. A module system
is higher-order if functors may take other functors as arguments.

Both views and functors subsume grounded realizations as a special case: in
the former case as views into the empty module, in the latter case as nullary
functors. Figure 3 lists some secondary modules used in common module sys-
tems and their synonyms.

C

S T

e −→r (e)
r

←−r (t) = r; t t
←−r

Views from S to T and unary functors with
parameter list x : T and return type S are con-
nected by an adjunction in the sense of category
theory [Law63]. Intuitively, a view from S to T
corresponds to a functor from T to S and vice
versa. The duality between views and functors
can be stated as an adjunction between syntax
and semantics leading to two important transla-
tion functions. Consider a realization r of S in terms of T as in the diagram on
the right. The syntactic translation −→r maps S-expressions e to T -expressions
using the homomorphic extension of r. The semantic translation ←−r maps
realizations t of T (in terms of some context C) to realizations of S (in the same
context) by composition/application. If a language provides concrete syntax for
the semantic translation, it is possible to form realization expressions.

For example, let S be the theory of monoids and T the theory of groups,
and let r realize every symbol of the language of monoids by its analogue in the
language of groups. Then the syntactic translation maps an expression in the
language of monoids to the corresponding expression in the language of groups.
And the semantic translation maps every group to itself seen as a monoid.

Despite this duality, these two notions are often associated with very different
intuitions, and languages often use only one of the two and do not explicate the
duality. Specifically, module systems using views usually focus on the syntactic
translation, and module systems using functors usually focus on the semantic
translation.

We can also recover imports as special cases of realizations. Imports are
similar to views in that every import from S to T yields a realization of S in
terms of T . Just like views, their semantics can be given as a morphism from
S to T . Using the intuitions of type theory, declaring a named import from S
can be seen as the declaration of a symbol of type S.

If T has a named import from S, then instantiations of T may instantiate
that import with a realization expression that realizes S. If a language supports
that, we speak of realization maps.

Finally, we have the notion of subtyping between modules. If every expres-
sion over S is also an expression over T , then S is a syntactic subtype of T .

12

Dually, if every realization of S is also a realization of T , then S is a semantic
subtype of T . If both subtyping relations are present in a language, then they
are usually opposites of each other.

The subtype realization can be demonstrated by giving a realization r of S
in terms of T whose syntactic and semantic translations are inclusions. Then
we can speak of nominal subtyping if r is an import, and of structural
subtyping if r is a view.

2.4. Semantics

There are two ways to give a formal semantics of modular expressions. We
speak of a model theoretical semantics if models are used to interpret mod-
ules. This is typical in the algebraic specification community. We speak of a
proof theoretical semantics if the semantics is given by typing judgments and
inference rules.

Often for some or all modular expressions, there is an expression of the base
language with the same semantics. In the type and proof theory community,
this is often built-in: The semantics of a modular expression is defined by trans-
forming it into a non-modular one; this is called elaboration. In contrast, in
languages with a model theoretical semantics, it is often a theorem about the
semantics and often called flattening.

We say that a module system is conservative if every modular expression
can be flattened or elaborated into an expression of the base language. Lan-
guage features that typically prevent conservativity are higher-order functors
and hiding.

Similar to conservativity is the internalization of a module system. Certain
languages are able to express module level judgments in terms of the typing
judgment of the base language. This is possible for example, if any concept
that can be declared in a primary module can also be declared as a field in
a record type. Then primary modules can be internalized as record types,
realizations as record terms, grounded realizations as ground terms, functors as
functions, and views as unary functions. However, often such expressive record
types are not present and can only be added at great cost, e.g., an internalized
module system for simple type theory requires type polymorphism. Moreover,
in languages where declarations build on each other, dependent record types are
needed.

2.5. Genericity

A logical framework is a formal representation system that provides an un-
committed set of primitives. Such a framework can be used as a meta-language
to define other languages. We call a module system generic if it is not specific
to a certain base language, but defined within a logical framework. A generic
module system is parametrized by an arbitrary base language defined within
the logical framework.

We distinguish further whether the logical framework is based on set theory
or type theory. The former typically has a model theoretical, the latter a proof

13

theoretical semantics. The choice of framework often implies a foundational
commitment because the framework must make some assumptions about the
base language.

For example, set/model theoretical module systems may assume the seman-
tics of the base language as an institution. An example is ASL based on the
framework of institutions [GB92, SW83]. This implies a commitment to a cer-
tain axiomatic set theory in which models and institutions are given: For exam-
ple, foundation with axioms for choice or large cardinals yield different models
for a certain module than foundations without them.

Similarly, a type/proof theoretical module system may assume the semantics
of the base language as a system of judgments and inference rules. An example
is the locale module system based on the logical framework Isabelle [Pau94,
KWP99]. This implies a commitment to a formal language in which judgments
and inference rules are described. But different logical frameworks permit the
representation of different object logics.

We use the term foundation to refer to the mathematical theory that for-
malizes this implicit commitment: the axiomatic set theory in the former, and
the logical framework in the latter case. We call a module system foundation-
independent if it avoids such a commitment. This can for instance be achieved
by explicitly representing the foundation itself as a module. Foundation-indepen-
dent module systems are not only parametric in the base language but also in
the foundation used to express the semantics of the base language.

2.6. Degree of Formality

Mathematics has traditionally been written in natural language with inter-
spersed formulas. This is different from the fully formal style that is often used
in computer-supported mathematics. Even though the focus of Mmt is on for-
mal languages, it is worthwhile to discuss informal languages as well because
many aspects of module systems are independent of the degree of formality.

Formal languages are based on a formal syntax with a precisely defined
semantics. The syntax is based on a formal grammar that can be implemented so
that computers can parse and understand it. A typical service that a computer
can offer for a formal language is the validation of knowledge to guarantee
correctness. Computers can also automatically generate knowledge, such as in
automated theorem proving where the generated knowledge item is a proof.
This category also includes controlled grammars of natural language that are
used to give formal representations a more human-friendly appearance.

Informal languages do not have a formal syntax and are based on unre-
stricted natural language. While mathematicians use informal language rig-
orously to obtain an unambiguous semantics, this semantics can only be un-
derstood by humans but not by machines. Therefore, only shallow machine-
processing services are available such as authoring, storing, and distributing
papers and books.

But mathematicians frequently use formal objects within natural language.
This has motivated the design of semi-formal representation languages that

14

combine formal and informal representations and degrade gracefully when the
latter is used. The automated type-setting provided by LATEX is a simple exam-
ple; here the formal representation aspects include the structuring of text into,
e.g., definitions, theorems, and formulas.

Note that in the example of LATEX, the formulas themselves are not formal
in our sense: While formal symbols are used, the representation is still human-
oriented, and machines can usually not determine the syntax tree of a formula
from its LATEX representation. Such representations are called presentation-
based and distinguished from content-based representations that make the syn-
tax tree accessible to machines.

2.7. Scalability

For machine-processable representation languages, performance and lan-
guage design are not always orthogonal. We are specifically interested in lan-
guage aspects that affect scalability.

We call a module system web standard-compliant if it provides a concrete
syntax that uses XML [W3C98] for all language expressions and URIs [BLFM05]
for all identifiers. Such languages can easily support IRIs [DS05] as identifiers,
too, which add support for international characters. XML enables standardized
document fragment access by technologies like XPath [W3C99] and document
fragment aggregation by XQuery [W3C07]. Deployment on web servers allows
distributed storage and flexible access methods. URIs provide a standardized
and flexible language for logical identifiers. They support the unambiguous
identification of all meaningful components of modular theories and provide an
abstraction layer over physical locations. An XML catalog can translate URIs
into their physical locations represented as URLs.

A common feature in implementations of formal languages is a distinction
between external and internal syntax. The former is more relaxed in or-
der to ease reading and writing for humans, whereas the latter is stricter and
fully disambiguated to ease machine-processing. An interpretation algorithm
is used to obtain the internal representation from the external one. Typical
steps of the interpretation algorithm are parsing of infix operators using prece-
dences, disambiguation of overloaded symbol names, inference of omitted types,
and automated proof search to discharge incurred proof obligations. Moreover,
often the internal syntax is non-modular, and the interpretation includes the
elaboration or flattening. If interpretation is succeeded by a phase that exports
a serialized representation of the internal syntax, possibly optimized for further
processing, we speak of compilation; this is typical for programming languages.

If different systems are to communicate mathematical knowledge, a complex
reconstruction algorithm can be problematic. If internal syntax is communi-
cated, human-oriented information is lost; when external syntax is communi-
cated, the receiving system must implement the costly reconstruction. There-
fore, we speak of authoring-oriented languages if the reconstruction algorithm
is complex and of interchange-oriented languages if it is simple (or even the
identity).

15

We speak of incremental processing if modular expressions can be pro-
cessed step-wise. We say that a language is decomposable if there is an
algorithm that decomposes a modular declaration into a sequence of atomic
declarations with an acyclic dependency relation. We say that a language is
order-invariant if the semantics is independent of the order of declarations as
as long as the order respects the dependency relation. A decomposable, order-
invariant language permits representing documents as sets rather than lists of
declarations, which greatly simplifies distribution and storage in databases.

The flattening (elaboration) operation is usually defined by induction on
expressions and leads to an exponential increase in size. We speak of eager
flattening if every induction step requires the recursive flattening of all sub-
expressions. If we regard flattening as the evaluation of a modular expression,
this corresponds to call-by-value evaluation. We speak of lazy flattening if a
corresponding call-by-reference evaluation is possible. In the latter case, the
exponential blow-up may be avoided.

3. Central Features of MMT

We will now discuss the central design goals that have guided the develop-
ment of Mmt in terms of the concepts introduced above. For other systems
with different applications and design choices see Section 4.

In this section, we will also introduce a running example that we will use
throughout the paper. It is taken from the LATIN atlas [CHK+11], which was
built using Mmt. The LATIN project developed a library of formalizations of
logics and related formal systems currently used in mathematical/logic-based
software systems, focusing on modular development and trans-logic interoper-
ability. The whole atlas is available online through the LATIN project [KMR09].
Our running example only comprises a small fragment consisting of algebra,
first-order logic, set theory, and the Edinburgh Logical Framework.

A Generic Formal Module System. Mmt is a generic, formal module system
for mathematical knowledge. It is designed to be applicable to a large collection
of declarative formal base languages, and all Mmt notions are fully abstract in
the choice of base language.

Mmt is designed to be applicable to all base languages based on theories.
Theories are the primary modules in the sense of Section 2. In the simplest
case, they are defined by a set of typed symbols (the signature) and a set of
axioms describing the properties of the symbols. A signature morphism σ
from a theory S to a theory T translates or interprets the symbols of S in T .

If we have entailment relations for the formulas of S and T , a signature
morphism is particularly interesting if it translates all theorems of S to the-
orems of T ; this is called a theory morphism. Using the Curry-Howard
representation, Mmt drops the distinction between symbols and axioms and
between signatures and theories altogether, and only uses theories. An axiom
is a constant whose type is the asserted proposition, and a theorem is a defined
constant whose definiens is the proof.

16

Object

Term Morphism

Con Str

Sym

ConAss StrAss

Ass

Thy Link V iew

Mod

Doc

subconcept of

declared in

used to form

Figure 4: The Mmt Ontology

The flat fragment of Mmt provides a generic syntax for theories and theory
morphisms (called views in Mmt). A view from S to T is a list of assignments
c 7→ ω where c is an S-constant (axiom) and ω is a T -term (proof). Such a
list of assignments induces a homomorphic translation of S-terms to T -terms
(and S-proofs to T -proofs) by replacing every c with the corresponding ω. Such
translations are often called structural, recursive, or compositional.

Full Mmt adds the most general form of inheritance: interspersed named
imports (called structures in Mmt) carrying free, explicit, and partial instanti-
ations. In particular, we choose named imports to avoid the problems caused
by the diamond situation and import name clashes, which occur frequently in
large-scale developments.

Mmt has been designed in the tradition of the content-oriented OMDoc
and OpenMath languages to ensure easy machine processing, and Mmt builds
on their fragments for formal mathematics as the underlying concrete rep-
resentation languages. We have designed and implemented an extension of
Mmt [Rab08b] with notation definitions that transform Mmt-content represen-
tations into presentation-oriented formats like HTML+presentation MathML
[ABC+10], but that is not part of this work.

A Simple Language Ontology. A scalable module system must be both expres-
sive and simple, which forms a difficult trade-off. Therefore, Mmt carefully
picks only a few primitive language features: The ontology of Mmt language
features is so simple that it can be visualized in a single graph, see Figure 4.
Mmt concepts are distinguished into four levels: the document, module, symbol,
and object level.

The expressions at the document level are the documents, which act as

17

open packages using logical identifiers. Mmt systematically follows the intuition
that documents are transparent to the semantics so that scalable knowledge
management services can be implemented easily at the document level. In
particular, Mmt documents focus on namespace management and abstraction
from physical locations.

Mmt documents are open and logical: Every document may refer to every
other document (as long as the dependency relation is acyclic) and the distri-
bution of modules into documents and of documents into physical storage is left
transparent.

As logical identifiers for all knowledge items, we introduce Mmt URIs. The
translation into physical identifiers – the URLs – is relegated to an extra-
linguistic catalog.

Documents contain modules, and Mmt uses only two kinds of module dec-
larations: theories and views. Mmt does not need other module declarations
because both grounded realizations and functors can be represented as views.
Most declarative languages can be stated naturally as a category. The objects
are sets of declarations and are represented as Mmt theories. And the mor-
phisms are translations between theories, which are represented as Mmt views.

More precisely, Mmt theories contain symbol declarations, and views con-
tain symbol assignments. A view from theory S to theory T must realize all
S-symbols in terms of T -objects. Consequently, for every kind of symbol dec-
laration, there is a corresponding kind of objects. Mmt uses only two kinds of
symbol declarations: Constants represent all declarations of the base language,
and structures represent named inheritance between theories. A constant as-
signment provides a T -term for an S-constant, and structure assignments pro-
vide a T -morphism for an S-structure.

Objects are complex expressions that represent mathematical expressions,
formulas, etc. Mmt only uses two kinds of objects: terms and morphisms. Con-
stants occur as the atomic terms, and structures and views as the atomic mor-
phisms. The Mmt syntax for terms is motivated by the OpenMath grammar
[BCC+04], which uses generic constructs for application of arbitrary operators
and binding by arbitrary binders. This is general enough to represent most
mathematical languages. The semantics of Mmt is generic in that it relegates
the semantics of terms to an external definition, which we call the foundation
below.

Morphisms from S to T are realization expressions representing realizations
of S over T . We take the concept of links from development graphs [AHMS99] to
unify the two atomic morphisms: Structures are morphisms induced by imports,
views are morphisms declared (and proved) explicitly. Complex morphisms
are formed by composition. The representation of realizations as morphisms
has the advantage that Mmt can easily provide concrete syntax for the two
translations induced by a realization: The syntactic translation is given by
applying morphisms to terms, and the semantic translation by composition of
morphisms. Thus, Mmt can capture the semantics of realizations while being
parametric in the semantics of terms.

18

A Simple Semantics using Theory Graphs. The semantics of a collection of Mmt
documents is given as a theory graph, which serves as a compact specification
of a collection of mathematical theories and their relations. The nodes of a
theory graph are the theories; the edges are the links. Each path in a theory
graph yields a theory morphism. In particular, if a declarative language is
given as a category whose components are represented as Mmt theories and
morphisms, then diagrams in that category are represented as Mmt theory
graphs. It is a crucial observation that theory graphs are universal in the sense
that they arise naturally and in the same way in any declarative language. Using
theory graphs, Mmt can capture the semantics of modular theories generically.

Example 1 (Running Example: Elementary Algebra) For a simple example,
consider the theory graph on the right with nodes for the theories of monoids,

Monoid

CGroupRing

mon
mult

add
commutative groups, and rings, and three structures
between them. The theory Monoid might declare
symbols for composition and unit, and axioms for
associativity and neutrality. The theory of commu-
tative groups is an extension of the theory of monoids:
it arises by adding symbols and axioms to Monoid. Therefore, we only need to
represent those added symbols and axioms in CGroup and add a structure mon

importing from Monoid.
Figure 5 gives a more detailed view of the theory graph adding the symbols

in the theory nodes, but eliding the axioms. Ring declares two structures for
addition and multiplication, and the distinguish-semantics yields two different
monoid operations for addition and multiplication.

Structures in Mmt are always named and the distinguish-semantics is used in
the case of diamonds. Qualified identifiers for the imported constants are formed
by concatenating the structure name and the name of the imported symbols. For
example, the theory Ring from Figure 5 can access the symbols add/mon/comp
(addition), add/mon/unit (zero), add/inv (additive inverse), mult/comp (mul-
tiplication), and mult/unit (one).

Both structures and views from S to T are defined by a list of assignments
σ that assigns T -objects to S-symbols, and both induce theory morphisms from
S to T that map all S-objects to T -objects. This can be utilized to obtain
the identify-semantics: sharing declarations are special cases of assignments
in structures. Mmt assignments support realization maps: structures can be
mapped to morphisms.

Example 2 (Sharing) In Example 1, we assumed that all theories are written as
theories of first-order logic FOL (which we will introduce formally in Example 5).
Alternatively, we can use sorted first-order logic SFOL. The key difference is
that FOL uses a single fixed universe, which is explicitly declared in FOL and
thus automatically available in FOL-theories like Monoid. SFOL, on the other
hand, permits an arbitrary set of universes, which are declared individually in
SFOL-theories; consequently, SFOL-function/predicate symbols are sorted, and
quantification is relative to a sort. A typical example is the SFOL-theory of
vector spaces, which declares two sorts for scalars and vectors.

19

Monoid

comp, unit

CGroup

mon, inv

Ring

add

mult

integers

0,+,−

v2

mon/comp 7→ +
mon/unit 7→ 0

mon 7→ v1

inv 7→ − inv 7→ −

mon

add

mult

v1

comp 7→ +
unit 7→ 0

v2

structure

view

Figure 5: A Theory Graph for Elementary Algebra

Both SFOL and FOL are justifiable choices for the underlying logic of our
running example (and Mmt permits integrating them by using views between
logics). Using SFOL yields essentially the same theory graph except that all
theories have to declare the universe explicitly. For example, the SFOL-theory
SMonoid of monoids declares a sort univ for the universe. SCGroup and SRing

arise accordingly, importing the universe declared in SMonoid.
However, we now need sharing declarations because univ is imported twice

from SMonoid into SRing. Mmt uses asymmetric sharing declarations by first
declaring the import add and then adding the assignment univ 7→ add/mon/univ
to the structure mult. This has the effect of identifying the two copies of the
universe. Alternatively, we obtain symmetric sharing declarations by declaring
univ explicitly in SRing as well and adding the assignment univ 7→ univ to
both structures.

Mmt also supports realization maps, which can be used to share whole
structures in the same way. We will see examples for that in Section 5.6.

While a view relates two fixed theories without changing either one, struc-
tures from S to T occur within T and change T by including a copy of S.
Thus, structures induce theory morphisms by definition, and views correspond
to representation theorems.

Example 3 (Views (continued from Example 1)) The node on the right side of
the graph in Figure 5 represents a theory for the integers declaring the constants
0, +, and −. The fact that the integers are a monoid is represented by the
view v1. It is a theory morphism that explicitly gives the interpretations of
all symbols: comp 7→ + and unit 7→ 0. If we had not omitted axioms, this
view would also have to interpret all the axioms of Monoid as proof terms (see
Example 4 for that).

20

The view v2 is particularly interesting because there are two ways to repre-
sent the fact that the integers are a commutative group. In the first variant, all
constants of CGroup are interpreted separately: inv as − and the two imported
constants mon/comp and mon/unit as + and 0, respectively. In the second vari-
ant v2 is constructed modularly by importing the existing view v1: The Mmt
structure assignment mon 7→ v1 maps all symbol imported by mon according
to v1. The intuition behind a structure assignment is that it makes the right
triangle commute: v2 is defined such that v2 ◦ mon = v1. Clearly, both variants
lead to the same theory morphism; the second one is conceptually more complex
but eliminates redundancy because it is structured.

Partial Morphisms. The assignments defining a structure may be (and typically
are) partial whereas a view should be total. In order to treat structures and
views uniformly, we admit partial views as well. This is not only possible, but
in fact desirable. A typical scenario when working with views is that some of the
specific assignments making up the view constitute proof obligations and must
be found by costly procedures. Therefore, it is reasonable to represent partial
views, namely views where some proof obligations have already been discharged
whereas others remain open.

Example 4 (Partial Morphisms (continued from Example 3)) Consider for in-
stance the situation in Figure 5 but this time taking axioms into account. Recall
that under the Curry-Howard correspondence, axioms are just symbols whose
types is given by the asserted formula. So we would have additional constants
assoc and neut for associativity and the properties of the neutral element in
Monoid, the constants inv ax and comm for the properties of the inverse element
and commutativity in CGroup, and finally the constant dist for distributivity
in Ring.

Thus, the views v1 and v2 are clearly partial views, and the missing as-
signments for assoc and neut in v1 and for inv ax and comm in v2 are proof
obligations that need to be discharged by proving the translated axioms in the-
ory integers. If these proof terms are known, they can be added to the views
as assignments to the respective (axiom) constants. In this situation, the struc-
tured view v2 shows its strength: It imports the constant assignments from v1

that discharge proof obligations so that these proofs do not have to be repeated.

Partial morphisms also arise when representations are inherently partial.
For example, we can give a one-sided inverse to the structure mon in Figure 5
by mapping mon/comp and mon/unit to comp and unit. However, only total
morphisms induce functors in the sense of Section 2.3.

Mmt introduces filtering to obtain a semantics for partial morphisms: All
constants for which a view does not provide an assignment are implicitly filtered,
i.e., are mapped to a special term >. If a link l from S to T filters a S-constant
that has a definiens, this is harmless because the filtered constant can be replaced
with its definiens. But if definition-less constants are filtered, Mmt enforces
the strictness of filtering: All terms depending on a filtered constant, are also

21

filtered. In that case, we speak of filtered terms, which are also represented by
>.

A Foundation-Independent Semantics. Mathematical knowledge is described
using very different foundations. Most of them can be grouped into set the-
ory and type theory. Within each group there are numerous variants, e.g.,
Zermelo-Fraenkel or Gödel-Bernays set theory or set theories with or without
the axiom of choice. Therefore, scalability across semantic domains requires a
foundation-independent representation language. It is a unique feature of Mmt
to provide such a high level of genericity and still be able to give a rigorous
semantics in terms of theory graphs and a foundation-independent flattening
theorem.

The semantics of Mmt is given proof theoretically by flattening in order to
avoid a commitment to a particular model theory. This also makes Mmt con-
servative over the base language so that we can combine Mmt with arbitrary
base languages without affecting their semantics. Therefore, we have to exclude
non-conservative language features, but we have shown in [Rab12a, HR11] that
despite the proof theoretical semantics of Mmt, model theoretical module sys-
tems can be represented in Mmt. Moreover, we have given an extension of Mmt
with hiding in [CHK+12a].

Foundation-independence is achieved by representing all logics, logical frame-
works, and the foundational languages themselves simply as theories. For ex-
ample, an Mmt theory graph based on ZFC set theory starts with a theory
that declares the symbols of ZFC such as ∈ and ⊂. Moreover, Mmt does not
prescribe a set of well-typed terms. Instead, Mmt uses generic term formation
operators, and any term may occur as the type of any other term.

LF Isa

FOL SFOL

Monoid Ring

m

m′

mult

Figure 6: Meta-Theories

We recover this loss of precision by
formalizing the notion of meta-languages,
which pervades mathematical discourse.
Let us write M/T to express that we work
in the object language T using the meta-
language M . For example, most of mathe-
matics is carried out in FOL/ZFC, i.e., first-
order logic is the meta-language, in which
set theory is defined. FOL itself might
be defined in a logical framework such as
LF [HHP93], and within ZFC, we can
define the language of natural numbers,
which yields LF/FOL/ZFC/Nat. In Mmt, all of these languages are represented as
theories. In many ways M/T behaves like an unnamed import from M to T , but
using only an import would fail to describe the meta-relationship. Therefore,
Mmt uses a binary meta-theory relation between theories.

In the example in Figure 6 and generally in this paper, the meta-theory rela-
tion is visualized using dotted arrows. The theory FOL for first-order logic is the
meta-theory for Monoid and Ring. And the theory LF for the logical framework
LF is the meta-theory of FOL and SFOL. Note how the meta-theory can indicate

22

both to humans and to machines how T is to be interpreted. For example,
interpretations of Monoid are always stated relative to a fixed interpretation of
FOL.

The importance of meta-theories M/T in Mmt is that M defines the se-
mantics of T . More precisely, a foundational theory declares all primitive
concepts and axioms of the foundational language and occurs as the upper-
most meta-theory – like LF and Isa (Isabelle) in the example in Figure 6. The
semantics of the foundational theory is called the foundation; it is given exter-
nally and assumed by Mmt, and it induces the semantics of all other theories.
Formally, Mmt assumes that the foundation for the foundational theory M
defines typing and equality judgments for arbitrary theories T with (possibly
indirect) meta-theory M .

The choice of typing and equality is motivated by their universal importance
in the formal languages of mathematics and computer science. Here we should
clarify that, from an Mmt perspective, languages like untyped set theory are in
fact typed languages, if only coarsely-typed: For example, typical formalizations
of set theory at least distinguish types for sets, propositions, and proofs, and
a concise definition of axiom schemes naturally leads to a notion of function
types.

As meta-theories are normal Mmt theories, they are subject to the same
module system. For example, views between logics can be used to move formal-
izations between logics. In Figure 6, the view m′ indicates a logic translation
that permits connecting the different theory graphs from Example 1 and 2.

Example 5 (Meta-Theories (continued from Example 4)) We can add meta-
theories by adding a theory FOL for first-order logic, which occurs as the meta-
theory of monoids, groups, and rings.

FOL ZFC

Ring

Monoid

CGroup Integer

monmult v1

add v2

FOLSem

structure
view
meta

Figure 7: Meta-Theories in Example 5

In particular, FOL declares a
symbol ι for the fixed universe
and symbols for the connectives,
quantifiers, and inference rules.
We use a theory for ZFC as the
meta-theory of the integers. In
that case the views v1 and v2

are only meaningful relative to
an interpretation of first-order
logic in set theory. In Mmt, this
interpretation is given as a view
FOLSem from FOL to ZFC which
is attached to v1 and v2 as a
meta-morphism.

FOLSem represents the inductive interpretation function that defines the se-
mantics of first-order logic in set theory: In particular, it interprets all FOL-
formulas as booleans, i.e., elements of the set {0, 1}. Note that FOL is also the
meta-theory of ZFC, we will refine the example accordingly in Example 6.

23

Little Logics and Little Foundations. The little theories methodology [FGT92]
strives to state every mathematical theorem in the theory with the smallest pos-
sible set of axioms in order to maximize theorem reuse. Using the foundations-
as-theories approach, we can extend it to the little logics and even the little
foundations methodology.

Mmt provides a uniform module system for theories, logics, and foundational
languages. Thus, we can use structures to represent inheritance at the level of
logical foundations and views to represent formal translations between them.
For example, the morphisms m and m′ in Figure 6 indicate possible translations
on the levels of logical frameworks and logics, respectively. Therefore, just like
in the little theories approach, we can prove meta-logical results in the simplest
logic or foundation that is expressive enough and then use views to move results
between foundations.

Example 6 (Proof and Model Theory of First-Order Logic) In [HR11], we for-
malize the syntax, proof theory, and model theory and prove the soundness of
first-order logic using a theory graph with LF as the ultimate meta-theory of all
theories. A fragment of this theory graph is given in the commutative diagram
in Figure 8, where we omit LF itself for readability.

The representation is more modular than the one sketched in Example 5
in that the theory FOL is split into two modules (see Figure 8). The syntax
– i.e., the connectives and quantifiers – is defined in the theory FOLSyn; the
proof theory is defined in the theory FOLPf, which imports FOLSyn via syn and
adds constants for the rules of a calculus for first-order logic encoded via the
Curry-Howard correspondence.

FOLSyn

FOLPf FOLPf

FOLd

FOLMod

HOL ZFC

fol
syn

FOLSem1

sound

refine

FOLSem2

Figure 8: A Theory Graph for First-Order
Logic with Proofs & Models

Moreover, the view FOLSem is de-
composed into the two views FOLSem1
and FOLSem2, whose composition cor-
responds to the view FOLSem from Ex-
ample 5. FOLSem1 interprets the syn-
tax in a theory FOLMod. FOLMod de-
fines first-order models using higher-
order logic HOL as the meta-theory.
This is sufficient to represent the
soundness proof as a view sound that
interprets all proof terms over FOLPf

as valid statements over FOLMod.
sound is given as a structured view:
It imports the view FOLSem1 using
the structure assignment syn 7→ FOLSem1.

Using HOL and FOLMod as an intermediate theory for the representation of
the model theory has two advantages. HOL serves as a little foundation that per-
mits reusing the model theory and the soundness proof in any more expressive
foundation such as ZFC. Moreover, carrying out the soundness proof is actually
easier in HOL than in ZFC because it permits typed reasoning.

To reuse the model theory and soundness proof in ZFC, we use a view refine

24

that interprets HOL in ZFC. It represents the set-theoretical semantics of higher-
order logic that interprets types as sets. We can think of this as a refinement
from HOL to ZFC. Finally we use refine to give the morphism FOLSem2 that
moves HOL-based first-order models to ZFC.

To establish the views with codomain ZFC, we must explicitly represent the
axioms and proof system of ZFC. For that purpose, [HR11] uses a variant of
first-order logic as the meta-theory of ZFC, namely FOLd. It arises by importing
FOLPf via the import fol and then adding a definite description operator. Thus,
we have two different interpretations of FOL in ZFC. Firstly, the meta-theory
relation supplies ZFC with in particular propositions and connectives. Secondly,
the view FOLSem maps FOL-propositions to ZFC-booleans, i.e., elements of the
set {0, 1}. Therefore, we use two copies of the node FOLPf to keep the diagram
commutative.

Moreover, [HR11] systematically uses our little logics approach, e.g., it uses
separate theories for each connective of first-order logic. Proof theory, model
theory, and soundness of each connective or quantifier are represented separately.
Thus, they can be reused to define other logics as we do in the LATIN project
[CHK+11].

Built-in Web-Scalability. Most module systems in mathematics and computer
science are designed with the implicit assumption that all theories of a graph are
retrieved from a single file system or server and are processed by loading them
into the working memory of a single process. These assumptions are becoming
increasingly unrealistic in the face of the growing size of both mathematical
knowledge and formalized mathematical knowledge. Moreover, this mathemat-
ical knowledge is represented in different formal languages, which are processed
with different implementations.

Mmt is designed as a representation language that scales well to large inter-
linked document collections that are processed with a wide variety of systems
across networks and implementation languages. Therefore, Mmt offers inte-
gration support through web standards-compliance, incremental processing of
large theory graphs, and an interchange-oriented fully disambiguated external
syntax.

Scalable transport of Mmt documents must be mediated by standardized
protocols and formats. While the use of XML as concrete syntax is essentially
orthogonal to the language design, the use of URIs as identifiers is not because
it imposes subtle constraints that can be hard to meet a posteriori. In Mmt, all
constants, including imported ones, that are available in a theory have canonical
MMT URIs. These are tripartite URIs doc?mod?sym formed from a document
URI doc, a module name mod, and a qualified symbol name sym. For example,
if the theory graph from Figure 5 is given in a document with URI http://cds.

omdoc.org/mmt/paper/example, then the constant unit imported from Monoid into
CGroup has the URI http://cds.omdoc.org/mmt/paper/example?CGroup?mon/unit.

Mmt URIs are always well-formed URIs; in particular, the query part of the
URI doc?mod?sym is mod?sym. The unusual separator ? was carefully chosen
as a good combination of logical elegance and web standard-compliance.

25

Recall that theories are containers for declarations and that constructions
like imports define the identifiers that are available in a given theory. Therefore,
if every available constant has a canonical identifier, the syntax of identifiers is
inherently connected to the possible relations between theories. Consequently,
and maybe surprisingly, defining the canonical identifiers is almost as difficult
as defining the semantics of the whole language.

All Mmt definitions and algorithms are designed with incremental processing
in mind. In particular, Mmt is decomposable and order-invariant. For example,
the declaration T = {s1 : τ1, s2 : τ2} of a theory T with two typed symbols yields
the atomic declarations T = {}, T?s1 : τ1, and T?s2 : τ2. Documents, views,
and structures are decomposed accordingly. This “unnesting” of declarations is
possible because every declaration has a canonical URI so that declarations can
be taken out of context for transport and storage and re-assembled later.

The understanding of structures and their induced declarations is crucial
to achieve web-scalability. Languages with imports and instantiations tend to
be much more complex than flat ones making them harder to specify and im-
plement. Therefore, the semantics of modularity must often remain opaque
to generic knowledge management services, an undesirable situation. Because
Mmt has a simple and foundation-independent flattening semantics, modularity
can be made transparent whenever a system is unable to process it.

Moreover, the flattening of Mmt is lazy: Every structure declaration can
be eliminated individually without recursively flattening the imported theory.
Thus, systems gain the flexibility to flatten Mmt documents partially and on
demand.

4. Related Work

In this section, we survey the state of the art in module systems for formal
languages using the terminology developed in Section 2 and relate Mmt to them.
Figure 9 gives an overview of the discussed systems.

Mathematical Language. Even though mathematical knowledge can vary greatly
in its presentation as well as its level of formality and rigor, there is a level of
deep semantic structure that is common to all forms of mathematics. This
large-scale structure of mathematical knowledge is much less apparent than
that of formulas and is usually implicit in informal representations. Experi-
enced mathematicians are nonetheless aware of it, and use it for navigating in
and communicating mathematical knowledge.

Much of this structure can be found in networks of theories such as those in
a monograph “Introduction to Group Theory” or a chapter in a textbook. The
relations among such theories are described in the text, sometimes supported
by mathematical statements called “representation theorems”. We can observe
that mathematical texts can only be understood with respect to a particular
mathematical context given by a theory which the reader can usually infer from
the document, e.g., from the title or the specialization of the author. The
intuitive notion of meta-theory is well-established in mathematics, but again

26

O
p

en
M

a
th

(C
D

)

O
M

D
o
c

(t
h

eo
ry

)

O
B

J
(t

h
eo

ry
)

A
S

L
(s

p
ec

ifi
ca

ti
o
n

)

d
ev

.
g
ra

p
h

s
(n

o
d

e)

C
A

S
L

(s
p

ec
ifi

ca
ti

o
n

)

IM
P

S
(t

h
eo

ry
)

P
V

S
(t

h
eo

ry
)

Is
a
b

el
le

(l
o
ca

le
)

N
u

p
rl

C
o
q

(m
o
d

u
le

ty
p

e)

A
g
d

a
(m

o
d

u
le

)

S
M

L
(s

ig
n

a
tu

re
)

J
a
v
a

(c
la

ss
)

M
M

T
(t

h
eo

ry
)

T
w

el
f

(s
ig

n
a
tu

re
)

In
te

rn
a
li

ze
d

formality1 pc pc c c c c c c c c c c c c c c

packages2 l l s p s p s p p s l l l
package imports3 o o c c c o c o o o

named inheritance4 s s i i i i i i i
instantiation5 iit fep fep iit fep iit fep fep iit
renaming + +
hiding6 s s s s f

unnamed inheritance4 i s a a i a i s i i s i
diamond semantics7 i i i a a e d i i
name clash resolution8 q i i q i e s i q
instantiation5 fep fet fet iep iit fep fep fep iit
renaming + + + +
hiding6 f c c s s s s s

realization maps + + + + + + +
grounded realizations + + + + + + +
views/functors + + + + + + + + + + + + +
higher-order +
translations9 y y e e e ye e e

semantics10 m m m m e m e e e e e e e
internalized11 ∗ ∗ ∗ +
logic-independent + + + + + + +
foundation-independent + + +

URIs as identifiers + + + + +
XML syntax + + +
1p = presentation, c = content
2p = physical, l = logical, s = single package
3o = open, c = closed
4i = interspersed, s = separated, a = axiom-inheritance
5i/f = interfaced/free, e/i = explicit/implicit, t/p = total/partial
6s = simple, c = complex, f = filtering
7i = identify, d = distinguish, a = identify iff instantiations or types agree, e = error
8i = overload/identify, q = qualified names, s = shadowing, e = error
9explicit syntax for the translation along views/functors: y = syntactic, e = semantic
10m = model theory, e = elaboration
11+ = internalized, ∗ = additionally an internalized module system as in right-most column

Figure 9: Features of Module Systems

it is mainly used informally. Formal definitions are found in the area of logic
where a logic is used as the meta-language of a logical theory.

Mathematical theories have been studied by mathematicians and logicians in
the search of a rigorous foundation for mathematical practice. They have usually
been formalized as collections of symbol declarations and axioms. Mathematical

27

reasoning often involves several related mathematical theories, and it is desirable
to exploit these relationships by moving theorems between theories. A major
systematic, large-scale application of this technique in mathematics is found in
the works by Bourbaki [Bou68, Bou74], which tried to prove every theorem in
the theory with the smallest possible set of axioms.

This technique was formalized in [FGT92], which introduced the little the-
ories approach. Theories are studied as formal objects. And structural rela-
tionships between them are represented as theory morphisms, which serve as
conduits for passing information (e.g., definitions and theorems) between theo-
ries (see [Far00]).

Web Scale Languages. The challenge in putting mathematics on the World
Wide Web is to capture both notation and meaning in a way that documents
can utilize the human-oriented notational forms of mathematics and provide
machine-supported interactions at the same time. The W3C recommendation
for mathematics on the web is the MathML language [ABC+10]. It provides
two sublanguages: presentation MathML permits the specification of nota-
tions and layout for mathematical formulas, and content MathML is geared
towards specifying the meaning in a machine-processable way. The latter is
structurally equivalent to OpenMath. In particular, both formats represent
the structure of mathematical formulas as OpenMath objects, i.e. tree-like
expressions built up from constants, variables, and primitive data types via
function applications and bindings.

Mmt constants correspond to symbols in MathML and OpenMath and
Mmt theories to OpenMath content dictionaries (CDs). CDs are machine-
readable and web-accessible documents that provide a very basic way to declare
mathematical objects for the communication over the WWW and to attach
meaning to them. Meaning can be expressed in the form of axioms or types
given as OpenMath objects representing logical formulas or in the form of
informal mathematical text.

OpenMath provides a certain communication safety over traditional mathe-
matics: It can no longer be the case that the author writes N for the set of natural
numbers with 0, and the reader understands the set of natural number without
0, as the two notions of “natural numbers” — even though presented identically
— are represented by different symbols (probably from different CDs). Thus, the
service offered by the OpenMath/MathML approach is one of disambiguation
as a base for further machine support.

In Mmt terms, the productions for constants, variables, application, and
binding correspond closely to OpenMath. Mmt adds morphism application
and the special term >, and we omit the primitive data types (integers, strings,
floats, . . .). We use typed and defined variables in analogy to Mmt constant
declarations and do not use the attributions of OpenMath.

OpenMath CDs enable formula disambiguation and web scale communi-
cation, but the lack of machine-understandable intra-CD knowledge structure
and inter-CD relations preclude higher-level machine support. Therefore, OM-
Doc [Koh06] represents mathematical knowledge at the levels of objects, state-

28

ments, theories, and documents: OpenMath and content MathML are sub-
sumed to represent objects. Statements are symbols, axioms, definitions, theo-
rems, proofs and occur as declarations within theories. Moreover, theories may
declare unnamed, interspersed, free instantiations, and structured theory mor-
phisms can be declared as in development graphs. Documents provide a basic
content-oriented infrastructure for communication and archival.

Syntactically, OMDoc and OpenMath are distinguished from purely for-
mal representation languages by the fact that all formal mathematical elements
of the language can be augmented or replaced by natural language text frag-
ments; OMDoc even allows text with interspersed OpenMath objects. Se-
mantically, OMDoc and OpenMath are distinguished because they do not
supplement the formal syntax with a formal semantics.

Some implementations of purely formal representation languages have made
use of XML, OpenMath/MathML, or OMDoc as primary or secondary rep-
resentation formats. For example, Mizar [TB85] uses XML as the primary in-
ternal format, and Matita [ACTZ06] uses content and presentation MathML;
Coq [CH88, BC04] provides an OMDoc export, and Isabelle [Pau94] a partial
XML export. Web-scale languages can in principle serve as standardized in-
terchange formats between such systems. Some examples of interoperability
mediated by OMDoc and OpenMath are [CHK+12b, CO00, HR09]. But ap-
plications have so far been limited due to the lack of an interchange format with
a standardized semantics.

Mmt provides such a semantics. It keeps OMDoc’s leveled representation
but restricts attention to a subset for which a formal semantics can be developed.
Syntactically, the main addition of Mmt is the use of named imports and of
theory morphisms as objects.

OpenMath and OMDoc use URIs [BLFM05] to identify symbols by triples
of symbol name, CD id, and CD base, which corresponds to the triples in Mmt
URIs. In particular, the CD base is a URI acting as a namespace identifier. But
in OpenMath, the formation of symbol URIs out of those triples is achieved
only by imposing a one-CD-one-file restriction, which is too restrictive in general.
Moreover, the formation of symbol URIs in OpenMath and OMDoc uses the
fragment components of URIs. Therefore, fragment access does not scale well
because clients have to download a complete document and then execute the
fragment access locally. Mmt avoids this by using the query component of the
URI.

Algebraic Specification Languages. In algebraic specification, theories are used
to specify the behavior of programs and software components, and realizations
(corresponding to morphisms in Mmt) are used to enable reuse of components
(structures in Mmt) and to formalize refinements of specifications (views in
Mmt).

In this setting, implementations can be regarded as refinements into exe-
cutable specifications, which we have called grounded realizations. This ap-
proach naturally leads to a regime of specification and implementation co-
development, where initial, declarative specifications are refined to take op-

29

erational issues into account. Implementations are adapted to changing spec-
ifications, and verification conditions and their proofs have to be adapted as
programming errors are found and fixed. This has been studied extensively,
and a number of systems have been developed. We will discuss OBJ [GWM+93],
ASL [SW83, ST88], CASL [CoF04], and development graphs [AHMS99, MAH06]
as representative examples.

OBJ refers to a family of languages based on variants of sorted first-order
logic. It was originally developed in the 1970s based on the Clear programming
language and pioneered many ideas of modular specifications, in particular the
use of initial model semantics [GTW78]. The most important variant is OBJ3;
Maude [CELM96] is a closely related system based on rewriting logic. OBJ is
a single-package system. Theories and views are similar to Mmt. OBJ per-
mits unnamed imports without instantiation and with identify-semantics, and
named imports with interfaced, implicit, and total instantiations. All imports
are separated. Realization maps instantiate named imports with realization
expressions, which are formed from views.

ASL is a generic module system over an arbitrary institution [GB92] with
a model theoretical semantics. Similar to institutions, the focus is on abstract
modeling rather than concrete syntax. Modules are called “specifications” and
are formed using the operations of union (which can be encoded in Mmt via
concatenation of theories), imports, and complex hiding (which was introduced
by ASL). Imports between specifications are unnamed and do not use instan-
tiations but only axiom-inheritance and renaming. Unnamed views are used
to express refinement theorems. We gave a representation of ASL in Mmt in
[CHK+12a], which uses an extension of Mmt to accommodate hiding. ASL+
[Asp94] is an extension of ASL that supports higher-order functors.

The development graph language is an extension of ASL specifically de-
signed for the management of change. The central data structure is a theory
graph formed from theories and two kinds of links, which corresponds to the the-
ory graphs of Mmt. (Global) “definitional links” are unnamed imports like in
ASL and provide axiom-inheritance; (global) “theorem links” are partial views
where the missing instantiations are treated as proof obligations that are to
be discharged by theorem proving systems. ASL style hiding is supported by
hiding links. The Maya system [AHMS02] implements development graphs for
first-order logic. Like the Mmt implementation and contrary to most other
systems discussed here, Maya does not flatten the specification while reading
it in. Thus, the modular information, in particular the theory graph, is avail-
able in the internal data structures. This is much more robust against changes
in the underlying modules and provides a good basis for theorem reuse and
management of change.

The development graph calculus pioneers “local links”. From the Mmt per-
spective, a local link is a link which filters all but the local constants of its
domain. A global theorem link can be decomposed into a set of commuting lo-
cal theorem links. By finding these local theorem links individually and reusing
them where possible, development graphs can avoid redundancy and maximize

30

reuse. From the Mmt perspective, a decomposed global theorem link is sim-
ply a total view without deep assignments, i.e., views where all structures are
mapped to morphisms. Thus, Mmt provides not only a representation format
for development graphs and decomposed theorem links, but also for intermedi-
ate development graphs in which theorem links have been partially decomposed
or where local theorem links are postulated but have not been found yet.

In general, module-level reasoning in Mmt can often utilize such decomposi-
tions. Typically, a judgment about all constants in S (including imported ones)
is decomposed into separate judgments about the local constants and about the
structures declared in S.

The common algebraic specification language (CASL) was initiated in 1994
in an attempt to unify and standardize existing specification languages. As
such, it was strongly influenced by other languages such as OBJ and ASL. The
CASL logics are centered around partial subsorted first-order logic, and spe-
cific logics are obtained by specializing (e.g., total functions, no subsorting) or
extending (e.g., modal logic or higher-order logic). CASL uses closed physical
packages based on files and called “libraries”. The modules are called “spec-
ifications”, the imports are unnamed and interspersed, permit renaming, and
use the identify-semantics. The overload/identify-semantics is used to handle
import name clashes. Instantiations are interfaced, explicit, and total, and map
constants to constants. In parametric specifications, special separated imports
are used that can be instantiated with views. CASL offers simple hiding.

In HetCASL [Mos05] and the Hets system [MML07], CASL is extended to
heterogeneous specifications using different logics and logic morphisms. Imports
and views may go across logics if logic morphisms are attached. This is a very
similar to the use of meta-theories and meta-morphisms in Mmt. Contrary
to Mmt, the logics and logic morphisms are implemented in the underlying
programming language and not declared within the formal language itself. Hets
implements the development graph calculus for heterogeneous specifications.
In [CHK+12b], we designed an extension of Hets that can understand logics
declared as Mmt theories.

Type Theories. Type theories and related formal languages utilize strong logical
systems to express both mathematical statements and proofs as mathematical
objects. Some systems like AutoMath [dB70], Isabelle [Pau94], or Twelf [PS99]
even allow the specification of the logical language itself, in which the reasoning
takes place. Semi-automated theorem proving systems have been used to for-
malize substantial parts of mathematics and mechanically verify many theorems
in the respective areas.

These systems usually come with a module system that manages and struc-
tures the body of knowledge formalized in the system and a library containing
a large set of modules. We will consider the module systems of IMPS [FGT93],
PVS [ORS92, OS97], Isabelle [Pau94], Coq [CH88, BC04], Agda [Nor05], and
Nuprl [CAB+86]. We will describe the module system of Twelf, which was
designed based on Mmt, in Section 10.3.

31

IMPS was the first theorem proving system that systematically exploited
the “little theories approach” of separating theories into small modules and
moving theorems along theory morphisms. It was initiated in 1990 and is built
around a higher-order logic with partial functions. It is a single-package system,
the imports are unnamed and separated without instantiations; there is no
renaming. Modules can be related via views, which map symbols to symbols.

PVS is an interactive theorem prover for a variant of classical higher-order
logic with a rich, undecidable type system. The PVS packages are called “li-
braries” and are physical packages based on directories. Unnamed, interspersed
imports have interfaced, total, and implicit instantiations, which map symbols
to terms. Unnamed imports of the same module are identified if the instan-
tiations agree. There is no renaming, and the import name clash problem is
handled using the overload/identify semantics. Simple hiding is supported by
export declarations that determine which names become available upon import.

Isabelle is an interactive theorem prover based on simple type theory [Chu40]
with a structured high-level proof language.

Isabelle “theories” mix features of packages and primary modules. One can
see the theories as the primary modules of a single-package system. In particular,
they support the typical declarations (constants, axioms, etc.) as well as imports
and hiding. However, we will consider Isabelle theories as packages and “locales”
as the primary modules. This is more in line with our terminology with the only
specialty that the use of primary modules in Isabelle remains optional.

Isabelle theories are closed packages with physical identifiers based on files.
Isabelle provides two generic module systems. Originally, only axiomatic type
classes were used as modules. They permit only inheritance via unnamed, sep-
arated imports without instantiations. Type class ascriptions to type variables
and overloading resolution are used to access the symbols of a type class. Later,
locales were introduced as modules in [KWP99] and gradually extended. In the
current release, locales offer unnamed, separated imports with free instantia-
tions; renaming is possible. Type classes are recovered as a special case.

Realizations are treated differently depending on whether they are grounded
or not and whether the domain is a type class or a locale: Views between locales
are called “sublocale” and “subclass” declarations, and grounded realizations are
called “interpretation” for locales and “instantiation” for type classes.

Isabelle assigns the semantics of a modular theory by elaboration. Locales
are internalized by locale predicates that abstract over all symbols and assump-
tions of the locale; every theorem proved in the locale is relativized by the
locale predicate and exported to the toplevel. Thus, instantiation is reduced to
β-reduction.

Nuprl is an interactive theorem prover based on a rich undecidable type
theory. It does not provide an explicit module system. However, its type theory
is so expressive that it can in principle be used to define an internalized module
system as shown in [CH00]. Then modules, grounded realizations, and higher-
order functors can be defined using Nuprl types, terms, and function terms,

32

respectively. Named and unnamed imports are defined using intersection and
dependent sum types. But Nuprl does not provide specific module system-like
syntax for these notions.

Coq is an interactive theorem prover based on the calculus of construc-
tions [CH88]. Physical open packages are called “libraries” and correspond to
directories and files.

The Coq module system is modeled after the SML module system (see be-
low). SML signatures, structures, and functors correspond to Coq module types,
modules without parameters, and modules with parameters, respectively. Con-
trary to SML, no shadowing is used, and errors are signaled instead. In addition,
Coq can be used with an internalized higher-order module system using record
types. As for Nuprl, this yields modules, grounded realizations, and higher-
order functors. Both module systems are used independently. The standard
library mainly uses the former. The latter is used systematically in [GGMR09].

Agda is a functional programming language based on Martin-Löf’s depen-
dent type theory [ML74]. It uses dependent record types to internalize certain
theories. In addition, the notion of “modules” combines aspects of what we call
packages and modules. These modules are physical closed packages based on
files and are used mainly for namespace management. Named interspersed im-
ports between modules are possible using nested module declarations where the
inner one is defined in terms of a parametric module. These imports carry in-
terfaced, implicit, and total instantiations that map symbols to terms. Named
imports may not occur as parameters so that this does not yield a notion of
functors.

Programming Languages. Programming languages differ from the languages
mentioned above in that they focus on aspects of execution including input/out-
put and state. But if we ignore those aspects, we find the same module sys-
tem patterns as in the other languages. We discuss the functional language
SML [MTHM97] and the object-oriented language Java [GJJ96] as examples.

SML uses a single-package system that permits the modular design of pri-
mary modules (called “signatures”) and realizations (called “structures”).

Imports between signatures are interspersed and can be named (called “struc-
ture declarations”) or unnamed (called “inclusions”). Both kinds of imports
carry free, explicit, and partial instantiations that map symbols to symbols or
structures to realizations. If unnamed imports lead to a diamond situation or a
name clash, the later declarations always shadow the previous ones. Views are
restricted to inclusion morphisms between signatures (called “structural sub-
typing”); these views are implicit and inferred by implementations.

Realizations can themselves be given modularly using functors, which give a
realization of a signature that is parametric in symbols or structure declarations.
Imports between realizations are possible by declaring a structure and defining
it to be equal to the result of a functor application. Consequently, these imports

33

are named and interspersed, and the instantiations are interfaced, explicit, and
total and map symbols to symbols and structures to realizations. Structures
are typed structurally by signatures, which permits simple hiding.

From an Mmt perspective, SML signatures, structures, and functors can
be unified conceptually. Signatures correspond to Mmt theories in which no
constant has a definition; structures to Mmt theories in which all constants
have definitions; and functors to Mmt theories where only a few declarations
at the beginning (the interface of the functor) have no definition. Both the
structural subtyping relation between signatures and the typing relation between
structures and signatures correspond to an inclusion view between the respective
Mmt theories.

Java uses open packages with optional imports. Package names are the au-
thority components of URIs [BLFM05]. Packages are provided in jar archive
files, and implementations provide a catalog to locate packages that is based
on the classpath. Java packages are very close to Mmt documents. Similar
to Mmt, Java identifiers are logical and formed from three hierarchical compo-
nents: package URI, class name, and field name. However, Java uses “.” as
a separator character both between and within these components and resolves
ambiguities dynamically; Mmt uses “?” and “/” so that Mmt URIs can be
interpreted statically.

Java modules are called “classes”. There are two kinds of imports. Firstly,
unnamed, separated imports without renaming are called “class inheritance”;
a class may only inherit from one other class though. Secondly, named, inter-
spersed imports are called “object instantiation”, and the resulting structures
“objects”. Instantiations are interfaced, implicit, and total, but a class may
provide multiple interfaces (called “constructors”), which map symbols to ex-
pressions or objects to objects. As constructors may execute code, the expres-
sions passed to the constructor do not have to correspond to symbols or objects
declared in the class. Views are restricted to inclusion morphisms out of special
modules (called “interfaces”). Simple hiding is realized via private declarations.

Java internalizes its module system, and functors are subsumed by the con-
cept of methods.

5. Syntax

We will now develop the abstract syntax of Mmt, our formal module system
that realizes the features described in Section 3.

5.1. Grammar

The Mmt grammar is given in Figure 10 where +, |, and [−] denote non-
empty repetition, alternative, and optional parts, respectively. Note that several
non-terminal symbols correspond directly to concepts of the Mmt ontology
given in Section 3. In order to state the flattening theorem below, we also
introduce the flat Mmt syntax; it arises by removing the productions given in

34

Theory graph γ ::= · | γ, Thy | γ, V iew
Theory Thy ::= T

[M]
= {ϑ}

View V iew ::= l : S → T
[µ]
= {σ} | l : S → T = µ

Theory body ϑ ::= · | ϑ, Con | ϑ, Str
Constant Con ::= c : ω = ω | c : ω | c = ω | c

Structure Str ::= s : S
[µ]
= {σ} | s : S = µ

Link body σ ::= · | σ, ConAss | σ, StrAss
Ass. to constant ConAss ::= c 7→ ω
Ass. to structure StrAss ::= s 7→ µ

Variable context Υ ::= · | Υ, x[: ω][= ω]

Term ω ::= > | T?c | x | ωµ | @(ω, ω+)
| β(ω; Υ;ω)

Morphism µ ::= idT | l | µµ
Document identifier g ::= URI, no query, no fragment
Module identifier S, T,M, l ::= g?I
Symbol identifier T?I
Local identifier c, s, I ::= i[/i]+

Names i, x ::= pchar+

URI, pchar see RFC 3986 [BLFM05]

Figure 10: The Grammar for Mmt Expressions

gray boxes . We will call any Mmt concept flat, iff it can be expressed in the
flat Mmt syntax.

The meta-variables we will use are given in Figure 11. References to named
Mmt knowledge items are Latin letters, Mmt objects and lists of knowledge
items are Greek letters. We will occasionally use as an unnamed meta-variable
for irrelevant values.

In the following we describe the syntax of Mmt and its intended semantics
in a bottom-up manner, i.e., identifiers, object level, symbol level, and module
level. Alternatively, the following subsections can be read in top-down order.

Level Declaration Expression
Module theory T, S,R,M theory graph γ (set of modules)

link l
Symbol constant c theory body ϑ (set of symbols)

structure r, s link body σ (set of assignments)
Object variable x term ω

morphism µ

Figure 11: Meta-Variables

35

5.2. Identifiers

All Mmt identifiers are URIs and the productions for URIs given in RFC
3986 [BLFM05] are part of the Mmt grammar. We distinguish identifiers of
documents, modules, and symbols.

Document identifiers g are URIs without queries or fragments (The query
and fragment components of a URI are those starting with the special characters
? and #, respectively.).

Module identifiers are formed by pairing a document identifier g with a local
module identifier I that is declared in that document. We use ? as a separating
character. Similarly, symbol identifiers T?c arise by pairing a theory identifier
with an local identifier that is induced in that theory.

Local identifiers may be qualified and are thus lists of names separated by /.
Finally, names are non-empty strings of pchars. pchar is defined in RFC 3986
and produces any Unicode character where certain reserved characters must be
%-encoded; reserved characters are ?/#[]% and all characters generally illegal
in URIs.

Example 7 (Continued from Example 1) We assume that the Mmt theory graph
for the running example is located in a document with some URI e. Then the
Mmt URIs of theories and views are for example e?Ring and e?v1. The Mmt
URIs of the constants available in the theory e?Ring are
• e?Ring?add/mon/comp,
• e?Ring?add/mon/unit,
• e?Ring?add/inv,
• e?Ring?mult/comp,
• e?Ring?mult/unit.

and the Mmt URIs of the structures available in the theory e?Ring are
• e?Ring?add,
• e?Ring?add/mon,
• e?Ring?mult,
Structures are special because they may be considered both as symbol level

objects available in the theory e?Ring and as module level objects available
globally. This is reflected in Mmt by giving structures two identifiers. Consider
the structure that imports Monoid into Ring: If we want to emphasize its na-
ture as a declaration within Ring, we use the symbol identifier e?Ring?mult; if
we want to emphasize its nature as a morphism, we use the module identifier
e?Ring/mult.

This has the effect that the non-terminal symbol l for links can produce
the identifiers of both views and structures. This is important when study-
ing or implementing Mmt because it permits unifying the cases for views and
structures.

5.3. The Object Level

Following the OpenMath approach, Mmt objects are distinguished into
terms and morphisms. Terms ω are formed from:

36

• constants T?c referring to constant c declared in theory T ,
• variables x declared in an enclosing binder,
• applications @(ω, ω1, . . . , ωn) of ω to arguments ωi,
• bindings β(ω1; Υ;ω2) by a binder ω1 of a list of variables Υ with body
ω2,

• morphism applications ωµ of µ to ω,
• a special term > for filtered terms (see below).
Variable contexts are lists of variable declarations. Parallel to constant dec-

larations, variables carry an optional type and an optional definiens. The scope
of a bound variable consists of the types and definitions of the succeeding vari-
able declarations and the body of the binder.

For every occurrence of a term, there is a home theory against which the
term is checked. For occurrences in constant declarations, this is the containing
theory. For occurrences in assignments, this is the codomain of the containing
link. Relative to a home theory T , we speak of terms over T . Terms over
T may use T?c to refer to a previously declared T -constant c. And if s is a
previously declared structure instantiating S, and c is a constant declared in S,
then T may use T?s/c to refer to the copy of c induced by s. Here we assumed
that the declarations occur in an order that respects their dependencies; we
will see later in Theorem 43 that the precise order chosen does not matter.
Mmt does not impose a specific typing relation between terms. In particular,
well-formed terms may be untyped or may have multiple types.

Example 8 (Continued from Example 7) The running example only contains
constants. Complex terms arise when types and axioms are covered. For ex-
ample, the type of the inverse in a commutative group is @(→, ι, ι). Here →
represents the function type constructor and ι the carrier set. These two con-
stants are not declared in the example. Instead, we will add them in Example 13
by giving CGroup a meta-theory, in which these symbols are declared. A more
complicated term is the axiom for left-neutrality of the unit:

ωe := β(∀;x : ι; @(=,@(e?Monoid?comp, e?Monoid?unit, x), x)).

Here ∀ and = are further constants that are inherited from the meta-theory.

To avoid case distinctions when dealing with declarations c : τ = δ, we will
occasionally write τ = ⊥ to express that a constant does not provide a type
τ . Accordingly, we write δ = ⊥ if it does not provide a definition δ. However,
this is only notational convenience, and we do not adopt ⊥ as a term of the
language.

Morphisms are built up from links and compositions. If s is a structure
declared in T that imports from S, then T/s is a link from S to T . Similarly,
every view m from S to T is a link. Composition is written µµ′ where µ
is applied before µ′, i.e., composition is in diagrammatic order. The identity
morphism of the theory T is written idT . A morphism application ωµ takes a
term ω over S and a morphism µ from S to T , and returns a term over T .

Just like a structure declared in T is both a symbol of T and a link into
T , a morphism from S to T can be regarded as a composed object over T . To

37

stress this often fruitful perspective, we also call the codomain of a morphism
its home theory, and the domain its type. Then morphism composition µ′ µ
can be regarded as the application of µ to µ′: It takes a morphism µ′ with home
theory S and type R and returns a morphism with home theory T of the same
type.

Example 9 (Continued from Example 8) In the running example, a morphism
is

µe := e?CGroup/mon e?v2.

It has domain e?Monoid and codomain e?integers. The intended semantics of
the term ωe

µe is that it yields the result of applying µe to ωe, i.e.,

β(∀;x : ι; @(=,@(+, 0, x), x)).

Here, we assume µe has no effect on those constants that are inherited from the
meta-theory. We will make that more precise below by using the identity as a
meta-morphism.

We define a straightforward abbreviation for the application of morphisms
to whole contexts:

Definition 10 We define Υµ by

·µ := · and
(
Υ, x : τ = δ

)µ
:= Υµ, x : τµ = δµ

Here we assume ⊥µ = ⊥ to avoid case distinctions.

The analogy between terms and morphisms is summarized in Figure 12.

Atomic object Complex object Type Checked relative to
Terms constant term term home theory
Morphisms link morphism domain codomain

Figure 12: The Object Level

5.4. The Symbol Level

We distinguish four symbol level concepts as given in Figure 13: constants
and structures, and assignments to them.

Declaration Assignment
Terms of a constant Con of a term ω to a constant: c 7→ ω
Morphisms of a structure Str of a morphism µ to a structure: s 7→ µ

Figure 13: The Symbol Level

A constant declaration of the form c : τ = δ declares a constant c of
type τ with definition δ. Both the type and the definition are optional yielding

38

four kinds of constant declarations. If both are given, then δ must have type
τ . In order to unify these four kinds, we will sometimes write ⊥ for an omitted
type or definition.

Recall that via the Curry-Howard representation, a theorem can be declared
as a constant with the asserted proposition as the type and the proof as the
definiens. Similarly, (derived) inference rules are declared as (defined) constants.

Mmt constant declarations do not cover many advanced definition princi-
ples, e.g., implicitly defined function or predicate symbols in first-order logic or
type definitions in higher-order logic [GP93]. This is necessary because such
definition principles are typically not foundation-independent, e.g., an implicit
function symbol definition like “f is such that ∀x.P (x, f(x))” requires the uni-
versal quantifier ∀. In [HKR12], we give an extension of Mmt that permits the
meta-theory to declare definition principles that can then be instantiated by
individual constant definitions.

A structure declaration of the form s : S
[µ]
= {σ} in a theory T declares a

structure s instantiating the theory S defined by assignments σ. Such structures
can have an optional meta-morphism µ (see below). Alternatively, a structure
may be introduced as an abbreviation for an existing morphism: s : S = µ.
This corresponds to constants defined by terms.

While the domain of a structure is given explicitly (in the style of a type),
the codomain is the theory in which the structure is declared. Consequently, if
s : S = µ is declared in T , µ must be a morphism from S to T .

Just like symbols are the constituents of theory bodies, assignments are the
constituents of link bodies. Let l be a link from S to T . An assignment to a
constant of the form c 7→ ω in the body of l expresses that l maps the constant
c of S to the term ω over T . Assignments of the form c 7→ > are special: They
express that the constant c is filtered, i.e., l is definition-less for c.

Assignments must type-check to ensure that typing is preserved by theory
morphisms. This means that the term ω must type-check against τ l where τ is
the type of c declared in S.

R S

T

S/r

l
µ

If r is a structure importing R into S and l a link from
S to T , then an assignment to a structure of the form
r 7→ µ in l expresses that l maps r to the morphism µ.
Framed in terms of realizations, this means that S declares
a realization r of R, and l provides a realization map of r to
the realization expression µ over T . Consequently, µ must
type-check in the sense that it is a morphism from R to T .
Framed in terms of theory graphs, this means that the triangle S/r l = µ in
the diagram on the right commutes.

Induced Symbols. Intuitively, the semantics of a structure s with domain S
declared in T is that all symbols of S are copied into T . For example, if S
contains a constant c, then an induced constant s/c is available in T , and so
on recursively. In other words, / is used as the operator that dereferences
structures.

39

Similarly, every assignment to a structure induces assignments to constants.
Continuing the above example, if a link with domain T contains an assignment
to s, this induces assignments to the induced constants s/c. Furthermore, as-
signments may be deep in the following sense: If c is a constant of S, a link
with domain T may also contain assignments to induced constants, like s/c.
Of course, this can lead to clashes if a link contains assignments for both s
and s/c; links with such clashes will have to be rejected by the definition of
well-formedness.

Example 11 (Continued from Example 9) The (non-axiom) symbol declara-
tions in the theory CGroup are written formally like this:

mon : e?Monoid = {} and inv : @(→, ι, ι).

The former is a structure declaration and induces the constants e?CGroup?mon/comp
and e?CGroup?mon/unit. Ring contains only the two structures

add : e?CGroup = {} and mult : e?Monoid = {}.

Using an assignment to a structure, the assignments of the view v2 look like
this:

inv 7→ e?integers?− and mon 7→ e?v1.

The latter induces assignments for the induced constants e?CGroup?mon/comp
as well as e?CGroup?mon/unit. For example, e?CGroup?mon/comp is mapped to
e?Monoid?compe?v1, i.e., e?integers?+.

The alternative formulation of the view v2 arises if two deep assignments to
the induced constants are used instead of the assignment to the structure mon:

mon/comp 7→ e?integers? + and mon/unit 7→ e?integers?0

Example 12 (Continued from Example 2) If we use the SFOL-based formaliza-
tion of algebra, we have a theory SMonoid declaring univ. In that case SRing

inherits two instances of univ, which must be shared. Therefore, SRing would
contain the two structures

add : e?SCGroup = {}

mult : e?SMonoid′ = {mon/univ 7→ e?SRing?add/mon/univ}

5.5. The Module Level

On the module level a theory declaration of the form T
[M]
= {ϑ} declares

a theory T defined by a list of symbol declarations ϑ, which we call the body
of T . Theories have an optional meta-theory M . A View declarations of the

form m : S → T
[µ]
= {σ} declares a view m from S to T defined by a list of

assignments σ and by an optional meta-morphism µ. Just like structures, views
may also be defined by an existing morphism: m : S → T = µ.

40

Meta-Theories. Above, we have already mentioned that theories may have
meta-theories and that links may have meta-morphisms. Meta-theories pro-
vide a second dimension in the theory graph. If M is the meta-theory of T ,
then T may use all symbols of M . M provides the syntactic material that T
can use to define the semantics of its symbols.

Because a theory S with meta-theory M implicitly imports all symbols of
M , a link from S to T must provide assignments for these symbols as well.
This is the role of the meta-morphism: Every link from S to T must provide a
meta-morphism from M to T (or any meta-theory of T).

Example 13 (Continued from Example 11) We can now combine the situa-
tions from Example 5 and 6 in one big Mmt theory graph. In a document
with URI m, we declare an Mmt theory for the logical framework as

m?LF = {type, →, . . .}

where we only list the constants that are relevant for our running example: type
represents the kind of types, and→ is the function type constructor. We will as-
sume→ to be n-ary and right-associative, e.g., we write @(m?LF?→, ω1, ω2, ω3)
for @(m?LF?→, ω1,@(m?LF?→, ω2, ω3)).

We declare a theory for first-order logic in a document with URI f like this:

f?FOLSyn
m?LF
=

 ι : m?LF?type, o : m?LF?type,
equal : @(m?LF?→, f?FOLSyn?ι, f?FOLSyn?ι, f?FOLSyn?o),
. . .


Here we restrict ourselves to a few constant declarations again: The types ι and
o represent terms and formulas, and the equality operation takes two terms and
returns a formula.

Then the theories Monoid, CGroup, and Ring are declared using f?FOLSyn
as their meta-theory. For example, the declaration of the theory CGroup finally
looks like this:

e?CGroup
f?FOLSyn

=

{
mon : e?Monoid

idf?FOLSyn
= {},

inv : @(m?LF?→, f?FOLSyn?ι, f?FOLSyn?ι)

}

Here the structure mon must have a meta-morphism translating from the meta-
theory of Monoid to the current theory, and that is simply the identity mor-
phism of f?FOLSyn because Monoid and e?CGroup have the same meta-theory.
If the meta-theory of integers is ZFC, then the meta-morphism of v1 and v2 is
FOLSem.

Example 13 shows that the genericity of Mmt can make the notation in
concrete examples hard to read. In practical user interfaces, users will write ι in
external syntax. Moreover, relative URIs (see Section 9.2) or CURIEs [BM09]
can be used to shorted URIs.

41

5.6. Secondary Modules

Mmt uses only views as secondary modules and does not provide separate
primitives for grounded realizations or functors as discussed in Section 2.3. In-
stead, Mmt expresses them in terms of theory morphisms.

Realizations. The central observation underlying the representation of realiza-
tions in Mmt is that grounded realizations are never absolutely grounded –
they are always relative to an implicit global environment. For example, in
logic, the realizations are models and thus relative to the underlying language
of mathematics, e.g., ZFC set theory. Similarly, in programming languages,
the realizations are implementations and thus relative to the underlying im-
plementation language. Using Mmt’s foundation-independent representation
paradigm, this implicit environment is represented as an Mmt theory D itself.

Consequently, Mmt does not need a new primitive for grounded realiza-
tions: The grounded realizations of S relative to the environment D are just
the morphisms from S to D, which double as realization expressions. Moreover,
Mmt naturally provides concrete syntax for both the syntactic and the seman-
tic translations: The syntactic translation is obtained by morphism application,
the semantic one by morphism composition.

We will consider examples from logic and programming languages. In the
former case, D is a theory for ZFC set theory; in the latter case, we use SML
and D is a theory for the global environment of SML. To simplify the notation,
we will drop the document part of the Mmt URIs everywhere, e.g., we will
write Monoid instead of the technically correct e?Monoid (where e is the URI
introduced in Example 13).

D D

S

idD

µ

Definition 14 (Grounded Realizations) An Mmt-theory with
meta-theory D is called a “D-theory”. Then a grounded re-
alization of the D-theory S is a morphism µ from S to D that
is the identity on D, i.e., that makes the diagram on the right
commute.

Example 15 (Realizations in Logic (continued from Example 13)

FOL ZFC

Monoid MonoidMod

FOLSem

mon

ZFC
idZFC

pMq

In the theory graph on the right,
the ZFC-theory MonoidMod arises as
the pushout of Monoid along FOLSem

over FOL (compare Figure 7). In
Mmt, this pushout can be expressed
easily:

MonoidMod
ZFC
=
{
mon : Monoid

FOLSem
= {}

}
Thus, MonoidMod declares the same local symbols as Monoid but translated
along FOLSem.

Then we can represent models M , i.e., monoids, as grounded realizations
pMq of MonoidMod. Indeed, a monoidM provides one value for every declaration
of Monoid, just like an Mmt-morphism.

42

We give a systematic representation of the syntax and semantics of FOL
along these lines in [HR11]. Because FOL declares the constant ι for the uni-
verse, this representation requires a family of views FOLSem(U), each of which
interprets the universe as the set U . Here the SFOL-based formalization of alge-
bra from Example 2 leads to a more compelling formalization of models:

Example 16 (Realizations in SFOL) In sorted first-order logic from Example 2,
where each theory declares a sort for its domain, the analogue to Example 15 is
slightly more intuitive because SMonoid and thus also SMonoidMod have constant
declarations for the universe univ as well as for comp, unit, assoc, and neut.
Thus, a monoid M = (U, ◦, e) is encoded as the view pMq that contains assign-
ments base 7→ pUq, comp 7→ p◦q, unit 7→ peq, assoc 7→ P , and neut 7→ Q.
Here pUq, p◦q, and peq are the Mmt-terms over ZFC that represent the objects
U , ◦, and e. Moreover, P and Q are the terms representing the necessary proofs
that show that M is indeed a monoid.

Example 17 (Realizations in SML) The theory SML contains declarations for
all primitives of the simple type theory underlying SML, such as ->, fn, and
type. These constants are untyped and definition-less. SML is used as the meta-
theory of the theory D = SMLLib, which extends SML with typed constants for
all declarations of the SML basis library [SML97].

Now we represent SML signatures S as SMLLib-theories with name pSq and
SML structures s realizing S as grounded realizations of pSq. For example,
consider the simple SML signature S and the structure s realizing it given on the
right of Figure 14. Their representations in Mmt are given in the commutative
theory graph on the left side of the same figure (which duplicates SMLLib to be
commutative). pSq contains one Mmt constant declaration for every declaration
in S. These constants have a type according to S but no definiens. The view
psq maps every declaration of pSq to its value given by s.

More generally, SML structures s may also contain declarations that do not
correspond to declarations present in S. In that case, an auxiliary theory T with
meta-theory SMLLib is used that contains one declaration for every declaration
in s. Then the view psq arises as the partial view from T to SMLLib.

SML

SMLLib SMLLib

pSq
a : SML?type
c : pSq?a

idSMLLib

psq
a 7→ SMLlib?int
c 7→ SMLlib?0

signature S = sig
type a
val c : a

end
structure s : S = struct

type a = int
val c : int = 0

end

Figure 14: Implementations in SML

43

Note that the right hand side of Figure 14 shows the external syntax of SML
and the left-hand side the internal representation of Mmt. The latter makes
the URIs and the view psq explicit that are implicit in the former.

In Example 17, a single meta-theory SMLLib is used because both SML signa-
tures and SML structures may use the SML basis library. A common alternative
is that the specification and the implementation language are separated into two
different languages. We encounter this, for example, in logic where theories are
written using only the syntax of the logic whereas models are given in terms of
the semantic domain – in our example ZFC set theory.

We can strengthen the above representations considerably by using an addi-
tional meta-theory: A foundational theory for a logical framework that occurs
as the meta-theory of the environment D. For example, we can use LF as the
meta-theory of ZFC and SML. Then the constants occurring in ZFC and SML can
be typed using the type theory of LF. In [IR11], we show how to formalize ZFC

and other foundations of mathematics in LF. A corresponding representation of
the semantics of SML in LF can be found in [LCH07].

In that case, we can represent not only models of FOL theories and imple-
mentations of SML signatures as Mmt morphisms; we can also represent the
“conforms-to” relation between theory and model as well as between specifica-
tion and implementation by the well-formedness condition on Mmt morphisms.
This observation combines the LF type system with the property that, as we
will see in Section 7, Mmt morphisms are guaranteed to preserve typing.

Functors. First-order functors can be represented in Mmt similarly. In par-
ticular, functors are special cases of views, and functor application is a special
case of morphism composition. Mmt deliberately does not provide higher-order
functors to remain conservative.

Definition 18 (Functors) Given two D-theories S and T , a functor from S to
T is a morphism from T to S that is the identity on D. Given such a functor f
and a grounded realization r of S, the functor application is defined as the
grounded realization f r.

D

B

S T

B?i o

r f r

f

It is often convenient to give such a functor as a
triple F = (B, i, o) as in the diagram on the right. Here
the theory B is the body of the functor; it contains a

structure declaration i : S
idD= {} followed by arbitrary

constant declarations all of which have a definiens. The
intuition is that B imports the theory S, which rep-
resents the input interface of the functor, and then
implements the intended output interface T . Finally,
the view o is the output interface of the functor: It
determines how T is implemented by B.

Let i−1 denote the view from B to S, which inverts
i, i.e., it maps every constant induced by the structure i to the corresponding
constant of S. Because all local constant declarations of B have a definiens,

44

i−1 is total. Then we obtain the intended functor as the composition f =
o i−1. Given a grounded realization r of S, functor application is simply the
composition o i−1 r.

Note that we are flexible whether the intelligence of the functor is given in
B or in o. B may contain defined constants for all declarations of T already
so that o is just an inclusion. The opposite extreme arises if B contains no
declaration besides i and the assignments in o give the body of the functor.

We will now use the (B, i, o)-style of defining functors to expand on the
examples for realizations.

Example 19 (Logic (continued from Example 15))

ZFC

UnitGroup

MonoidMod GroupMod

UnitGroup/mon UnitGroupO

As an example for a functor
between models of logical theories,
consider the well-known functor
from algebra that maps a monoid
M = (U, ◦, e) to its group of units
(whose universe is the set {u ∈
U |∃v ∈ U.u ◦ v = v ◦ u =
e}). We represent it as a triple
(UnitGroup, mon, o) as in the dia-
gram on the right. We declare

UnitGroup
ZFC
=
{
mon : MonoidMod

idZFC= {}
}

UnitGroupO : GroupMod→ UnitGroup
idZFC= {σ}

Here σ contains the assignments that realize a group in terms of set theory and
an assumed monoid mon. For example, σ contains an assignment

univ 7→ @(C, UnitGroup?mon/univ, I)

where we assume that C is defined in ZFC such that @(C, s, p) represents the
set {x ∈ s | p(x)}, and we use I to represent the property of having an inverse
element.

Example 20 (SML (continued from Example 17)) An SML functor

functor f(struct i : S) : T = struct Σ end

can be represented directly as a triple (B, i, o) where B is the theory

B
idSMLLib=

{
i : pSq

idSMLLib= {}, pΣq
}

and the view o from pTq to B is an inclusion.
Functors with multiple arguments can be represented by first declaring an

auxiliary theory that collects all the arguments of the functor.

45

D

C

BS T
B?i o

µ

Sometimes it is not desirable to use the view
i−1 because applying i−1 to a B-term involves ex-
panding all the definitions of B. In that case, we
can use structure assignments to represent functor
application as a pushout. Assume we are writing
a D-theory C and we already have a morphism µ
from S to C, µ is a realization of S available in C.
We want to apply the functor (B, i, o) to µ. We
can do that by extending C to C ′ by adding the
following structure declaration

apply : B
idD= {i 7→ µ}

This makes C ′ the pushout of µ and B?i, and the composed morphism
oC ′?apply is the realization of T that is the result of applying (B, i, o) to
µ. Note that these functor applications are generative, not applicative; in par-
ticular, we have to add a declaration to C to apply the functor in this way.

6. Well-formed Expressions

In this section we define the well-formed Mmt theory graphs (also called
valid theory graphs) by means of an inference system. Only the well-formed
graphs are meaningful.

We will first define some auxiliary judgments in Section 6.1. Operationally,
these judgments have the intuition of lookup judgments, i.e., they retrieve dec-
larations from the environment (in our case: from the theory graph). In non-
modular languages where the environment is simply a list of declarations, this
lookup can be handled by a single rule. However, in a module system, the lookup
involves the computation of all induced declarations. Because this lookup of
induced declarations is of central importance and also foundation-independent,
the respective judgments are given by a set of self-contained rules in Section 6.1.

Afterwards, we define the main judgments in Section 6.2 and give an infer-
ence system for them in Section 6.3 to 6.5. These judgments are parametric in
an arbitrary foundation, resulting in the genericity of Mmt.

6.1. Induced Declarations

In the following we define the declarations induced by a theory graph. They
arise by adding all induced symbols and assignments to those already physi-
cally present. This corresponds to the flattening semantics of structures that
eliminates structures and transforms Mmt theory graphs into flat ones.

The judgments for induced declarations are given in Figure 15. All of them
are parametrized by a theory graph γ. The first four judgments are functional in
the sense that they take identifiers as input and return declarations as output.
In particular, these functions return the parameters in the third column. The
mutually recursive definitions of all judgments are given below.

46

Judgment Intuition: in theory graph γ . . . Inferred
γ > T = {ϑ} T is a theory with body ϑ. ϑ
γ � l : S → T = B l is a link from S to T with definiens B. S, T , B
γ >T c : τ = δ c : τ = δ is an induced constant of T . τ , δ
γ �l c 7→ δ c 7→ δ is an induced constant assignment

of l.
δ

M ↪→ T M is the meta-theory of T .
µ ↪→ l µ is the meta-morphism of l.

Figure 15: Judgments for Induced Declarations

Induced Modules. Firstly, the judgments γ > T = {ϑ} and γ � l : S → T = B
define the structure of the Mmt theory graph, i.e., the induced module level
identifiers. Here B is of the form {σ} or µ according to whether l is defined by
a link body or a morphism. Moreover, we write M ↪→ T and µ ↪→ l to give the
meta-theory and meta-morphism of a theory T or a link l. These judgments
are somewhat trivial because they hold iff a meta-theory or meta-morphism is
provided explicitly in the syntax of the theory graph.

The first five rules in Figure 16 are straightforward: They simply cover the
declaration of a theory, and the two possible ways each to declare a view or a
structure. We use square brackets to denote the optional meta-theories or meta-
morphisms, and we give the cases for M ↪→ T and µ ↪→ l as second conclusions
of a rule.

R S

T

S/r
T/sT/s/r

The only non-trivial rule is ind str , which covers the
case of induced structures: T/s/r identifies the structure
induced when a structure declaration s instantiates S and
S itself has a structure r. The induced structure is defined
to be equal to the composition of the two structures, which
formalizes the intended semantics of induced structures.

Induced Symbols. For every theory or link of γ, we define the symbol level
identifiers it induces. If γ > T = { }, we write γ >T c : τ = δ if c : τ = δ
is an induced constant declaration of T . To avoid case distinctions, we write ⊥
for τ or δ if they are omitted. If γ � l : → = , we write γ �l c 7→ δ if c 7→ δ
is an induced assignment of l.

The induced constants of a theory are defined by the rules in Figure 17.
The rule con simply handles explicit constant declarations. The remaining rules
handle induced constants that arise by translating a declaration c : τ = δ along
a structure T/s. In all cases, the type of the induced constant is determined by
translating τ along T/s. To avoid case distinctions, we assume ⊥T/s = ⊥, i.e.,
untyped constants induce untyped constants.

But three cases are distinguished to determine the definiens of the induced
constant. Firstly, rule ind con def applies if the constant c already has a
definiens δ 6= ⊥. Then the induced constant has the translation of δ along
T/s as its definiens. Otherwise, there are two further cases depending on the

47

T
[M]
= {ϑ} in γ

thy
γ > T = {ϑ} [M ↪→ T]

l : S → T = µ in γ
viewdef

γ � l : S → T = µ

l : S → T
[µ]
= {σ} in γ

view
γ � l : S → T = {σ} [µ ↪→ l]

γ > T = {ϑ} s : S = µ in ϑ
strdef

γ � T/s : S → T = µ

γ > T = {ϑ} s : S
[µ]
= {σ} in ϑ

str
γ � T/s : S → T = {σ} [µ ↪→ T/s]

γ > T = {ϑ} s : S = in ϑ γ � S/r : R→ S =
ind str

γ � T/s/r : R→ T = S/r T/s

Figure 16: Induced Modules [and Meta-Theories/Morphisms]

assignment provided by the structure T/s (see the respective rules in Figure 18).
If T/s provides an explicit definiens δ, it becomes the definiens of the induced
constant (rule ind con ass). If T/s provides the default assignment T?s/c the
induced constant has no definiens (rule ind con dflt).

The induced assignments of a link l are defined by the rules in Figure 18.
The rule def link ass defines the assignments of a link that is defined as µ:
Every definition-less constant is translated along µ.

For links that are defined by a list of assignments, four cases must be dis-
tinguished. Firstly, the rule ass applies if there is an explicit assignment c 7→ ω
in l. Secondly, rule ind ass creates induced assignments to s/c, which arise if
there is an assignment of a morphism µ to the structure r in a link l. Since
r/c identifies the constant c imported along r, the induced assignment arises by
translating c along µ.

Finally, it is possible that neither rule ass nor rule ind ass applies to c –
namely if the body of l contains neither an explicit nor an induced assignment
for c. We abbreviate that by “c not covered by σ”. In that case the rules
dflt ass str and dflt ass view define default assignments depending on whether
l is a structure or a view. If l is a structure, c is mapped to the induced constant
T?s/c in rule dflt ass str . If l is a view, c is filtered via rule dflt ass view .

Clash-Freeness. It is easy to prove that if γ >S c : = ⊥ and γ � l :
S → T = , then always γ �l c 7→ δ for some δ, but δ is not necessarily unique.

48

γ > T = {ϑ} c : τ = δ in ϑ
con

γ >T c : τ = δ

γ � T/s : S → T = γ >S c : τ = δ δ 6= ⊥
ind con def

γ >T s/c : τT/s = δT/s

γ � T/s : S → T = γ >S c : τ = ⊥ γ �T/s c 7→ δ
ind con ass

γ >T s/c : τT/s = δ

γ � T/s : S → T = γ >S c : τ = ⊥ γ �T/s c 7→ T?s/c
ind con dflt

γ >T s/c : τT/s = ⊥

Figure 17: Induced Constants

γ � l : S → T = µ γ >S c : = ⊥
def link ass

γ �l c 7→ (S?c)µ

γ � l : S → T = {σ} c 7→ ω in σ
ass

γ �l c 7→ ω

γ � l : S → T = {σ} γ � S/r : R→ S =

γ >S r/c : = ⊥
r 7→ µ in σ

ind ass
γ �l r/c 7→ (R?c)µ

γ � l : S → T = {σ} γ >S c : = ⊥ l structure

c not covered by σ
dflt ass str

γ �l c 7→ T?s/c

γ � l : S → T = {σ} γ >S c : = ⊥ l view

c not covered by σ
dflt ass view

γ �l c 7→ >

Figure 18: Induced Assignments

49

More generally, the judgments for induced declarations do not necessarily define
functions from qualified identifiers to induced declarations. For example, a
theory graph might declare the same module name twice or a theory might
declare the same symbol name twice. To exclude theory graphs with such name
clashes, we use the following definition:

Definition 21 A theory graph γ is called clash-free if all of the following hold:
• γ contains no two module declarations for the names I and J such that
I = J or such that J is of the form I/J ′ and the body of I contains a
declaration for the name J ′.

• There is no module in γ whose body contains two declarations for the
names I and J such that I = J or J is of the form I/J ′.

Here I, J , and J ′ are any local identifiers.

This definition is a bit complicated because it covers theory graphs and theo-
ries that explicitly declare qualified identifiers such as in a constant declaration
s/c : τ = δ. In most languages, such declarations are forbidden. But such
declarations are introduced when flattening the theory graph, and we want the
flat theory graph to be well-formed as well. It is natural to solve this problem by
assuming that the flattening algorithm can always generate fresh names for the
induced constants. However, such a non-canonical choice of identifiers prevents
interoperability.

Therefore, Mmt permits declarations that introduce qualified identifiers.
This is in fact quite natural because deep assignments in links introduce assign-
ments to qualified identifiers already. The definition of clash-freeness handles
both theories and links uniformly: Theories may not explicitly declare both a
structure s and a constant s/c, and links may not provide both an assignment
for a structure s and a deep assignment for an induced constant s/c.

More precisely, we have:

Lemma 22. If a theory graph γ is clash-free, then the judgments of Figure 15
are well-defined functions that infer the parameters given in the third column if
the remaining parameters are provided.

Proof. This follows by a simple induction over the derivations of the elaboration
judgments.

Example 23 (Continued from Example 13) In our running example, we have
the theory γ > e?CGroup = {. . .} and the structure

γ � e?CGroup/mon : e?Monoid→ e?CGroup = {}

This structure has the induced assignment

γ �e?CGroup/mon comp 7→ e?CGroup?mon/comp

according to rule dflt ass str . And we have the induced constant

γ >e?CGroup mon/comp : @(m?LF?→, f?FOL?ι, f?FOL?ι, f?FOL?ι)
e?CGroup/mon

= ⊥

according to rule ind con dflt .

50

6.2. Judgments

Judgment Intuition
B γ γ is a well-formed theory graph. ∗
γ; Υ BT ω ω is structurally well-formed over γ, T , and Υ.
γ; Υ BT ω : ω′ ω is well-typed with type ω′ over γ, T , and Υ. ∗
γ; Υ BT ω ≡ ω′ ω and ω′ are equal over γ, T , and Υ. ∗
γ B µ : S → T µ is a well-typed morphism from S to T . ∗
γ B µ ≡ µ′ : S → T µ and µ′ are equal as morphisms from S to T . ∗
∗: foundation-dependent

Figure 19: Typing Judgments

The judgments for Mmt are given in Figure 19. For the structural levels,
the inference system uses a single judgment B γ for well-formed theory graphs.
For the object level, we use judgments for typing and equality of terms and
morphisms. Because Mmt is generic in the base language, most judgments are
relative to a fixed foundation that defines the semantics of the base language.
However, we suppress the foundation in the notations.

γ; Υ BT ω : ω′ and γ; Υ BT ω ≡ ω′ express typing and equality of terms
in context Υ and theory T . These judgments are not defined generically by
Mmt; instead, they are defined by the foundation:

Definition 24 A foundation is a definition of the judgments γ; Υ BT ω : ω′

and γ; Υ BT ω ≡ ω′. In order to avoid case distinctions, we require foundations
to define these judgments also for the cases where ω or ω′ are ⊥.

As before, we will occasionally write ⊥ when the optional type or definition
of a constant or variable is not present. For that case, it is convenient to extend
the equality and typing judgment to ⊥. We write γ; Υ BT ω : ⊥ to express
that ω is a well-formed untyped value, and γ; Υ BT ⊥ : ω to express that ω
is a well-formed type, i.e., a term that may occur on the right hand side of :.
Moreover, we assume that γ BT ⊥ ≡ ⊥.

In theoretical accounts, foundations can be given, for example, as an infer-
ence system or a decision procedure, or via a denotational semantics. In the
Mmt implementation (see Section 10.1), foundations are realized as oracles that
are provided by plugins.

In addition to the two foundational judgments for terms, Mmt provides
one foundation-independent judgment about terms. γ; Υ BT ω expresses that
a term is structurally well-formed. Intuitively, this is the strongest well-
formedness on ω that can be defined foundation-independently. In all three
judgments for terms, we omit Υ when it is empty.

Inspecting the rules of Mmt shows that Mmt only needs the special case
of these three judgments where Υ is the empty context. But it is useful to
require the general case to permit future extensions of Mmt; moreover, for
most foundations, the use of an arbitrary context makes the definitions easier
anyway.

51

Contrary to the judgments for terms, all judgments for typing and equality
of morphisms are defined generically by Mmt (relative to the foundation).
γ B µ : S → T expresses that µ is a well-formed morphism from S to T .
Similarly, γ B µ ≡ µ′ : S → T expresses equality. This notation emphasizes the
category theoretic intuition of morphisms with domain and codomain. Readers
who prefer the type theoretic intuition of realizations as typed objects can use
the alternative notation γ BT µ : S (speak: µ is a well-typed realization of S
over T) instead of γ B µ : S → T as well as the according notation for equality.

6.3. Inference Rules for the Structural Levels

The inference rules define how well-formed theory graphs are extended in-
crementally. There are three kinds of extensions of a theory graph γ:
• add a module at the end of γ – see the rules in Figure 20,
• add a symbol at the end of the last module of γ (which must be a theory)

– see the rules in Figure 21,
• add an assignment to the last link of γ (which may be a view if γ ends in

that view, or a structure if γ ends in a theory which ends in that structure)
– see the rules in Figure 22.

When theories or links are added, their body is empty initially and populated
incrementally by adding symbols and assignments, respectively. This has the
effect that there is exactly one inference rule for every theory, view, symbol, or
assignment, i.e., for every URI-bearing knowledge item.

We assume for simplicity that all theory graphs are clash-free. It is straight-
forward to extend all inference rules with additional newness hypotheses for
identifiers such that eventually B γ implies that γ is clash-free. The reference
implementation in Section 10 takes care of this, but we omit this here to simplify
the notation.

S T

M M ′
µ

The rules in Figure 20 define theory graphs as lists of
modules. The rule Start starts with an empty theory graph,
and the rules Thy and View add modules with empty bodies
(that will be filled incrementally). Rule View unifies the cases
whether S has a meta-theory or not by using square brackets
for optional parts; whether T has a meta-theory, is irrelevant.
Finally ViewDef adds a view defined by a morphism.

In rule View , one might intuitively expect the assumption
[
M ↪→ S M ′ ↪→

T γ B µ : M → M ′
]

which is the situation depicted in the diagram on the
right. View subsumes that case because µ is also a morphism from M to T due
to rule Mcovar described in Section 6.4. In addition, View covers situations
where there is no M ′.

The rules in Figure 21 add symbols to theories. There are three cases cor-
responding to the three kinds of symbols: constants, structures defined by a
morphism, and structures defined by a list of assignments. The rule Con says
that constant declarations c : τ = δ can be added if δ has type τ . Recall that
this includes the cases where τ = ⊥ or δ = ⊥.

Note also that γ BT δ and γ BT τ are necessary even though we require
γ BT δ : τ . Indeed in most type systems, the latter would entail the former

52

Start
B ·

B γ [γ > M = { }]
Thy

B γ, T
[M]
= {·}

B γ γ B µ : S → T
ViewDef

B γ, m : S → T = µ

B γ γ > S = { } γ > T = { }
[
M ↪→ S γ B µ : M → T

]
View

B γ, m : S → T
[µ]
= {·}

Figure 20: Adding Modules

two, but in Mmt the typing judgment is given by the foundation as an oracle,
so we cannot be sure.

The rules Str and StrDef are completely analogous to the rules View and
ViewDef from Figure 20. Again square brackets are used in Str to unify the
two cases where S has a meta-theory or not. In all three rules it is irrelevant
whether T has a meta-theory or not; we indicate that by giving this optional
meta-theory in gray boxes .

if γ′ abbreviates γ, T
M
= {ϑ} :

B γ, T
M
= {ϑ} γ′ BT δ γ′ BT τ γ′ BT δ : τ

Con

B γ, T
M
= {ϑ, c : τ = δ}

B γ, T
M
= {ϑ} γ′ B µ : S → T

StrDef

B γ, T
M
= {ϑ, s : S = µ}

B γ, T
M
= {ϑ} γ > S = { }

[
M ′ ↪→ S γ′ B µ : M ′ → T

]
Str

B γ, T
M
=

{
ϑ, s : S

[µ]
= {·}

}
Figure 21: Adding Symbols

53

The addition of assignments to a link l is more complicated because as-
signments can be added to views or structures. Mmt treats both cases in
the same way, which we want to stress by unifying the rules. Therefore, let
γ �last l : S → T denote that l is a link occurring at the end of γ, i.e., either

• l refers to a view and γ = . . . , l : S → T
[µ]
= {σ} or

• l = T/s refers to a structure and γ = . . . , T
[M]
=

{
. . . , s : S

[µ]
= {σ}

}
,

and in that case let γ + Ass be the theory graph arising from γ by replacing
σ with σ,Ass.

Then the rules in Figure 22 add assignments to a link. ConAss adds an
assignment c 7→ δ for a definition-less constant c of S. Such assignments are
well-typed if δ is typed by the translation of the type of c along l. Again we
assume ⊥l := ⊥ to avoid case distinctions. This rule includes the case of δ = >,
i.e., definition-less constants can be filtered by mapping them to >.

The rule ConFlt handles the corresponding case where c has a definition.
Here no assignment is necessary because it will be induced. Therefore, only the
optional filtering must be covered by the rule.

B γ γ �last l : S → T γ >S c : τ = ⊥ γ BT δ γ BT δ : τ l

ConAss
B γ + c 7→ δ

B γ γ �last l : S → T γ >S c : = δ δ 6= ⊥
ConFlt

B γ + c 7→ >

B γ γ �last l : S → T γ � S/r : R→ S = γ B µ : R→ T

[M ↪→ R µ′ ↪→ S/r γ B µ ≡ µ′ l : M → T]

γ BT δl ≡ (R?c)µ whenever γ >S r/c : = δ, δ 6= ⊥
StrAss

B γ + r 7→ µ

Figure 22: Adding Assignments

R S

T

S/r

l
µ

The rule StrAss is similar to ConAss except that adding
assignments for structures is a bit more complicated. The
first three hypotheses ara analogous to the ones in ConAss.
The guiding intuition for the remaining hypotheses is that
an assignment r 7→ µ for a structure r in S should make
the diagram on the right commute. From this intuition, we
can immediately derive the typing requirements that µ must be a well-typed
morphism from R to T .

However, this is not sufficient yet to make the diagram commute. In general,
the link l already contains some assignments and possibly a meta-morphism so

54

that the semantics of the composition S/r l is already partially determined.
Therefore, µ must agree with S/r l whenever the latter is already determined.

This is easy for a possible meta-morphism of γ B µ′ : M → S of S/r. The
composition of µ′ and l must agree with the restriction of µ to M . Additionally,
for all constants r/c of S that have a definiens δ, the translation of δ along l
must be equal to the translation of R?c along µ.

The rule StrAss is in fact inefficient because it requires to flatten S, i.e., to
compute all induced constants r/c of S. However, it is important for scalability
to avoid flattening whenever possible. We will come back to this in Section 7.2.

6.4. Inference Rules for Morphisms

Figure 23 gives the typing rules for morphisms. The rule Mlink handles
links. Mident and Mcomp give identity and composition of morphisms. Meta-
theories behave like inclusions with regard to composition of morphisms: The
rules Mcovar and Mcontravar give the usual co- and contravariance rules.

Finally, we define the equality of morphisms in rule M≡. We use an exten-
sional equality that identifies two morphisms if they map the same argument
to equal terms. This is equivalent to the special case where the morphisms
agree for all definition-less constants. If the domain has a meta-theory M , the
meta-morphisms must be equal as well. This is checked recursively by requiring
γ B µ ≡ µ′ : M → T .

γ � l : S → T =
Mlink

γ B l : S → T

γ > T = { }
Mident

γ B idT : T → T

γ B µ : R→ S γ B µ′ : S → T
Mcomp

γ B µµ′ : R→ T

M ↪→ S γ B µ : S → T
Mcontravar

γ B µ : M → T

γ B µ : S →M M ↪→ T
Mcovar

γ B µ : S → T

γ B µ : S → T γ B µ′ : S → T

γ BT S?c µ ≡ S?c µ
′

whenever γ >S c : = ⊥
[M ↪→ S γ B µ ≡ µ′ : M → T]

M≡
γ B µ ≡ µ′ : S → T

Figure 23: Morphisms

55

6.5. Inference Rules for Terms

As noted above, Mmt relegates the judgments

γ; Υ BT ω ≡ ω′ and γ; Υ BT ω : ω′

for typing and equality of terms to the foundation. Mmt only defines the
judgment γ; Υ BT ω for structurally well-formed terms. Structural well-
formedness guarantees in particular that only constants and variables are used
that are in scope.

This judgment is axiomatized by the rules in Figure 24. First we define an
auxiliary judgment γ BT Υ for well-formed contexts using the rules T· and TΥ.
These are such that every variable may occur in the types and definitions of
subsequent variables. The rules Tx, Tc, T>, T@, and T[] are straightforward. T[]

is such that a bound variable may occur in the type or definition of subsequent
variables in the same binder.

Finally, Tµ and T↪→ formalize the cases relevant for the Mmt module system.
Tµ moves closed terms along morphisms, and T↪→ moves terms along the meta-
theory relation. Note that ωµ is well-formed independent of whether ω is filtered
by µ. This is important because the decision whether ω is filtered is expensive
if the theory graph has not been flattened yet. Moreover, we permit only closed
terms ω in rule Tµ. This substantially simplifies checking well-formedness (and
the more general formulation, in which ω has free variables, is admissible if the
involved terms are normalized as defined in Section 7.1).

It is easy to prove a subexpression property for structural well-formedness:

Lemma 25. If γ; Υ BT ω then all subexpressions of ω are well-formed in the
respective context.

7. Formal Properties

Now that we have established the grammar and well-formedness conditions
for Mmt, we can analyze the properties of well-formed theory graphs.

First, in Section 7.1, we introduce a normalization function for terms. Then
in Section 7.2, we introduce the notion of regular foundations and establish
several important properties of theory graphs that are well-formed relative to
a regular foundation. In Section 7.3 we introduce the concept of structural
well-formedness, a computationally motivated compromise between Mmt-well-
formedness and grammatical well-formedness.

Finally, in Section 7.4 and 7.5 we examine the operation of flattening (i.e.
eliminating the modular aspects of Mmt theory graphs) as a semantics-giving
operation of theory graphs. In particular, we show that, in Mmt, flattening can
be done incrementally, which is important for computational tractability and
scalability.

56

γ > T = { }
T·

γ BT ·

γ BT Υ [γ; Υ BT τ] [γ; Υ BT δ]
TΥ

γ BT Υ, x[: τ][= δ]

γ BT Υ x : = in Υ
Tx

γ; Υ BT x

γ BT Υ γ >T c : =
Tc

γ; Υ BT T?c

γ BT Υ
T>

γ; Υ BT >

γ; Υ BT ωi for all i = 1, . . . n
T@

γ; Υ BT @(ω1, . . . , ωn)

γ; Υ BT ω γ BT Υ,Υ′ γ; Υ,Υ′ BT ω
′
T[]

γ; Υ BT β(ω; Υ′;ω′)

γ BT Υ γ BS ω γ B µ : S → T
Tµ

γ; Υ BT ω
µ

γ; Υ BM ω M ↪→ T
T↪→

γ; Υ BT ω

Figure 24: Structurally Well-formed Terms

7.1. Normal Terms

Because Mmt is foundation-independent, the equality relation on terms is
transparent to Mmt. However, some concepts of Mmt influence the equality
between terms. In particular, the result of a morphism application ωµ can be
computed by homomorphically replacing all constants in ω with their assign-
ments under µ. In the sequel, we define this equality relation to the extent that
it is imposed by Mmt.

We define a normal form ω that eliminates all morphism applications, ex-
pands all definitions, and enforces the strictness of filtering. The latter means
that a term with a filtered subterm is also filtered.

Definition 26 Given a theory graph γ and a term ω, the normal form ωγ of
ω is defined by induction on ω (using sub-inductions for the case of morphism
application) as in Figure 25. The same figure defines Υ, the straightforward
extension of normalization to contexts. As before, we assume ⊥l = ⊥ to avoid
case distinctions.

Whenever clear from the context, we suppress γ in the notation and write
ω instead of ωγ .

Among the cases in Figure 25, the case (D?c)l is the most interesting because
it actually looks into l to apply it to a constant. It distinguishes three subcases:

1. If D?c has a definiens δ 6= ⊥, it is expanded before applying l – firstly

57

> := >
x := x

T?c :=

{
δ if γ >T c : = δ and δ 6= ⊥
T?c otherwise

@(ω1, . . . , ωn) :=

{
@(ω1, . . . , ωn) if ωi 6= > for all i

> otherwise

β(ω0; Υ;ω1) :=

{
β(ω0; Υ;ω1) if ωi 6= > for all i,Υ 6= >
> otherwise

ωidT := ω

ωµµ′ := (ωµ)µ′

>l := >
xl := x

@(ω1, . . . , ωn)
l

:= @(ω1
l, . . . , ωnl)

β(ω0; Υ;ω1)
l

:= β(ω0
l; Υl;ω1

l)

(ωµ)l := ωµ
l

(D?c)l :=


δl if δ 6= ⊥
(D?c)µ if δ = ⊥, D 6= S, µ ↪→ l

δ′ if δ = ⊥, D = S, γ �l c 7→ δ′

where γ � l : S → T = and γ >D c : = δ
· := ·

Υ, x : τ = δ :=

{
Υ, x : τ = δ if Υ 6= >, τ 6= > and δ 6= >
> otherwise

Figure 25: Normalization

because l should not have to give assignments for defined constants, and
secondly because l might filter the name c.

2. Otherwise, we consider the case D 6= S where S is the domain of l. Below
we will see that in well-formed theory graphs this is only possible if D is
a possibly indirect meta-theory of S. In that case, l must have a meta-
morphism µ ↪→ l, which is applied to D?c.

3. Otherwise, if D = S, then l must provide an assignment γ �l c 7→ δ′.

We use a functional notation ω for the normal form. But technically, as γ is
arbitrary, the normal form does not always exist (e.g., if we try to apply a view
that is not declared in γ) or does not exist uniquely (e.g., if γ is not clash-free).
We will show in Lemma 28 that ω exists uniquely if γ is well-formed, which
justifies our notation.

Example 27 (Continued from Example 23)

58

Consider the term @(e?Monoid?comp, e?Monoid?unit, e?Monoid?unit) over the
theory Monoid and the morphism e?CGroup/mon that moves it from Monoid to
Group. Then we have:

@(e?Monoid?comp, e?Monoid?unit, e?Monoid?unit)
e?CGroup/mon

=

@(e?Monoid?compe?CGroup/mon, e?Monoid?unite?CGroup/mon, e?Monoid?unite?CGroup/mon)

And using γ �e?CGroup/mon comp 7→ e?CGroup?mon/comp and γ �e?CGroup/mon

unit 7→ e?CGroup?mon/unit, we obtain finally

@(e?CGroup?mon/comp, e?CGroup?mon/unit, e?CGroup?mon/unit)

To finish the formal definition of normalization, we must show the well-
definedness of normalization:

Lemma 28. Assume i) B γ for a clash-free γ and ii) γ BT ω. Then ω is
well-defined, γ BT ω, and ω is flat.

Proof. Inspecting the definition of ω, we see there is exactly one case for every
possible term ω. Technically, this observation uses i) to deduce that all lookups
occurring during the normalization are well-defined. It also uses ii) to conclude

that whenever the case D?cl occurs, D is either the domain of l or a possibly
indirect meta-theory of it.

Furthermore, a straightforward induction over the structure of ω shows that
if the normal form is well-defined, it does not contain morphism applications,
i.e., ω is flat.

Therefore, the only thing that must be proved is the well-foundedness of the
recursive definition. Firstly, we show by induction on µ that ωµ always leads to
a term of the form

ωl1
. .
.
ln

where l1, . . . , ln is the (possibly empty) list of links comprising µ (modulo asso-
ciativity and identity morphism). Consequently, we can assume without loss of
generality that all morphism applications are for a single link l. Then, secondly,
the well-foundedness follows by joint induction on γ and ω, i.e., using the lex-
icographic ordering formed from the size of γ followed by the size of ω. Only
some cases warrant closer attention:
• T?c. This case may increase the size of the involved terms when a constant

is replaced with its definiens. But due to the well-formedness of γ, the
definiens must be structurally well-formed over a theory graph smaller
than γ. (In particular, there are no cyclic dependencies between definitions
in well-formed theory graphs.)

• S?c l. Similar to the previous case, this case may increase the size of the
involved terms when S?c l is replaced with the assignment l provides for
S?c. The same argument applies.

59

Finally, γ BT ω follows in the same way by joint induction on γ and ω. In
particular, whenever a term T?c is replaced with a definiens or a term S?c l with
the respective assignment, the definiens/assignment is structurally well-formed
over a smaller theory graph.

7.2. Regular Foundations

While the details of the foundation are transparent to Mmt, it is useful to
impose a regularity condition on foundations that captures some intuitions of
typing and equality. First we need an auxiliary definition for the declaration-
wise equality of contexts:

Definition 29 For two contexts Υj =
(
x : τ j1 = δj1, . . . , x : τ jn = δjn

)
for j = 1, 2,

we write γ; Υ0 BT Υ1 ≡ Υ2 iff for all i = 1, . . . , n

γ; Υ0,Υ1
i−1 BT τ

1
i ≡ τ2

i and γ; Υ0,Υ1
i−1 BT δ

1
i ≡ δ2

i

where Υ1
i := x : τ1

1 = δ1
1 , . . . , x : τ1

i = δ1
i . Recall that we assume γ BT ⊥ ≡ ⊥

to avoid case distinctions.

Definition 30 (Regular Foundation) A foundation is called regular if it satis-
fies the following conditions where γ, T , and all terms are arbitrary:

1. The equality judgment respects normalization:

γ BT ω ≡ ω

2. The equality relation induced by γ; Υ BT ω ≡ ω′ is an equivalence relation
for every Υ and satisfies the following congruence laws (where i runs over
the respective applicable indices):

γ; Υ BT ωi ≡ ω′i implies γ; Υ BT @(ω0, . . . , ωn) ≡ @(ω′0, . . . , ω
′
n)

γ; Υ0 BT ωi ≡ ω′i and γ; Υ0 BT Υ ≡ Υ′ implies
γ; Υ0 BT β(ω0; Υ;ω1) ≡ β(ω′0; Υ′;ω′1)

γ; Υ BT ωi ≡ ω′i and γ; Υ BT ω1 : ω2 implies γ; Υ BT ω′1 : ω′2
γ BT Υ ≡ Υ′ and γ; Υ BT ω1 ≡ ω2 implies γ; Υ′ BT ω1 ≡ ω2

γ BT Υ ≡ Υ′ and γ; Υ BT ω1 : ω2 implies γ; Υ′ BT ω1 : ω2

Note that we do not impose a congruence law for morphism application
at this point.

3. The foundation preserves typing and equality along flat morphisms. To
state this precisely, assume flat theories S and T . Moreover assume a
mapping f of constant identifiers to terms such that: Whenever D = S or
D is a possibly indirect meta-theory of S and c : τ = δ is declared in D,
then γ BT f(D?c) : f(τ) and γ BT f(D?c) ≡ f(δ).

60

Then we require that for two flat terms γ BS ωi

γ BS ω1 : ω2 implies γ BT f(ω1) : f(ω2)

γ BS ω1 ≡ ω2 implies γ BT f(ω1) ≡ f(ω2)

where f(ω) arises by replacing every constant D?c in ω with f(D?c).

Most formal languages can be expressed as foundations in this sense, e.g.,
all pure type systems [Bar92]. We will give detailed examples in Section 8.

Regular foundations are uniquely determined by their action on flat terms
so that the module system is transparent to the foundation:

Lemma 31. For every regular foundation and arbitrary γ, T , ω, ω′:

γ BT ω ≡ ω′ iff γ BT ω ≡ ω′

γ BT ω : ω′ iff γ BT ω : ω′

Proof. The first equivalence follows easily using property (1) of Definition 30,
symmetry, and transitivity. The second equivalence follows easily using property
(1) of Definition 30, symmetry, and the last one of the congruence properties.

Note that the typing and equality judgments are only assumed for the foun-
dational theories. For all other theories, the typing and equality judgments are
inherited from the respective meta-theory. For example, a foundation for SML

must specify the typing and equality relations of SML expressions. And a foun-
dation for ZFC must specify the well-formedness and provability of propositions,
both of which we consider as special cases of typing.

It is no coincidence that exactly these two judgments form the interface
between Mmt and the foundation: They are closely connected to the syntax
of Mmt constant declarations, which may carry types and definitions. If types
can be declared for the constants of a language, then the typing relation should
be extended to all complex expressions. This is necessary, for example, to check
that theory morphisms preserve types. Similarly, if the constants may carry
definitions, an equality relation for complex expressions becomes necessary. If
foundations are realized as algorithms that check typing and equality, the Mmt
constant declarations provide these algorithms with the base cases.

With this bureaucracy out of the way, we can prove some intended properties
of morphisms. First we show that morphisms behave as expected. In fact, the
presence of filtering makes some of these theorems quite subtle. Therefore, we
use the following definition:

Definition 32 A morphism γ B µ : S → T is total if its metamorphism (if
there is one) is total and S?c µ 6= > whenever γ >S c : = . A theory graph
is total if all its links are total morphisms.

Note that a morphism that filters only defined constants is still total because
the normalization expands definitions. A morphism is not total if it filters

61

definition-less constants. Partial (i.e., non-total) morphisms often behave badly
because they do not preserve truth: Consider a view from S to T that does
not provide an assignment for an axiom a, maybe because that axiom is not
provable in T at all. Then clearly we cannot expect all theorems of S to be
translated to theorems of T . However, this property is also what makes partial
morphisms interesting in practice: For example, a partial morphism can be
used to represent a translation from a higher-order axiomatization of the real
numbers to a first-order one: Such a translation would only translate the first-
order-expressible parts, which is still useful in practice. Alternatively, a partial
view can be used to conjecture a total one: Such a view typically translates all
constants except for those representing axioms.

First, we prove the following intuitively obvious, but technically difficult
lemma.

Lemma 33. If γ BS ω and γ B µ : S → T , then ωµ = ωµ.

Proof. This is proved by a straightforward but technical induction on the struc-
ture of ωµ. A notable subtlety is that the primary induction is on γ and µ using
the statement for arbitrary ω as the induction hypothesis. Then the case where
µ is a link uses a sub-induction on ω. We give some example cases where Def

refers to the definition of normalization and IH refers to the induction hypoth-
esis:
• case for a composed morphism in the induction on µ:

ωµµ′ Def
= (ωµ)µ′ IHµ′

= ωµ
µ′ IHµ

= ωµ
µ′ IHµ′

= (ωµ)µ′ Def
= ωµµ

′

• case for ωl for a single link l, proved by a sub-induction on ω:
– case for application if ωi 6= > for i = 1 . . . , n:

@(ω1, . . . , ωn)
l Def

= @(ω1
l, . . . , ωnl)

IH
= @(ω1

l, . . . , ωn
l)

Def
=

@(ω1, . . . , ωn)
l Def

= @(ω1, . . . , ωn)
l

If ωi = >, the case is trivial.
– case for a constant D?c: If γ >D c : = ⊥, the statement is trivial

because D?c
Def
= D?c. If γ >D c : = δ for δ 6= ⊥, then

D?cl
Def
= δl

IH
= δ

l Def
= D?c

l

Then we have the main technical results about theory graphs and morphisms.

Theorem 34 (Morphisms). Assume a fixed regular foundation. Then

1. For fixed γ, the binary relation on morphisms induced by γ B µ ≡ µ′ :
S → T is an equivalence relation.

62

2. If γ B µ1 ≡ µ′1 : R → S and γ B µ2 ≡ µ′2 : S → T and µ2 and µ′2 are
total, then γ B µ1 µ2 ≡ µ′1 µ′2 : R→ T .

3. When morphism composition is well-formed, it is associative and idT is a
neutral element.

4. The identity morphism and the composition of total morphisms are total.
In particular, every well-formed total theory graph induces a category of
theories and – modulo equality – morphisms.

5. If γ BR ω and γ B µµ′ : R→ T , then γ BT ωµµ
′ ≡ (ωµ)µ

′
.

6. If γ BS ω and γ B µ ≡ µ′ : S → T , then γ BT ωµ ≡ ωµ
′
.

7. If γ B µ : S → T , γ BS ω, γ BS ω′, then

• if ω = ω′, then ωµ = ω′µ, and
• if γ BS ω : ω′ and µ is total, then γ BT ωµ : ω′

µ
.

• if γ BS ω ≡ ω′ and µ is total, then γ BT ωµ ≡ ω′µ.

Proof. 1. Reflexivity, symmetry, and transitivity follow immediately from the
corresponding properties for terms using rule M≡ (see Figure 23).

2. This is proved by induction on the number of meta-theories of R. If there
is none, the result follows using rule M≡ and applying (5) and twice (7).
If M ↪→ R, the same argument applies with M instead of R.

3. Because of rule M≡, the equality of two morphisms is equivalent to a set
of judgments of the form γ BD cµ ≡ cµ

′
for all constants c of S or one of

its meta-theories. Because the foundation is regular, every such judgment
is equivalent to γ BT cµ ≡ cµ′ . Then the conclusion follows from the
definition of normalization.

4. The totality properties are easy to prove. A category is obtained by taking
the theories γ > T = { } as the objects, and the quotient

{µ | γ B µ : S → T} / {(µ, µ′) | γ B µ ≡ µ′ : S → T}

as the set of morphisms from S to T . Identity and composition are induced
by idT and µµ′. (See [Mac98] for the notion of a category.)

5. Because the foundation is regular, the conclusion is equivalent to γ BT
ωµµ′ ≡ (ωµ)µ′ . And this follows directly from the definition of normaliza-
tion.

6. Using regularity, it is sufficient to show ωµ = ωµ′ . Using Lemma 33, this
reduces to the case where ω is flat. For flat ω, we use induction first on
γ and then on ω. All cases for ω except the one for constants follow from
the definition of normalization and property (2) in Definition 30. The case
for constants with definiens follows by applying the induction hypothesis
to the definiens. Finally, the case for definition-less constants follows from
γ B µ ≡ µ′ : S → T due to the premises of Rule M≡.

63

7. The first statement follows immediately from Lemma 33. Using Lemma 31
and 33, the conclusions of the second and third statement reduce to γ BT
ωµ : ω′

µ
and γ BT ωµ ≡ ω′

µ
, respectively, i.e., it is sufficient to consider

the cases where ω and ω′ are flat. And those cases follow using property (3)
in Definition 30 and the type-preservation of well-formed total morphisms
guaranteed by rule ConAss.

The restriction that µ must be total in part (7) of Theorem 34 is necessary.
To see why, assume ω = @(π1,@(pair, a, b)). A foundation might define γ BS
ω ≡ a. Now if µ filters b, then ωµ = > but not necessarily aµ = >. An even
trickier example arises when S contains an axiom a : @(true,@(equal, ω, ω′))
and the foundation uses a to derive γ BS ω ≡ ω′. If µ filters a, then it is possible
that γ BT ωµ ≡ ω′µ does not hold even when µ filters neither ω nor ω′.

R S

T

S/r

lµ

The following theorem establishes a central property of
Mmt theory graphs that plays a crucial role in adequacy
proofs. In the diagram on the right, S is a theory with
a structure r instantiating R, and l is a link from S to T
that assigns µ to r. The theorem states that the triangle
commutes. This means that assignments to structures can
be used to represent commutativity conditions on diagrams.

Theorem 35. Assume B γ relative to a fixed regular foundation. If we have
γ B µ : R → T and γ � l : S → T = {σ} such that σ contains the assignment
r 7→ µ, then

γ B S/r l ≡ µ : R→ T.

Proof. By rule M≡, we have to show γ BT R?c S/r l ≡ R?c µ for all constants
c with γ >R c : = ⊥. Using the regularity (and Lemma 33), it is enough to
show equality after normalization. A first normalization step reduces the left

hand side to S?r/c
l
. Now there are two cases differing by whether r/c has a

definiens in S or not.
• If γ >S r/c : = ⊥, then γ �l r/c 7→ R?c µ, and the left hand side

normalizes to R?c µ.
• If γ >S r/c : = δ for some δ 6= ⊥, a further normalization step reduces

the left hand side to δl. And rule StrAss guarantees that in this case
γ BT δl ≡ R?c µ.

Furthermore, we have to show that the morphisms agree on the meta-theory of
R if there is one. This follows due to the premises of rule StrAss.

The extensional definition of the equality of morphisms by ruleM≡ is math-
ematically elegant but operationally inefficient because it requires the full flat-
tening of the domain theory. However, Mmt permits avoiding the flattening by
using the following theorem:

64

Theorem 36. The following rule is admissible:

γ B µ : S → T γ B µ′ : S → T

γ BT S?c µ ≡ S?c µ
′

whenever c : in S
γ B S/s µ ≡ S/s µ′ : R→ T whenever s : R = { } in S

[M ↪→ S γ B µ ≡ µ′ : M → T]
M′≡

γ B µ ≡ µ′ : S → T

Proof. Both M≡ and M′≡ require γ BT S?c µ ≡ S?c µ
′

for the constants of S.
But in M≡, this is required for all constants, including the ones induced by
structures. M′≡, on the other hand, only requires it for the local constants of
S, which can be verified without elaboration. For the induced constants of S,
rule M′≡ recursively checks equality of morphisms for every structure declared
in S. By unraveling the recursion, it is easy to see that M′≡ eventually checks
the same prerequisites as M≡.

A variant of StrAss that does not require elaboration can be obtained in a
similar way.

Because all nodes and edges in the theory graph have URIs, and morphisms
are paths in the theory graph, i.e., lists of URIs, the representation of morphisms
is very easy. Then the combination of Theorem 35 and 36 permits very efficient
reasoning about the equality of morphisms by reducing it to reasoning about
paths in theory graphs. We call this module-level reasoning because it forgets all
details about the bodies of theories and links and only uses the theory graph.
Naturally module-level reasoning about equality of morphisms is sound but
not complete; moreover, the equational theory of paths in the theory graph is
not necessarily decidable. However, in our experience, module-level reasoning
succeeds in the many practically important cases.

7.3. Structural Well-Formedness

Mmt is intended as a basis for mathematical knowledge management sys-
tems. For this we need a well-formedness condition that is stronger than
that of the context-free grammars used in current representation languages like
MathML or OMDoc as well as weaker than the full semantic validation per-
formed by current symbolic systems.

Context-free validation is simple and widely implemented, but it is very weak
and accepts many meaningless expressions. For example, documents contain-
ing references to non-existent knowledge items pass context-free validation. For
many knowledge management applications, this is too weak. Semantic valida-
tion on the other hand accepts only meaningful expressions. It checks a theory
graph using a type system or an interpretation function, i.e., it depends on
the foundation. Therefore, it is complex, and often only one implementation is
available for a specific formal language, which cannot easily be reused by other
applications.

Therefore, we introduce structural well-formedness as an intermediate con-
dition. It checks that all references to modules, symbols, or variables exist and

65

are in scope, and that all morphisms have the right domains and co-domains
(i.e., are well-typed). Structural well-formedness is foundation-independent and
therefore easy to implement once and for all. We claim that the added strength
of full validation is not necessary as a precondition for many web scale algo-
rithms such as browsing, information retrieval, or versioning.

Structural well-formedness of terms has already been defined in Section 6.5.
The structural well-formedness of arbitrary theory graphs can be defined using
a special foundation:

Definition 37 The structural foundation is the foundation where γ BT ω : ω′

and γ BT ω ≡ ω′ always hold. A theory graph γ is structurally well-formed
if it is clash-free and B γ holds relative to the structural foundation.

Obviously, the structural foundation is regular.
Clearly, the structural foundation is not a reasonable mathematical foun-

dation, but it is useful because it is maximal or most permissive among all
foundations. It is also easy to implement and can be used as a default founda-
tion when the actual foundation is not known or an implementation for it not
available.

Structural well-formedness is foundation-independent in the following sense:

Theorem 38. If a theory graph is well-formed relative to any foundation, then
it is structurally well-formed. If γ is structurally well-formed, then γ BT ω is
independent of the foundation.

Proof. The first statement holds because the use of the structural foundation
simply amounts to removing the typing and equality hypotheses in the rules Con
and ConAss. The second statement holds because the rules for the judgment
γ BT ω do not refer to any other judgment.

7.4. Structural Equivalence

Corresponding to the notions of structural and semantic validation, we can
define structural and semantic equivalence of theory graphs:

Definition 39 Relative to a fixed foundation, two well-formed theory graphs γ
and γ′ are called structurally equivalent if the following holds:
• γ > T = { } iff γ′ > T = { }, and in that case T has meta-theory M in γ

iff it does so in γ′,
• γ � l : S → T = iff γ′ � l : S → T = ,
• γ >T c : = iff γ′ >T c : = whenever γ > T = { }.

The intuition behind structural equivalence is that structurally equivalent
theory graphs declare the same names: they have the same theories, the same
constants, and the same links. It leaves open whether a constant of name s/c
is declared or whether a constant c is imported via a structure s. It also leaves
open whether a link is a structure or a view.

The value of structural equivalence is that it imposes no requirements on
the foundation. Furthermore, structural equivalence is sufficiently strong an

66

invariant for many applications such as indexing or cross-referencing. This is
formalized in the following next theorem.

Theorem 40. Assume two structurally equivalent theory graphs γ and γ′. Then
for all theories S and T of γ:
• γ BT ω iff γ′ BT ω,
• γ B µ : S → T iff γ′ B µ : S → T .

Proof. This follows by a straightforward induction on the derivations of well-
formed terms and morphisms.

In structurally equivalent theory graphs, the same constant might have dif-
ferent types. Semantic equivalence refines this:

Definition 41 Two structurally equivalent theory graphs γ and γ′ are called
semantically equivalent if the following holds:

• If γ > T = { }, γ >T c : τ = δ, and γ′ >T c : τ ′ = δ′, then δ
γ

= δ′
γ′

and τγ = τ ′
γ′

.

• For all γ � l : S → T = , if γ �l c 7→ δ and γ′ �l c 7→ δ′, then δ
γ

= δ′
γ′

.

Intuitively, if two theory graphs are semantically equivalent, then they have
the same constant declarations and the same assignments. Another way to put
it, is that the theory graphs are indiscernable in the following sense:

Theorem 42. Assume two semantically equivalent theory graphs γ and γ′ and
a regular foundation. Then for all module declarations Mod:

B γ, Mod iff B γ′, Mod.

Proof. First of all, due to the structural equivalence, γ, Mod is clash-free iff
γ′, Mod is. Now assume a well-formedness derivation D for B γ, Mod. Let
D′ arise from D by replacing every occurrence of γ with γ′, and replacing the
subtree of D deriving B γ with some derivation of B γ′. We claim that every
subtree of D′ is a well-formedness derivation for its respective root. Then in
particular, D′ is a well-formedness derivation for B γ′, Mod. This is shown
by induction on Mod. All induction steps are simple because in most rules
the theory graph only occurs as a fixed parameter. Those rules that “look
into” the theory graph do so via the judgments given in Section 6.1, and the
semantic equivalence of γ and γ′ guarantees that these judgments agree up to
normalization, and normalization is respected by a regular foundation.

This provides systems working with Mmt theory graphs with an invari-
ant for foundation-independent and semantically indiscernible transformations.
Systems maintaining theory graphs can apply such transformations to increase
the efficiency of storage or lookup in a way that is transparent to other appli-
cations. Moreover, it provides an easily implementable criterion to analyze the
impact of a change, which is exploited in [IR12a].

Of course, Definition 41 is just a sufficient criterion for semantic indiscern-
ability. If a foundation adds equalities between terms, then theory graphs that

67

are distinguished by Definition 41 become equivalent with respect to that foun-
dation. But the strength of Definition 41 and Theorem 42 is that they are
foundation-independent. Therefore, it can be implemented easily and generi-
cally.

The most important examples of semantical equivalence are reordering and
flattening (see Section 7.5).

Theorem 43. If γ and γ′ are well-formed theory graphs that differ only in the
order of modules, symbols, or assignments, then they are semantically equiva-
lent.

Proof. Clear since the elaboration judgments are insensitive to reorderings that
preserve well-formedness.

Note that not all reorderings preserve the well-formedness of theory graphs
– there is a partial order on declarations that the linearization in the theory
graph must respect. For example, constants must be declared before they are
used. Theorem 43 justifies using the following relaxed definition of well-formed
theory graphs:

Definition 44 A theory graph γ is called effectively well-formed if some
reordering of it is well-formed.

This is extremely valuable in practice because it permits applications to
forget the order and thus to store theory graphs more efficiently, e.g., in hash
tables. It is also relevant for distributed developments where keeping track of
the order is often not feasible.

7.5. Flattening

The representation of theory graphs introduced in the last section is geared
towards expressing mathematical knowledge in its most general form and with
the least redundancy: constants can be shared by inheritance (i.e., via imports),
and terms can be moved between theories via morphisms. This style of writing
mathematics has been cultivated by the Bourbaki group [Bou68, Bou74] and
lends itself well to a systematic development of theories.

However, it also has drawbacks: Items of mathematical knowledge are often
not where or in the form in which we expect them, as they have been gener-
alized to a different context. For example, a constant c need not be explicitly
represented in a theory T , if it is induced as the image of a constant c′ under
some import into T .

In this section, we show that for every theory graph there is an equivalent
flat one. This involves adding all induced knowledge items to every theory thus
making all theories self-contained (but hugely redundant between theories). For
a given Mmt theory graph γ, we can view the flattening of γ as its semantics
because flattening eliminates the specific Mmt-representation infrastructure of
structures and morphisms and expresses the knowledge purely in the base lan-
guage (i.e. the Mmt module system is conservative).

68

Theorem 45. Given a fixed regular foundation, every well-formed theory graph
is semantically equivalent to a flat one.

Proof. Given B γ, we construct a flat theory graph γ′ as follows:

1. Theories:

• For every T with γ > T = { }, there is a theory declaration T in γ′.
It has the same meta-theory (if any) in γ′ as in γ.

• For every γ >T c : τ = δ, the theory T of γ′ contains a constant
declaration c : τ = δ.

2. Links with definiens: For every γ � l : S → T = µ, γ′ contains a view
l : S → T = µ.

3. Links with assignments:

• For every γ � l : S → T = { }, γ′ contains a view from S to T . It
has the same meta-morphism (if any) in γ′ as in γ.

• For every γ �l c 7→ δ, the view l of γ′ contains a constant assignment
c 7→ δ.

It is easy to see that these declarations can be arranged in some way that makes
γ′ structurally well-formed. Furthermore, it is clear from the construction of γ′

that γ′ is flat and that γ and γ′ are semantically equivalent. The only property
that is not obvious is that γ′ is well-formed. For that, we must show in particular
that all assignments in all views in γ′ satisfy the typing assumption of rule
ConAss. This follows from the construction of γ and property (1) of regular
foundations (which is the only property of regular foundations needed for this
proof).

Example 46 (Continued from Example 1) The flattening of the theory graph
of our running example contains the module declarations in Figure 26, where
we omit all types for simplicity

Two features of Mmt are not eliminated in the flattening: meta-theories
and filtering.

Regarding meta-theories, the definitions and results in this section could be
easily extended to elaborate meta-theories as well. For example, a meta-theory
M can be reduced to a structure that instantiates M and has some reserved
name. In fact, that is what we did in an earlier version of Mmt [Rab08a].
However, this is not desirable because both humans and machines can use meta-
theories to relate Mmt theories to their semantics. In particular, constants of
the meta-theory are often treated differently than the others; for example, their
semantics might be hard-coded in an implementation.

Regarding filtering, the situation is more complicated. Imagine a constant
declaration c : τ = > in the flat theory graph. This is particularly intuitive if
we think of c as a theorem stating τ . Then c : τ = > means that the theorem
holds but its proof is filtered because it relies on a filtered assumption.

69

e?Monoid
f?FOL

= {comp, unit}

e?CGroup
f?FOL

= {mon : e?Monoid = {}, inv}

e?Ring
f?FOL

= {add : e?CGroup = {}, mult : e?Monoid = {}}

e?Monoid
f?FOL

= {comp, unit}

e?CGroup
f?FOL

= {mon/comp, mon/unit, inv}

e?CGroup/mon : e?Monoid→ e?CGroup
idf?FOL

= {
comp 7→ e?CGroup?mon/comp,
unit 7→ e?CGroup?mon/unit}

e?Ring
f?FOL

= {
add/mon/comp, add/mon/unit, add/inv, mult/comp, mult/unit}

e?Ring/add : e?CGroup→ e?Ring
idf?FOL

= {
mon/comp 7→ e?Ring?add/mon/comp,
mon/unit 7→ e?Ring?add/mon/unit,
inv 7→ e?Ring?add/inv}

e?Ring/mult : e?Monoid→ e?Ring
idf?FOL

= {
comp 7→ e?Ring?mult/comp,
unit 7→ e?Ring?mult, unit}

e?Ring/add/mon : e?Monoid→ e?Ring = e?CGroup/mon e?Ring/add

Figure 26: Declarations of the running example (top) and their flattening (bottom)

It is now a foundational question how to handle this case. One possibility
is to delete the declaration of c. This is especially appealing from a type/proof
theoretical perspective where constant declarations are what defines the exis-
tence of objects and their meaning. This community might argue that if the
proof is filtered, then the theorem is useless because it can never be applied or
verified. Consequently, it can just as well be removed. Another possibility is
to replace c with the declaration c : τ , i.e., to turn it into an axiom. This is
appealing from a set/model theoretical perspective where constant declarations
merely introduce names for objects that exist in the models. This community
might argue that it is irrelevant whether the proof is filtered or not as long as
we know that there is one.

In order to stay neutral to this foundational issues, we do not elaborate
filtering. Instead, we leave all filtered declarations in the flattened signature
and leave it to the foundation to decide whether they are used or not.

The most important practical aspect of the flattening in Mmt is not its exis-
tence: The property that flattening can be applied incrementally is significantly
more difficult to achieve than the flattening itself. Consider a theory graph

γ0, T
M
= {ϑ0, s : S = {σ}, ϑ1} , γ1.

70

We would like to flatten only the structure T/s. Then the structure can be
replaced with a translated copy of the body of S.

For example c : τ = ⊥ is translated to s/c : τ ′ = ⊥, where τ ′ is the
translation of τ . In particular, in τ ′ all names referring to constant of S must
be prefixed with s. If s has an assignment c 7→ δ′, then the declaration is
translated to s/c : τ ′ = δ′.

We obtain incrementality if structure declarations in S are not flattened
recursively. This is possible in Mmt. For example, for a structure r : R in
the body of S, a structure s/r : R = S/r T/s can be added to T rather than
adding all induced constants T?s/r/c. Individual assignments to structures can
be flattened similarly.

8. Specific Foundations

To define a specific foundation (recall Definition 24), we need to define the
judgments γ; Υ BT ω ≡ ω′ and γ; Υ BT ω : ω′.

For a fixed theory graph, the meta-relation between theory identifiers is
the transitive closure < of the relation “X has meta-theory Y ”. We use the ≤
notation accordingly for the reflexive-transitive closure. Then the foundational
theories are the <-maximal ones; and for every other theory T , there is a unique
foundational theory M with T < M , which we call the foundational theory
of T . A specific foundation is typically coupled with a certain foundational
theory M and only defines γ BT ω ≡ ω′ and γ BT ω : ω′ using a definition that
is parametric in an arbitrary theory T < M .

Foundational theories and foundations can be given for a wide variety of
formal languages. As examples, we give them for three very different languages:
OpenMath, LF, and ZFC.

8.1. OpenMath

OpenMath [BCC+04] is used for the communication of mathematical ob-
jects over the internet. OpenMath content dictionaries can be viewed to cor-
respond to Mmt theories, so that Mmt yields a module system for OpenMath
content dictionaries. Pure OpenMath is an untyped language, in which α-
conversion of bound variables is the only non-trivial equality relation. Clearly,
this foundation is very easy to implement.

The foundational theory for OpenMath is empty because OpenMath does
not use any predefined constant names. Thus the standard content dictionaries
can be introduced as Mmt theories with that meta-theory. We can define a
foundation for OpenMath as follows.

Firstly, γ BT ω : ω′ holds iff one of the following holds:

1. ω = ⊥ and ω′ = ⊥,

2. γ BT ω′ and ω = ⊥.

71

To understand why this characterizes OpenMath, consider how it affects the
rule Con. According to rule Con, a constant declaration c : τ = δ is only well-
formed if γ BT δ : τ . Thus, each of the above cases leads to one kind of constant
declaration: The first case is used to declare an OpenMath symbol. These are
untyped and definition-less. The second case is used to declare an OpenMath
formal mathematical property. Here ω′ is the asserted property (encoded as an
Mmt type corresponding to the Curry-Howard correspondence). In both cases,
there is no definiens because OpenMath does not consider definitions.

Secondly, γ BT ω ≡ ω′ is the smallest relation on structurally well-formed
terms that
• is reflexive,
• is closed under substitution of equals,
• is closed under α-renaming,
• respects normalization, i.e, γ BT ω ≡ ω.

Theorem 47. The foundation for OpenMath is regular.

Proof. All properties can be verified directly.

8.2. The Edinburgh Logical Framework (LF)

LF [HHP93] is a logical framework based on dependent type theory. Being
a logical framework, it represents both logics and theories as LF signatures.
Mmt subsumes this approach by also representing LF as a (foundational) Mmt
theory. As for OpenMath, Mmt yields a module system for LF.

The foundational theory for LF is given by:

LF = {type, kind, lambda, Pi} .

type is the kind of all types. kind is the universe of kinds; it does not occur in
concrete syntax for LF, but is needed as the Mmt type of all well-formed LF
kinds. Pi is the dependent type constructor, and lambda its introductory form.
The application of Mmt can be used as the eliminatory form of Pi.

If T = LF, only the typing judgment γ BLF ⊥ : ⊥ holds. This is needed to
make the untyped constants in the theory LF well-formed (see rule ConAss).
γ BLF ω ≡ ω′ holds iff ω = ω′.

Otherwise, typing and equality are defined according to the LF type theory:
• For constants, γ BT D?c : τ holds if T < LF and γ >D c : τ = .
• For other terms, γ BT ω : ω′ holds if ω is a well-formed LF-term of type
ω′ or a well-formed LF-type family of kind ω′ in theory T . The details are
as in [HHP93] except that the rule for constants is not needed.

• γ BT ⊥ : ω holds if ω is a well-formed LF-type or a well-formed LF-kind
in theory T . This permits declarations of typed or kinded constants.

Similarly, the judgment γ BT ω ≡ ω′ is defined by the rules given in the prop-
erties (1) and (2) of Definition 30 and the equality rules for LF given in [HHP93].

Theorem 48. The foundation for LF is regular.

72

Proof. The properties (1) and (2) are built into the definition. Property (3)
follows from the results in [HST94] after observing that every type-preserving
mapping from S to T yields an LF signature morphisms from S to T . Here S
denotes the union of the bodies of all theories D with T ≤ D < LF.

Regular foundations for any pure type system (see, e.g., [Bar92]) and other
type theories can be given in the same way.

8.3. Set Theory (ZFC)

In Example 6, we have already sketched how ZFC can be represented as
an Mmt theory with meta-theory FOLd. This in turn can be represented using
LF as the foundational theory. The details of this representation can be found
in [IR11]. Consequently, no separate foundation for ZFC is needed, and the
semantics of ZFC-theories can be inherited from the foundation for LF.

However, it is instructive to give a direct foundation for ZFC in addition.
There are many different ways to do that, corresponding to the different for-
mulations of axiomatic set theory. In any case, the foundational theory ZFC for
ZFC is big, declaring constants for all concepts that are required in a minimal
axiomatic set theory. Therefore, in practice, this theory will be highly modular.

A typical definition of ZFC contains
• constants set and prop for the basic concepts of sets and propositions,
• constants empty, powerset, union, comprehension, etc. for the primi-

tives occurring in the axioms,
• constants forall, conjunction, etc. to construct first-order formulas,
• one constant for each axiom of ZFC, where the asserted formulas is given

as the type.
The typing judgment γ BT ω : ω′ holds if
• ω′ = ZFC?set and ω is a well-formed set expression,
• ω′ = ZFC?prop and ω is a well-formed formula, or
• ω′ is a well-formed set expression and ω is an element of ω′.

In particular, ω 6= ⊥ so that only defined constants can be added in ZFC-theories.
The equality judgment γ BT ω ≡ ω′ holds whenever ω and ω′ are provably

equal sets in the sense of ZFC and in all cases required by regularity.
It is straightforward to complete this definition in a way that makes the

resulting foundation regular.

9. Web-Scalability

Mmt documents are systematically transparent to the semantics. Therefore,
we have deliberately ignored them so far and introduce them only now. They
play a central role for web-scalability because they permit the packaging and
distribution of theory graphs and the global sharing of knowledge items. We
will discuss them in Section 9.1.

Besides documents, the basis for web-scalability is web standards-compliance.
We have developed a concrete XML syntax for Mmt that serves as the basis for
our implementations. It builds on the OMDoc format [Koh06], which already

73

integrates some of the primitive notions of Mmt including the OpenMath and
MathML 3 syntax for terms (interpreted as OpenMath objects). The XML
encoding is a straightforward compositional mapping; we omit it here and direct
the reader to [RK12] for details.

Less trivial is the definition of a URI-based representation for all identifiers,
which we discuss in Section 9.2. This is already implicit in the Mmt grammar,
but we will add relative URI references that are indispensable for scalability.

9.1. Documents and Libraries

Recall that our syntax uses two-partite module identifiers g?I. g is a URI
that identifies a package, called document in Mmt. We use the syntax

Doc ::= g = {γ}

to declare a document g containing the theory graph γ. A document is called
primary if all modules declared within γ have module identifiers of the form
g?I. Non-primary documents arise when documents are aggregated dynamically
using fragments from different documents, i.e., as the result of a search query;
we call those virtual documents in [KRZ10].

Within Mmt documents, we define two relaxations of the Mmt syntax that
are important for scalability and that can be easily elaborated into the official
syntax: relative identifiers and remote references. Relative identifiers and
their resolution into absolute ones are defined in Section 9.2. We speak of
remote references if a document refers to a module that is declared in some
other document. Technically, according to the rules of Mmt, such a non-self-
contained theory graph would be invalid. Therefore, we make documents with
remote references self-contained by adding all referenced remote modules in
some valid order at the beginning. This is always possible if there is no cyclic
dependency between documents.

The semantics of remote references is well-defined because Mmt identifiers
are URIs and thus globally unique. However, they are not necessarily URLs
and thus do not necessarily indicate physical locations from which the remote
module could be retrieved. Therefore, we make use of a catalog that translates
Mmt URIs into URLs, which give the physical locations. This way applications
are free to retrieve content from a variety of backends, such as file systems,
databases, or local working copies, in a way that is transparent to the Mmt
semantics.

We call a collection of documents together with a catalog an Mmt library.
A library’s document collection can be anything from a self-contained document
to (the Mmt-relevant subset of) the whole internet. The central component is
the catalog that defines the meaning of identifiers in terms of physical locations.
Adding a document to a library may include the upload of a physical document,
but may also simply consist in adding some catalog entries.

Well-formedness of libraries is checked incrementally by checking individual
documents when they are added. A document g = {γ} is well-formed relative
to a library L if the following hold:

74

• If a module identifier declared in γ already exists in L, then the two
modules must be identical.

• γL is a well-formed theory graph where γL arises by prepending all re-
motely referenced modules according to their resolution in L.

It is easy to prove that if we only ever add well-formed documents to an
initially empty library, all modules in the library can be arranged into a single
well-formed theory graph. This can be realized, for example, by implementing
L as a database that rejects the commit of ill-formed content (see Section 10).
Thus, libraries provide a safe and scalable way of building large theory graphs.

9.2. URI-based Addressing

As defined in the Mmt grammar, an absolute identifier of an Mmt knowl-
edge item is a document URI G, a module identifier G?M , or a symbol identifier
G?M?S. It is convenient to unify these three cases by assuming M = ε and/or
S = ε if the respective component is not present. Then absolute references are
always triples (G,M,S).

Similarly, a relative identifier is a triple (g,m, s). g is a relative document
reference, i.e., a URI reference as defined in RFC 3986 [BLFM05] but without
query or fragment. Note that this includes the case g = ε. m and s are usually
of the form I, i.e., slash-separated (possibly empty) sequences of non-empty
names. For completeness, we mention that Mmt also permits m and s to be
relative: If g = ε, m may be of the form /I, which is a module reference that
is interpreted relative to the current module; and if g = m = ε, s may also be
of the form /I, which is a symbol reference that is interpreted relative to the
current symbol.

In particular triples (g, T, c) correspond to the (cdbase, cd, name) triples of
the OpenMath standard [BCC+04]. This triple-based addressing model takes
up an idea (called “reference by context”) from OMDoc 1.1 that was dropped
in OMDoc 1.2 because its semantics could not be rigorously defined without
the Mmt concepts.

We use g?m?s as the URI encoding of an identifier (g,m, s) – even if g,
m, or s are empty – and adopt the convention that trailing but not leading ?
characters can be dropped. For example, we encode
• (g,m, ε) as g?m,
• (ε,m, s) as ?m?s,
• (ε, ε, s) as ??s,

This encoding can be parsed back uniquely into triples.

Definition 49 (Relative URI Resolution) The resolution of a relative identi-
fier R = (g,m, s) is defined relative to an absolute identifier B = (G,M,S),
which serves as the base of the resolution. The result is the following absolute

75

identifier:

resolve(B,R) :=


(G+ g,m, s) if g 6= ε

(G,M +m, s) if g = ε,m 6= ε

(G,M,S + s) if g = m = ε, s 6= ε

(G,M,S) if g = m = s = ε

where G + g denotes the resolution of the URI reference g relative to the URI
G as defined in RFC 3986 [BLFM05]. Furthermore, M +m resolves m relative
to M : If m = /m′, then M + m arises by appending m′ to M ; otherwise
M +m = m. S + s is defined accordingly.

The above definition yields the ill-formed result (G, ε, s) when resolving a
symbol level reference R = (ε, ε, s) against a document level base B = (G, ε, ε).
We forbid that pathological case, which would correspond to a symbol being
declared outside a theory.

To resolve relative identifiers within a document, we need the following:

Definition 50 (Base URI) Let γ a theory graph, then we define a base URI
for Mmt expressions occurring in γ:

1. The base of a module declaration or a remote reference to a module is the
URI of the containing document.

2. The base of symbol declaration is the URI of the containing theory.

3. The base of an assignment to a symbol is the URI of the codomain theory.

4. If µ is a morphism with domain S, then the bases of ω in ωµ, and µ′ in
µ′ µ, are S.

5. In all other cases, the base of an expression is the base of the parent node
in the syntax tree.

Mmt URIs are the main Mmt-related data structure needed for cross-
application scalability, and our experience shows that they must be imple-
mented by almost every peripheral system, even those that do not implement
Mmt itself. Already at this point, we had to implement them in SML [RS09],
JavaScript [GLR09], XQuery [ZKR10], Haskell (for Hets, [MML07]), and Bean
Shell (for a jEdit plugin) [IR12b] – in addition to the Scala-based reference API
presented in Section 10.1.

This was only possible because Mmt-URIs constitute a well-balanced trade-
off between mathematical rigor, feasibility, and URI-compatibility: In particu-
lar, due to the use of the two separators / and ? (rather than only one), they can
be parsed locally, i.e., without access to or understanding of the surrounding
Mmt document.

76

10. Implementations

The design of the Mmt language has been driven by a tight feedback loop
between theoretical analysis of knowledge structures and practical implemen-
tation efforts. In particular, we have evaluated the space of possible module
systems along the classifications developed in Section 2 in terms of expressivity,
computational tractability, and scalability in a variety of case studies. These
efforts led to three implementations, which we will present here. All of them
are open source, and can be obtained from the respective home pages.

10.1. The MMT Reference API

The Mmt implementation provides a Scala-based [OSV07] (and thus fully
Java-compatible) open-source implementation for the Mmt data structures.3

The central part of the API acts as an Mmt library with atomic add and retrieve
methods for knowledge items identified by Mmt URIs. This is supplemented
by persistent storage that maintains Mmt theory graphs as XML documents in
file systems or databases.

Adding Knowledge Items. We distinguish three levels of validation with vary-
ing strictness. Firstly, context-free XML validation is quick but cannot guaran-
tee Mmt-well-formedness. Secondly, structural validation guarantees the struc-
tural well-formedness according to Definition 37. Thirdly, semantic validation
refines structural validation by additionally validating foundation-specific typ-
ing and equality constraints by using plugins for individual foundations (see
below).

Structural validation decomposes a theory graph into a sequence of atomic
declarations that are validated and added incrementally. Every constant dec-
laration or assignment is an atomic declaration. Declarations of documents,
theories, views, and structures are atomic if the body is empty. For example, a
view is decomposed into the declaration of an empty view and one declaration
for each constant assignment.

The Mmt inference system is designed such that this incremental addition
is possible. In particular, later atomic declarations can never invalidate earlier
ones.

Retrieving Knowledge Items. To retrieve knowledge items from a library, we use
the atomic queries given in Figure 27. These take an Mmt URI and return
the induced Mmt declaration as defined in Section 6.1.

Atomic queries permit not only the retrieval of all declarations of the original
documents in the library, but also of all induced declarations. Note that there
are two ways to combine a structure URI g?T/s and a constant c: The query
g?T/s?c retrieves an assignment provided by s for c (defaulting to c 7→ g?T?s/c if
there is none); and the query g?T?s/c retrieves the induced constant declaration
of T .

3See https://trac.kwarc.info/MMT.

77

https://trac.kwarc.info/MMT

URI Definedness condition Result
g g = {γ} in L g = {γ}
T γL > T = {ϑ}, [M ↪→ T] T

[M]
= {ϑ}

l γL � l : S → T = {σ}, [µ ↪→ l] l : S → T
[µ]
= {σ}

l γL � l : S → T = µ l : S → T = µ
T?c γL >T c : τ = δ c : τ = δ
l?c γL �l c 7→ δ c 7→ δ

Figure 27: Atomic Queries

Example 51 (Atomic Queries) Examples for atomic queries were already indi-
cated in Example 23.

atomic query returns: comment
e?CGroup/mon?comp mon/comp 7→ e?CGroup?mon/comp the default assignment for lack

of an explicit assignment

e?CGroup?mon/comp mon/comp : τe?CGroup/mon = ⊥ where τ is as in Example 23

Atomic queries are relatively easy to implement and provide a sufficient
interface for higher knowledge management layers to implement many additional
services. For example, we can use them to implement local validation. Given
a library L and an implementation of atomic queries, we can validate documents
and document fragments relative to L without having to read all of L. Instead,
the respective atomic query is sent to L whenever a reference to an unknown
knowledge item is encountered.

Atomic queries also yield an easy implementation of flattening because
they already return all declarations of induced constants and assignments that
occur in the flattened theory graph. Therefore, to implement flattening, we only
have to know the URIs of the induced declarations. This information can be
cached by the library, and applications can aggregate the flattened theory graph
without having to implement Mmt.

Indexing Knowledge Items. As a by-product of structural validation, a rela-
tional representation of the validated document is generated, which corre-
sponds to an ABox in the Mmt ontology (from Figure 4). The individuals of
this ontology are the Mmt URIs of induced declarations. Unary predicates give
the type of each Mmt URI (i.e., theory, view, constant, structure, assignment
to constant, assignment to structure). And the binary predicates between Mmt
URIs include for example “Constant c1 occurs in the type of constant c2.” or
“View v has domain S.”. This information is cached, and the implementation
supports the compositional query language we presented in [Rab12b]. The
combination of atomic and relational queries is a simple but powerful interface
to Mmt libraries.

The ABox also includes the dependency relation between declarations, which
is essential for change management. The Mmt implementation supports the
change management solution we presented in [IR12a].

78

Interfaces. The Mmt API includes various back and front ends. The back ends
implement a catalog that translates Mmt URIs into physical locations. The
back ends retrieve documents from remote Mmt libraries (such as another in-
stance of the Mmt API or an SVN repository) via HTTP or from local file
systems. This catalog is fully transparent to the data structures and the appli-
cations built on top.

The front ends provide users and systems access to the library. The cur-
rent implementation includes a shell and a web server front end. The shell
is scriptable and can be used to explicitly retrieve, validate, and query Mmt
documents. The interaction with the web server proceeds like with the shell ex-
cept that input and output are passed via HTTP. In particular, the web server
can easily be run as a local proxy that provides Mmt functionality and file sys-
tem abstraction to local applications. An example instance of the web server is
serving the content of the TNTBase repository of the LATIN project [KMR09].

Foundations as Plugins. The foundation-specific validation algorithm provides
a plugin interface for foundations. Currently, one such plugin exists for the
foundation for LF from Section 8.

Every plugin must identify a theory M , and implement functions that decide
(or attempt to prove) instances of the typing and equality judgments for any
theory T < M . Foundations should be regular, and due to Lemma 31, they only
need to consider flat instances of these judgments. Moreover, due to Theorem 45,
they can assume that T is flat. Thus, existing algorithms for the formal system
represented by the foundational theory M can easily be reused to obtain plugins
for M .

Notations. Going beyond the scope of this paper, the Mmt language also pro-
vides a notation language inspired by [KMR08] with a simple declarative
syntax to define renderings of Mmt content in arbitrary human- or machine-
oriented formats. This can produce, e.g., XHTML+presentation MathML that
is interactively browsable by integrating the Mmt-aware JOBAD JavaScript
library [GLR09]. Alternatively, it can produce other system’s concrete input
syntax so that Mmt can serve as an interchange language. Notations can be
grouped into styles, which are themselves subject to the Mmt module system.

10.2. TNTbase – a Scalable Mmt-Compliant Database

The TNTBase system [ZK09] is an open-source versioned XML database
developed at Jacobs University.4 It was obtained by integrating Berkeley DB
XML [Ora10] into the Subversion Server [Apa00], is intended as a basis for
the collaborative editing and sharing of XML-based documents, and integrates
versioning and access of document fragments. We have extended TNTBase
with an Mmt plugin that makes it Mmt-aware [KRZ10, ZKR10].

4See http://tntbase.org/.

79

http://tntbase.org/

The most important aspect of this plugin is validation-upon-commit. Using
the tntbase:validate property, folders and files can be configured to require
validation. Thus, users can choose between no, XML-based, structural, or foun-
dational validation of Mmt files. Since the commit of ill-formed files can be re-
jected, TNTBase can guarantee that it only contains well-formed documents.
Thus, other systems can use Mmt-enriched TNTBase for the long term storage
of their system libraries and can trust in the correctness of documents retrieved
from the database.

Moreover, the plugin computes the relational representation of a committed
well-formed document, which TNTBase stores as an XML file along with every
Mmt file. TNTBase exposes the relational representation of Mmt documents
via an XQuery interface, and we have implemented a variety of custom queries
in an XQuery module that is integrated into TNTBase. TNTBase indexes the
files containing the relational representation so that such queries scale very well.
For example, our XQuery module includes a function that computes the tran-
sitive closure of the structural dependency relation between Mmt modules and
dynamically generates a self-contained Mmt document that includes all depen-
dencies of a given module. Even for small libraries and even if TNTBase runs
on a remote server, this query outperforms the straightforward implementation
based on local files.

Moreover, using the virtual documents of TNTBase, such generated docu-
ments are editable; see [ZK10] for details. TNTBase keeps track of how a doc-
ument was aggregated and propagates the necessary patches when a changed
version of the virtual document is committed.

10.3. Twelf – an Mmt-Compliant Logical Framework

The Mmt implementation from Section 10.1 starts with a generic Mmt im-
plementation and adds a plugin for a specific formal language F . Alternatively,
an invasive implementation is possible, which starts with an implementation of
F and adds the Mmt module system to it. Such implementations are restricted
to theory graphs with a single foundational theory for F , but can reuse special
features for F such as user interfaces and type inference. We have implemented
this for LF in [RS09] based on the Twelf implementation [PS99] of LF.5

The effect of adding Mmt to Twelf is that Twelf becomes a tool for authoring
theory graphs with LF as the single foundational theory. A major advantage
of this approach is that authors can benefit from the advanced Twelf features,
in particular infix parsing, type reconstruction, and implicit arguments. This
implementation was used successfully to generate large case studies of Mmt
theory graphs in [DHS09], [HR11], and [IR11].

Twelf uses Mmt URIs for namespace management, and a catalog service
[Iac11] provides the translation of logical URIs into physical URLs. Twelf also
supports several advanced language features that are part of Mmt but were
not mentioned in this paper. In particular, this includes nested theories and

5See https://trac.kwarc.info/MMT/wiki/Twelf.

80

https://trac.kwarc.info/MMT/wiki/Twelf

unnamed imports between theories and links. Furthermore, fixity and prece-
dence declarations of Twelf are preserved as Mmt notations that are used when
rendering the Mmt theory graph.

Twelf can produce Mmt documents in Mmt’s XML syntax from its input
that are guaranteed to be well-formed. In [CHK+12b], we showed how logics
written in Twelf can be exported in Mmt concrete syntax and imported into
and used in the Hets system [MML07].

11. Conclusion and Future Work

Formal knowledge is at the core of mathematics, logic, and computer sci-
ence, and we are seeing a trend towards employing computational systems like
(semi-)automated theorem provers, model checkers, computer algebra systems,
constraint solvers, or concept classifiers to deal with it. It is a characteristic
feature of these systems that they either have mathematical knowledge implic-
itly encoded in their critical algorithms or (increasingly) manipulate explicit
representations of this knowledge, often in the form of logical formulas. Un-
fortunately, these systems have differing domains of applications, foundational
assumptions, and input languages, which makes them non-interoperable and
difficult to compare and relate in practice. Moreover, the quantity of mathe-
matical knowledge is growing faster than our ability to formalize and organize
it, aggravating the problem that mathematical software systems cannot easily
share knowledge representations.

In this work, we contributed to the solution of this problem by provid-
ing a scalable representation language for mathematical knowledge. We have
focused on the modular organization of formal, explicitly represented mathe-
matical knowledge. We have developed a classification of modular knowledge
representation languages and evaluated the space of possible module systems in
terms of expressivity, computational tractability, and scalability. We have dis-
tilled our findings into one particularly well-behaved system – Mmt – discussed
its properties, and described a set of loosely coupled implementations.

11.1. The Mmt Language

Mmt is a foundationally unconstrained module system that serves as a web-
scalable interface layer between computational systems working with formally
represented knowledge.

Mmt integrates successful features of existing paradigms
• reuse along theory morphisms from the “little theories” approach,
• the theory graph abstraction from algebraic specification languages,
• categories of theories and logics from model theoretical logical frameworks,
• the logics-as-theories representation from proof theoretical logical frame-

works,
• declarations of constants and named realizations from type theory,
• the Curry-Howard correspondence from type/proof theory,
• URIs as logical namespace identifiers from OpenMath/OMDoc and Java,

81

• standardized XML-based concrete syntax from web-oriented representa-
tion languages,

and makes them available in a single, coherent representational system for the
first time.

The combination of these features is reduced to a small set of carefully
chosen, orthogonal primitives in order to obtain a simple and extensible language
design. In fact, some of the primitives combine so many intuitions that it was
rather difficult to name them.

In addition, Mmt contributes three new features:

Canonical identifiers By making morphisms named objects, Mmt can pro-
vide globally unique, web-scalable identifiers for all knowledge items. Even in
the presence of modularity and reuse, all induced knowledge items become ad-
dressable via URIs. Moreover, identifiers are invariant under Mmt operations
such as flattening.

Meta-theories The logical foundations of domain representations of mathe-
matical knowledge can be represented as modules themselves and can be struc-
tured and interlinked via meta-morphisms. Thus, the different foundations of
systems can be related and the systems made interoperable. The explicit rep-
resentation of epistemic foundations also benefits systems whose mathematical
knowledge is only implicitly embedded into the algorithms: The explicit rep-
resentation can serve as a documentation of the system interface as well as a
basis for verification or testing attempts.

Foundation-independence The design, implementation, and maintenance
of large scale logical knowledge management services will realistically only pay
off if the same framework can be reused for different foundations of mathemat-
ics. Therefore, Mmt does not commit to a particular foundation and provides
an interface layer between the logical-mathematical core of a mathematical
foundation and knowledge management services. Thus, the latter can respect
the semantics of the former without knowing or implementing the foundation.

Mmt is web-scalable in the sense that it supports the distribution of re-
sources (theories, proofs, etc.) over the internet thus permitting their collabo-
rative development and application. We can encapsulate Mmt-based or Mmt-
aware systems as web-services and use Mmt as a universal interface language.
At the same time Mmt is fully formal in the sense that its semantics is specified
rigorously in a self-contained formal system, namely using the type-theoretical
style of judgments and inference rules. Such a level of formality is rare among
module systems, SML being one of the few examples.

We contend that the dream of formalizing large parts of mathematics to
make them machine-understandable can only be reached based on a system
with both these features. However, in practice, they are often in conflict, and
their combination makes Mmt unique. In particular, it is easy to write large
scale implementations in Mmt, and it is easy to verify and trust them.

82

11.2. Beyond Mmt

We have designed Mmt as the simplest possible language that combines
foundation-independence, modularity, web-scalability, and formality. Future
work can now build on Mmt and add individual orthogonal language features
– in each case preserving these four qualities. In particular, for each feature,
we have to define grammar and inference rules, the induced knowledge items
and their URIs, and their behavior under theory morphisms. In fact, we have
already developed some of these features but excluded them in this paper to
focus on a minimal core language.

In the following we list some language features that we plan to add Mmt in
the future:

Unnamed Imports In addition to the described named imports with distin-
guish-semantics, Mmt is designed to provide also unnamed imports with identi-
fy-semantics. They are already part of the Mmt API, and the main reason
to omit them here was to simplify the presentation of the formal semantics of
Mmt.

Cyclic Imports Cyclic unnamed imports are common when modules are not
used for encapsulation as in Mmt but for namespace management; this is per-
mitted, e.g., between OWL ontologies or OpenMath content dictionaries. But
interestingly, inspecting the flattening theorem reveals that cyclic named im-
ports are not as harmful for Mmt as one might think: They can be elaborated
easily if we permit theories with infinitely many constant declarations. In par-
ticular, cyclic named imports can permit elegant representations of languages
with an infinite hierarchy of universes, coinductive data types, or an infinite
hierarchy of reflection.

Nested Theories Nested theories will provide a scalable mechanism for rep-
resenting hierarchic scopes and visibility. Many language features naturally
suggest such a nesting of scopes such as mutual recursion, local functions,
record types, or proofs with local definitions.

Intuitively, if S is a subtheory of T , the declarations of T occurring before S
are implicitly imported into S via an unnamed import, and the declarations
of T succeeding S can refer to S, e.g., by importing it. The main difficulty
here is to add nested theories in a way that preserves the order-invariance of
declarations.

Inductive Data Types and Record Types [Dum12] develops an extension
of Mmt that uses theories to represent inductive and record types. To rep-
resent an inductive data type, we define its constructors in a theory I using
a distinguished type t over I. Now we can define an extension of Mmt, in
which for any theory T , the T -terms of the inductive type induced by (I, t) are
the closed terms ω such that γ BI ω : t. The foundation for I can be chosen
easily by simply not equating terms unless required by Mmt. Similarly, some
inductive functions out of this type can be represented as theory morphisms
from I to T that map t to the intended return type.

83

Similarly, to represent a record type over T , we define its fields in a theory
R and give a distinguished partial morphism m from R to T . Now we can
define the T -terms of the induced type as the total morphisms from R to T
that agree with m. Then the selection of fields of a record can be represented
as morphism application to the respective R-constant.

Theory Expressions Some of the module systems we discussed, e.g., CASL
or Isabelle, provide complex theory expressions. For example, S∪T can denote
the union of the theories S and T . Other examples are the translation of a
theory along a morphism, the extension of a theory with some declarations,
or the pushout along certain morphisms. Similarly, we can add further pro-
ductions for morphism expression, e.g., for the mediating morphism out of a
pushout.

The main difficulty here is that these complex theories and consequently their
declarations do not have canonical identifiers. Indeed, most systems handle
theory expressions by decomposing them internally and generating fresh in-
ternal names for the involved subexpressions. Similarly, all of these construc-
tions can be expressed in Mmt already by introducing auxiliary theories as
we showed in [CHK+12a]. But certain theory expressions – most importantly
unions and pushouts along unnamed imports – can be added to Mmt in a way
that preserves canonical identifiers without using generated names.

Sorting The components of a constant declaration – type and definiens –
correspond to the base judgments provided by the foundations – typing and
equality. In particular, Mmt uses the constant declarations to provide the
axioms of the inference systems used in specific foundations. It is natural but
not necessary to consider exactly typing and equality. For example, we can
extend Mmt with constant declarations c <: τ that declare c as a sort refining
τ . Examples are subtypes (refining types), type classes (refining the kind of
types), and set theoretical classes (refining the universe of sets). This extension
would go together with a subsorting judgment γ BT ω <: ω′ in the foundation.

Conservative Extensions [HKR12] develops an extension of Mmt with a
foundation-independent notion of language extension. It subsumes many im-
portant extension principles including many conservative extension principles
and definition principles (e.g., case-based or implicit definitions).

Conservative extensions, in particular, can be represented using a theory S
declaring the primitive concepts (e.g., axioms) and then another theory T that
imports S and adds only defined (or definable) constants – the derived concepts
(e.g., theorems). In that case, it is desirable to make this kind of conservativity
of T explicit in order to exploit it later. For example, if T is conservative over
S, then a theory importing S should implicitly also gain access to T .

Minimal Foundations Not all language features can be defined foundation-
independently. Consider Mizar-style [TB85] implicit definitions of the form

func c means F (c); correctness P ;

84

where P is a proof of ∃!x.F (x) and c is defined as that unique value. Such a
definition is meaningful iff the foundational theory can express the quantifier
∃! of unique existence. Moreover, in that case it can be elaborated into the two
declarations c and c def : F (c) (which is in fact what Mizar and most other
systems are doing).

The approach of [HKR12] also yields a way to add such pragmatic language
features to Mmt together with the minimal foundations needed to define their
semantics. If an individual foundational theory M imports one of these dis-
tinguished minimal foundations, the corresponding pragmatic feature becomes
available in theories with meta-theory M .

Further pragmatic declarations include, for example, function declarations
(possible if M can express λ-abstraction) and constants with multiple types
(possible if M can express intersection types). The above-mentioned features of
sorting and inductive data types as well as the Curry-Howard representation
of axioms, theorems, and proof rules can become special cases of pragmatic
features as well. We can even generalize the notion of foundations and then
recover the type and definiens of a constant as pragmatic features that are
possible if M can express typing and equality.

Hiding and Filtering In [RKS11], we showed how a slight extension of the
semantics of filtering yields a substantial increase in expressivity. In particular,
it becomes possible to safely relax the strictness of filtering. The key idea is
that foundations do not only say “yes” when confirming a typing or equality
relation but also return a list of dependencies, which Mmt maintains and uses
to propagate filtering. We use a syntactically similar but semantically differ-
ent extension of Mmt in [CHK+12a] to extend Mmt with model theoretical
hiding. We expect that further research will permit the unification of these
two features.

Logical Relations The notions of theory and theory morphisms between the-
ories can be extended with logical relations between theory morphisms. Mmt
logical relations will be purely syntactical notions that correspond to the well-
known semantic ones. A preliminary account was given in [Soj10]. They will
permit natural representations of relations between realizations – such as model
morphisms – as well as of extensional equality relations.

Computation Mmt is currently restricted to declarative languages thus ex-
cluding the important role of computation, e.g., in computer algebra systems,
decision procedures, and programs extracted from proofs. Generating code
from appropriate Mmt theories is relatively simple. But we also want to per-
mit literal code snippets in the definiens of a constant. This will provide a
formal interface between a formal semantics and scalable implementations.

Aliases Mmt avoids the introduction of new names for symbols; instead,
canonical qualified identifiers are formed. But this often leads to long un-
friendly identifiers. Aliases for individual identifiers or identifier prefixes are

85

a simple syntactic device for providing human-friendly names, e.g., by declar-
ing the aliases + and ∗ for add/mon/comp and mult/comp in the theory Ring.
Moreover, such names can be used to make the modular structure of a theory
transparent. This is already part of our implementation.

Declaration Patterns and Functors A common feature of declarative lan-
guages is that the declarations in a theory T with meta-theory M must follow
one out of several patterns. For example, if M is first-order logic, then T
should contain only declarations of function symbols, predicate symbol, and
axioms. We can capture this foundation-independently in Mmt by declaring
such patterns in M and then pattern-checking the declarations in T against
them.

Patterns also permit adding a notion of functors to Mmt whose input is an
arbitrary well-patterned theory T with meta-theory M . The output is a theory
defined by induction on the list of declarations in T . This permits concise
representations of functors between categories of theories, e.g., the functor that
takes a sorted first-order theory and returns its translation to unsorted first-
order logic by relativization of quantifiers. This can be extended to functors
between categories of diagrams.

Narrative and Informal Representations One motivation behind Mmt
has been to give a formal semantics to OMDoc 1.2, and the present work does
this for the OMDoc fragment concerned with formal theory development. It
omits narrative aspects (e.g., document structuring, notations, examples, ci-
tations) as well as informal and semi-formal representations. We will extend
Mmt towards all of OMDoc, and this effort will culminate in the OMDoc
2 language. As a first step, we have included sectioning and notations in the
Mmt API. Many other features of OMDoc 1.2 will be recovered as pragmatic
features in the above sense.

11.3. Applying Mmt

The development of Mmt and its implementations has been driven by our
ongoing and intended applications. Most importantly, we have evaluated Mmt
on the logic atlas built in the LATIN project as described in Section 10. Here,
Mmt is applied in two ways.

Firstly, Mmt provides the ontology used to organize the highly interlinked
theories in the logic graph. In particular, the Mmt principles of meta-theories
and foundation-independence provide a clean separation of concerns between
the logical framework (LF in the case of LATIN), the logics, and the domain
theories written in these logics.

Secondly, Mmt serves as the scalable interface language between the vari-
ous Mmt-aware software systems used in LATIN. Twelf [PS99] is used to write
logics, TNTBase [ZK09] for persistent storage, the Mmt API for presentation
and indexing, JOBAD [GLR09] for interactive browsing, and Hets [MML07] for
institution-based cross-logic proof management, and we are currently adding

86

sTeXIDE [JK10] for semantic authoring support. Mmt is crucial to communi-
cate the content and its semantics between both the heterogeneous platforms
and the respective developers. In particular, the canonical Mmt identifiers have
proved pivotal for the integration of software systems.

Building on the LATIN atlas, we are creating an “Open Archive of Flex-
iForms” (OAFF). It will store flexiformal (i.e., represented at flexible degrees
of formality) representations of mathematical knowledge and supply them with
Mmt-base knowledge management services. OAFF will contain the domain
theories and libraries written in the logics that are part of the LATIN atlas.
Using Mmt, it becomes possible to represent libraries developed in different
foundational systems in one uniform formalism. Since Mmt can also represent
relations between the underlying foundational systems, this provides a base for
practical reliable system integration. Besides the LF-based LATIN library, we
have imported in this way the Mizar [TB85] library [IKRU12], the TPTP [SS98]
library, and OWL [W3C09] ontologies [Hor12].

Acknowledgments. The work reported in this paper has evolved in many ver-
sions over the period of 5 years. During this time, our understanding of the
pertinent issues has grown with the many case studies cited in this paper, and
we gratefully acknowledge the contributions of the respective co-authors. We
want to specifically mention Mihai Codescu, Fulya Horozal, Alin Iacob, Mih-
nea Iancu, and Till Mossakowski, who have collaborated in the LATIN project.
Our understanding of meta-logical frameworks have profited from interactions
with Frank Pfenning and Carsten Schürmann, and that of internalized module
systems from interactions with Claudio Sacerdoti Coen. Christoph Lange has
helped with understanding the issues of web scalability and the connection to
linked open data and the semantic web. The list of possible extensions currently
under investigation, in particular computation and theory expressions, has ben-
efited from two joint workshops with the members of the MathScheme project,
i.e., Jacques Carette, William Farmer, and Russell O’Connor.

Finally, we want to thank Alin Iacob and two anonymous referees for their
meticulous and insightful comments, which triggered many local improvements
and a structural re-organization of the material in the last revision of the paper.

Some aspects of the reported work were partially funded by the German
Research Council (DFG). The first author has been supported by the German
Academic Exchange Service (DAAD), the Logosphere project, and the German
Merit Foundation during his Ph.D. time, which laid the early foundations of
Mmt.

[ABC+10] R. Ausbrooks, S. Buswell, D. Carlisle, G. Chavchanidze, S. Dal-
mas, S. Devitt, A. Diaz, S. Dooley, R. Hunter, P. Ion, M. Kohlhase,
A. Lazrek, P. Libbrecht, B. Miller, R. Miner, C. Rowley, M. Sar-
gent, B. Smith, N. Soiffer, R. Sutor, and S. Watt. Mathemati-
cal Markup Language (MathML) Version 3.0. Technical report,
World Wide Web Consortium, 2010. See http://www.w3.org/TR/

MathML3.

87

http://www.w3.org/TR/MathML3
http://www.w3.org/TR/MathML3

[ACTZ06] A. Asperti, C. Sacerdoti Coen, E. Tassi, and S. Zacchiroli. Craft-
ing a Proof Assistant. In T. Altenkirch and C. McBride, editors,
TYPES, pages 18–32. Springer, 2006.

[AHMS99] S. Autexier, D. Hutter, H. Mantel, and A. Schairer. Towards
an Evolutionary Formal Software-Development Using CASL. In
D. Bert, C. Choppy, and P. Mosses, editors, WADT, volume 1827
of Lecture Notes in Computer Science, pages 73–88. Springer, 1999.

[AHMS02] S. Autexier, D. Hutter, T. Mossakowski, and A. Schairer. The
Development Graph Manager Maya (System Description). In
H. Kirchner and C. Ringeissen, editors, Algebraic Methods and
Software Technology, 9th International Conference, pages 495–502.
Springer, 2002.

[Apa00] Apache Software Foundation. Apache Subversion, 2000. see
http://subversion.apache.org/.

[Asp94] D. Aspinall. Types, Subtypes, and ASL+. In E. Astesiano, G. Reg-
gio, and A. Tarlecki, editors, Recent Trends in Data Type Specifi-
cation, pages 116–131. Springer, 1994.

[Bar92] H. Barendregt. Lambda calculi with types. In S. Abramsky,
D. Gabbay, and T. Maibaum, editors, Handbook of Logic in Com-
puter Science, volume 2. Oxford University Press, 1992.

[BC04] Y. Bertot and P. Castéran. Coq’Art: The Calculus of Inductive
Constructions. Springer, 2004.

[BCC+04] S. Buswell, O. Caprotti, D. Carlisle, M. Dewar, M. Gaetano, and
M. Kohlhase. The Open Math Standard, Version 2.0. Technical
report, The Open Math Society, 2004. See http://www.openmath.
org/standard/om20.

[BLFM05] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986, Internet Engineering
Task Force, 2005.

[BM09] M. Birbeck and S. McCarron. A syntax for expressing Compact
URIs. Technical report, World Wide Web Consortium, 2009. See
http://www.w3.org/TR/2009/CR-curie-20090116/.

[Bou68] N. Bourbaki. Theory of Sets. Elements of Mathematics. Springer,
1968.

[Bou74] N. Bourbaki. Algebra I. Elements of Mathematics. Springer, 1974.

[CAB+86] R. Constable, S. Allen, H. Bromley, W. Cleaveland, J. Cremer,
R. Harper, D. Howe, T. Knoblock, N. Mendler, P. Panangaden,
J. Sasaki, and S. Smith. Implementing Mathematics with the Nuprl
Development System. Prentice-Hall, 1986.

88

http://www.openmath.org/standard/om20
http://www.openmath.org/standard/om20
http://www.w3.org/TR/2009/CR-curie-20090116/

[CELM96] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of
Maude. In J. Meseguer, editor, Proceedings of the First Interna-
tional Workshop on Rewriting Logic, volume 4, pages 65–89, 1996.

[CH88] T. Coquand and G. Huet. The Calculus of Constructions. Infor-
mation and Computation, 76(2/3):95–120, 1988.

[CH00] R. Constable and J. Hickey. Nuprl’s Class Theory and Its Appli-
cations. In F. Bauer and R. Steinbruggen, editors, Foundations of
Secure Computation, pages 91–115. IOS Press, 2000.

[CHK+11] M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and
F. Rabe. Project Abstract: Logic Atlas and Integrator (LATIN).
In J. Davenport, W. Farmer, F. Rabe, and J. Urban, editors, In-
telligent Computer Mathematics, pages 289–291. Springer, 2011.

[CHK+12a] M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and
F. Rabe. A Proof Theoretic Interpretation of Model Theoretic Hid-
ing. In T. Mossakowski and H. Kreowski, editors, Recent Trends in
Algebraic Development Techniques 2010, pages 118–138. Springer,
2012.

[CHK+12b] M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, F. Rabe,
and K. Sojakova. Towards Logical Frameworks in the Heteroge-
neous Tool Set Hets. In T. Mossakowski and H. Kreowski, editors,
Recent Trends in Algebraic Development Techniques 2010, pages
139–159. Springer, 2012.

[Chu40] A. Church. A Formulation of the Simple Theory of Types. Journal
of Symbolic Logic, 5(1):56–68, 1940.

[CO00] O. Caprotti and M. Oostdijk. On Communicating Proofs in Inter-
active Mathematical Documents. In J. Campbell and E. Roanes-
Lozano, editors, AISC, pages 53–64. Springer, 2000.

[CoF04] CoFI (The Common Framework Initiative). CASL Reference Man-
ual, volume 2960 of LNCS. Springer, 2004.

[dB70] N. de Bruijn. The Mathematical Language AUTOMATH. In
M. Laudet, editor, Proceedings of the Symposium on Automated
Demonstration, volume 25 of Lecture Notes in Mathematics, pages
29–61. Springer, 1970.

[DHS09] S. Dumbrava, F. Horozal, and K. Sojakova. A Case Study
on Formalizing Algebra in a Module System. In F. Rabe and
C. Schürmann, editors, Workshop on Modules and Libraries for
Proof Assistants, pages 11–18. ACM, 2009.

[DS05] M. Duerst and M. Suignard. Internationalized Resource Identifiers
(IRIs). RFC 3987, Internet Engineering Task Force, 2005.

89

[Dum12] S. Dumbrava. A Type Theory based on Reflection. Master’s thesis,
Jacobs University Bremen, 2012.

[End72] H. B. Enderton. A Mathematical Introduction to Logic. Academic
Press, 1972.

[Far00] W. Farmer. An Infrastructure for Intertheory Reasoning. In
D. McAllester, editor, Conference on Automated Deduction, pages
115–131. Springer, 2000.

[FGT92] W. Farmer, J. Guttman, and F. Thayer. Little Theories. In D. Ka-
pur, editor, Conference on Automated Deduction, pages 467–581,
1992.

[FGT93] W. Farmer, J. Guttman, and F. Thayer. IMPS: An Interactive
Mathematical Proof System. Journal of Automated Reasoning,
11(2):213–248, 1993.

[GB92] J. Goguen and R. Burstall. Institutions: Abstract model theory
for specification and programming. Journal of the Association for
Computing Machinery, 39(1):95–146, 1992.

[GGMR09] F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging
mathematical structures. In S. Berghofer, T. Nipkow, C. Urban,
and M. Wenzel, editors, Theorem Proving in Higher Order Logics,
pages 327–342. Springer, 2009.

[GJJ96] J. Gosling, W. Joy, and G. Steele Jr. The Java Language Specifi-
cation. Addison-Wesley, 1996.

[GLR09] J. Gičeva, C. Lange, and F. Rabe. Integrating Web Services into
Active Mathematical Documents. In J. Carette, L. Dixon, C. Sacer-
doti Coen, and S. Watt, editors, Intelligent Computer Mathematics,
pages 279–293. Springer, 2009.

[GP93] M. Gordon and A. Pitts. The HOL Logic. In M. Gordon and
T. Melham, editors, Introduction to HOL, Part III, pages 191–232.
Cambridge University Press, 1993.

[GTW78] J. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach
to the specification, correctness and implementation of abstract
data types. In R. Yeh, editor, Current Trends in Programming
Methodology, volume 4, pages 80–149. Prentice Hall, 1978.

[GWM+93] J. Goguen, Timothy Winkler, J. Meseguer, K. Futatsugi, and
J. Jouannaud. Introducing OBJ. In J. Goguen, D. Coleman, and
R. Gallimore, editors, Applications of Algebraic Specification using
OBJ. Cambridge, 1993.

90

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defin-
ing logics. Journal of the Association for Computing Machinery,
40(1):143–184, 1993.

[HKR12] F. Horozal, M. Kohlhase, and F. Rabe. Extending MKM Formats
at the Statement Level. In J. Campbell, J. Carette, G. Dos Reis,
J. Jeuring, P. Sojka, V. Sorge, and M. Wenzel, editors, Intelligent
Computer Mathematics, pages 64–79. Springer, 2012.

[Hor12] F. Horozal. Management of Change in the Web Ontology Language.
Master’s thesis, Jacobs University Bremen, 2012.

[HR09] P. Horn and D. Roozemond. OpenMath in SCIEnce: SCSCP and
POPCORN. In J. Carette, L. Dixon, C. Sacerdoti Coen, and
S. Watt, editors, Intelligent Computer Mathematics, pages 474–
479. Springer, 2009.

[HR11] F. Horozal and F. Rabe. Representing Model Theory in a Type-
Theoretical Logical Framework. Theoretical Computer Science,
412(37):4919–4945, 2011.

[HST94] R. Harper, D. Sannella, and A. Tarlecki. Structured presenta-
tions and logic representations. Annals of Pure and Applied Logic,
67:113–160, 1994.

[Iac11] A. Iacob. Towards Project-Based Workflows in Twelf. Master’s
thesis, Jacobs University Bremen, 2011.

[IKRU12] M. Iancu, M. Kohlhase, F. Rabe, and J. Urban. The Mizar Mathe-
matical Library in OMDoc: Translation and Applications. Journal
of Automated Reasoning, 2012. to appear.

[IR11] M. Iancu and F. Rabe. Formalizing Foundations of Mathemat-
ics. Mathematical Structures in Computer Science, 21(4):883–911,
2011.

[IR12a] M. Iancu and F. Rabe. Management of Change in Declarative
Languages. In J. Campbell, J. Carette, G. Dos Reis, J. Jeuring,
P. Sojka, V. Sorge, and M. Wenzel, editors, Intelligent Computer
Mathematics, pages 325–340. Springer, 2012.

[IR12b] M. Iancu and F. Rabe. (Work-in-Progress) An MMT-Based User-
Interface. In Workshop on User Interfaces for Theorem Provers,
2012.

[JK10] C. Jucovschi and M. Kohlhase. sTeXIDE: An Integrated Develop-
ment Environment for sTeX Collections. In S. Autexier, J. Calmet,
D. Delahaye, P. Ion, L. Rideau, R. Rioboo, and A. Sexton, editors,
Intelligent Computer Mathematics, number 6167 in Lecture Notes
in Artificial Intelligence. Springer, 2010.

91

[KMR08] M. Kohlhase, C. Müller, and F. Rabe. Notations for Living Math-
ematical Documents. In S. Autexier, J. Campbell, J. Rubio,
V. Sorge, M. Suzuki, and F. Wiedijk, editors, Mathematical Knowl-
edge Management, pages 504–519. Springer, 2008.

[KMR09] M. Kohlhase, T. Mossakowski, and F. Rabe. The LATIN Project,
2009. see https://trac.omdoc.org/LATIN/.

[Koh06] M. Kohlhase. OMDoc: An Open Markup Format for Mathemat-
ical Documents (Version 1.2). Number 4180 in Lecture Notes in
Artificial Intelligence. Springer, 2006.

[KRZ10] M. Kohlhase, F. Rabe, and V. Zholudev. Towards MKM in the
Large: Modular Representation and Scalable Software Architec-
ture. In S. Autexier, J. Calmet, D. Delahaye, P. Ion, L. Rideau,
R. Rioboo, and A. Sexton, editors, Intelligent Computer Mathe-
matics, pages 370–384. Springer, 2010.

[KWP99] F. Kammüller, M. Wenzel, and L. Paulson. Locales – a Sectioning
Concept for Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz,
C. Paulin, and L. Thery, editors, Theorem Proving in Higher Order
Logics, pages 149–166. Springer, 1999.

[Law63] F. Lawvere. Functional Semantics of Algebraic Theories. PhD
thesis, Columbia University, 1963.

[LCH07] D. Lee, K. Crary, and R. Harper. Towards a mechanized metathe-
ory of Standard ML. In M. Hofmann and M. Felleisen, editors,
Symposium on Principles of Programming Languages, pages 173–
184. ACM, 2007.

[Mac98] S. Mac Lane. Categories for the working mathematician. Springer,
1998.

[MAH06] T. Mossakowski, S. Autexier, and D. Hutter. Development graphs
- Proof management for structured specifications. J. Log. Algebr.
Program, 67(1–2):114–145, 2006.

[ML74] P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part.
In Proceedings of the ’73 Logic Colloquium, pages 73–118. North-
Holland, 1974.

[MML07] T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous
Tool Set. In O. Grumberg and M. Huth, editor, TACAS 2007,
volume 4424 of Lecture Notes in Computer Science, pages 519–522,
2007.

[Mos05] T. Mossakowski. Heterogeneous Specification and the Hetero-
geneous Tool Set, 2005. Habilitation thesis, see http://www.

informatik.uni-bremen.de/~till/.

92

https://trac.omdoc.org/LATIN/
http://www.informatik.uni-bremen.de/~till/
http://www.informatik.uni-bremen.de/~till/

[MTHM97] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition
of Standard ML, Revised edition. MIT Press, 1997.

[Nor05] U. Norell. The Agda WiKi, 2005. http://wiki.portal.

chalmers.se/agda.

[Odl95] A. Odlyzko. Tragic loss or good riddance? The impending demise
of traditional scholarly journals. International Journal of Human-
Computer Studies, 42:71–122, 1995.

[Ora10] Oracle. Oracle berkeley db xml, 2010. see http://www.oracle.

com/us/products/database/berkeley-db/xml/index.html.

[ORS92] S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification
System. In D. Kapur, editor, 11th International Conference on
Automated Deduction (CADE), pages 748–752. Springer, 1992.

[OS97] S. Owre and N. Shankar. The formal semantics of PVS. Technical
Report SRI-CSL-97-2, SRI International, 1997.

[OSV07] M. Odersky, L. Spoon, and B. Venners. Programming in Scala.
artima, 2007.

[Pau94] L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
Lecture Notes in Computer Science. Springer, 1994.

[PS99] F. Pfenning and C. Schürmann. System description: Twelf - a
meta-logical framework for deductive systems. Lecture Notes in
Computer Science, 1632:202–206, 1999.

[Rab08a] F. Rabe. Representing Logics and Logic Translations. PhD thesis,
Jacobs University Bremen, 2008. see http://kwarc.info/frabe/

Research/phdthesis.pdf.

[Rab08b] F. Rabe. The MMT System, 2008. see https://trac.kwarc.

info/MMT/.

[Rab12a] F. Rabe. A Logical Framework Combining Model and
Proof Theory. Mathematical Structures in Computer Science,
2012. to appear; see http://kwarc.info/frabe/Research/rabe_

combining_10.pdf.

[Rab12b] F. Rabe. A Query Language for Formal Mathematical Libraries. In
J. Campbell, J. Carette, G. Dos Reis, J. Jeuring, P. Sojka, V. Sorge,
and M. Wenzel, editors, Intelligent Computer Mathematics, pages
142–157. Springer, 2012.

[RK12] F. Rabe and M. Kohlhase. An XML Syntax for MMT. Technical
report, OMDoc Report, 2012.

93

http://wiki.portal.chalmers.se/agda
http://wiki.portal.chalmers.se/agda
http://www.oracle.com/us/products/database/berkeley-db/xml/index.html
http://www.oracle.com/us/products/database/berkeley-db/xml/index.html
http://kwarc.info/frabe/Research/phdthesis.pdf
http://kwarc.info/frabe/Research/phdthesis.pdf
https://trac.kwarc.info/MMT/
https://trac.kwarc.info/MMT/
http://kwarc.info/frabe/Research/rabe_combining_10.pdf
http://kwarc.info/frabe/Research/rabe_combining_10.pdf

[RKS11] F. Rabe, M. Kohlhase, and C. Sacerdoti Coen. A Foundational
View on Integration Problems. In J. Davenport, W. Farmer,
F. Rabe, and J. Urban, editors, Intelligent Computer Mathematics,
pages 107–122. Springer, 2011.

[RS09] F. Rabe and C. Schürmann. A Practical Module System for LF.
In J. Cheney and A. Felty, editors, Proceedings of the Workshop on
Logical Frameworks: Meta-Theory and Practice (LFMTP), pages
40–48. ACM Press, 2009.

[SML97] Standard ML Basis Library, 1997. See http://www.standardml.

org/Basis/.

[Soj10] K. Sojakova. Mechanically Verifying Logic Translations. Master’s
thesis, Jacobs University Bremen, 2010.

[Sol95] R. Solomon. On Finite Simple Groups and Their Classification.
Notices of the AMS, pages 231–239, 1995.

[SS98] G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF
Release v1.2.1. Journal of Automated Reasoning, 21(2):177–203,
1998.

[ST88] D. Sannella and A. Tarlecki. Specifications in an arbitrary institu-
tion. Information and Control, 76:165–210, 1988.

[SW83] D. Sannella and M. Wirsing. A Kernel Language for Algebraic
Specification and Implementation. In M. Karpinski, editor, Funda-
mentals of Computation Theory, pages 413–427. Springer, 1983.

[TB85] A. Trybulec and H. Blair. Computer Assisted Reasoning with
MIZAR. In A. Joshi, editor, Proceedings of the 9th International
Joint Conference on Artificial Intelligence, pages 26–28, 1985.

[W3C98] W3C. Extensible Markup Language (XML), 1998. http://www.

w3.org/XML.

[W3C99] W3C. XML Path Language, 1999. http://www.w3.org/TR/

xpath/.

[W3C07] W3C. XQuery 1.0: An XML Query Language, 2007. http://www.
w3.org/TR/xquery/.

[W3C09] W3C. OWL 2 Web Ontology Language, 2009. http://www.w3.

org/TR/owl-overview/.

[ZBM31] Zentralblatt MATH (ZBMATH), 1931. http://www.

zentralblatt-math.org.

94

http://www.standardml.org/Basis/
http://www.standardml.org/Basis/
http://www.w3.org/XML
http://www.w3.org/XML
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/owl-overview/
http://www.w3.org/TR/owl-overview/
http://www.zentralblatt-math.org
http://www.zentralblatt-math.org

[ZK09] V. Zholudev and M. Kohlhase. TNTBase: a Versioned Storage
for XML. In Proceedings of Balisage: The Markup Conference
2009, volume 3 of Balisage Series on Markup Technologies. Mul-
berry Technologies, Inc., 2009.

[ZK10] V. Zholudev and M. Kohlhase. Scripting Documents with XQuery:
Virtual Documents in TNTBase. In Proceedings of Balisage: The
Markup Conference, Balisage Series on Markup Technologies. Mul-
berry Technologies, Inc., 2010.

[ZKR10] V. Zholudev, M. Kohlhase, and F. Rabe. A [insert XML Format]
Database for [insert cool application]. In XMLPrague 2010. XML-
Prague.cz, 2010.

95

	1 Introduction
	2 Features of Knowledge Representation Languages
	2.1 Scoping Constructs
	2.2 Inheritance
	2.3 Realizations
	2.4 Semantics
	2.5 Genericity
	2.6 Degree of Formality
	2.7 Scalability

	3 Central Features of MMT
	4 Related Work
	5 Syntax
	5.1 Grammar
	5.2 Identifiers
	5.3 The Object Level
	5.4 The Symbol Level
	5.5 The Module Level
	5.6 Secondary Modules

	6 Well-formed Expressions
	6.1 Induced Declarations
	6.2 Judgments
	6.3 Inference Rules for the Structural Levels
	6.4 Inference Rules for Morphisms
	6.5 Inference Rules for Terms

	7 Formal Properties
	7.1 Normal Terms
	7.2 Regular Foundations
	7.3 Structural Well-Formedness
	7.4 Structural Equivalence
	7.5 Flattening

	8 Specific Foundations
	8.1 OpenMath
	8.2 The Edinburgh Logical Framework (LF)
	8.3 Set Theory (ZFC)

	9 Web-Scalability
	9.1 Documents and Libraries
	9.2 URI-based Addressing

	10 Implementations
	10.1 The MMT Reference API
	10.2 TNTbase – a Scalable MMT-Compliant Database
	10.3 Twelf – an MMT-Compliant Logical Framework

	11 Conclusion and Future Work
	11.1 The MMT Language
	11.2 Beyond MMT
	11.3 Applying MMT

