
Mechanically Verifying Logic Translations

Kristina Sojakova
Master Thesis

School of Engineering and Sciences, Jacobs University Bremen

Reviewers: Dr. Florian Rabe, Prof. Michael Kohlhase

24. August 2010

1

I hereby declare that this thesis has been written independently, except where sources and
collaborations are acknowledged, and has not been submitted at another university for the
conferral of a degree. Parts of this thesis are based on or closely related to previously published
material or material that is prepared for publication at the time of this writing, namely [32] by
Florian Rabe. Parts of this thesis are the result of collaboration with Florian Rabe.

2

Abstract

The work done in this thesis is part of the ongoing ”Logic Atlas and Integrator” project,
which aims to build a comprehensive system reconciling proof and model theory, where
logics and logic translations are specified dynamically and are automatically verified for
correctness. We build on the work done by Florian Rabe, which uses the Twelf module
system to encode logics and logic translations specified in the model-theoretic framework
of institutions. As a first case study we pick the well-known model theoretic translation of
modal logic to first-order logic. We evaluate how well the current framework supports the
automated verification of the translation and what changes are necessary to improve it. A
significant contribution is the development of the theory of logical relations for Twelf, which
were found to be necessary in order to verify the soundness of the modal logic translation.

3

Contents

1 Introduction and Related Work 5

2 The Edinburgh Logical Framework 6

3 Institutions and Comorphisms 9
3.1 Institutions . 9
3.2 Institution Comorphisms . 11

4 Logical Relations 12

5 Encoding Logics 20
5.1 Signatures and Sentences . 21
5.2 Models and Satisfaction Relation . 22
5.3 Satisfaction Condition and Adequacy . 26

6 Encoding Logic Translations 27
6.1 Signature Translation . 28
6.2 Sentence Translation . 30
6.3 Model Translation . 30
6.4 Satisfaction Condition . 35
6.5 Model Expansion . 38

7 Conclusion and Future Work 43

4

1 Introduction and Related Work

Formal methods in computer science use mathematical logic as a foundation for the specification,
development, and verification of hardware and software systems. For a number of logics there
are a variety of (semi-)automated verification tools available - for first-order logic (FOL) we
have model checkers such as Paradox [8] and theorem provers such as SPASS [42] or Vampire
[36]; for higher-order logic (HOL) we have the semi-automated theorem prover Isabelle [27].

In practice, however, complex systems are rarely described using a single logic. A larger
system often consists of several smaller parts, each specified in its own logic - the so-called
heterogeneous specification. This raises the issue of scalability: in order to reason about the
system as a whole, it is needed to provide translations among the various logics.

Systems which are designed for the specification of logics and deductive systems in general
are referred to as logical frameworks. They provide a uniform representation of object logics and
allow reasoning on a logic-independent level. Common tasks include verification of derivations,
search for derivations, and proving meta-theorems about deductive systems.

Logical frameworks generally fall into one of two categories. Frameworks based on set
theory tend to describe logics from a model-theoretic prespective, defining the notion of truth
according to Tarski. Examples of model-theoretic frameworks include institutions [12] and
general logics [23], where the former will be our framework of choice for defining logics. On
the other hand, frameworks based on type theory tend to describe logics from a proof-theoretic
perspective, defining the notion of truth according to Curry-Howard [10, 18]. Examples include
the Edinburgh Logical Framework (LF, [14]) based on dependent-type theory [24], Coq [4] based
on the calculus of constructions [9], and Isabelle [27] based on simple type theory [7].

Some logical frameworks have implementations which allow the specification of logic trans-
lations. In the Heterogeneous Tool Set (Hets, [26]) based on institutions, logics and logic trans-
lations are implemented in the underlying Haskell code by instantiating a designated class. The
proofs of correctness are done on paper only. The functional programming language Delphin
[31], which is based on the Twelf [28] implementation of LF, allows formalizing logic translations
and type-checking them for correctness. However, model theory is not represented.

Logic translations are most useful if they permit borrowing [6], i.e. reasoning about theories
in one logic by means of another logic, often a tool-supported one. Such a translation would
for example translate a proof obligation to FOL and discharge it by calling the existing FOL
provers. The soundness of borrowing can be established in two ways: proof-theoretically by
translating the obtained proof back to the original logic, or model-theoretically by exhibiting a
model-translation between the two logics.

Proof-theoretic translations have been used e.g. in [20] to translate parts of dependent type
theory [24] to simple type theory [7], in [41] to translate Mizar [40] into FOL, and in Scunak
[5] to translate parts of dependent type theory into FOL. Similar translations have been done
for simple type theory, e.g. in Omega [2], Leo-II [3] and in the sledgehammer tactic of Isabelle
[27]. In practice, however, the back-translation of the proof term to the original logic is quite
complicated and in the cases of Mizar and Scunak it is not done at all.

The model-theoretic approach formalizes the translation in a mathematically rigorous way
within the framework of institutions [12]. Its practical advantage is that no translation of proof
terms is required - the mere existence of a proof in the target logic ensures the validity of the

5

statement in the source logic. On the other hand, for a system utilizing such model-theoretic
translation it would be desirable to have a mechanically verified proof of the correctness of the
translation.

The work done in this thesis is part of the ongoing Logic ATlas and INtegrator (LATIN,
[21]) project, which intends to build a comprehensive network of logic formalizations and their
translations, reconciling proof and model theory. A major goal is to build a system where logics
and logic translations are specified dynamically and are automatically verified for correctness.
Two of the systems forming the core of LATIN are Twelf and Hets, the former representing the
proof-theoretic and the latter the model-theoretic perspective.

In this thesis we build on the work done in [32], which shows how to use the Twelf module
system [33] to encode logics and logic translations. As a first case study we pick the well-known
model theoretic translation of modal logic to FOL. We evaluate how well the current framework
supports the automated verification of the translation and what changes are necessary to improve
it.

A major contribution is the development of the theory of logical relations for LF, which were
found to be necessary in order to verify the soundness of the translation of modal to first-order
logic. For many translations the soundness can be established by proving the commutativity
of a particular diagram. However, some translations such as the modal logic translation fail to
satisfy the commutativity requirement and hence a different approach is needed.

Logical relations have been used as an important tool in the study of type theories; for
examples we refer the reader to [29, 35], an overview is given in [30]. In formal languages a
logical relation can be thought of as a relation between two interpretations. For LF we define
logical relations by purely syntactic means as certain relations between morphisms. In the
absence of commutativity, a logical relation can provide a criterion for a ”weak commutativity”
of morphisms, which can be sufficient to establish the soundness of the translation.

We present LF and the Twelf module system in Section 2. Section 3 describes the framework
of institutions and institution comorphisms. In Section 4 we give the formal treatment of
logical relations for LF. In Sections 5 and 6 we show how to encode logics and logic translations
respectively, giving the modal logic translation as a running example. The latter section also
shows how to prove the soundness of borrowing by means of logical relations. Section 7 concludes
the paper.

Acknowledgements The author would like to thank Michael Kohlhase and Florian Rabe
from Jacobs University Bremen as well as Till Mossakowski and Mihai Codescu from DFKI
Bremen for their help and supervision. Further, the author would like to thank Rob Simmons
and Ciera & Saul Jaspan from Carnegie Mellon University for their support.

2 The Edinburgh Logical Framework

The Edinburgh Logical Framework [14] is a formal metalanguage used for the formalization
of deductive systems. It is related to the Martin-Löf Type Theory [24] and the corner of the
lambda cube [1] that extends simple type theory with dependent function types and kinds. We

6

will work with the Twelf implementation of LF [28] using the Twelf module system [33], which
makes LF particularly suitable for formalizing logics and logic translations.

LF syntax distinguishes three levels of expressions - kinds K, type families A, and terms
M. Type families are kinded; those of the distinguished kind type are called types and are
used to type terms. LF signatures Σ are lists of kinded type family symbols a : K and typed
constant symbols c : A. LF contexts Γ are lists of typed variables x : A. Finally, LF morphisms
σ : Σ1 → Σ2 are mappings between signatures associating with each symbol in Σ1 an expression
in Σ2 of the same level. We thus have the following abstract syntax

Kinds K := type | Πx:AK
Type Families A := a | A M | λx:AA | Πx:AA
Terms M := c | x |M M | λx:AM
Contexts Γ := · | Γ, x : A
Signatures Σ := · | Σ, a : K | Σ, x : A
Morphisms σ := · | σ, a := A | σ, c := M

where Π is the dependent function type/kind constructor, λ is the corresponding function ab-
straction, and juxtaposition indicates application. The type Πx:AB will be written as A → B
is x if not free in B.

We shall not discuss the LF typing and validity judgements here; for illustration purposes
we give one rule for deriving the validity of signature morphisms and refer the reader to [14]
and [33] for the rest. We have the rule

` σ : Σ1 → Σ2 · `Σ1 c : A · `Σ2 M : σ̄(A)

σ, c := M : Σ1, c : A→ Σ2

indicating that σ, c := M is a valid morphism from Σ1, c : A to Σ2 if σ is a valid morphism from
Σ1 to Σ2, c is a constant of type A over Σ1, and M is a closed term of type σ̄ over Σ2, where σ̄
denotes the homomorphic extension of σ to all closed expressions over Σ1. From now on σ̄ will
be written simply as σ.

One consequence of the typing judgements is that signature morphisms preserve types and
kinds, i.e. if σ : Σ1 → Σ2 is a valid signature morphism and Γ `Σ1 M : A, then σ(Γ) `Σ2

σ(M) : σ(A), where σ(Γ) is defined in the obvious way. Similarly for kinds. Furthermore,
signature morphisms preserve αβη-equality, as was shown in [15]. Since Twelf considers αβη-
equal expressions to be identical, we make the convention that each LF/Twelf expression will
be treated as a representative of its αβη-equivalence class.

Signatures and morphisms - called views in Twelf - are the two top-level notions of the
module system. They correspond to the LF signatures and morphisms, with the exception that
a Twelf signature may contain instantiations of declared symbols of the form c : E = E′ in
addition to conventional symbol declarations. Instantiations are introduced for efficiency and
usability reasons and can be eliminated by replacing each occurrence of c by E′.

Furthermore, Twelf signatures and views may be constructed in a modular way. The mod-
ule system provides two structuring mechanisms, called inclusions and structures respectively,
which import symbols into their enclosing signature and give rise to a signature morphism

7

representing the inheritance relationship. We use the following abstract syntax:

Toplevel G := · | G, %sig S = {Σ} | G, %view v : S → T = {σ}
Signatures Σ := · | Σ, %include S | Σ, %struct s : S = {σ}

Σ, c : E | Σ, c : E = E
Morphisms σ := · | σ, %include µ | σ, c := E
Expressions E := type | c | x | E E | [x : E]E | {x : E}E | E → E
Composites µ := · | v µ

Here S, T stand for signature names, v stands for a view name, and s for a structure name.
Constant symbols, both kinded and typed, are denoted by c. All LF terms, type families, and
kinds are merged into the syntactic category E of expressions; brackets and braces are the Twelf
syntax for the λ and Π constructors respectively. For simplicity, the constructor → is given as
a separate alternative.

A structure %struct s : S = {σ} declared in a signature T imports all symbols declared in
S into T , prefixed by the structure name s. The induced morphism T.s maps each symbol c
declared in S to s.c. Imported symbols are often instantiated: if S declares c : E and σ contains
the assignment c := E′, the imported symbol s.c will be instantiated in T by E′.

Inclusions %include S declared in T are similar to structures but the induced signature
morphism from S to T is always an inclusion. Consequently, inclusions are unnamed and may
not carry instantiations. Multiple inclusions of the same signature are considered identical and
the included symbols are available in T without qualification.

Finally, composites µ represent compositions of morphisms. They are useful in the modular
development of morphisms - the declaration %include µ includes the list of assignments given
by µ into the enclosing σ.

The Twelf module system is conservative in the sense that every modular signature and
view can be elaborated (flattened) into a valid non-modular signature resp. view. For our
specifications we will mostly use inclusions as a structuring mechanism; however, an example
below shows how we can use structures to conveniently compute pushouts for LF.

The LF signatures and morphisms form a category, which has pushouts along inclusions.
Given an inclusion S ↪→ T and an LF morphism g : S → U implemented in Twelf, we can
represent the pushout along S ↪→ T and g by the following Twelf signature:

%sig Z = {
%include U.
%struct t : T = {%include g} .

} .

The pushout thus contains all symbols from U , plus the symbols from T\S prefixed by t.
The induced morphism from T to Z maps every symbol c of S to g(c) and every other symbol
d of T to t.d. The induced morphism from U to Z is an inclusion. We hence have the following
diagram

8

S

U

T

Z

g Z.t

3 Institutions and Comorphisms

We now present some definitions necessary for our work. We assume that the reader is familiar
with the basic concepts of category theory and logic. For introduction to category theory see
[22].

3.1 Institutions

Using categories and functors we can define an institution, which is a model theory-oriented
formalization of a logical system first introduced by Goguen and Burstall in [12]. Institutions
abstract from notions such as formulas, models, and satisfaction and structure the variety of
different logics. Furthermore, they allow us to formulate logic-independent theorems for the
abstract model theory of logic [11].

Definition 1 (Institution). An institution is a 4-tuple (Sig, Sen,Mod, |=)
where

• Sig is a category

• Sen : Sig → Set is a functor

• Mod : Sig → Catop is a functor

• |= is a family of relations |=Σ for Σ ∈ |Sig|, |=Σ ⊆ |Mod(Σ)| × Sen(Σ)

such that for each morphism σ : Σ→ Σ′, sentence F ∈ Sen(Σ), and model M ∈ |Mod(Σ′)| we
have

Mod(σ)(M) |=Σ F iff M |=Σ′ Sen(σ)(F)

The category Sig is called the category of signatures. The morphisms in Sig are called
signature morphisms and represent notation changes and elargement of context. The functor
Sen assigns to each signature Σ a set of sentences over Σ and to each morphism σ : Σ→ Σ′ the
induced sentence translation along σ, also denoted by σ. Similarly, the functor Mod assigns to
each signature Σ a category of models of Σ and to each morphism σ : Σ→ Σ′ the induced model
reduction along σ, denoted by |σ. For a signature Σ, the relation |=Σ is called a satisfaction
relation. The satisfaction condition then represents the fact that truth is invariant under the
change of notation and enlargement of context.

We can now use the framework of institutions to define notions on a logic-independent level.

9

Definition 2 (Elementary Equivalence of Models). Let (Sig, Sen,Mod, |=) be an institution
and Σ be a signature. We say that two models M1,M2 ∈ |Mod(Σ)| are elementary equivalent
if for any F ∈ Sen(Σ) we have that

M1 |=Σ F iff M2 |=Σ F

Definition 3 (Theories and Semantic Entailment). Let (Sig, Sen,Mod, |=) be an institution.
For a fixed Σ, let Γ ⊆ Sen(Σ) and F ∈ Sen(Σ). Then the pair (Σ,Γ) is called a theory of I.
Furthermore, we say that Γ entails F , denoted Γ |=Σ F , if for any model M ∈ |Mod(Σ)| we
have that

if M |=Σ G for all G ∈ Γ then M |=Σ F

Since the concept of institutions is a model-theoretic one, we do not have a formal notion
of proofs or proof calculus. There exist frameworks which add proof theory to institutions,
namely general logics in [23] and the framework described in [32]. However, as our focus here
is model theory, we will work with institutions and the words logic and institution will be used
synonymously.

Many well-known logics can be represented as institutions quite naturally. Our running
examples will be FOL and modal logic.

Example 4 (FOL). The FOL institution is given as follows:

• Signatures of FOL are the usual (finite) first-order signatures and signature morphisms
are type-preserving symbol maps.

• Sentences of a signature Σ are closed first-order formulas over Σ and the sentence trans-
lation along a morphism σ : Σ→ Σ′ is the homomorphic extension of σ to Sen(Σ).

• Models of a signature Σ are pairs (U, I), where U is a set representing the semantic universe
of individuals and I is an interpretation function from Σ to U . The function I interprets
each n-ary function symbol as an n-ary function on U and each n-ary predicate symbol as
an n-ary relation on U . Constants are treated as nullary functions. Model morphisms are
just the identities and the model reduction functor along a morphism σ : Σ → Σ′ maps
each model (U, I) of Σ′ to the model (U, σ; I) of Σ.

• Satisfaction relation on Σ is defined by the usual Tarskian satisfaction of first-order for-
mulas.

Example 5 (Modal Logic). We will use the following institution for modal logic:

• Signatures of modal logic are (finite) sets of propositional variables and signature mor-
phisms are maps between sets.

• Sentences of a signature Σ are given inductively by defining all variables in Σ to be
sentences over Σ, and defining all expressions of the form >,⊥,¬S, S ∧ T, S ∨ T, S ⇒
T,�S, �S to be sentences over Σ whenever S and T are sentences over Σ. The sentence
translation along a morphism σ : Σ→ Σ′ is the homomorphic extension of σ to Sen(Σ).

10

• Models of a signature Σ are given by Kripke semantics - that is, a Σ-model is a triple
(W,R,F), where W is a set representing the semantic universe of possible worlds, R is
a binary relation on W representing accessibility, and F is an interpretation function
mapping each symbol from Σ to a unary predicate on W . The signature morphisms are
just the identities and the model reduction along a morphism σ : Σ→ Σ′ maps each model
(W,R,F) of Σ′ to the model (W,R, σ;F) of Σ.

• Given a signature Σ, a Σ-sentence S, and a Σ-model (W,R,F), the satisfaction relation
on Σ first inductively interprets S as a unary predicate on W and then applies universal
quantification. Let I denote the intermediate interpretation function. If S = �T , for
instance, then SI is defined to hold in a world w iff T I holds in some world w′ for which
w R w′. Finally, S is defined to hold in (W,R,F) iff SI holds in all worlds w ∈W .

3.2 Institution Comorphisms

Analogously to the representation of logics, logic translations can be formalized as certain map-
pings between institutions, as described in [13]. In [39], Tarlecki specifically suggests using LF
as a framework suitable for formalizing translations between institutions. Below we present the
main definitions, the most important for our purposes being that of an institution comorphism.

Definition 6 (Institution Comorphism). Let I = (SigI , SenI ,ModI , |=I) and J = (SigJ , SenJ ,ModJ , |=J

) be two institutions. An institution comorphism from I to J is a triple (Φ, α, β) where

• Φ : SigI → SigJ is a functor

• α : SenI → Φ;SenJ is a natural transformation

• β : ModI ← Φ;ModJ is a natural transformation

such that for each Σ ∈ |SigI |, F ∈ SenI(Σ), and M ∈ |ModJ(Φ(Σ))| we have

βΣ(M) |=I
Σ F iff M |=J

Φ(Σ) αΣ(F)

The satisfaction condition expresses the fact that truth is invariant under translation. We
also have the dual notion of an institution morphism, where α and β are contra- and covariant,
respectively.

Definition 7 (Institution Morphism). Let I = (SigI , SenI ,ModI , |=I) and J = (SigJ , SenJ ,ModJ , |=J

) be two institutions. An institution morphism from I to J is a triple (Φ, α, β) where

• Φ : SigI → SigJ is a functor

• α : SenI ← Φ;SenJ is a natural transformation

• β : ModI → Φ;ModJ is a natural transformation

such that for each Σ ∈ |SigI |, F ∈ SenJ(Φ(Σ)), and M ∈ |ModI(Σ)| we have

M |=I
Σ αΣ(F) iff βΣ(M) |=J

Φ(Σ) F

11

The following definition gives a very important property of institution comorphisms.

Definition 8 (Model Expansion). Let (Φ, α, β) be an institution comorphism from I to J . We
say that the comorphism has the model expansion property if each functor βΣ for Σ ∈ SigI is
surjective on objects.

For the purposes of borrowing, it is enough to have a slightly weaker form of model expansion,
as the following well-known theorem illustrates.

Lemma 9 (Borrowing). Let (Φ, α, β) be an institution comorphism from I to J having model
expansion up to elementary equivalence. Then for any theory (Σ,Γ) of I and a sentence F over
Σ, we have that

Γ |=I
Σ F iff αΣ(Γ) |=J

Φ(Σ) αΣ(F)

where αΣ on sets of sentences is defined in the obvious way.

In other words, we can use the institution J to reason about theories in I. For more on
borrowing, see [6].

Example 10 (Translation of Modal Logic to FOL). The translation of modal logic to FOL is as
follows:

• Given a modal logic signature Σ, we obtain the corresponding FOL signature Φ(Σ) by
declaring each symbol from Σ as a unary predicate symbol in Φ(Σ), and adding an addi-
tional binary predicate symbol acc representing the accessibility relation. The translation
of a signature morphism σ : Σ→ Σ′ is σ itself, extended with identity on acc.

• For a fixed Σ, the translation of a Σ-sentence S is given by first inductively translating
S to a first-order unary predicate and then applying universal quantification. Let α′Σ
denote this intermediate translation. If S = �S′, for instance, then we define α′Σ(S) =
∃y.α′Σ(S′)(y) ∧ acc x y. The resulting sentence translation is given by αΣ(S) = ∀α′Σ(S).
We note that α′Σ is the syntactic equivalent of the interpretation function I used to de-
termine the satisfaction relation. Similarly, αΣ is the syntactic equivalent of interpreting
a sentence as a statement about the semantic universe of worlds.

• For a fixed Σ, each first-order model (U, I) of Φ(Σ) is translated to the Σ-model (U, accI , I ′),
where I ′ is the restriction of I to symbols different from acc.

4 Logical Relations

As was mentioned in Section 1, a logical relation can be viewed as a relation between interpre-
tations: For every type t, a logical relation ρ from a model M to a model N provides a relation
ρt ⊆ tM×tN . Logical relations can also be seen as a generalization of model morphisms: Instead
of a map ρt : tM → tN , a relation is used in higher-order languages because there is no natural
inductive definition of a map ρs→t in terms of maps ρs and ρt. However, such logical relations
are not in general closed under composition.

12

The characteristic feature of the definition of logical relations is that functions are related
if and only if they map related arguments to related values. The central result is the Basic
Lemma, which states that terms with free variables are interpreted as related values if related
values are substituted for the free variables. The definition and lemma generalize easily to n-ary
logical relations.

There have been several results regarding more general classes of relations [37, 25]. These still
satisfy the basic lemma and enjoy better closure properties but have less intuitive definitions.
The largest class of relations satisfying the basic lemma is studied systematically in [17] and [30]
where they are called prelogical and lax logical relations, respectively. The authors give several
characterizations of these relations, and the most intuitive one for our purposes is the following:
A lax logical relation is analogous to a logical relation except it has to relate two functions only
when they are expressible by the same term.

The above restriction to λ-definable functions indicates a syntactical flavor of lax logical
relations, and our purpose here is to capture it by purely syntactical means. Consequently, we
do not consider relations between models of type theory. Instead, we appeal to the category
of signatures and signature morphisms and use the fact that signature morphisms from S to T
behave like models: Both a model of S and a morphism from S to T are inductively defined in-
terpretations of S. In fact, models can be seen as morphisms where the codomain T is implicitly
the semantic universe. This also casts a new light on the structural logical relations employed
in [38], where S is an LF-encoding of simple type theory and T a meta-logic interpreting S.

This approach is applicable to all type theories that are expressive enough to internalize the
“forall . . . if . . . then . . . ” statement that occurs in the case of function types. This includes in
particular dependent type theory as in LF [14] and higher-order logic with polymorphism as in
Isabelle [27].

In this section we fix arbitrary LF signatures S and T and LF signature morphisms µi :
S → T for i = 1, . . . , n. The intuition behind the definition of a (syntactical) logical relation ρ
on µ1, . . . , µn is as follows: For every closed type A in S, ρ(A) should be a type family of kind
µ1(A) → . . . → µn(A) → type in T , giving the relation on A. Furthermore, for every closed
term t : A in S, ρ(t) should be a term of type ρ(A) µ1(t) . . . µn(t), proving the Basic Lemma
for t.
Notation 11. Below are some conventions and notations we will use.

• For an expression E, we denote by µi(E) the expression obtained by translating E along
µi and indexing all free variables in the translated expression by .i

• For a context Γ = x1 : A1, . . . , xn : Am, the expression λx1:A1 . . . λxn:Am
A will be denoted

by λΓA. Similarly for Π.

• For a tuple ~N = (N1, . . . , Nm), the expression E N1 . . . Nm will be denoted by E ~N .

• We denote by ~x the tuple (x1, . . . , xn) and by ~µ(E) the tuple (µ1(E), . . . ,
µn(E)). If ~E = (E1, . . . , En), the context x1 : E1, . . . , x

n : En will be denoted by ~x : ~E
and the substitution x1/E1, . . . , x

n/En by ~x/ ~E.

We are now ready to give the formal definition of logical relations in LF. A logical relation
ρ will consists of 3 maps, all denoted by ρ, on contexts, kinds, and terms/type families of S

13

respectively. For kinds K, ρ takes a type family C as an additional argument and is written as
ρC(K).

Definition 12 (Logical Relations). Assume the morphisms µi are given and let ρ be a function
associating with each constant in S an expression in T . We extend ρ inductively as follows.

• On contexts: If Γ is a context in S, then ρ(Γ) is defined by

– ρ(·) = ·
– ρ(Γ, x : A) = ρ(Γ), ~x : ~µ(A), κx : ρ(A) ~x

• On kinds: If C is a Γ-type family of kind K in S, then ρC(K) is defined by

– ρA(type) = µ1(A)→ . . .→ µn(A)→ type

– ρC(Πx:AK) = Π~x:~µ(A)Πκx:ρ(A) ~x ρ
(C x)(K)

• On terms and type families: If M is a Γ-term or type family in S, then ρ(M) is defined
by

– ρ(x) = κx

– ρ(M N) = ρ(M) ~µ(N) ρ(N)

– ρ(λx:AM) = λ~x:~µ(A)λκx:ρ(A) ~x ρ(M)

– ρ(Πx:AB) = λ~f :~µ(Πx:AB)Π~x:~µ(A)Πκx:ρ(A) ~x ρ(B) (f1 x1) . . . (fn xn)
where f is not free in B.

Then ρ is called a relation. Furthermore, ρ is a logical relation if the following conditions holds
for each symbol in S:

• If a : K ∈ S for a kind K then · `T ρ(a) : ρa(K).

• If c : A ∈ S for a type A then · `T ρ(c) : ρ(A) ~µ(c).

Notation 13. A logical relation ρ will be denoted by ρ : µ1 ⇒ . . .⇒ µn : S → T .

Lemma 14 (Restrictions). Let ρ : µ1 ⇒ . . .⇒ µn be a logical relation. Let S′ bes a subsignature
of S and µ′1, . . . , µ

′
n be the restrictions of µ1, . . . , µn to S′. Furthermore, let ρ′ be the restriction

of ρ to (the contexts and expressions of) S′. Then ρ′ : µ′1 ⇒ . . .⇒ µ′n is a logical relation.

Proof. Obvious.

Lemma 15 (Substitution). Let ρ be a relation. Let (Γ, x : A,∆) be an S-context and M be
such that Γ `S M : A. Then for any (Γ, x : A,∆)-term or type family E in S we have

ρ(E[x/M]) = ρ(E)[~x/~µ(M), κx/ρ(M)]

and for any (Γ, x : A,∆)-type family C of kind K we have

ρ(C[x/M])(K[x/M]) = ρC(K)[~x/~µ(M), κx/ρ(M)]

14

Proof. It is easy to show the analogous claim for µi: For any S-expression E′ we have

µi(E′[x/M]) = µi(E′)[~x/~µ(M), κx/ρ(M)]

Using this result it is straightfoward to prove the lemma by induction on the structure of E
resp. K.

Theorem 16 (Basic Lemma). Let ρ be a logical relation. Then we have the following invariants:

• If Γ `S A : K : kind then

ρ(Γ) `T ρ(A) : ρA(K)

• If Γ `S M : A : type then

ρ(Γ) `T ρ(M) : ρ(A) ~µ(M)

Proof. Let E be a Γ-term or type family in S. We first prove a weaker form of the theorem,
relying on the assumption that ρ(Γ) is a valid T -context. We proceed by induction on the
structure of E:

• For type families:

– E ≡ a. Let K be such that Γ `S a : K. Then we must have a : K ∈ S. By definition

· `T ρ(a) : ρa(K)

Since ρ(Γ) is by assumption well-formed, we have

ρ(Γ) `T ρ(a) : ρa(K)

as desired.

– E ≡ C M . Assume Γ `S C : Πx:AK and Γ `S M : A. Then Γ `S C M : K[x/M].
We have

ρ(C M) = ρ(C) ~µ(M) ρ(M)

Using the inductive hypothesis for C and M we have

ρ(Γ) `T ρ(C) : ρC(Πx:AK)
ρ(Γ) `T ρ(M) : ρ(A) ~µ(M)

Now

ρC(Πx:AK) = Π~x:~µ(A)Πκx:ρ(A) ~x ρ
(C x)(K)

Hence

ρ(Γ) `T ρ(C M) : ρ(C x)(K)[~x/~µ(M), κx/ρ(M)]

15

Now by Lemma 15

ρ(C x)(K)[~x/~µ(M), κx/ρ(M)] = ρ(C M)(K[x/M])

which yields

ρ(Γ) `T ρ(C M) : ρ(C M)(K[x/M])

as desired.

– E ≡ λx:AC. Assume Γ `S λx:AC : Πx:AK. Then Γ, x : A `S C : K. We have

ρ(λx:AC) = λ~x:~µ(A)λκx:ρ(A) ~x ρ(C)

Furthermore

ρ(λx:AC)(Πx:AK) = Π~x:~µ(A)Πκx:ρ(A) ~x ρ
C(K)

Now

ρ(Γ, x : A) = ρ(Γ), ~x : ~µ(A), κx : ρ(A) ~x

By assumption ρ(Γ) is well-formed. Furthermore, it is easy to see that µi(A) is a
valid ρ(Γ)-type. Using the inductive hypothesis for A then shows that ρ(A) is a valid
ρ(Γ)-type as well. Thus we conclude that ρ(Γ, x : A) is a valid context and we can
use the inductive hypothesis for C to obtain

ρ(Γ, x : A) `T ρ(C) : ρC(K)

This implies

ρ(Γ) `T ρ(λx:AC) : ρ(λx:AC)(Πx:AK)

as desired.

– E ≡ Πx:AB. Then Γ `S A : type and Γ, x : A `S B : type. We have

ρ(Πx:AB) = λ~f :~µ(Πx:AB)Π~x:µ(A)Πκx:ρ(A) ~x

ρ(B) (f1 x1) . . . (fn xn)

It is easy to see that µi(Πx:AB) and µi(A) are valid ρ(Γ)-types in T . By induction
hypothesis for A we have

ρ(Γ) `T ρ(A) : µ1(A)→ . . .→ µn(A)→ type

what implies that ρ(A) ~x is also a valid ρ(Γ)-type in T . Now denote by ∆ the valid
context

ρ(Γ), ~f : ~µ(Πx:AB), ~x : ~µ(A), κx : ρ(A) ~x

16

Then

∆ `T f i xi : µi(B)

As in the previous case, ρ(Γ, x : A) is a valid ρ(Γ)-context and by induction hypothesis
for B we have

ρ(Γ, x : A) `T ρ(B) : µ1(B)→ . . .→ µn(B)→ type

Since ρ(Γ, x : A) ⊆ ∆, we have

∆ `T ρ(B) (f1 y1) . . . (fn yn) : type

which shows that

ρ(Γ) `T ρ(Πx:AB) : µ1(Πx:AB)→ . . .→ µn(Πx:AB)→ type

as desired.

• For terms:

– E ≡ c. This case is analogous to the case E ≡ a for type families.

– E ≡ x. Then ρ(x) = κx. Let A be such that Γ `S x : A. Then Γ must have the form
Γ1, x : A,Γ2 and ρ(Γ) has the form

ρ(Γ1), ~x : ~µ(A), κx : ρ(A) ~x, ∆

Since ρ(Γ) is well-formed, we have

ρ(Γ) `T κx : ρ(A) ~x

Thus as desired

ρ(Γ) `T ρ(x) : ρ(A) ~µ(x)

– E ≡ M N . Assume Γ `S M : Πx:AB and Γ `S N : A. Then Γ `S M N : B[x/N].
We have

ρ(M N) = ρ(M) ~µ(N) ρ(N)

Using the inductive hypothesis for M and N we have

ρ(Γ) `T ρ(M) : ρ(Πx:AB) ~µ(M)
ρ(Γ) `T ρ(N) : ρ(A) ~µ(N)

Now by β-reduction

ρ(Πx:AB) ~µ(M) = Π~x:~µ(A)Πκx:ρ(A) ~x

ρ(B) (µ1(M) y1) . . . (µn(M) yn)

17

Hence

ρ(Γ) `T ρ(M N) : ρ(B)[~x/~µ(N), κx/ρ(N)]
(µ1(M) µ1(N)) (µn(M) µn(N))

Now by Lemma 15

ρ(B)[~x/~µ(N), κx/ρ(N)] = ρ(B[x/N])

which yields

ρ(Γ) `T ρ(M N) : ρ(B[x/N]) ~µ(M N)

as desired.

– E ≡ λx:AM . Assume Γ `S λx:AM : Πx:AB. Then Γ, x : A `S M : B. We have

ρ(λx:AM) = λ~x:~µ(A)λκx:ρ(A) ~x ρ(M)

Employing β-reduction we have

ρ(Πx:AB) ~µ(λx:AM) = Π~x:~µ(A)Πκx:ρ(A) ~x

ρ(B) (µ1(λx:AM) x1) . . . (µn(λx:AM) xn)

As in the case for type families, the context ρ(Γ, x : A) is well-formed. Thus by
inductive hypothesis for M we have

ρ(Γ, x : A) `T ρ(M) : ρ(B) ~µ(M)

Since µi(λx:AM) xi = µi(M), we have

ρ(Γ) `T ρ(λx:AM) : ρ(Πx:AB) ~µ(λx:AM)

as desired.

Using the claim we have just proved it is easy to show by induction on the length of Γ that ρ(Γ)
is well-formed. This in combination with the claim proves the theorem.

Lemma 17 (Left Composition with a Morphism). Let ρ : µ1 ⇒ . . .⇒ µn : S → T be a logical
relation and r : T → U be a morphism. Then (r; ρ) : (r;µ1)⇒ . . .⇒ (r;µn) : S → U defined by

(r; ρ)(Γ) = ρ(r(Γ))
(r; ρ)(C) = ρ(r(C))

(r; ρ)C(K) = ρ(r(C))(r(K))

is a logical relation.

Proof. Follows from the type preservation theorem.

18

Lemma 18 (Right Composition with a Morphism). Let ρ : µ1 ⇒ . . .⇒ µn : S → T be a logical
relation and r : T → U be a morphism. Then (ρ; r) : (µ1; r)⇒ . . .⇒ (µn; r) : S → U defined by

(ρ; r)(Γ) = r(ρ(Γ))
(ρ; r)(C) = r(ρ(C))

(ρ; r)C(K) = r(ρC(K))

is a logical relation.

Proof. Follows from the type preservation theorem.

We now show how logical relations can be used to reason about the inhabitance of types, an
application that will be utilized in Section 6 to prove properties about logic translations. We
have the following notion and lemma for binary logical relations.

Definition 19 (Transition Pairs). Let ρ : µ1 ⇒ µ2 : S → T be a logical relation and C be a
type family in S of kind ΠΓ type, for Γ = x1 : A1, . . . , xm : Am. A pair (Ψ,Ξ) of terms in T is
called a transition pair for C under ρ if we have

· `T Ψ : Πρ(Γ) µ1(C) x1
1 . . . x1

m → µ2(C) x2
1 . . . x2

m

· `T Ξ : Πρ(Γ) µ2(C) x2
1 . . . x2

m → µ1(C) x1
1 . . . x1

m

Lemma 20. Let ρ : µ1 ⇒ µ2 : S → T be a logical relation and C be a type family in S of kind
ΠΓ type, Γ = x1 : A1, . . . , xm : Am. Assume there exists a transition pair (Ψ,Ξ) for C under
ρ. If (M1, . . . ,Mm) is a spine of type Γ, then the type µ1(C M1 . . . Mm) is inhabited if and
only if the type µ2(C M1 . . . Mm) is inhabited.

Proof. Let Γ = x1 : A1, . . . , xm : Am. By assumption we have

· `S Mi : Ai[x1/M1] . . . [xi−1/Mi−1]

Thus by the Basic Lemma 16

· `T ρ(Mi) : ρ(Ai[x1/M1] . . . [xi−1/Mi−1]) ~µ(Mi)

By repeated application of Lemma 15 we have

ρ(Ai[x1/M1] . . . [xi−1/Mi−1]) = ρ(Ai)[~x1/~µ(M1),
κx1/ρ(M1)] . . . [~xi−1/~µ(Mi−1), κx1/ρ(Mi−1)]

Thus

· `T Ψ ~µ(M1) ρ(M1) . . . ~µ(Mm) ρ(Mm) :
µ1(C) µ1(M1) . . . µ1(Mm)→ µ2(C) µ2(M1) . . . µ2(Mm)

· `T Ξ ~µ(M1) ρ(M1) . . . ~µ(Mm) ρ(Mm) :
µ2(C) µ2(M1) . . . µ2(Mm)→ µ1(C) µ1(M1) . . . µ1(Mm)

19

This shows that the types

µ1(C M1 . . . Mm)→ µ2(C M1 . . . Mm)
µ2(C M1 . . . Mm)→ µ1(C M1 . . . Mm)

are both inhabited. Hence the type µ1(C M1 . . . Mm) is inhabited if and only if the type
µ2(C M1 . . . Mm) is inhabited.

5 Encoding Logics

The full framework for encoding logics and their translations in Twelf was introduced in [32].
Here we leave out the representation of proof theory and focus on the model-theoretic aspects
only.
Let Base be the Twelf signature

%sig Base = {
o : type .
ded : o → type .

} .

Furthemore, let F0, F be two fixed Twelf signatures and P : F0 → F be a Twelf morphism.
The signature F will be called a foundation and will usually be an encoding of a particular set
theory; in our case F encodes the Zermelo-Fraenkel set theory with the axiom of choice (ZFC).

An encoding of a foundation, however, tends to be very large and hard to work with. For this
reason, we often consider a fragment of the foundation, which is expressive enough to axiomatize
the semantics of many logics while staying simple enough to work with. The signature F0

represents the fragment and P provides a translation to the full foundation. In our framework
the fragment will be an encoding of higher-order logic with functional extensionality.

A logic in Twelf will be represented as a diagram in the LF category of signatures having
the following form:

Base Lsyn Lmod

F0 F

ltruth lmod

P

where we require that ltruth(ded) is a symbol in Lsyn rather than an arbitrary type. The reason
for this restriction will become clear in Section 6.

The intuition is that ltruth(o) represents the syntactic class of formulas and ltruth(ded)
represents the truth of formulas. While in many cases ltruth will be an inclusion, in some cases
it is needed that ltruth map o to a different type, as for instance in the encoding of higher-order
logic. The symbol ded will usually be included in Lsyn and mapped to itself.

Lsyn declares the syntax of the encoded logic, i.e. LF symbols that represent syntactic classes
(e.g. terms or formulas), sorts, functions, predicates, logical connectives, etc. Lmod declares the
model theory, i.e. LF symbols that axiomatize the properties of models.

20

The fragment F0 serves as a metatheory for axiomatizing the model theory of logics and the
foundation F serves as a metalanguage for expressing particular models. The morphism lmod

represents (part of) the interpretation function that translates syntax into a semantic realm.
We will now show how the above diagram induces an institution.

5.1 Signatures and Sentences

The signature category is defined to be the category of LF inclusion slices out of Lsyn. That
is, the signatures are LF morphisms of the form ϕ : Lsyn ↪→ Σ for some Σ and the signature
morphisms σ : ϕ1 → ϕ2 are those LF morphisms which make the following triangle commute:

Lsyn

Σ1

Σ2

ϕ1

ϕ2

σ

The identity morphisms and composition are inherited from LF. It is easy to see that the
inclusion slices form a category. This definition, however, is not completely adequate because
in many cases the logic being encoded is less expressive than LF itself. For this reason we often
need to specify additional constraints in order to obtain the desired institution.

For instance, we might need to place restrictions on the form of declarations which can
occur in the extended part of Σ. In case of modal logic, for example, we only want to allow
declarations of propositional variables, i.e. having the form p : o. Declaring symbols of arbitrary
types/kinds should not be permitted.

Similarly, we might need to consider only signature morphisms which have certain proper-
ties. For modal logic as well as FOL, signature morphisms only map symbols to symbols. LF
morphisms, however, are allowed to map symbols to arbitrary expressions of the appropriate
type/kind.

One possible solution to both problems is to introduce a set of patterns, which describe the
form of permitted declarations/morphisms. A preliminary syntax for patterns has already been
developed by Florian Rabe and Fulya Horozal but it has yet to be implemented for Twelf. For
now we use the above definition and do not discuss the issue of patterns in detail.

Example 21 (Modal Logic Syntax). The syntax ML of modal logic (having the role of the the
signature Lsyn) is based on the syntax MPL for minimal propositional logic, which declares the
connectives ⊥,⇒ and defines all other propositional connectives in terms of these two. The
modal logic syntax then adds the two additional connectives �, �. We illustrate below the
encoding of �.
%sig Possibility = {

%include Base .
� : o → o .

} .

%sig ML = {

21

%include MPL .
%include Necessity .
%include Possibility .

} .

As can be seen from the above encodings, the morphism ltruth for modal logic is an inclusion.

Example 22 (FOL Syntax). The syntax FOL of first-order logic is based on the syntax PL for
propositional logic and an extension BaseFOL of the Base signature, which declares the type
i of individuals. The FOL syntax then adds the two quantifiers ∀,∃. We illustrate below the
encoding of ∀.
%sig Forall = {

%include BaseFOL .
∀ : (i → o) → o .

} .

%sig FOL = {
%include BaseFOL .
%include PL .
%include Forall .
%include Exists .

} .

The morphism ltruth for FOL is likewise an inclusion.

The sentences over a signature ϕ : Lsyn ↪→ Σ are defined to be the LF terms of type ltruth(o)
over Σ. If σ : ϕ1 → ϕ2 is a signature morphism, its restriction to Sen(ϕ1) is the desired sentence
translation along σ. Since by definition any signature morphism σ is the identity on Lsyn, it
is straightforward to show that Sen is indeed a functor from the category of signatures to the
category Set of sets.

5.2 Models and Satisfaction Relation

Given a signature ϕ : Lsyn ↪→ Σ, we construct an LF morphism ϕmod by a pushout along ϕ and
lmod, where Σmod denotes the pushout:

Lsyn

Lmod

Σ

Σmod

lmod

ϕ

ιϕ

ϕmod

The category of models of ϕ is defined to be the discrete category of those LF morphisms
M : Σmod → F which make the following diagram commute

22

Σmod

F0 F

M

P

This guarantees that symbols of the methatheory have a fixed semantics. The composition
ϕmod;M then interprets the symbols of Σ in the semantic realm encoded by F . Since model
morphisms are not essential for presenting the notion of institution, we omit them for simplicity.

The advantage of this definition is that models are now purely syntactical entities and hence
are easier to express and reason about. On the other hand, it is clear that not every model
in the original logic can be represented as an LF morphism in this way - a signature can have
uncountably many models but there are only countably many LF morphisms between two fixed
signatures. We will discuss this issue in more detail in Section 5.3.

Let σ : ϕ1 → ϕ2 be a signature morphism. Then we have

ϕ1 ; σ ; ϕmod2 = ϕ2 ; ϕmod2

by definition of σ and

ϕ2 ; ϕmod2 = lmod ; ιϕ2

by definition of ϕmod2 . Thus

ϕ1 ; σ ; ϕmod2 = lmod ; ιϕ2 (1)

and by the universal property of the pushout Σmod1 there exists a unique morphism σmod such
that the following LF diagram commutes

Σ1

Σmod1

Σ2

Σmod2

Lmod

σ

ϕmod1

σmod

ϕmod2

ιϕ1 ιϕ2

The model reduction functor along σ is then defined by mapping each model M of ϕ2 to
the model σmod;M of ϕ1. By uniqueness of the induced σmod morphism, it follows that if
σ : ϕ → ϕ is an identity, then σmod is an LF identity. Similarly, if σ1 : ϕ1 → ϕ2, σ2 : ϕ2 → ϕ3

then (σ1;σ2)mod = σmod1 ;σmod2 . This proves that Mod is indeed a functor from the signature
category to the dual category Catop of categories.

23

Example 23 (Foundation). The encodings of ZFC and HOL are described in [19]. Our foundation
will be the signature TypedZF, which encodes the ZFC set theory and adds additional type
constructors and operations on top of it, allowing us for instance to construct the type of
elements of a given set or to quantify over the elements of a given set. We shall not go into
further details here and refer the reader to [19].
The fragment is represented by the signature HOL:

%sig HOL = {
s e t : type .
elem : s e t → type .

=⇒ : s e t → s e t → type . %infix =⇒ .
λ : (elem A → elem B) → elem (A =⇒ B) .
@ : elem (A =⇒ B) → (elem A → elem B) .
. . .

} .

The type set represents the type of all sets and the type constructor elem returns the type
of elements of a given set. The operator =⇒ constructs the set of functions between two given
sets and λ,@ allow us to move between the LF function space and its set-theoretic equivalent.
The operators =⇒, λ,@ thus act as the function constructor, abstraction, and application,
respectively, for sets.

HOL further declares the type o of formulas and the constructor ded for truth judgements.
It specifies the usual propositional connectives true, false, not, and, or, imp and allows to
quantify over the elements of a given set using forall and exists. Finally, HOL adds proof rules
and axioms for the declared symbols, which we shall omit for simplicity. The translation of
HOL to TypedZF is provided by the morphism HOL-ZF described in [19].

Example 24 (Model Theory of FOL). The first-order semantics formalized in HOL interprets
the type o of formulas as (the elements of) the set of booleans and the logical connectives as
operations on booleans. Since this is the case for other logics as well, it is convenient to have
the HOL encoding of booleans in a separate signature, which we will call Universes.

This signature declares the boolean constants and axioms and adds an encoding of the
usual logical connectives as operations on booleans. Apart from the propositional connectives
>,⊥,¬,∧,∨,⇒ it also declares the boolean quantifiers ∀ and ∃, which quantify over the elements
of a given set.

The semantics of FOL can now be straightforwardly encoded in the signature FOLmod which
has the role of Lmod for first-order logic:

%sig FOLmod = {
%include HOL .
%include Universes .

univ : s e t .
non empty universe : ded e x i s t s [x : elem univ] t rue .

} .

where the non empty universe axiom guarantees the existence of at least one individual. The
morphism FOL-FOLmod interprets the FOL syntax in boolean semantics in the obvious way
and has the role of lmod. We illustrate below the interpretation of o, ded, i and forall :

24

%view Base-FOLmod : Base → FOLmod = {
o := elem bool .
ded := [F : elem bool] ded F eq 1 .

} .

%view BaseFOL-FOLmod : BaseFOL → FOLmod = {
%include Base-FOLmod .
i := elem univ .

} .

%view Forall-FOLmod : Forall → FOLmod = {
%include BaseFOL-FOLmod .
f o r a l l := ∀ .

} .

%view FOL-FOLmod : FOL → FOLmod = {
%include BaseFOL-FOLmod .

%include Forall-FOLmod .
. . .

} .

Example 25 (Model Theory of Modal Logic). The signature MLmod encodes the Kripke seman-
tics analogously to the first-order semantics, adding the symbols for the accessibility relation:
%sig MLmod = {

%include HOL .
%include Universes .

world : s e t .
acc ’ : elem (world =⇒ world =⇒ bool) .
acc : elem world → elem world → elem bool

= [v] [w] acc ’ @ v @ w. %infix acc .
e x i s t s w o r l d : ded e x i s t s [x : elem world] t rue .

} .

The accessibility relation is represented by acc′ as a set-theoretic binary function returning
a boolean, and acc is the equivalent LF function introduced for convenience. The morphism
ML-MLmod translates modal logic syntax to Kripke semantics in the usual way. We illustrate
below the translation of o, ded and �:
%view Base-MLmod : Base → MLmod = {

o := elem (world =⇒ bool) .
ded := [f : elem (world =⇒ bool)]

ded (∀ [w : elem world] f @ w) eq 1 .
} .

%view Necessity-MLmod : Necessity → MLmod = {
%include BaseMLmod .
� := [f : elem (world =⇒ bool)]

λ [w : elem world] ∃ [w’ : elem world] (w acc w’) ∧ (f @ w’) .
} .

%view ML-MLmod : ML → MLmod = {
%include Base-MLmod .

25

%include Necessity-MLmod .
. . .

} .

The type o of formulas is interpreted as the type of unary set-theoretic functions taking a
world as an argument and returning a boolean. The symbol ded is interpreted as an LF function
taking a predicate1 f as an argument and returning a type which is nonempty if and only if f
returns 1 for all possible worlds (here the boolean version of universal quantification is used).
Finally, � is interpreted as an LF function taking a predicate f as an argument and returning a
predicate which is 1 for a world w if and only if there exists a world accessible from w for which
f returns 1.

Given a signature ϕ, a ϕ-sentence S, and a ϕ-model M , we define the satisfaction relation
on ϕ by putting M |=ϕ S if and only if the type dedl S is interpreted as inhabited, i.e. there
exists a t such that

· `F t : ϕmod;M (dedl S)

where dedl denotes ltruth(ded).
This notion of truth, albeit undecidable, is a purely syntactical one and goes along the

lines of the Curry-Howard isomorphism [10, 18]. With all parts of the institution represented
syntactically, we can reason about the encoded logic by purely type-theoretic means, without
having to refer to the underlying semantics of LF. The proof of the satisfaction condition in the
next section is an example of this.

5.3 Satisfaction Condition and Adequacy

Let σ : ϕ1 → ϕ2 be a signature morphism, S a ϕ1-sentence, and M a ϕ2-model. Since σ is by
definition identity on Lsyn, we have

ϕmod2 ;M (dedl σ(S)) = σ;ϕmod2 ;M(dedl S)

Now σ;ϕmod2 = ϕmod1 ;σmod by definition of σmod, what implies

ϕmod2 ;M (dedl σ(S)) = ϕmod1 ;σmod;M (dedl S)

This proves that M |σ |=ϕ1 S iff M |=ϕ2 σ(S) as desired and we have the following theorem.

Theorem 26. The logic induced by the LF diagram (Lsyn, Lmod, ltruth, lmod) as described in
this section is an institution.

A natural question to ask at this point is how the encoded logic relates to the original one,
which we had in mind when implementing Lsyn, Lmod and other components of the encoding.
This problem is referred to as adequacy of the encoding. One definition of adequacy is given in
[32]; however, it does not address several important issues.

Firstly, it requires the existence of a comorphism with model expansion from the original
logic to the encoded one. For most logics this requirement is too strong - as we have already

1The word ’predicate’ here refers to a term of type elem (world =⇒ bool).

26

remarked in Section 5.2, the encoded logic will in general have less models than the original
one, the class of models of the latter being restricted to those defined constructively using the
axioms of ZFC. For this reason the model translation will generally not be surjective on objects.

Furthermore, the definition in [32] requires a comorphism in one direction only, which is
not sufficient to guarantee adequacy. It merely provides an embedding of the original logic in
the encoded one, while permitting the latter to be more expressive. We thus give the following
definition of adequacy, developed in collaboration with Till Mossakowski.

Definition 27 (Adequacy). Let I = (SigI , SenI ,ModI , |=I) be an institution. Let D be an
LF diagram representing a logic and J = (SigJ , SenJ ,ModJ , |=J) be the institution induced
by D. Then we say that D is an adequate encoding of I if there exists an institution morphism
(Φ, α, β) from J to I such that

• Φ is a retraction, i.e. there exists a functor Φ′ : SigI → SigJ such that Φ′; Φ is the identity
functor on SigI .

• αΣ : SenI(Φ(Σ))→ SenJ(Σ) is bijective for each Σ ∈ SigJ .

• βΣ : ModJ(Σ) → ModI(Φ(Σ)) is surjective on objects up to elementary equivalence for
each Σ ∈ SigJ .

This definition in particular guarantees that there exists a comorphism from I to J with
model expansion up to elementary equivalence and that borrowing is sound in both directions.
Assuming the existence of suitable patterns, it is possible to show that the encodings of FOL
and modal logic as given in this section are adequate. However, while the construction of the
required institution morphism is fairly straightforward, proving that the morphism has model
expansion up to elementary equivalence is nontrivial. Here we only present the main idea.

To prove that each model is elementary equivalent to a model representable using the axioms
of ZFC, we use a canonical model construction such as e.g. the Henkin models [16] for FOL.
For a given theory (Σ,Γ), we first construct a syntactic model satisfying precisely the sentences
from Γ. We then show that the constructed syntactic model is representable, proving model
expansion up to elementary equivalence.

In the remaining sections we will only consider logics arising from Twelf encodings and will
not refer to their model-theoretic counterparts anymore.

6 Encoding Logic Translations

To encode logic translations in Twelf, we build on the work done in [32]. Let (Lsyn1 , Lmod1 , ltruth1 , lmod1)
and (Lsyn2 , Lmod2 , ltruth2 , lmod2) be two LF diagrams representing the institutions I and J respec-
tively. A translation from I to J will be represented as a triple (τΣ, τα, τβ), where τΣ : Lsyn2 ↪→ Σ∗
is a signature in J and τα, τβ are two LF morphisms such that the following diagram commutes

27

Lsyn1 Σ∗

Lmod1 Σmod∗

F0

τα

lmod1 τmodΣ

τβ

Furthermore, we require that τα(ded1) has the form [f] ded2 G for some G, where dedi denotes
ltruthi (ded) for i = 1, 2.

The intuition is that τΣ declares the symbols which must be included in every translated
signature, τα provides the translation of syntax, and τβ provides the translation of model theory
while preserving the foundation. The condition imposed on τα guarantees that τα induces a
sentence translation, as will be shown later on.

We will now show how (τΣ, τα, τβ) induces a comorphism (Φ, α, β) from I to J .

6.1 Signature Translation

Given a signature ϕ : Lsyn1 → Σ of I, we construct an LF morphism ϑϕ by a pushout along ϕ
and τα, where Φ(Σ) denotes the pushout:

Lsyn1

Σ∗

Σ

Φ(Σ)

τα

ϕ

ϑϕ

jϕ

The translated signature Φ(ϕ) is then obtained as the composition of τΣ with the inclusion jϕ.
Let σ : ϕ1 → ϕ2 be a signature morphism in I. Then we have

ϕ1 ; σ ; ϑϕ2 = ϕ2 ; ϑϕ2

by definition of σ and

ϕ2 ; ϑϕ2 = τα ; jϕ2

by definition of ϑϕ2 . Thus

ϕ1 ; σ ; ϑϕ2 = τα ; jϕ2 (2)

and by the universal property of the pushout Φ(Σ1) there exists a unique morphism, which we
define to be Φ(σ), such that the following LF diagram commutes

28

Σ1 Σ2

Φ(Σ1) Φ(Σ2)

Σ∗

σ

ϑϕ1 ϑϕ2

Φ(σ)

jϕ1 jϕ2

By the uniqueness property of Φ(σ) it follows that Φ preserves morphism identities and com-
positions, and hence is a functor from SigI to SigJ .

This definition of Φ by means of a pushout, however, is not always applicable. In the case
of the translation of many-sorted first-order logic to FOL, for example, one needs to introduce
an additional axiom in Φ(Σ) for each translated function symbol in Σ. The resulting signature
Φ(Σ) is not obtained by a pushout but rather via pattern-matching on the declarations of Σ. To
accomodate such translations, we will again make use of patterns. For now we leave this issue
as future work and only consider signature translations representable by pushouts as described
above.

Example 28 (Translating Modal Logic to FOL - τΣ). The signature Sig∗ which has the role of
Σ∗ declares a binary predicate symbol representing the accessibility relation:

%sig Sig∗ = {
%include FOL.
r e l : i → i → o . %infix r e l .

} .

Example 29 (Translating Modal Logic to FOL - τα). The syntax translation from modal logic to
FOL is represented by the morphism ML-Sig∗, which translates modal logic sentences to unary
first-order predicates in the usual way. The translated truth judgement then applies universal
quantification.

%view Base-Sig∗ : Base → Sig∗ = {
o := i → o .
ded := [f : i → o] ded f o r a l l f .

} .

%view MPL-Sig∗ : MPL → Sig∗ = {
%include Base-Sig∗ .
⊥ := [x : i] f a l s e .
⇒ := [f : i → o] [g : i → o] [x : i] (f x) imp (g x) .

} .

%view Necessity-Sig∗ : Necessity → Sig∗ = {
%include Base-Sig∗ .
� := [f : i → o] [x : i] f o r a l l [y : i] (x r e l y) imp (f y) .

} .

29

%view Possibility-Sig∗ : Possibility → Sig∗ = {
%include Base-Sig∗ .
� := [f : i → o] [x : i] e x i s t s [y : i] (x r e l y) and (f y) .

} .

%view ML-Sig∗ : ML → Sig∗ = {
%include MPL-Sig∗ .
%include Necessity-Sig∗ .
%include Possibility-Sig∗ .

} .

It is obvious that ML-Sig∗ satisfies the condition imposed on τα.

6.2 Sentence Translation

Let ϕ be a signature of I. By definition of τα we have that τα(ded1) has the form [f] ded2 G
for some G. By definition of ltruthi we have that dedi is a symbol in Lsyni , what implies that the
G above is unique.

Moreover, by definition of ϑϕ we have that for any sentence S over ϕ, there exists a unique
sentence S′ over Φ(ϕ) such that ϑϕ(ded1 S) = ded2 S

′. In particular, S′ = G[f/ϑϕ(S)]. The
sentence translation αΣ is then defined by αΣ(S) = S′.

Note: We cannot simply define αΣ by restricting ϑϕ to SenI , as there is no guarantee that
ϑϕ maps the type of sentences over ϕ1 to the type of sentences over ϕ2. In fact, as we saw in
the previous section this is indeed not the case for the translation of modal logic to FOL.

We now verify that α : SenI → Φ;SenJ defined in this way is a natural transformation. Let
σ : ϕ1 → ϕ2 be a signature morphism in SigI and S be a sentence over ϕ1. We have

ϑϕ2(ded1 σ(S)) = ϑϕ2(σ(ded1 S))

by definition of σ. Now

ϑϕ2(σ(ded1 S)) = Φ(σ)(ϑϕ1(ded1 S))

by definition of Φ(σ). By definition of αϕ1 we have

Φ(σ)(ϑϕ1(ded1 S)) = Φ(σ)(ded2 αϕ1(S))

and again by definition of Φ(σ)

Φ(σ)(ded2 αϕ1(S)) = ded2 Φ(σ)(αϕ1(S))

Thus we have αϕ2(σ(S)) = Φ(σ)(αϕ1(S)) as desired.

6.3 Model Translation

Let ϕ be a signature of I. We have

τΣ ; jϕ ; Φ(ϕ)mod = Φ(ϕ) ; Φ(ϕ)mod

30

by definition of Φ(ϕ) and

Φ(ϕ) ; Φ(ϕ)mod = lmod2 ; ιΦ(ϕ)

by definition of Φ(ϕ)mod. Thus

τΣ ; jϕ ; Φ(ϕ)mod = lmod2 ; ιΦ(ϕ) (3)

and by the universal property of the pushout Σmod∗ there exists a unique morphism γϕ which
makes the following LF diagram commute

Σ∗

Σmod∗

Φ(Σ)

Φ(Σ)mod

Lmod2

jϕ

τmodΣ

γϕ

Φ(ϕ)mod

ιτΣ ιΦ(ϕ)

Remark 30. The computation of LF pushouts along inclusions described in Section 2 shows
that γϕ is in fact an inclusion. Hence Φ(Σ)mod is an extension of Σmod∗ , as one would expect.

Now we have

ϕ ; ϑϕ ; Φ(ϕ)mod = τα ; jϕ ; Φ(ϕ)mod

by definition of ϑϕ and

τα ; jϕ ; Φ(ϕ)mod = τα ; τmodΣ ; γϕ

by definition of γϕ. Furthermore,

τα ; τmodΣ ; γϕ = lmod1 ; τβ ; γϕ

by definition of τα and τβ . Thus

ϕ ; ϑϕ ; Φ(ϕ)mod = lmod1 ; τβ ; γϕ (4)

and by the universal property of the pushout Σmod there exists a unique morphism ϑmodϕ such
that the following LF diagram commutes

31

Σ

Σmod

Φ(Σ)

Φ(Σ)mod

Lmod1 Σmod∗

ϑϕ

ϕmod

ϑmodϕ

Φ(ϕ)mod

ιϕ

τβ

γϕ

The model translation functor βϕ is then defined as mapping each model M of Φ(ϕ) to the
model ϑmodϕ ;M of ϕ.
To prove that β defined in this way is a natural transformation, let σ : ϕ1 → ϕ2 be a signature
morphism in SigI . Then we have

jϕ2 ; Φ(ϕ2)mod = jϕ1 ; Φ(σ) ; Φ(ϕ2)mod

by definition of Φ(σ) and

jϕ1 ; Φ(σ) ; Φ(ϕ2)mod = jϕ1 ; Φ(ϕ1)mod ; Φ(σ)mod

by definition of Φ(σ)mod. Furthermore,

jϕ1 ; Φ(ϕ1)mod ; Φ(σ)mod = τmodΣ ; γϕ1 ; Φ(σ)mod

by definition of γϕ1 . Thus

jϕ2 ; Φ(ϕ2)mod = τmodΣ ; γϕ1 ; Φ(σ)mod (5)

Likewise, we have

ιτΣ ; γϕ1 ; Φ(σ)mod = ιΦ(ϕ1) ; Φ(σ)mod

by definition of γϕ1 and

ιΦ(ϕ1) ; Φ(σ)mod = ιΦ(ϕ1)

by definition of Φ(σ)mod. Thus

ιτΣ ; γϕ1 ; Φ(σ)mod = ιΦ(ϕ1) (6)

By uniqueness of γϕ2 the equalities (5) and (6) imply that the following LF diagram commutes

32

Σmod∗

Φ(Σ1)mod Φ(Σ2)mod

γϕ1 γϕ2

Φ(σ)mod

Now we have

ϕmod1 ; σmod ; ϑmodϕ2
= σ ; ϕmod2 ; ϑmodϕ2

by definition of σmod and

σ ; ϕmod2 ; ϑmodϕ2
= σ ; ϑϕ2 ; Φ(ϕ2)mod

by definition of ϑmodϕ2
. Furthermore,

σ ; ϑϕ2 ; Φ(ϕ2)mod = ϑϕ1 ; Φ(σ) ; Φ(ϕ2)mod

by definition of Φ(σ) and

ϑϕ1 ; Φ(σ) ; Φ(ϕ2)mod = ϑϕ1 ; Φ(ϕ1)mod ; Φ(σ)mod

by definition of Φ(σ)mod. Finally,

ϑϕ1 ; Φ(ϕ1)mod ; Φ(σ)mod = ϕmod1 ; ϑmodϕ1
; Φ(σ)mod

by definition of ϑmodϕ1
. Thus

ϕmod1 ; σmod ; ϑmodϕ2
= ϕmod1 ; ϑmodϕ1

; Φ(σ)mod (7)

Likewise,

ιϕ1 ; σmod ; ϑmodϕ2
= ιϕ2 ; ϑmodϕ2

by definition of σmod and

ιϕ2 ; ϑmodϕ2
= τβ ; γϕ2

by definition of ϑmodϕ2
. Furthermore,

τβ ; γϕ2 = τβ ; γϕ1 ; Φ(σ)mod

as shown before and

τβ ; γϕ1 ; Φ(σ)mod = ιϕ1 ; ϑmodϕ1
; Φ(σ)mod

by definition of ϑmodϕ1
. Thus

ιϕ1 ; σmod ; ϑmodϕ2
= ιϕ1 ; ϑmodϕ1

; Φ(σ)mod (8)

By uniqueness of the universal morphism out of the pushout Σmod1 , the equalities (7) and (8)
imply that the following LF diagram commutes

33

Σmod1 Σmod2

Φ(Σ1)mod Φ(Σ2)mod

σmod

ϑmodϕ1
ϑmodϕ2

Φ(σ)mod

This shows that for any model M of Φ(ϕ2), we have βϕ2(M)|σ = βϕ1(M |Φ(σ)) as desired.

Example 31 (Translating Modal Logic to FOL - τβ). The following signature has the role of
Σmod∗ :

%sig Sigmod
∗ = {

%include FOLmod .
r e l : elem univ → elem univ → elem bool .

} .

The following morphism has the role of τmodΣ :

%view Sig∗-Sigmod
∗ : Sig∗ → Sigmod

∗ = {
%include FOL-FOLmod .
r e l := r e l .

} .

The model translation is then encoded straightforwardly as the following morphism:

%view MLmod -Sigmod
∗ : MLmod → Sigmod

∗ = {
world := univ .
acc ’ := λ [x] λ [y] x r e l y .
e x i s t s w o r l d := non empty universe .

} .

We notice, however, that the commutativity requirement fails: the morphism lmod1 ; τβ interprets
the type o of formulas as the set-theoretic function space elem (univ =⇒ bool) whereas the
morphism τα; τmodΣ interprets o as the LF function space elem univ→ elem bool. This problem
could be avoided if we changed the encoding of modal logic semantics to use the LF function
space instead of the set-theoretic one. However, one of the aims of the encodings is to formalize
as much of the semantics of logics in the foundation as possible, in order to facilitate reasoning
about models. We will thus take a different approach, as explained below.

The above example shows that for some translations the commutativity of the following
diagram fails:

Lsyn1 Σ∗

Lmod1 Σmod∗

τα

lmod1 τmodΣ

τβ

34

In order to adapt our definition to accomodate such translations, we will again need patterns.
Once they are implemented for Twelf, the commutativity requirement for the diagram above
will be dropped. In the absence of commutativity, however, the morphism ϑmodϕ can no longer
be formed by a pushout. Instead, the morphism τβ will contain patterns giving its extension
to ϑmodϕ for a specific signature ϕ in I. The model translation βϕ will then be formed by a
composition with ϑmodϕ , as done currently.

The naturality of the resulting model translation is not guaranteed in the absence of com-
mutativity. The verification of the naturality of a translation specified by patterns is currently
an open problem, which is outside the scope of our work. For our purposes we shall assume
that the translation β induced by patterns given in τβ is a natural transformation.

Example 32 (Translation of Modal Logic to FOL using Patterns). We will first extend the
signature ML, which encodes the syntax of modal logic, by patterns specifying that the only
permitted declarations of new symbols are those of the form p : o and the only permitted
signature morphisms are those mapping symbols to symbols. We then extend the morphism τβ
by a pattern indicating that any symbol p of Σmod which is not in MLmod should be translated
to λp. It is possible to show the resulting model translation will be a natural transformation.

6.4 Satisfaction Condition

Let ϕ be a signature in I, S be a sentence over ϕ, and M be a model over Φ(ϕ). Then we have

ϕmod;βϕ(M) (ded1 S) = ϕmod;ϑmodϕ ;M (ded1 S)

by definition of βϕ and

Φ(ϕ)mod;M (ded2 αϕ(S)) = ϑϕ; Φ(ϕ)mod;M (ded1 S)

by definition of αϕ. Now ϕmod;ϑmodϕ = ϑϕ; Φ(ϕ)mod by definition of ϑmodϕ , what implies

ϕmod;βϕ(M) (ded1 S) = Φ(ϕ)mod;M (ded2 αϕ(S))

This proves that M |=J
Φ(ϕ) αϕ(S) iff βϕ(M) |=I

ϕ S as desired and we have the following theorem.

Theorem 33. The translation from I to J induced by (τΣ, τα, τβ) as described in this section
is an institution comorphism.

The above proof, however, does not apply to translations which fail to meet the commuta-
tivity requirement, such as the translation of modal to first-order logic we gave in this section.
To prove the satisfaction condition for these translations, we will instead use the concept of
logical relations introduced in Section 4. We have the following theorem.

Theorem 34. Assume there exists a logical relation ρ : lmod1 ; τβ ⇒ τα; τmodΣ and a family of
logical relations {ρϕ}, where each ρϕ : ϕmod;ϑmodϕ ⇒ ϑϕ; Φ(ϕ)mod is equal to ρ when restricted
to Lsyn1 . Furthermore, assume there exists a transition pair (Ψ,Ξ) under ρ for the type family
ded1. Then the translation from I to J induced by (τΣ, τα, τβ) is an institution comorphism.

35

Proof. Let ϕ be a signature in I, S be a sentence over ϕ, and M be a model of Φ(ϕ). Denote
the morphism lmod1 ; τβ by U and the morphism τα; τmodΣ by V . Likewise, denote the morphism
ϕmod;ϑmodϕ by Uϕ and the morphism ϑϕ; Φ(ϕ)mod by Vϕ.

By definition ρϕ agrees with ρ on Lsyn1 . Furthermore, Uϕ agrees with U on Lsyn1 since lmod1

is a restriction of ϕmod to Lsyn1 and τβ is a restriction of ϑmodϕ to Lmod1 . Likewise, Vϕ agrees
with V on Lsyn1 since τα is a restriction of ϑϕ to Lsyn1 and τmodΣ is a restriction of Φ(ϕ)mod to
Σ∗.

This implies that (M(Ψ),M(Ξ)) is a transition pair for the logical relation ρ;M . By Lemma
20 this implies that the type Uϕ;M (ded1 S) is inhabited if and only if the type Vϕ;M (ded1 S)
is. This proves the satisfaction condition.

The Twelf module system has recently been extended by Florian Rabe and Carsten Schürmann
to include logical relations. The modular syntax for logical relations is

Toplevel G := . . . | %rel R : µ→ µ = {ρ}
Relations ρ := · | ρ, %include R | ρ, c := E

where R stands for a logical relation name.

Example 35 (Translating Modal Logic to FOL - Satisfaction Condition). The logical relation
SCML, which has the role of ρ, is specified in a modular way with the obvious semantics:

%rel SCBase : Base-MLmod MLmod -Sigmod
∗ → Base-Sig∗ Sig∗-Sigmod

∗ = {
o := [f : elem (univ =⇒ bool)]

[g : elem univ → elem bool]
ded f eq (λ g) .

ded := [f : elem (univ =⇒ bool)]
[g : elem univ → elem bool]
[p : ded f eq (λ g)]
[r : ded (∀ [w] f @ w) eq 1]
[s : ded (∀ g) eq 1]
ded true .

} .

%rel SCMPL : MPL-MLmod MLmod -Sigmod
∗ → MPL-Sig∗ Sig∗-Sigmod

∗ = {
%include SCBase .

⊥ := r e f l .

⇒ := [f 1 : elem (univ =⇒ bool)]
[g1 : elem univ → elem bool]
[p1 : ded f1 eq (λ g1)]
[f 2 : elem (univ =⇒ bool)]
[g2 : elem univ → elem bool]
[p2 : ded f2 eq (λ g2)]
fun ext λ [w] congF2

(t rans (congF p1 ([h] h @ w)) beta)
(t rans (congF p2 ([h] h @ w)) beta)
[x] [y] x ⇒ y .

} .

36

%rel SCNec : Necessity-MLmod MLmod -Sigmod
∗ → Necessity-Sig∗ Sig∗-Sigmod

∗ = {
%include SCBase .

� := [f : elem (univ =⇒ bool)]
[g : elem univ → elem bool]
[p : ded f eq (λ g)]
fun ext λ [x] f un ext ∀ [y] congF2

(t rans (congF beta ([h] h @ y)) beta)
(t rans (congF p ([h] h @ y)) beta)
[x] [y] x ⇒ y .

} .

%rel SCPos : Possibility-MLmod MLmod -Sigmod
∗ → Possibility-Sig∗ Sig∗-Sigmod

∗ = {
%include SCBase .

� := [f : elem (univ =⇒ bool)]
[g : elem univ → elem bool]
[p : ded f eq (λ g)]
fun ext λ [x] f un ext ∃ [y] congF2

(t rans (congF beta ([h] h @ y)) beta)
(t rans (congF p ([h] h @ y)) beta)
[x] [y] x ∧ y .

} .

%rel SCML : ML-MLmod MLmod -Sigmod
∗ → ML-Sig∗ Sig∗-Sigmod

∗ = {
%include SCMPL .
%include SCNec .
%include SCPos .

} .

The relation between the set-theoretic and the LF function space is expressed in the case for o.
The case for ded describes a proof irrelevance condition. The other cases prove that all terms
respect the logical relation.
The logical relation ρϕ extends ρ by associating with each symbol p not in ML the proof term
refl. Finally, the terms Ψ and Ξ are given as follows:
%sig Satisfaction = {

%include Sigmod
∗ .

Ψ : { f : elem (univ =⇒ bool) }
{g : elem univ → elem bool }
{p : ded f eq (λ g) }
ded (∀ [w] f @ w) eq 1 → ded (∀ g) eq 1

= [f] [g] [p] [r] f o r a l l 1 I (f o r a l l I [w] t rans
(sym (t rans (congF p ([h] h @ w)) beta))
(f o r a l l E (f o r a l l 1 E r) w)) .

Ξ : { f : elem (world =⇒ bool) }
{g : elem univ → elem bool }
{p : ded f eq (λ g) }
ded (∀ g) eq 1 → ded (∀ [w] f @ w) eq 1

= [f] [g] [p] [s] f o r a l l 1 I (f o r a l l I [w] t rans
(t rans (congF p ([h] h @ w)) beta)
(f o r a l l E (f o r a l l 1 E s) w)) .

} .

37

6.5 Model Expansion

Proof of the model expansion property is given by providing a retraction ζ of τβ which makes
the following LF diagram commute

Lsyn1 Σ∗

Lmod1 Σmod∗

F0

τα

lmod1 τmodΣ

ζ

In other words, τβ ; ζ must be identity on Lmod1 .
To prove that such ζ indeed guarantees model expansion, let ϕ be a signature in I. Then

we have

ϕ ; ϕmod = lmod1 ; ιϕ

by definition of ϕmod and

lmod1 ; ιϕ = τα ; τmodΣ ; ζ ; ιϕ

by definition of ζ. Thus

ϕ ; ϕmod = τα ; τmodΣ ; ζ ; ιϕ (9)

and by the universal property of the pushout Φ(Σ) there exists a unique morphism δϕ such that
the following LF diagram commutes

Σ

Φ(Σ) Σmod

Σ∗ Σmod∗ Lmod1

ϑϕ ϕmod

δϕ

jϕ

τmodΣ
ζ

ιϕ

38

Furthermore, we have

Φ(ϕ) ; δϕ = τΣ ; jϕ ; δϕ

by definition of Φ(ϕ) and

τΣ ; jϕ ; δϕ = τΣ ; τmodΣ ; ζ ; ιϕ

by definition of δϕ. Moreover,

τΣ ; τmodΣ ; ζ ; ιϕ = lmod2 ; ιτΣ ; ζ ; ιϕ

by definition of τmodΣ . Thus

Φ(ϕ) ; δϕ = lmod2 ; ιτΣ ; ζ ; ιϕ (10)

and by the universal property of the pushout Φ(Σ)mod there exists a unique morphism ζϕ such
that the following LF diagram commutes

Φ(Σ)

Φ(Σ)mod Σmod

Lmod2 Σmod∗ Lmod1

Φ(ϕ)mod δϕ

ζϕ

ιΦ(ϕ)

ιτΣ ζ

ιϕ

Now we show that ζϕ is a retraction of ϑϕ. We have

τmodΣ ; γϕ ; ζϕ = jϕ ; Φ(ϕ)mod ; ζϕ

by definition of γϕ and

jϕ ; Φ(ϕ)mod ; ζϕ = jϕ ; δϕ

by definition of δϕ. Now

jϕ ; δϕ = τmodΣ ; ζ ; ιϕ

again by definition of δϕ, what shows that

τmodΣ ; γϕ ; ζϕ = τmodΣ ; ζ ; ιϕ (11)

39

Likewise, we have

ιτΣ ; γϕ ; ζϕ = ιΦ(ϕ) ; ζϕ

by definition of γϕ and

ιΦ(ϕ) ; ζϕ = ιτΣ ; ζ ; ιϕ

by definition of ζϕ. Thus

ιτΣ ; γϕ ; ζϕ = ιτΣ ; ζ ; ιϕ (12)

By uniqueness of the universal morphism out of the pushout Σmod∗ , equalities (11) and (12)
imply that the following LF diagram commutes

Σmod∗

Lmod1

Φ(Σ)mod

Σmod

ζ

γϕ

ιϕ

ζϕ

Now we have

ϕmod = ϑϕ ; δϕ

by definition of δϕ. Furthermore,

ϑϕ ; δϕ = ϑϕ ; Φ(ϕ)mod ; ζϕ

by definition of ζϕ and

ϑϕ ; Φ(ϕ)mod ; ζϕ = ϕmod ; ϑmodϕ ; ζϕ

by definition of ϑmodϕ . This shows that

ϕmod = ϕmod ; ϑmodϕ ; ζϕ (13)

Likewise, we have

ιϕ = τβ ; ζ ; ιϕ

by definition of ζ and

τβ ; ζ ; ιϕ = τβ ; γϕ ; ζϕ

40

by what we have just shown. Furthermore,

τβ ; γϕ ; ζϕ = ιϕ ; ϑmodϕ ; ζϕ

by definition of ϑmodϕ , what shows

ιϕ = ιϕ ; ϑmodϕ ; ζϕ (14)

By uniqueness of the universal morphism out of the pushout Σmod, equalities (13) and (14)
imply that ϑmodϕ ; ζϕ is an identity on Σmod as desired. This means that for any model M of ϕ,
M ′ = ζϕ;M is a model of Φ(ϕ) for which we have M = ϑmodϕ ;M ′. This proves model expansion
and gives us the following theorem.2

Theorem 36. If there exists an LF morphism ζ as described in this section, then the comor-
phism from I to J induced by (τΣ, τα, τβ) has the model expansion property.

As was the case with the satisfaction condition, the above proof does not apply to translations
which fail to meet the commutativity requirement. To prove the model expansion property for
these translations, we will again make use of patterns and logical relations. We assume that the
morphism ζ includes patterns which give its extension to ζϕ for a specific signature ϕ in I. We
have the following theorem.

Theorem 37. Assume there exists a logical relation ρ : lmod1 ⇒ lmod1 ; τβ ; ζ and a family of
logical relations {ρϕ}, where each ρϕ : ϕmod ⇒ ϕmod;ϑmodϕ ; ζϕ is equal to ρ when restricted to
Lsyn1 . Furthermore, assume there exists a transition pair (Ψ,Ξ) under ρ for the type family ded1.
Then the comorphism from I to J induced by (τΣ, τα, τβ) has model expansion up to elementary
equivalence.

Proof. Let ϕ be a signature in I and M be a model of ϕ. Analogously to the proof of The-
orem 34 we can show that the type ϕmod;M (ded1 S) is inhabited if and only if the type
ϕmod;ϑmodϕ ; ζϕ;M (ded1 S) is. This means that the models M and ϑmodϕ ; ζϕ;M of ϕ are elemen-
tary equivalent. Since the latter clearly lies in the image of βϕ, this proves model expansion up
to elementary equivalence.

Example 38 (Translating Modal Logic to FOL - Model Expansion). The morphism Sigmod
∗ -MLmod

which has the role of ζ is curently given as follows:
%view FOLmod -MLmod : FOLmod → MLmod = {

univ := world .
non empty universe := e x i s t s w o r l d .

} .

%view Sigmod
∗ -MLmod : Sigmod

∗ → MLmod = {
%include FOLmod -MLmod .
r e l := acc .

} .

2For many translations the model M ′ cannot be obtained by simply reducing along a fixed morphism. Prov-
ing model expansion for such translations requires the existence of functors for LF, which are currently being
implemented by F. Horozal and F. Rabe.

41

Once patterns are implemented, ζ will be extended by a pattern specifying that each symbol p
not in ML be mapped to the term [w] p @ w.
The logical relation MEML which has the role of ρ is specified as follows:

%rel MEBase : Base-MLmod → Base-MLmod MLmod -Sigmod
∗ Sig∗-Sigmod

∗ = {
o := [f : elem (world =⇒ bool)]

[g : elem (world =⇒ bool)]
ded f eq g .

ded := [f : elem (world =⇒ bool)]
[g : elem (world =⇒ bool)]
[p : ded f eq g]
[r : ded (∀ [w] f @ w) eq 1]
[s : ded (∀ [w] g @ w) eq 1]
ded true .

} .

%rel MEMPL : MPL-MLmod → MPL-MLmod MLmod -Sigmod
∗ Sig∗-Sigmod

∗ = {
%include MEBase .

⊥ := r e f l .

⇒ := [f 1 : elem (world =⇒ bool)]
[g1 : elem (world =⇒ bool)]
[p1 : ded f1 eq g1]
[f 2 : elem (world =⇒ bool)]
[g2 : elem (world =⇒ bool)]
[p2 : ded f2 eq g2]
fun ext λ [w] congF2

(congF p1 ([h] h @ w))
(congF p2 ([h] h @ w))
[x] [y] x ⇒ y .

} .

%rel MENec : Necessity-MLmod → Necessity-MLmod MLmod -Sigmod
∗ Sig∗-Sigmod

∗ = {
%include MEBase .

� := [f : elem (world =⇒ bool)]
[g : elem (world =⇒ bool)]
[p : ded f eq g]
fun ext λ [x] f un ext ∀ [y] congF2

(sym (t rans (congF beta ([h] h @ y)) beta))
(congF p ([h] h @ y))
[x] [y] x ⇒ y .

} .

%rel MEPos : Possibility-MLmod → Possibility-MLmod MLmod -Sigmod
∗ Sig∗-Sigmod

∗ =
{ %include MEBase .

� := [f : elem (world =⇒ bool)]
[g : elem (world =⇒ bool)]
[p : ded f eq g]
fun ext λ [x] f un ext ∃ [y] congF2

(sym (t rans (congF beta ([h] h @ y)) beta))
(congF p ([h] h @ y))

42

[x] [y] x ∧ y .
} .

%rel MLML : ME-MLmod → ML-MLmod MLmod -Sigmod
∗ Sig∗-Sigmod

∗ = {
%include MEMPL .
%include MENec .
%include MEPos .

} .

The logical relation ρϕ extends ρ by associating with each symbol p not in ML the proof term
eta. Finally, the terms Ψ and Ξ are given as follows:

%sig ModelExpansion = {
%include MLmod .

Ψ : { f : elem (world =⇒ bool) }
{g : elem (world =⇒ bool) }
{p : ded f eq g}
ded (∀ [w] f @ w) eq 1 → ded (∀ [w] g @ w) eq 1

= [f] [g] [p] [r] f o r a l l 1 I (f o r a l l I [w] t rans
(sym (congF p ([h] h @ w)))
(f o r a l l E (f o r a l l 1 E r) w)) .

Ξ : { f : elem (world =⇒ bool) }
{g : elem (world =⇒ bool) }
{p : ded f eq g}
ded (∀ [w] f @ w) eq 1 → ded (∀ [w] g @ w) eq 1

= Ψ .
} .

7 Conclusion and Future Work

Building on the work done in [32], we have shown how to use the Twelf module system to
encode logic translations and proved that an encoding indeed yields an institution comorphism.
Furthermore, we have shown how the proof of model expansion can be represented in Twelf.
We have given a new criterion for the adequacy of logic encodings, improving upon some of
the shortcomings of the definition given in [32]. The translation of modal to first-order logic
comprises about 180 lines of Twelf code and is available as [34].

The mechanical verification of the soundness of the encoded translation is for the most
part provided by the Twelf type checker, which automatically verifies the well-formedness of
all signatures and morphisms involved. An exception is the commutativity check - due to the
way the structuring mechanisms are handled in Twelf, we currently do not have a simple way
of verifying commutativity resp. equality of morphisms.

At the moment the burden of proving commutativity is placed on the user, which is not
ideal as even for simple translations the verification of commutativity requires some work. It
would be desirable to have a Twelf syntax such as

%equal µ1 µ2 .

43

available for verifying equality, where µ1, µ2 denote morphism composites. The above would
type-check if and only if the morphisms µ1, µ2 are equal.

The implementation of such an equality check is not as straightforward as it may seem -
checking that µ1 and µ2 agree on every term in the domain signature can get computationally
expensive. On the other hand, comparing the modular structure of µ1 and µ2 and utilizing the
known equalities enforced by the module system is efficient but not complete - µ1 and µ2 may
be equal while having a very different modular structure. The two approaches could possibly be
merged, with the componentwise check applied only in cases when the comparison of modular
structures fails to produce a match.

Translations which fail to meet the commutativity requirement currently cannot be encoded
in our framework. To remedy this problem, we need to extend Twelf with declarative patterns,
which would allow us to specify families of signatures, respectively morphisms, by pattern
matching. The implementation of patterns for Twelf has been the subject of ongoing work of
Fulya Horozal and Florian Rabe.

In order to verify the soundness of non-commuting translations, we have developed a theory
of logical relations for Twelf. We have shown how the soundness of the translation and borrowing
can be established by supplying a suitable logical relation in place of the equality check. The
implementation of logical relations in Twelf has already been done by Florian Rabe and Carsten
Schürmann. Once the patterns are implemented, the well-formedness of the relation and hence
the soundness of the encoding will be automatically verified by the Twelf type-checker.

References

[1] H. Barendregt. Lambda Calculi with Types. In S. Abramsky, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science, pages 117–309. Oxford University Press,
1992.

[2] C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber, M. Kohlhase,
K. Konrad, E. Melis, A. Meier, W. Schaarschmidt, J. Siekmann, and V. Sorge. ΩMEGA:
Towards a Mathematical Assistant. In W. McCune, editor, Conference on Automated
Deduction, volume 1249 of LNCS, pages 252–255. Springer, 1997.

[3] C. Benzmüller, L. Paulson, F. Theiss, and A. Fietzke. LEO-II - A Cooperative Automatic
Theorem Prover for Higher-Order Logic. In A. Armando, P. Baumgartner, and G. Dowek,
editors, International Joint Conference on Automated Reasoning, volume 5195 of LNCS,
pages 162–170. Springer, 2008.

[4] Y. Bertot and P. Castéran. Coq’Art: The Calculus of Inductive Constructions. Springer,
2004.

[5] C. Brown. Combining Type Theory and Untyped Set Theory. In N. Shankar and U.
Furbach, editor, International Joint Conference on Automated Reasoning, volume 4130 of
LNAI, pages 205–219. Springer, 2006.

44

[6] M. Cerioli and J. Meseguer. May I Borrow Your Logic? (Transporting Logical Structures
along Maps). Theoretical Computer Science, 173:311–347, 1997.

[7] A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic Logic,
5(1):56–68, 1940.

[8] K. Claessen and N. Sörensson. New Techniques that Improve MACE-style Finite Model
Finding. In Conference on Automated Deduction: Workshop on Model Computation -
Principles, Algorithms, Applications, 2003.

[9] T. Coquand and G. Huet. The Calculus of Constructions. Information and Computation,
76(2/3):95–120, 1998.

[10] H. Curry and R. Feys. Combinatory Logic. North-Holland, 1958.

[11] R. Diaconescu. Institution-independent Model Theory. Springer, 2008.

[12] J. Goguen and R. Burstall. Institutions: Abstract Model Theory for Specification and
Programming. Journal of the Association for Computing Machinery, 39(1):95–146, 1992.

[13] J. Goguen and G. Rosu. Institution Morphisms. Formal Aspects of Computing, 13:274–307,
2002.

[14] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics. Journal of the
Association for Computing Machinery, 40(1):143–184, 1993.

[15] R. Harper, D. Sannella, and A. Tarlecki. Structured Theory Presentations and Logic
Representations. Annals of Pure and Applied Logic, 67:113–160, 1994.

[16] L. Henkin. The Completeness of the First-Order Functional Calculus. Journal of Symbolic
Logic, 14(3):159–166, 1949.

[17] F. Honsell and D. Sannella. Prelogical Relations. Information and Computation, 178(1):23–
43, 2002.

[18] W. Howard. The Formulas-as-Types Notion of Construction. In To H.B. Curry : Essays
on Combinatory Logic, Lambda-Calculus and Formalism, pages 479–490. Academic Press,
1980.

[19] M. Iancu and F. Rabe. Formalizing Foundations of Mathematics, 2010. http://kwarc.
info/frabe/.

[20] B. Jacobs and T. Melham. Translating Dependent Type Theory into Higher Order Logic.
In M. Bezem and J. Groote, editor, Typed Lambda Calculi and Applications, volume 664 of
LNCS, pages 209–229. Springer, 1993.

[21] M. Kohlhase, T. Mossakowski, and F. Rabe. The LATIN Project, 2009. https://trac.
omdoc.org/LATIN/.

[22] S. Mac Lane. Categories for the Working Mathematician. Springer, 1998.

45

[23] N. Mart́ı-Oliet and J. Meseguer. General Logics and Logical Frameworks. In D. Gabbay,
editor, What Is a Logical System?, pages 335–392. Oxford University Press, 1994.

[24] P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In E. Rose and
J. Sheperdson, editors, Logic Colloquium 1973, pages 73–118. North-Holland, 1975.

[25] J. Mitchell. Type Systems for Programming Languages. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Volume B, pages 365–458. North-Holland, 1990.

[26] T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set. In O. Grumberg
and M. Huth, editor, Tools and Algorithms for the Construction and Analysis of Systems,
volume 4424 of LNCS, pages 519–522. Springer, 2007.

[27] L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of LNCS. Springer, 1994.

[28] F. Pfenning and C. Schürmann. System Description: Twelf - A Meta-Logical Framework
for Deductive Systems. In Conference on Automated Deduction, volume 1632 of LNCS,
pages 202–206. Springer, 1999.

[29] G. Plotkin. Lambda-Definability and Logical Relations. Memorandum SAI–RM–4, Uni-
versity of Edinburgh, 1973.

[30] G. Plotkin, J. Power, D. Sannella, and R. Tennent. Lax Logical Relations. In Colloquium on
Automata, Languages, and Programming, volume 1853 of LNCS, pages 85–102. Springer,
2000.

[31] A. Poswolsky and C. Schürmann. System Description: Delphin - A Functional Program-
ming Language for Deductive Systems. In A. Abel and C. Urban, editor, Logical Frame-
works and Metalanguages: Theory and Practice, pages 135–141, 2008.

[32] F. Rabe. A Logical Framework Combining Model and Proof Theory, 2010. http://kwarc.
info/frabe/.

[33] F. Rabe and C. Schürmann. A Practical Module System for LF. In J. Cheney and A.
Felty, editor, Logical Frameworks and Metalanguages: Theory and Practice, pages 40–48.
ACM Press, 2009.

[34] F. Rabe and K. Sojakova. The Twelf Encoding of the Translation of Modal to First-Order
Logic, 2010. https://svn.kwarc.info/repos/twelf/translations/ml-fol.

[35] J. Reynolds. On the Relation between Direct and Continuation Semantics. In Colloquium
on Automata, Languages and Programming, volume 14 of LNCS, pages 141–156. Springer,
1974.

[36] A. Riazanov and A. Voronkov. The Design and Implementation of Vampire. Artificial
Intelligence Communications, 15:91–110, 2002.

[37] O. Schoett. Data Abstraction and the Correctness of Modular Programming. PhD thesis,
Department of Computer Science, University of Edinburgh, 1987.

46

[38] C. Schürmann and J. Sarnat. Structural Logical Relations. In F. Pfenning, editor, Logic
in Computer Science, pages 69–80. IEEE Computer Society, 2008.

[39] A. Tarlecki. Moving Between Logical Systems. In Recent Trends in Data Type Specification,
volume 1130 of LNCS, pages 478–502. Springer, 1998.

[40] A. Trybulec and H. Blair. Computer Assisted Reasoning with Mizar. In International Joint
Conference on Artificial Intelligence, pages 26–28. Morgan Kaufmann Publishers, 1985.

[41] J. Urban. Translating Mizar for First-Order Theorem Provers. In Mathematical Knowledge
Management, volume 2594 of LNCS, pages 203–215. Springer, 2003.

[42] C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobalt, and D. Topic. SPASS
Version 2.0. In A. Voronkov, editor, Conference on Automated Deduction, volume 2392 of
LNCS, pages 275–279. Springer, 2002.

47

