
A Practical Module System for LF ∗

Florian Rabe
Jacobs University Bremen

f.rabe@jacobs-university.de

Carsten Schürmann
IT University of Copenhagen

carsten@itu.dk

Abstract
Module systems for proof assistants provide administrative support
for large developments when mechanizing the meta-theory of pro-
gramming languages and logics. We describe a module system for
the logical framework LF that is based on two main primitives: sig-
natures and signature morphisms. Signatures are defined as collec-
tions of constant declarations, and signature morphisms as homo-
morphism in between them. Our design is semantically transparent
in the sense that it is always possible to elaborate modules into the
module free version of LF. We have implemented our design as
part of the Twelf system and rewritten parts of the Twelf example
library to take advantage of the module system.

Categories and Subject Descriptors F.3.1 [Specifying and Ver-
ifying and Reasoning about Programs]: Mechanical verification;
D.3.3 [Language Constructs and Features]: Modules, packages

General Terms Proof Assistants, Logical Frameworks

Keywords Twelf, modules, structures, views, Kolmogorov trans-
lation

1. Introduction
The Twelf system [Pfenning and Schürmann 1999] is a popular
tool for reasoning about the design and properties of modern pro-
gramming languages and logics. It has been used, for example, to
verify the soundness of typed assembly language [Crary 2003] and
Standard ML [Lee et al. 2007], for checking cut-elimination proofs
for intuitionistic and classical logic [Pfenning 1995], and for spec-
ifying and validating logic morphisms, for example, between HOL
and Nuprl [Schürmann and Stehr 2006]. Twelf, however, supports
only monolithic proof developments and does not offer any support
for modular proof engineering, composing logic morphisms, code
reuse, or name space management. In this paper we develop a sim-
ple yet powerful module system for pure type systems in general,
and therefore for the logical framework LF [Harper et al. 1993] in
particular.

If one subscribes to the judgment-as-types methodology (as we
do in the Twelf community), the equational theory underlying a

∗ The second author was in part supported by grant CCR-0325808 of the
National Science Foundation and NABIT grant 2106-07-0019 of the Danish
Strategic Research Council.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LFMTP ’09, August 2, 2009, Montreal, Canada.
Copyright c© 2009 ACM 978-1-60558-529-1/09/08. . . $10.00

logical framework determines the application areas the framework
performs well in. Twelf, for example, excels in the areas of pro-
gramming languages and logics, where variable binding and sub-
stitution application are prevalent. It derives its strength from de-
pendent types, higher-order abstract syntax, and the inductive defi-
nition of canonical forms justifies its use as a proof assistant.

Retrofitting a logical framework with a module system is a
delicate undertaking. On the one hand, the module system should
be as powerful as possible, convenient to use, and support brief,
precise, and reusable program code. On the other hand, it must
not break any of the features of the logical framework or of its
reasoning and programming environments. Therefore, our design
is conservative over LF. We guarantee that any development in LF
with modules can be elaborated into LF without modules (to which
we also refer as core LF).

The module system that we describe in this paper is deceptively
simple. It introduces two new concepts, namely that of a signa-
ture and a signature morphism. A signature is simply a collection
of constant declarations and constant definitions. Signature mor-
phisms map terms valid in the source signature into terms valid in
the target signature by replacing object-level and type-level con-
stants with objects and types, respectively. This leads to the notion
of signature graphs, which have proved to be simple, flexible, and
scalable abstractions to express interrelations between signatures
[Sannella and Tarlecki 1988, CoFI (The Common Framework Ini-
tiative) 2004, Autexier et al. 1999].

In our current design, we do not consider questions with regards
to if and how signature morphisms preserve meta-theoretic proper-
ties such as, termination, totality, or coverage; these may have been
established for type families in one signature but may or may not be
preserved under signature morphisms. We realize the importance
of this research problem and defer it to future work. In practice,
however, not knowing the answer to this question is not a severe re-
striction. After elaboration, the set of tools and algorithms that are
already part of the Twelf system, such as mode, termination, cov-
erage analysis, etc. continue to work and can be applied to analyze
the elaborated Twelf code.

We have implemented our design as part of the Twelf distribu-
tion, see http://www.twelf.org/mod/ for details. We demon-
strate in this paper that the module system allows for compact and
elegant formalizations of logic morphisms when defining for ex-
ample the Kolmogorov translation from classical into intuitionistic
propositional logic in a modular manner. Other examples are avail-
able from the project homepage, including a modular and type-
directed development of the meta theory of Mini-ML a modular
definition of the algebraic hierarchy, and a soundness proof for first-
order logic.

This paper is organized as follows. We briefly describe the
relevant background of the logical framework LF and our running
example in Section 2. In Section 3, we give a formal definition of
the module system and its semantics, not only for LF but for pure
type systems in general. In Section 4, we then provide experimental

http://www.twelf.org/mod/

u
A true

...
B true

⊃Iu

A ⊃ B true

A ⊃ B true A true
⊃E

B true

u
A true

...
p true

¬Ip,u

¬ A true

¬A true A true
¬E

B true

Figure 1. Intuitionistic Logic

evidence that the Twelf module system does not degrade runtime
performance by comparing the running times for Twelf vs. modular
Twelf on large (non-modular) examples. Finally, we assess results
and discuss future work in Section 5.

2. Preliminaries
2.1 The Logical Framework LF
The Twelf system is an implementation of the logical framework
LF [Harper et al. 1993] designed as a meta-language for the repre-
sentation of deductive systems, which we also call core LF. Judg-
ments are represented as types, and derivations as objects:

Kinds: K ::= type | {x:A} K | A -> K
Types: A,B ::= a | A M | {x:A} B | A -> B
Objects: M ::= c | x | [x:A] M | M1 M2

where we write {·} for the Π-type constructor and [·] for a λ-
binder. We omit type labels whenever they are inferable. Core LF
permits declarations of type- or object-level constants. Constant
symbols may be declared (“a : K.” or “c : A.”) or defined
(“a : K = A.” or “c : A = M .”). They may be used infix,
for example by issuing “%infix n m c.” where n defines if c
is left- or right-associative, and m the binding precedence of
c. The Twelf system offers a variety of algorithms for checking
the meta-theory of signatures, including termination, coverage, and
totality, which we do not discuss further in this paper, but which
remain available in modular Twelf.

2.2 The Kolmogorov Translation
As a running example, we have chosen to use the Kolmogorov
translation that embeds classical logic into intuitionistic logic. We
illustrate the characteristic features of the module system by defin-
ing the relevant logics through implication ⊃ and negation ¬. We
say that A is true, if A true can be derived using the rules de-
picted in Figure 1. By adding an axiom ¬¬A ⊃ A true (the
law of double negation elimination), we obtain classical logic. The
Kolmogorov translation uses double-negations to map formulas
A to Ā satisfying that A true is derivable in classical logic iff
A true is derivable in intuitionistic logic. For example, we have
p ⊃ q = ¬¬(¬¬p ⊃ ¬¬q) for propositional variables p, q.

3. The Module System
In the past, various module systems for proof assistants have been
proposed, for example, for IMPS [Farmer et al. 1993], Agda [Norell
2007], Coq [Chrzaszcz 2003], Isabelle [Kammüller et al. 1999,

Haftmann and Wenzel 2007], and even LF [Harper and Pfenning
1998, Licata et al. 2006] itself.

In general, a module is an encapsulated context often with some
free parameters. Depending on the module system, the modules
may be called signatures, theories, or functors. Different from the
module systems above, we use two kinds of signature morphisms to
relate our modules. First, the instantiation of a parametrized mod-
ule M induces a morphism from M into the context in which the
instantiation occurs. This morphism is called a structure in SML
(while the SML modules are called functors) and has a name;
all module system designs for LF including ours follow this de-
sign choice. IMPS, Agda, and Isabelle, on the other hand, permit
parametrized modules but do not use the concept of structures. Sec-
ond, views are explicit morphisms used to translate between mod-
ules (sometimes called fitting morphisms). Views were pioneered
in IMPS but are not used in any of the other systems. Our use of
both structures and views is more related to module systems used
in algebraic specification, e.g., in [Sannella and Tarlecki 1988] and
[Autexier et al. 1999] where, however, structures are not named.

Furthermore, our system insists on elaborating the modular
language into the core language, which is not possible for the
Coq module system and not intended for LF/[Harper and Pfenning
1998]. Agda, Isabelle, and LF/[Licata et al. 2006] employ such an
elaboration and use it to define the semantics of all modular con-
structs. In addition to the latter, our modular constructs have an
elaboration-independent semantics, against which the elaboration
is proved correct. This elaboration-independent semantics is de-
fined in terms of morphisms and permits to reason about the ad-
equacy of encodings without having to refer to the technicalities of
the elaboration.

A comprehensive overview over the state of the art in module
systems and their relations to ours is given in [Rabe 2008].

3.1 Syntax
Our modules are called signatures. A signatureR,S, T is a named
list of constant and structure declarations. Two signatures are equal
iff they have the same name, which means that two signatures that
contain the same declarations are not necessarily considered equal.
This avoids complex equality reasoning about signatures, and is
not a loss in expressivity because views, which we introduce in
Section 3.1.2, can be used to establish isomorphisms between two
such signatures.

EXAMPLE 1 (Judgments). The signature with name JUDGMENTS
given below defines the judgments from Section 2.2.

%sig JUDGMENTS = {
o : type.
true : o -> type.

}.

It is easier to explain the module system for LF as an instance of
the more general case: pure type systems [Barendregt 1991]. There-
fore, we collapse the three syntactic categories of kinds, types, and
objects into one single category of terms C:

C ::= ~c | x | type | {x:C} C | [x:C] C | C C

The only difference to the core syntax is the case of references to
constants, which are now qualified names~c. Qualified names access
constants that are part of structures and are explained below.

Signature morphisms define mappings between signatures. A
morphism µ from a signature S to T maps every constant ~c of
S with type (kind) A to a term C over T such that C is typed
(kinded) by µ(A). Here µ(−) is the homomorphic extension of µ
to terms. The mapping µ(−) preserves the typing relation and the

definitional equality of S, e.g., if B : A in S, then µ(B) : µ(A) in
T (see, e.g., [Harper et al. 1994]).

In the following, we explain the two kinds of signature mor-
phisms in detail: structures from S to T create an instance of S in
T , and views from S to T define a translation from S to T .

3.1.1 Structures
In the simplest case, a structure declaration s:S occurring within
a signature T has the following semantics: If S declares a constant
c then the structure declaration induces a constant s.c in T by
copying c. Because the structure declarations of S are also copied
into T , the general way to refer to constants is via qualified constant
identifiers ~c ::= s.s.c. Similarly, we use qualified structure
identifiers ~s ::= s.s.s.

An important advantage of named structures and qualified iden-
tifiers is that T may contain multiple distinct instances of S. How-
ever, qualified identifiers can introduce a lot of clutter. In order to
tame this clutter we introduce convenient aliases through the %open
directive that permits the use of the constant name c instead of the
qualified name s.c. Therefore, contrary to its analogue in SML,
%open is syntactic sugar that provides a mechanism for introducing
aliases that always resolve to the same internal identifier. Dealias-
ing is merely an implementation detail and therefore not discussed
here.

EXAMPLE 2 (Implication). ⊃ and its introduction and elimination
rules from Figure 1 are encoded as follows:

%sig IMP = {
%struct J : JUDGMENTS %open o true.
⊃ : o -> o -> o. %infix left 10 ⊃.
⊃I : (true A -> true B) -> true (A ⊃ B).
⊃E : true (A ⊃ B) -> true A -> true B.

}.

A structure s:S occurring in T induces a signature morphism
from S to T as follows: Every constant ~c of S is mapped to the
constant s.~c of T . For example, J declared in IMP is a morphism
from JUDGMENTS to IMP. If signatures are seen as records, then this
is simply a record projection.

In the example above, we import o and true from JUDGMENTS
using a structure J as abbreviations for the constants IMP”J.o and
IMP”J.true. Within IMP, we refer to these constants as J.o and
J.true.

EXAMPLE 3 (Negation). Similarly, we encode negation and its
rules:

%sig NEG = {
%struct J : JUDGMENTS %open o true.
¬ : o -> o.
¬I : ({p} true A -> true p) -> true (¬ A).
¬E : true (¬ A) -> true A -> true B.
n = [p] (¬ (¬ p)).
¬¬I : true A -> true (n A)

= [D] (¬I [p:o] [u: true (¬ A)] (¬E u D)).
}.

Negation satisfies the double negation introduction rule “If
A true then ¬¬A true.”. The proof is direct, and it defines
the derived rule of inference ¬¬I.

In addition to copying declarations from S to T , structures can
instantiate constants and structures declared in S with correspond-
ing expressions over T . We call such pairs of S-symbol and T -
expression assignments.

EXAMPLE 4 (Intuitionistic Logic). To obtain an encoding of intu-
itionistic logic as in Figure 1, we combine IMP and NEG. The com-
mon structure J must be shared:

%sig IL = {
%struct I : IMP %open o true ⊃ ⊃I ⊃E.
%struct N : NEG = { %struct J := I.J.}

%open ¬ n ¬I ¬E ¬¬I.
}.

Here %struct J := I.J. is an assignment: J refers to the
structure declared in NEG, which is copied into IL resulting in the
structure N.J; assigning I.J to it, yields the desired sharing relation
N.J = I.J. The assignment is well-typed because both N.J and I.J
are instances of the same signature, namely JUDGMENTS.

In %struct N : NEG = { %struct J := I.J.}, read-
ers familiar with SML may think of NEG as a functor, and of
{ %struct J := I.J.} as its argument.

EXAMPLE 5 (Classical Logic). Finally, by extending intuitionistic
logic with the axiom of double negation elimination, we obtain the
definition of classical logic.

%sig CL = {
%struct IL : IL %open true ⊃ ¬.
dne : true (¬ (¬ A) ⊃ A).

}.

Formally, we define the body of a signature by

Σ ::= · | Σ, Dc | Σ, Ds.

HereDc stands for a constant declarationDc ::= c :C | c :C =C
and Ds ::= ~s :T = {σ} stands for a structure declaration where

σ ::= · | σ, ~c:=C | σ, ~s:=µ
gives a list of assignments, where ~c and ~s are qualified constant and
structure names, respectively. For the sake of convenience, we omit
the keywords %sig, %struct, %view from the formal presentation.

JUDGMENTS

NEG

IMP

IL CL

NEG”J

IMP”J

IL”N

IL”I

CL”IL

KOLM

structure
view

A signature graph is a multi-graph with signatures as nodes
and structures or views as edges. The signatures and structures
introduced in the running example so far form the signature graph
on the right. There, we use the notation S”s to refer to the name
s declared within the signature S. When talking about modular
Twelf, we will occasionally use this notation to make references
to constants and structures unambiguous.

3.1.2 Views
Next, we turn to views and define the view KOLM that interprets clas-
sical proofs over CL as intuitionistic proofs over IL. It is composed
modularly from four different views into IL.

EXAMPLE 6 (Kolmogorov view). We begin by translating the
judgments in the view KOLMJ from JUDGMENTS to IL: The as-
signment o := o expresses that formulas are mapped to formulas,
and the assignment true := [x] true (n x) expresses that the

judgment A true is mapped to the judgment ¬¬B true where B
is the translation of A. As for structures, the left hand side of an
assignment is a symbol of the domain, and the right hand side is an
expression over the codomain.

Similarly, we define the views KOLMI and KOLMN, which trans-
late implication and negation, respectively. The proof rules are
translated to derived rules of inference, which are easily determined
by pen and paper. These views are total: There is an assignment for
every constant of the domain with the only exception of those that
are defined.

Note that the assignments must abstract over the implicit argu-
ments as well. For example, the assignment to ⊃I must abstract
over the implicit arguments A and B that occur in the (omitted) type
of D.

%view KOLMJ : JUDGMENTS -> IL = {
o := o.
true := [x] true (n x).

}.

%view KOLMI : IMP -> IL = {
%struct J := KOLMJ.
⊃ := [x][y] ((n x) ⊃ (n y)).
⊃I := [A][B][D] ¬¬I (⊃I D).
⊃E := [A][B][D][E] ¬I [p][u]

¬E D (¬I [q][v]
¬E (⊃E v E) u).

}.

%view KOLMN : NEG -> IL = {
%struct J := KOLMJ.
¬ := [x] ¬ x.
¬I := [A][D] ¬I [q][u]

¬E (D (¬ A) u) u.
¬E := [A][C][D][E] ¬I [p][u]

¬E D E .
}.

%view KOLM : CL -> IL = {
%struct IL.I := KOLMI.
%struct IL.N := KOLMN.
dne := [A] ¬I [p] [u] ¬E u

(⊃I [u] ¬I [p] [v] ¬E u
(¬I [q][w] ¬E w v)).

}.

In summary, the view KOLM is the Kolmogorov translation map-
ping the embedding from CL into IL. It illustrates nicely the ex-
pressive strength of what we call deep assignments: Instead of pro-
viding an assignment for the structure IL of CL, it assigns mor-
phisms to the structures IL.I and IL.N. Intuitively, the assignment
%struct IL.I := KOLMI. is justified as follows: IL.I is a copy
of IMP into the domain CL of KOLM; thus, it is mapped to the view
KOLMI, which is a translation of IMP into the codomain IL of KOLM.
The last assignment in KOLM is the translation of the law of double
negation elimination.

Thus, KOLM implements a meta-theoretic proof that classical
proofs can be translated to intuitionistic ones: It covers all cases
because it substitutes terms for all constants of CL. We do not pro-
vide any cases for variables, because inputs are always closed (do
not contain free variables), and bound variables map to themselves.
The application of KOLM is also clearly terminating. 2

Formally, we write Dv ::= v :S → T = {σ} for a view
v from S to T where σ is as for structures except that it must
provide assignments for all constants of S (except for those that
have definitions).

Finally, given a set of signature and view declarations, we define
signature morphisms by µ ::= T”~s | v | µ µ. Here T”~s refers to
the structure ~s of the signature T , v refers to a view, and µ µ′

represents the composition of two morphisms in diagrammatic
order. In the running example, IL”N CL”IL KOLM is a morphism
from NEG to IL.

Then we can define qualified structure identifiers precisely:
The structure CL”IL.I.J is defined to be equal to the morphism
IMP”J IL”I CL”IL.

Readers familiar with SML may interpret a view from S to T
in two different ways. The view may be seen as a functor that is
parametrized by a structure of type T (a morphism with domain T)
and produces a structure of type S. Alternatively, it may be seen
as a structure implementing the signature S defined by explicitly
providing values for all symbols of S – the role of T here is to rep-
resent the context in which S is implemented. Since LF is a logical
framework and not a programming language, the implementation
language must itself be represented as a signature, namely T . Thus,
morphisms are paths in the signature graph.

This concludes the definition of the syntactic categories of our
module system for LF, which we summarize in Figure 2.

3.2 Another Example
As a further example, we illustrate how signatures, structures, and
views introduce module level parametricity. The List signature
below is parametrized over a Monoid signature of elements and
provide a relation that computes (parametrically) the fold of that
list.

%sig Monoid = {
a : type.
unit : a.
comp : a -> a -> a -> type.

}.

%sig List = {
%struct elem : Monoid.
list : type.
nil : list.
cons : elem.a -> list -> list.
fold : list -> elem.a -> type.
foldnil : fold nil elem.unit.
foldcons : fold L B -> elem.comp A B C

-> fold (cons A L) C.
}.

The signature Monoid declares a monoid as a type together
with the usual unit element and the binary composition opera-
tion (written as a relation), where we omit the axioms for simplic-
ity. The signature List defines lists, which is parametric in type
elem.a, and the fold relation, which is parametric in elem.unit
and elem.comp.

Furthermore, we define a Monoid called NatMonoid that is
based on natural numbers Nat.

%sig Nat = {
nat : type.
zero : nat.
succ : nat -> nat.
add : nat -> nat -> nat -> type.
addzero : add N zero N.
addsucc : add N P Q -> add N (succ P) (succ Q).

}.

%view NatMonoid : Monoid -> Nat = {
a := nat.
unit := zero.

Signature graph G ::= · | G, DT | G, Dv

Signature DT ::= T = {Σ}
View Dv ::= v :T → T = {σ}
Signature body Σ ::= · | Σ, Dc | Σ, Ds

Constant Dc ::= c :C | c :C =C
Structure Ds ::= s :T = {σ}
Assignment list σ ::= · | σ, ~c:=C | σ, ~s:=µ
Term C ::= ~c | type | {x : C}C | [x : C]C | C C
Morphism µ ::= ~s | v | µ µ
Qualified identifiers ~c ::= s.s.c

~s ::= s.s.s
Identifiers T, v, c, s, x

Figure 2. The Grammar for Expressions

comp := add.
}.

The view NatMonoid allows us to view Nat as a Monoid.
Therefore, if we put all the pieces together, instantiate the paramet-
ric structure elem, we may now compute folds over natural num-
bers using Twelfs %solve directive.

%sig Main = {
%struct nat : Nat.
%struct l : List = {
%struct elem := NatMonoid nat.

}.
%solve : fold
(l.cons nat.zero (l.cons nat.zero l.nil)) N.

}.

Here the composite NatMonoid nat is the result of translating
the structure nat along NatMonoid in order to fit it to the expected
type of elem. The signature graph looks as below, and Theorem 9
below guarantees that it commutes.

Monoid

List

Nat

Main

List”elem

NatMonoid

Main”l

Main”nat

The morphism denoted by NatMonoid nat is the result of ap-
plying NatMonoid to nat. It may be confusing that this applica-
tion takes a structure of type Nat as its argument and returns a
structure of type Monoid, although the view NatMonoid is typed as
Monoid -> Nat. This is an effect of an adjunction between syn-
tax and semantics: a view induces a translation of structures in the
opposite direction. Here the translation of structures is seen as a
semantical translation because every structure of type S is an im-
plementation or a model of S.

3.3 Elaboration
In this section, we define the elaboration semantics of the module
system into core LF. The target language of elaboration is that of
Fig. 2 but without structure declarations and without assignments
to structures. The elaboration of the remaining views to plain LF is
straightforward.

The elaboration semantics provides implicitly an algorithm on
how to lookup the type of a constant, for example, during type

checking. While this is trivial in the non-modular case, in a mod-
ular setting constants may be induced by structure declarations or
appear in assignments or views.

In the remainder of this section, we define the judgments
for elaborating declarations in a signature T and for morphisms
m in a signature graph G, respectively: G ≫T ~c :A =B and
G ≫m ~c:=B. The former expresses that the declaration ~c :A =B
is present in the signature T after elaboration (or: that the lookup
of the constant ~c in the signature T returns the type A and the def-
inition B). In the interest of brevity, we reuse the same judgment
for defined and undefined constants, by writingB = ⊥ in the latter
case. Very similarly, G ≫m ~c:=B expresses that the assignment
~c:=B is present in the view or structurem after elaboration (or: that
the lookup of the assignment to ~c in m returns B). Again we use⊥
for brevity: If the domain of m has a constant ~c but m provides no
assignment for it, we write G ≫m ~c:=⊥.

The intuitive definition of these judgments is as follows. As-
sume a structure declaration r :R = {σ} occurs in S, and as-
sume R contains c :A, and σ contains no assignment for c. We
have G ≫S s.c :S”s(A) =⊥. Similarly, if σ contains the assign-
ment c:=B, then we have G ≫S s.c :S”s(A) =B. In both cases
S”s(A) is the result of translatingA along the morphism S”s, pre-
fixing all constants with s.

Now assume in addition a morphism µ from R to T and an
assignment s:=µ in a view or structure m from S to T . We have
G ≫m s.c:=µ(c), i.e., m maps the constant s.c of S to the result
of applying µ to the constant c of R.

Views and Structures In order to define the above judgments, we
need one auxiliary judgment that is defined by the three rules in
Fig. 3. G ≫ m : S → T = {σ} expresses that m is a morphism
from S to T defined by the list σ of assignments. m may be a view
(first rule) or a structure (second rule). Finally, a structure s from S
to T does not only induce constants s.~c but also structures s.~r. The
meaning of the structure T”s.r is defined to be the composition
S”r T”s. The judgment G ≫ m : S → T = µ expresses that m
is a morphism from S to T with definition µ (third rule).

v :S → T= {σ} in G

G ≫ v : S → T = {σ}

T = {. . . , s :S = {σ}, . . .} in G

G ≫ T”s : S → T = {σ}

G ≫ T”s : S → T = G ≫ S”~r : R→ S =

G ≫ T”s.~r : R→ T = S”~r T”s

Figure 3. Views and Structures

Semantics of Structures We are now in the position to define the
two main judgments. Fig. 4 gives the four rules defining the elab-
oration of structure occurring in a signature T (or: the lookup in a
signature T). The first two rules handle constants with and without
definition declared in T . The other two rules handle constants s.~c
induced by a structure swith domain S. If s provides an assignment
B′ for ~c it is used as the definition of s.~c (third rule). Otherwise,
the existing definition B of c is translated along T”s. The transla-
tion along morphisms is defined formally below. In the interest of
brevity, we put µ(⊥) = ⊥, i.e., neither ~c has definition in S nor s
provides an assignment for it, then s.~c has no definition either.

T = {. . . , c :A =B, . . .} in G

G ≫T c :A =B

T = {. . . , c :A, . . .} in G

G ≫T c :A =⊥

G ≫ T”s : S → T = G ≫S ~c :A =B
G ≫T”s ~c:=B

′

B′ 6= ⊥

G ≫T s.~c :T”s(A) =B′

G ≫ T”s : S → T = G ≫S ~c :A =B G ≫T”s ~c:=⊥

G ≫T s.~c :T”s(A) =T”s(B)

Figure 4. Semantics of Structures

Semantics of Assignments to Structures Fig. 5 gives the three
rules defining the elaboration of assignments to structures occur-
ring in a morphism m. The first rule handles the case where m is
defined by a morphism µ, which is simply applied to all constants ~c
of S. Ifm is defined a list of assignments, two cases are possible. If
m has as assignment for ~c, the treatment is clear (second rule). But
if m contain an assignment to a structure ~n, it induces assignments
to all constants ~s.~c (third rule).

G ≫ m : S → T = µ

G ≫m ~c:=µ(~c)

G ≫ m : S → T = {. . . , ~c:=C, . . .}

G ≫m ~c:=C

G ≫ m : S → T = {. . . , ~s:=µ, . . .} G ≫ S”~s : R→ S =

G ≫m ~s.~c:=µ(~c)

Figure 5. Semantics of Structure Assignments

Morphism Application Finally, we define the application of a
morphism µ to a term C by induction on µ and C. We define the
step cases by

µ µ′(~c) := µ′(µ(~c))
µ(type) := type
µ(x) := x
µ([x : A] C) := [x : µ(A)] µ(C)
µ({x : A} C) := {x : µ(A)} µ(C)
µ(C C′) := µ(C) µ(C′)

The most interesting case is the base case when a view or a
structure is applied to a constant: If G ≫ m : S → T = ,
G ≫S ~c : =B, and G ≫m ~c:=B′, then we define

m(~c) :=


m(B) if B 6= ⊥
B′ if B = ⊥, m = v view

~s.~c if B = ⊥, m = T”~s structure

` G G is a well-formed signature graph.
G B D The declaration D can be added to G.
G BN D The declaration or assignment D can be added

to the signature, view, or structure named N .
G ` µ : S → T µ is a well-formed morphism from S to T

(or: a well-formed structure over T of type S).
G `T C ≡ B C and B are equal over G and T .
G `T C : A C is a well-formed term of type A over G and T .

Figure 6. Main Judgments

If ~c is defined then it is expanded (first case). If ~c is declared then
it is mapped according to the assignment provided by the view
(second case) or mapped to the constant induced by the structure
(third case). Clearly, this is only well-defined if the three judgments
defined in this section are functional, i.e., there must be unique
values S, B, and B′. This follows from the requirement that there
are no name clashes in G, i.e. that constant symbols are not declared
(in the case of a signature) or assigned (in the case of a view or
structure) twice, as we show in the next section.

3.4 Type System
In this section, we present an inference system to define the well-
formedness of our syntactic categories. The judgments are given in
Fig. 6. The judgment ` G states the well-formedness of signature
graphs. The judgment G B D expresses that G can be extended
with the signature or view D, and G BN D expresses that the
signature, view, or structureN can be extended with the declaration
or assignment, respectively, D. Finally, there are three judgments
that define well-formed terms and morphisms relative to a signature
graph and a signature declared in that graph.

While the conceptual core of the type system is quite simple,
the technical details regarding namespace management can make
the notation rather complex. Therefore, we choose a simplified
presentation using a judgment noClash(G, N, n) that expresses
that a declaration or assignment for the identifier n can be added
to the signature, view, or structure N without creating a name
clash. Similarly, noClash(G, N) expresses that a signature or view
named N can be added to G. We refrain from formalizing these
judgments; instead, we only state that the consequent use of this
judgment guarantees that the judgments G ≫ m : S → T =
, G ≫T ~c :A =B, and G ≫m ~c:=B are functional where

the output arguments are indicated in red. Therefore, we can use
these judgments to look up names, types, and definitions for the
identifiers encountered during type-checking.

Structure of Signature Graphs We define Sig(G) to be the set of
signature names declared in G. The structure of signature graphs is
defined by the rules in Fig. 7. These rules follow the grammar and
iterate a well-formedness judgment over all components of a sig-
nature graph. They also check that views are total and that module
names do not clash. The well-typedness of constant declarations
and assignments (red assumptions) and objects (blue assumptions)
is defined by the rules in Fig. 8.

The rule G∅ constructs an empty signature graph. The rules
Sig and V iew extend a well-formed signature graph with a well-
formed signature or view; while signatures can be added directly,
views must be total, which means that they must provide an assign-
ment for every declared constant.

Whether or not a signature or view is well-formed is defined in
the remaining rules. The rules Sig∅ and Sym construct signatures
by successively adding well-formed symbols, and the rules V iew∅
and V iewAss construct views by successively adding well-formed
assignments. The rules for structures correspond to those for views:

G∅
` ·

` G G B T = {Σ}
Sig

` G, T = {Σ}

noClash(G, T)
Sig∅

G B T = {·}

G B T = {Σ} G, T = {Σ} BT D
Sym

G B T = {Σ, D}

` G G B v :S → T = {σ} G ≫v ~c:=B for some B whenever G ≫S ~c :A =⊥
V iew

` G, v :S → T = {σ}

noClash(G, v) S ∈ Sig(G) T ∈ Sig(G)
V iew∅

G B v :S → T = {·}

G B v :S → T = {σ} G, v :S → T = {σ} Bv D
V iewAss

G B v :S → T = {σ,D}

noClash(G, T, s) S ∈ Sig(G) \ {T}
Str∅

G BT s :S = {·}

G, T = {Σ} B s :S = {σ} G, T = {Σ, s :S = {σ}} BT”s D
StrAss

G, T = {Σ} BT s :S = {σ,D}

Figure 7. Structural Rules

Str∅ and StrAss construct structures by successively adding well-
formed assignments. The rule Str∅ also ensures that a signature
may not instantiate itself.

Well-formed Declarations and Assignments The rules above the
dotted line in Fig. 8 define when constants and assignments are
well-typed. The rule Con says that constant declarations c :A =B
are well-typed for a signature T if B has type A, and if c is
not already declared in T . In order to save case distinctions, we
use the following convention: We permit the case B = ⊥ for
constants without definitions, and say that the typing judgment
G `T ⊥ : A holds if A is a well-formed type or kind. Note
that extensions to other type systems only require to modify this
convention appropriately.

The rule ConAss defines when an assignment ~c:=B is well-
typed. The first three premises look up the domain and codomain
of the last view or structure m in G, make sure that an assignment
for ~c does not clash with existing assignments in m, and look up
the type of ~c. The definition of ~c must be ⊥, i.e., defined constants
cannot be instantiated. The final premise type-checksB against the
translation of A. If m(A) is not defined, which is possible if m is
a view and A contains constants for which m does not provide an
assignment yet, we consider the typing judgment not to hold. Thus,
the order of assignments in a link must respect the dependency
order between the symbols declared in the domain.

R S T
S”~s m

µThe rule StrAss
for assignments to
structures is simi-
lar to ConAss. The
first three premises
correspond to those of ConAss. In particular, R corresponds to
A as the type of ~s, and the fourth premise checks the type of µ
against R. To understand the last premise, note that the intended
semantics of assignments to structures is that the diagram on the
right commutes. This is only possible if µ agrees with S”~s m for
all constants for which m is already determined.

The rules below the dotted line in Fig. 8 define the typing of
objects. T: and T≡ replace the core LF rule for the lookup of
constants in the signature (called con in [Pfenning 2001]). All
other typing and equality rules of core LF are retained. To obtain
module systems for other type theories, the typing and equality
rules have to be changed accordingly. Finally, the rules Mm and
Mcomp construct morphisms as sequences of views and structures.
Composition is written in diagrammatic order, i.e., from the domain
to the codomain.

3.5 Meta-Theory
We turn now to the meta-theoretical results that we have shown
about the module system, most notably, conservativity.

First, we define two morphisms to be equal if they agree for all
constants of the domain signature.

DEFINITION 7. Assume G ` µ : S → T and G ` µ′ : S → T .
We define the judgment G ` µ ≡ µ′ to hold iff for all ~c for which
G ≫S ~c : = we have G `T µ(~c) ≡ µ′(~c).

THEOREM 8. Assume G ` µ : S → T . If G `S C : A, then
G `T µ(C) : µ(A). And if G `S C ≡ C′ and G ` µ ≡ µ′, then
G `T µ(C) ≡ µ′(C′).

Proof: This is a special case of the results given in [Rabe 2008, Ch.
6]. The proof proceeds by induction on µ and C. The key steps are
that the rules ConAss and StrAss permit to add assignments to
views or structures only if they do not violate the typing or equality
relations of the domain signature. 2

This result establishes the basic properties of signature mor-
phisms as encoded in our module system: the preservation of typ-
ing and equality. The following result states the intended seman-
tics of assignments to structures, namely that the diagram given in
Sect. 3.4 commutes. Together with Thm. 8, it shows that the mod-
ule system can be used to reason about signature morphisms. This
is the cornerstone of adequacy proofs because adequacy proofs in
terms of signature morphisms are very elegant and concise. For ex-
ample, we obtain the adequacy of the structure sharing in the LF
encoding of intuitionistic logic in Example 4 immediately without
having to elaborate any of the involved structures.

THEOREM 9. Assume ` G. If there is an assignment ~s:=µ in a
view or structure m from S to T in G, then G ` S”~s m ≡ µ.

Proof: This is a special case of the results given in [Rabe 2008, Ch.
6]. All definitions are targeted at this result, most importantly rule
StrAss rejects any assignment that would violate the theorem. 2

Finally, we show that modular LF is conservative over core LF.
The main argument is that elaboration is sound and that core LF
signatures elaborate to themselves. The only caveat is easily ex-
plained: Qualified identifiers in modular LF need to be considered
constants in core LF, which means that “”” and “.” must be allowed
in constant names.

THEOREM 10. Assume a signature graph G. Let Σ be the core LF
signature containing the declarations

noClash(G, T, c) G `T B : A
Con

G BT c :A =B

noClash(G,m,~c)
G ≫ m : S → T =
G ≫S ~c :A =⊥

G `T B : m(A)

ConAss
G Bm ~c:=B

noClash(G,m,~s)
G ≫ m : S → T =
G ≫ S”~s : R→ S =

G ` µ : R→ T
G `T µ(~c) ≡ m(B)

whenever G ≫S ~s.~c : =B, B 6= ⊥
StrAss

G Bm ~s:=µ

. .

G ≫T ~c :A =
T:

G `T ~c : A

G ≫T ~c : =B, B 6= ⊥
T≡

G `T ~c ≡ B

G ≫ m : S → T =
Mm

G ` m : S → T

G ` µ : R→ S G ` µ′ : S → T
Mcomp

G ` µ µ′ : R→ T

Figure 8. Typing Rules

• for all signatures T declared in G: whenever G ≫T ~c :A =B
for B 6= ⊥, the declaration T”~c :A =B; and whenever
G ≫T ~c :A =⊥, the declaration T”~c :A,

• for all views v with domain S declared in G: whenever G ≫S

~c :A =⊥ and G ≫v ~c:=B, the declaration v”~c : v(A) =B,
• for all structures s with domain S declared in a signature T of
G: whenever G ≫S ~c : =B, B 6= ⊥, and G ≫T”s ~c:=B

′,
B′ 6= ⊥, then a declaration that is well-typed iff B ≡ B′,1

in some order that respects the dependencies between them. Then
` G iff Σ is a valid core LF signature.

Proof: This is a special case of the results given in [Rabe 2008, Ch.
6]. The only modification of the argument is that here Σ is always
ill-formed if any view in G is not total because it will contain the
illegal symbol ⊥. 2

4. Implementation
The module system for LF discussed in this paper has been imple-
mented as part of the Twelf system. More information about the
implementation and some examples can be found on the project
webpage at http://www.twelf.org/mod/.

Our implementation of modular Twelf builds upon the code base
of the original Twelf. Twelf’s own highly modular design aided our
effort to introduce namespace management and the treatment of
qualified identifiers. Its built-in mechanism for notational defini-
tions is heavily used in the implementation of elaboration in partic-
ular for dealiasing. Parts of the central data structures had to be
changed to maintain qualified identifiers, and we frequently use
hash tables instead of arrays. The additional convenience of the
module system does not come at the expense of performance, as
we can show next. The experimental results are reported in Fig-
ure 9. The experiments compare the running times of various mech-
anisms inside the two implementations of Twelf when loading a
Twelf signature (that does not contain any modules). First, the cut-
elimination proof for intuitionistic and classical logic [Pfenning

1 Such a declaration always exists. For example, if B and B′ are types, the
definition of the identity as a function from B to B′ is only well-typed if
B ≡ B′. This observation is due to Dan Licata.

Cut-Elim TALT SML
Parsing 0.008 (0.008) 3.590 (2.733) 0.583 (0.851)
Reconstruction 0.017 (0.017) 8.620 (14.00) 1.688 (2.324)
Abstraction 0.008 (0.007) 7.154 (6.254) 0.738 (1.004)
Modes 0.002 (0.002) 2.130 (3.129) 0.193 (0.477)
Subordination 0.004 (0.002) 18.39 (10.87) 5.851 (4.392)
Termination 0.009 (0.010) 1.157 (0.698) 0.273 (0.213)
Compilation 0.001 (0.001) 0.077 (0.078) 0.044 (0.045)
Solving 0.000 (0.000) 0.838 (0.498) 0.000 (0.000)
Coverage 0.225 (0.270) 2173 (2176) 8.003 (7.190)
Worlds 0.002 (0.002) 2.810 (1.241) 2.124 (1.922)
Total 0.275 (0.319) 2218 (2216) 19.49 (18.42)

Figure 9. Experimental Data. Modular Twelf (Traditional Twelf)
in seconds.

1995], the formalization of the meta-theory of typed assembly lan-
guage [Crary 2003] (which consists of about 2500 meta-theorems),
and the formalization of the meta-theory of the intermediate lan-
guage of full Standard ML [Lee et al. 2007] (which consists of
about 1300 meta-theorems). All timings are measured in seconds
and rounded. The experiments were conducted on a Dell Pow-
eredge 1950 equipped with two dual-core Xeon 5140 2.33GHz pro-
cessors and 8GB RAM.

5. Conclusion
We have described a module system for the logical framework LF
that is both expressive and elegant. Besides signatures, it introduces
signature morphisms, in form of structures and views.

We believe that our examples have shown that named structures
and views provide for elegant representations of inheritance rela-
tions and translations. In particular, views can themselves be com-
posed modularly. We give another example in [Horozal and Rabe
2009], where we represent a soundness proof for first-order logic
by representing proof and model theory as signatures. We define a
view from the proof to the model theory. Both proof and model the-
ory as well as the view are developed separately for each connective
and quantifier and then plugged together as in the view KOLM.

http://www.twelf.org/mod/

Views are custom-tailored toward structural translations that
translate constant symbols into compound terms. They are, how-
ever, too limited to capture the essence of non-structural transla-
tions that are defined by cases and appear frequently, especially in
the study of the meta theory of deductive systems. We realize the
importance of this observation, but leave further investigations to
future work.

In summary, the module system described in this paper is con-
servative over LF because each signature, structure, or view can be
fully elaborated into core LF. It is practical, because it is available
to users of the Twelf system and we have shown that it does not
degrade runtime performance.

Acknowledgments Our module system is a special case of a
more generic system that the first author developed with Michael
Kohlhase. Design and implementation of the version described here
benefited greatly from discussions with Frank Pfenning and prior
work by Kevin Watkins.

References
S. Autexier, D. Hutter, H. Mantel, and A. Schairer. Towards an Evolutionary

Formal Software-Development Using CASL. In D. Bert, C. Choppy, and
P. Mosses, editors, WADT, volume 1827 of Lecture Notes in Computer
Science, pages 73–88. Springer, 1999.

H. Barendregt. An introduction to generalized type systems. Journal of
Functional Programming, 1(2):125–154, April 1991.

J. Chrzaszcz. Implementing modules in the coq system. In D. Basin and
B. Wolff, editors, Theorem Proving in Higher Order Logics (TPHOLs
03), pages 270–286. Springer Verlag, LNCS 2758, 2003.

CoFI (The Common Framework Initiative). CASL Reference Manual,
volume 2900 (IFIP Series) of LNCS. Springer, 2004.

K. Crary. Toward a foundational typed assembly language. In G. Mor-
risett, editor, Proceedings of the 30th ACM Symposium on Principles
of Programming Languages, SIGPLAN Notices, Vol. 38, No. 1, pages
198–212, New Orleans, Louisiana, Jan. 2003. ACM Press.

W. Farmer, J. Guttman, and F. Thayer. IMPS: An Interactive Mathematical
Proof System. Journal of Automated Reasoning, 11(2):213–248, 1993.

F. Haftmann and M. Wenzel. Constructive type classes in isabelle. In
T. Altenkirch and C. McBride, editors, Types for Proofs and Programs,
TYPES 2006, pages 149–165. Springer Verlag LNCS 4502, 2007.

R. Harper and F. Pfenning. A module system for a programming language
based on the LF logical framework. Journal of Logic and Computation,
8(1):5–31, 1998.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184,
Jan. 1993.

R. Harper, D. Sannella, and A. Tarlecki. Structured presentations and logic
representations. Annals of Pure and Applied Logic, 67:113–160, 1994.

F. Horozal and F. Rabe. Representing Model Theory in a Type-Theoretical
Logical Framework. In ”Logical and Semantic Frameworks, with Ap-
plications”, 2009. To appear.

F. Kammüller, M. Wenzel, and L. C. Paulson. Locales: A sectioning concept
for isabelle. In Theorem Proving in Higher Order Logics (TPHOLs 99),
LNCS 1690, pages 149–165. Springer, 1999.

D. K. Lee, K. Crary, and R. Harper. Towards a mechanized metatheory
of standard ML. In Proceedings of the 34th Annual Symposium on
Principles of Programming Languages, pages 173–184, New York, NY,
USA, 2007. ACM Press. ISBN 1-59593-575-4. doi: http://doi.acm.org/
10.1145/1190216.1190245.

D. Licata, R. Simmons, and D. Lee. A simple module system for Twelf.
http://www.cs.cmu.edu/~drl/pubs.html, 2006.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineer-
ing, Chalmers University of Technology, SE-412 96 Göteborg, Sweden,
September 2007.

F. Pfenning. Structural cut elimination. In D. Kozen, editor, Proceedings of
the Tenth Annual Symposium on Logic in Computer Science, pages 156–
166, San Diego, California, June 1995. IEEE Computer Society Press.

F. Pfenning. Logical frameworks. In Handbook of automated reasoning,
pages 1063–1147. Elsevier, 2001.

F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical
framework for deductive systems. In H. Ganzinger, editor, Proceedings
of the 16th International Conference on Automated Deduction (CADE-
16), pages 202–206, Trento, Italy, July 1999. Springer-Verlag LNAI
1632.

F. Rabe. Representing Logics and Logic Translations. PhD thesis, Jacobs
University Bremen, 2008.

D. Sannella and A. Tarlecki. Specifications in an arbitrary institution.
Information and Control, 76:165–210, 1988.

C. Schürmann and M. O. Stehr. An executable formalization of the
HOL/Nuprl connection in the meta-logical framework Twelf. In Pro-
ceedings of the 13th International Conference on Logic for Program-
ming Artificial Intelligence and Reasoning, pages 150–166, Phnom
Penh, Cambodia, 2006. Springer Verlag.

	Introduction
	Preliminaries
	The Logical Framework LF
	The Kolmogorov Translation

	The Module System
	Syntax
	Another Example
	Elaboration
	Type System
	Meta-Theory

	Implementation
	Conclusion

