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Abstract. The integration of reasoning and computation services across
system and language boundaries has been mostly treated from an engi-
neering perspective. In this paper we take a foundational point of view.
We identify the following form of integration problems: an informal
(mathematical; i.e, logically underspecified) specification has multiple
concrete formal implementations between which queries and results have
to be transported. The integration challenge consists in dealing with the
implementation-specific details such as additional constants and proper-
ties. We pinpoint their role in safe and unsafe integration schemes and
propose a proof-theoretic solution based on modular theory-graphs that
include the meta-logical foundations. This also gives a clean conceptual
basis for earlier attempts that explain integration via “content/semantic
markup”.

1 Introduction

The aim of integrating Computer Algebra Systems (CAS) and Deduction Sys-
tems (DS) is twofold: to bring the efficiency of CAS algorithms to DS (without
sacrificing correctness) and to bring the correctness assurance of the proof theo-
retic foundations of DS to CAS computations (without sacrificing efficiency). In
general, the integration of computation and reasoning systems can be organized
either by extending the internals of one systems by methods (data structure and
algorithms) from the other, or by passing representations of mathematical ob-
jects and system state between independent systems, thus delegating parts of the
computation to more efficient or secure platforms. We will deal with the latter
approach here, which again has two distinct sets of problems. The first addresses
engineering problems and revolves about communication protocol questions like
shared state, distributed garbage collection, and translating input syntaxes of
the different systems. The syntax questions have been studied extensively in the
last decade and led to universal content markup languages languages for math-
ematics like MathML and OpenMath to organize communication. The second
set of problems comes from the fact that passing mathematical objects between
systems can only be successful if their meaning is preserved in the communica-
tion. This meaning is given via logical consequence in the logical system together
with the axioms and definitions of (or inscribed in) the respective systems.



We will address this in the current paper, starting from the observation
that content level communication between mathematical systems, to be effec-
tive, cannot always respect logical consequence. On the other hand, there is the
problem of trusting the communication itself, that boils down to studying the
preservation of logical consequence. Surprisingly, this problem has not received
in the literature the attention it deserves. Moreover, the problem of faithful safe
communication, which preserves not only the consequence relation but also the
intuitive meaning of a formal object, is not even always perceived as a structural
problem of content level languages.

For example, people with a strong background in first order logic tend to
assume that faithful and safe communication can always be achieved simply by
strengthening the specifications; others believe that encoding logical theories is
already sufficient for safe communication and do not appreciate that the main
problem is just moved to faithfulness. Several people from the interactive theo-
rem proving world have raised concerns about trusting CAS and solved the issue
by re-checking the results or the traces of the computation (here called proof
sketches). Sometimes this happens under the assumption that the computation
is already correct and just needs to be re-checked, neglecting the interesting
case when the proof sketch cannot be refined to a valid proof (or computation)
without major patching (see [DdC99] for a special case).

In section 3, we analyze the integration problem for mathematical systems
from a formal position — basing our deliberations on the consequence relation.
Our integration framework arises by adding some key innovations to the MMT
language described in [RK10], which arises as a generalization of OpenMath
and a clarification of OMDoc. Therefore, we sketch the MMT framework first in
Sect. 2. Then we describe how integration can be realized our framework using
partial theory morphisms in Sect. 4. Sect. 5 discusses related work and Sect. 6
concludes the paper.

2 The MMT Language

Agreeing on a common syntax like OpenMath is the first step towards system
integration. This already enables a number of structural services such as storage
and transport or editing and browsing that they do not depend on the semantics
of the processed expressions. But while we have a good solution for a joint syn-
tax, it is significantly harder to agree on a joint semantics. Fixing a semantics
for a system requires a foundational commitment that excludes systems based
on other foundations. The weakness of the (standard) OpenMath content dic-
tionaries can be in part explained by this problem: The only agreeable content
dictionaries are those where any axioms (formal or informal) are avoided that
would exclude some foundations.

MMT was designed to overcome this problem by placing it in between frame-
works like OpenMath and OMDoc on the one hand and logical frameworks like
LF and CIC on the other hand. The basic idea is that a system’s foundation
itself is represented as a content dictionary. Thus, both meta and object lan-
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guage are represented uniformly as MMT theories. Furthermore, theory mor-
phisms are employed to translate between theories, which makes MMT expres-
sive enough to represent translation between meta-languages and thus to sup-
port cross-foundation integration. As MMT permits the representation of logics
as theories and internalizes the meta-relation between theories, this provides
the starting point to analyze the cross-foundation integration challenge within
a formal framework.

Syntax We will work with a very simple fragment of the MMT language that
suffices for our purposes, and refer to [RK10] for the full account. It is given by
the following grammar where [−] denotes optional parts and T , v, c, and x are
identifiers:

Theory graph γ ::= · | γ, T [T ]
= {ϑ} | γ, v : T → T

v
= {σ}

Theory body ϑ ::= · | ϑ, c [: O] [= O′]
Morphism body σ ::= · | σ, c 7→ O
Objects O ::= OpenMath objects
Morphisms µ ::= v | idT | µ ◦ µ
Contexts C ::= x1 : O1, . . . , xn : On

Substitutions s ::= x1 := O1, . . . , xn := On

In particular, we omit the module system of MMT that permits imports between
theories.

T
L
= {ϑ} declares a theory T with meta-theory L defined by the list ϑ

of symbol declarations. The intuition of meta-theories is that L is the meta-
language that declares the foundational symbols used to type and define the
symbol declarations in ϑ.

All symbol declarations in a theory body are of the c : O = O′. This declares
a new symbol c where both the type O and the definiens O′ are optional. If given,
they must be T -objects, which are defined as follows. A symbol is called accessible
to T if it is declared in T or accessible to the meta-theory of T . An OpenMath
object is called a T -object if it only uses symbols that are accessible to T .

Example 1. Consider the natural numbers defined within the calculus of con-
structions (see [BC04]). We represent this in MMT using a theory CIC declaring
untyped, undefined symbols such as Type, λ and →. Then Nat is defined as a
theory with meta-theory CIC giving symbol declarations such as N : OMS(cd =
CIC, name = Type) or succ : OMA(OMS(cd = CIC, name =→), OMS(cd = Nat, name =
N), OMS(cd = Nat, name = N)).

S-contexts C are lists of variable declarations . . . , xi : Oi, . . . for S-objects Oi.
S-substitutions s for an S-context C are lists of variable assignments . . . , xi :=
oi, . . .. In an object O in context C, exactly the variables in C may occur freely;
then for a substitution s for C, we write O[s] for the result of replacing every
free occurrence of xi with oi.

Relations between MMT theories are expressed using theory morphisms.
Given two theories S and T , a theory morphism from S to T is declared us-

ing v : S → T
l
= {σ}. Here σ must contain one assignment c 7→ O for every
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symbol c declared in the body of S, and for some T -objects O. If S and T have
meta-theories L and M , then v must also include a meta-morphism l : L→M .

Every v : S → T
l
= {σ} induces a homomorphic extension v(−) that

maps S-objects to T -objects. v(−) is defined by induction on the structure of
OpenMath objects. The base case v(c) for a symbol c is defined as follows: If c
is accessible to the meta-theory of S, we put v(c) := l(c); otherwise, we must
have c 7→ O in σ, and we put v(c) := O. v(−) also extends to contexts and
substitutions in the obvious way.

By experimental evidence, all declarative languages for mathematics cur-
rently known can be represented naturally in MMT. In particular, MMT uses
the Curry-Howard representation [CF58,How80] of propositions as types and
proofs as terms. Thus, an axiom named a asserting F is a special cases of a
symbol a of type F , and a theorem named t asserting F with proof p is a special
case of a symbol t with type F and definiens p. All inference rules needed to
form p, are symbols declared in the meta-theory.

Semantics The use of meta-theories makes the logical foundation of a system
part of an MMT theory and makes the syntax of MMT foundation-independent.
The analogue for the semantics is more difficult to achieve: The central idea is
that the semantics of MMT is parametric in the semantics of the foundation.

To make this precise, we call a theory without a meta-theory foundational.
A foundation for MMT consists of a foundational theory L and two judgments
for typing and equality of objects:
– γ;C `T O : O′ states that O is a T -object over C typed by the T -object O′,
– γ;C `T O = O′ states the equality of two T -objects over C,

defined for an arbitrary theory T declared in γ with meta-theory L. In particu-
lar, MMT does not distinguish terms, types, and values at higher universes —
all expressions are OpenMath objects with an arbitrary binary typing relation
between them. We will omit C when it is empty.

These judgments are similar to those used in almost all declarative languages,
except that we do not commit to a particular inference system — all rules are
provided by the foundation and are transparent to MMT except for the rules for
the base cases of T -objects:

T
L
= {ϑ} in γ c : O = O′ in ϑ

T:
γ `T c : O

T
L
= {ϑ} in γ c : O = O′ in ϑ

T=
γ `T c = O′

and accordingly if O or O′ are omitted. For example, adding the usual rules for
the calculus of constructions yields a foundation for the foundational theory CIC.

Given a foundation, MMT defines (among others) the two judgments
– γ ` µ : S → T states that µ is a theory morphism from S to T ,
– if γ ` µi : S → T , then γ ` µ1 = µ2 states that `T µ1(c) = µ2(c) for all

symbols c that are accessible to S,
– γ `S s : C states that s is a well-typed for C, i.e., for every xi := oi in s and
xi : Oi in C, we have γ `S oi : Oi,
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– γ ` G states that G is a well-formed theory graph.
In the sequel, we will omit γ if it is clear from the context.

The most important MMT rule for our purposes is the rule that permits
adding an assignment to a theory morphism: If S contains a declaration c : O1 =

O2, then a theory morphism v : S → T
l
= {σ} may contain an assignment

c 7→ O only if `T O : v(O1) and `T O = v(O2). The according rule applies if c
has no type or no definiens. Of course, this means that assignments c 7→ O are
redundant if c has a definiens; but it is helpful to state the rule in this way to
prepare for our definitions below.

Due to these rules, we obtain that if γ ` µ : S → T and `S O : O′ or
`S O = O′, then `T µ(O) : µ(O′) and `T µ(O) = µ(O′), respectively. Thus,
typing and equality are preserved along theory morphisms.

Due to the Curry-Howard representation, this includes the preservation of
provability: `T p : F states that p is a well-formed proof of F in T . And if S
contains an axiom a : F , a morphism µ from S to T must map a to a T -object
of type µ(F ), i.e., to a T -proof of µ(F ). This yields the well-known intuition
of a theory morphism. In particular, if µ is the identity on those symbols that
do not represent axioms, then ` µ : S → T implies that every S-theorem is an
T -theorem.

3 Integration Challenges

In this section, we will develop some general intuitions about system integration
and then give precise definitions in MMT. A particular strength of MMT is
that we can give these precise definition without committing to a particular
foundational system and thus without loss of generality.

The typical integration situation is that we have two systems Si for i = 1, 2
that implement a shared specification Spec. For example, these systems can be
computer algebra systems or (semi-)automated theorem provers. Our integration
goal is to move problems and results between S1 and S2.

Specifications and Systems Let us first assume a single system S implementing
Spec, whose properties are given by logical consequence relations Spec and S .
We call S sound if S F implies Spec F for every formula F in the language
of Spec. Conversely, we call S complete if Spec F implies S F .

While these requirements seem quite natural at first, they are too strict for
practical purposes. It is well-known that soundness fails for many CASs, which
compute wrong results by not checking side conditions during simplification.
Reasons for incompleteness can be theoretical — e.g., when S is a first-order
prover and Spec a higher-order specification — or practical — e.g., due to re-
source limitations.

Moreover, soundness also fails in the case of underspecification: S is usually
much stronger than Spec because it must commit to concrete definitions and im-
plementations for operations that are loosely specified in Spec. A typical example
is the representation of undefined terms (see [Far04] for a survey of techniques).
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If Spec specifies the rational numbers using in particular ∀x.x 6= 0 ⇒ x/x = 1,
and S defines 1/0 = 2/0 = 0, then S is not sound because 1/0 = 2/0 is not a
theorem of Spec.

We can define the above notions in MMT as follows. A specification Spec is
an MMT theory; its meta-theory (if any) is called the specification language. A
system implementing Spec consists of an MMT theory S and an MMT theory
morphism v : Spec → S; the meta-theory of S (if any) is called the implementa-
tion language. With this definition and using the Curry-Howard representation
of MMT, we can provide a deductive system for the consequence relations used
above: Spec F iff there is a p such that `Spec p : F ; and accordingly for S .

In the simplest case, the morphism v is an inclusion, i.e., for every symbol
in Spec, S contains a symbol of the same name. Using an arbitrary morphism
v provides more flexibility, for example, the theory of the natural numbers with
addition and multiplication implements the specification of monoids in two dif-
ferent ways via two different morphisms.

Example 2. We use a theory for second-order logic as the specification language;
it declares symbols for ∀, =, etc. Spec = Nat is a theory for the natural numbers;
it declares symbols N , 0 and succ as well as one symbol a : F for each Peano
axiom F .

For the implementation language, we use a theory ZF for ZF set theory; it
has meta-theory first-order logic and declares symbols for set, ∈, ∅, etc. Then
we can implement the natural numbers in a theory S = Nat declaring, e.g., a
symbol 0 defined as ∅, a symbol succ defined such that succ(n) = n ∪ {n},
and prove one theorem a : F = p in S for each Peano axiom. Note that Nat
yields theorems about the natural numbers that cannot be expressed in Spec,
for example ZF 0 ∈ 1. We obtain a morphism µ1 : Nat → Nat using N 7→ N,
0 7→ 0 etc.

Continuing Ex. 1, we obtain a different implementation µ2 : Nat → Nat using
N 7→ N, 0 7→ 0 etc.

To capture practice in formal mathematics, we have to distinguish between
the definitional and the axiomatic method. The axiomatic method fixes a formal
system L and then describes mathematical notions in L-theories T using free
symbols and axioms. T is interpreted in models, which may or may not exist.
This is common in model theoretical logics, especially first-order logic, and in
algebraic specification. In MMT, T is represented as a theory with meta-theory
L and with only undefined constants. In Ex. 2, L is second-order logic and T is
Spec.

The definitional method, on the other hand, fixes a formal system L together
with a minimal theory T0 and then describes mathematical notions using defini-
tional extensions T of T0. The properties of the notions defined in T0 are derived
as theorems. The interpretation of T is uniquely determined given a model of T0.
This is common in proof theoretical logics, especially LCF-style proof assistants,
and in set theory. In Ex. 2, L is first-order logic, T0 is ZF, and T is S.
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Types of Integration Let us now consider a specification Spec and two implemen-
tations µi : Spec → Si. To simplify the notation, we will write ` and `i instead
of `Spec and `Si . We first describe different ways how to integrate S1 and S2
intuitively.

Borrowing means to use S1 to prove theorems in the language of S2. Thus,
the input to S1 is a conjecture F and the output is an expression `1 p : F . In
general, since MMT does not prescribe a calculus for proofs, the object p can be
a formal proof term, a certificate, proof sketch, or simply a yes/no answer.

Computation means to reuse a S1 computation in S2. Thus, the input of
S1 is an expression t, and the output is a proof p with an expression t′ such
that `1 p : t = t′. To be useful, t′ should be simpler than t in some way, e.g.,
maximally simplified or even normalized.

Querying means answering a query in S1 and transferring the results to S2.
This is similar to borrowing in that the input to S1 is a formula F . However,
now F may contain free variables, and the output is not only a proof p but also
a substitution s for the free variables such that `1 p : F [s].

In all cases, a translation I must be employed to translate the input from S1
to S2. Similarly, we need a translation O in the opposite direction to translate
the output t′ and s and (if available) p from S2 to S1.

To define these integration types formally in MMT, we first note that borrow-
ing is a special case of querying if F has no free variables. Similarly, computation
is a special case of querying if F has the form t = X for a variable X that does
not occur in t.

Spec

S1

S2

µ1

µ2

OI

To define querying in MMT, we assume a specification,
two implementations, and morphisms I and O as on the
right. I and O must satisfy O ◦ I = idS2 , O ◦ µ1 = µ2, and
I ◦ µ2 = µ1. Then we obtain the following general form of
an integration problem: Given an S2-context C and a query
C `2? : F (where ? denotes the requested proof), find a substitution `1 s : I(C)
and a proof `1 p : I(F )[s]. Then MMT guarantees that `2 O(p) : F [O(s)] so that
we obtain O(s) as the solution. Moreover, only the existence of O is necessary
but not O itself — once a proof p is found in S1, the existence of O ensures that
F is true in S2, and it is not necessary to translate p to S2.

We call the above scenario safe bidirectional communication between S1 and
S2 because I and O are theory morphisms and thus guarantee that consequence
and truth are preserved in both directions. This scenario is often implicitly as-
sumed by people coming from the first-order logic community. Indeed, if S1 and
S2 are automatic or interactive theorem provers for first-order logic, then the
logic of the two systems is the same and both S1 and S2 are equal to Spec.

If we are only interested in safe directed communication, i.e., transferring
results from S1 to S2, then it is sufficient to require only O. Indeed, often µ2

is an inclusion, and the input parameters C and F , which are technically S2-
objects, only use symbols from Spec. Thus, they can be moved directly to Spec
and S1, and I is not needed.
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Similarly, the substitution s can often be stated in terms of Spec. In that case,
O is only needed to translate the proof p. If the proof translation is not feasible, O
may be omitted as well. Then we speak of unsafe communication because we do
not have a guarantee that the communication of results is correct. For example,
let S1 and S2 be two CASs, that may compute wrong results by not checking
side conditions during simplification. Giving a theory morphism O means that
the “bugs” of the system S1 must be “compatible” with the “bugs” of S2, which
is quite unlikely.

The above framework for safe communication via theory morphisms is partic-
ularly appropriate for the integration of axiomatic systems. However, if S1 and
S2 employ different mathematical foundations or different variants of the same
foundation, it can be difficult to establish the necessary theory morphisms. In
MMT, this means that S1 and S2 have different meta-theories so that I and O
must include a meta-morphism. Therefore, unsafe communication is often used
in practice, and even that can be difficult to implement.

Our framework is less appropriate if S1 or S2 are developed using the def-
initional method. For example, consider Aczel’s encoding of set theory in type
theory [Acz99,Wer97]. Here S1 = Nat as in Ex. 2, and S2 = Nat as in Ex. 1.
Azcel’s encoding provides the needed meta-morphism l : ZF → CIC of O. But
because Nat is definitional, we already have O = l, and we have no freedom to
define O such that it maps the concepts of Nat to their counterparts in Nat.
Formally, in MMT, this means that the condition O ◦ µ1 = µ2 fails. Instead, we
obtain two versions of the natural numbers in CIC: a native one given by µ2

and the translation of Nat given by O ◦ µ1. Indeed, the latter must satisfy all
ZF-theorems including, e.g., 0 ∈ 1, which is not even a well-formed formula over
Nat. We speak of faithful communication if O ◦ µ1 = µ2 can be established even
when S1 is definitional. This is not possible in MMT without the extension we
propose below.

4 A Framework for System Integration

In order to realize faithful communication within MMT, we introduce partial
theory morphisms that can filter out those definitional details of S1 that need
not and cannot be mapped to S2. We will develop this new concept in general
in Sect. 4.1 and then apply it to the integration problem in Sect. 4.2.

4.1 Partial Theory Morphisms in MMT

Syntax We extend the MMT syntax with the production O ::= >. The intended
use of > is to put assignments c 7→ > into the body of a morphism v : S →
T

l
= {σ} in order to make v undefined at c. We say that v filters c. The

homomorphic extension v(−) remains unchanged and is still total: If O contains
filtered symbols, then v(O) contains > as a subobject. In that case, we say v
filters O.
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Semantics We refine the semantics as follows. A dependency cut D for an MMT
theory T is a pair (Dtype, Ddef ) of two sets of symbols accessible to T . Given
such a dependency cut, we define dependency-aware judgments γ `D O : O′

and γ `D O = O′ as follows. γ `D O : O′ means that there is a derivation of
γ `T O : O′ that uses the rules T: and T= at most for the constants in Dtype and
Ddef , respectively. γ `D O = O′ is defined accordingly.

In other words, if we have γ′ `D O : O′ and obtain γ′ by changing the type
of any constant not in Dtype or the definiens of any constant not in Ddef , then
we still have γ′ `D O : O′. Then a foundation consists of a foundational theory
L together with dependency-aware judgments for typing and equality whenever
T has meta-theory L.

We make a crucial change to the MMT rule for assignments in a theory
morphism: If S contains a declaration c : O1 = O2, then a theory morphism

v : S → T
l
= {σ} may contain the assignment c 7→ O only if the following two

conditions hold: (i) if O1 is not filtered by v, then `T O : v(O1); (ii) if O2 is not
filtered by v, then `T O = v(O2). The according rule applies if O1 or O2 are
omitted.

In [RK10], a stricter condition is used. There, if O1 or O2 are filtered, then c
must be filtered as well. While this is a natural strictness condition for filtering,
it is inappropriate for our use cases: For example, filtering all L-symbols would
entail filtering all S-symbols.

Our weakened strictness condition is still strong enough to prove the central
property of theory morphisms: If γ ` µ : S → T and `D O : O′ for some
D = (Dtype, Ddef ) and v does not filter O, O′, the type of a constant in Dtype,
or the definiens of a constant in Ddef , then `T µ(O) : µ(O′). The according
result holds for the equality judgment.

Finally, we define the weak equality of morphisms µi : S → T . We define
` µ1 ≤ µ2 in the same way as ` µ1 = µ2 except that `T µ1(c) = µ2(c) is only
required if c is not filtered by µ1. We say that ` η : T → S is a partial inverse
of µ : S → T if ` η ◦ µ = idS and ` µ ◦ η ≤ idT .

Example 3. Consider the morphism µ1 : Nat → Nat from Ex. 2. We build its

partial inverse η : Nat→ Nat
l
= {σ}. The meta-morphism l filters all symbols

of ZF, e.g., l(∅) = >. Then the symbol N of Nat has filtered type and filtered
definiens. Therefore, the conditions (i) and (ii) above are vacuous, and we use
N 7→ N in σ. Then all remaining symbols of Nat (including the theorems) have
filtered definiens but unfiltered types. For example, for 0 : N = ∅ we have
η(∅) = > but η(N) = N . Therefore, condition (ii) is vacuous, and we map these
symbols to their counterparts in Nat , e.g., using 0 7→ 0 in σ. These assignments
are type-preserving as required by condition (i) above, e.g., `Nat η(0) : η(N).

4.2 Integration via Partial Theory Morphisms

The following gives a typical application of our framework by safely and faithfully
communicating proofs from a stronger to a weaker system:
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Example 4. In [IR11], we gave formalizations of Zermelo-Fraenkel (ZFC) set
theory and Mizar’s Tarski-Grothendieck set theory (TG) using the logical frame-
work LF as the common meta-theory. ZFC and TG share the language of
first-order set theory. But TG is stronger than ZFC because of Tarski’s axiom,
which implies, e.g, the sentence I stating the existence of infinite sets (which
is an axiom in ZFC) and large cardinals (which is unprovable in ZFC). For
example, we have an axiom a∞ : I in ZFC, and an axiom tarski : T and a
theorem t∞ : I = P in TG. Many TG-theorems do not actually depend on this
additional strength, but they do depend on t∞ and thus indirectly on tarski .

Using our framework, we can capture such a theorem as the case of a TG-
theorem `D p : F where F is the theorem statement and t∞ ∈ Dtype but
t∞ 6∈ Ddef and tarski 6∈ Dtype. We can give a partial theory morphism v :

TG → ZFC
idLF= {. . . , t∞ 7→ a∞, . . .}. Then v does not filter p, and we obtain

`ZFC v(p) : F .

Spec

S1

S2

µ1

µ2

η1

η2

Assume now that we have two implementations µi : Spec →
Si of Spec and partial inverses ηi of µi, where Si has meta-
theory Li. This leads to the diagram on the right where
(dashed) edges are (partial) theory morphisms. We can now ob-
tain the translations I:S2 → S1 and O:S1 → S2 as I = µ1 ◦ η2
and O = µ2 ◦η1. Note that I and O are partial inverses of each
other.

As in Sect. 3, let C `2? : F be a query in S2. If η2 does not filter any symbols
in C or F , we obtain the translated problem I(C) `1? : I(F ). Let us further
assume that there is an S1-substitution `1 s : I(C) and a proof `1 p : I(F )[s]
such that p and s are not filtered by η1. Because I and O are mutually inverse and
morphism application preserves typing, we obtain the solution `2 O(p) : F [O(s)].

The condition that η2 does not filter C and F is quite reasonable in practice:
Otherwise, the meaning of the query would depend on implementation-specific
details of S2, and it is unlikely that S1 should be able to find an answer anyway.
On the other hand, the morphism η1 is more likely to filter the proof p. Moreover,
since the proof must be translated from L1 to L2 passing through Spec, the latter
must include a proof system to allow translation of proofs. In practice this is
rarely the case, even if the consequence relation of Spec can be expressed as
an inference system. For example, large parts of mathematics or the OpenMath
content dictionaries implicitly (import) first-order logic and ZF set theory.

We outline two ways how to remedy this: We can communicate filtered proofs
or change the morphisms to widen the filters to let more proofs pass.

Communicating Filtered Proofs Firstly, if the proof rules of S1 are filtered by
η1, what is received by S2 after applying the output translation O is a filtered
proof, i.e., a proof object that contains the constant >. > represents gaps in the
proof that were lost in the translation.

In an extreme case, all applications of proof rules become >, and the only
unfiltered parts of O(p) are formulas that occurred as intermediate results during
the proof. In that case, O(p) is essentially a list of formulas Fi (a proof sketch
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in the sense of [Wie03]) such that I(F1)∧ . . .∧ I(Fi−1) `1 I(Fi) for i = 1, . . . , n.
In order to refine O(p) into a proof, we have to derive `1 Fn. Most of the time,
it will be the case that F1, . . . , Fi−1 `2 Fi for all i, and the proof is obtained
compositionally if S2 can fill the gaps through automated reasoning. When this
happens, the proof sketch is already a complete declarative proof.

Example 5. Let S1 and S2 be implementations of the rational numbers with
different choices for division by zero. In S1, division by zero yields a special
value for undefined results, and operations on undefined values yield undefined
results; then we have the S1-theorem t asserting ∀a, b, c.a(b/c)

.
= (ab)/c. In S2,

we have n/0
.
= 1 and n%0

.
= n; then we have the S2-theorems t1, t2, t3 asserting

∀m,n.n .
= (n/m) ∗m+ n%m, ∀m.m/m .

= 1, and ∀m.m%m
.
= 0.

The choice in S2 reduces the number of case analyses in basic proofs. But t
is not a theorem of S2; instead, we only have a theorem t′ asserting ∀a, b, c.c 6 .=
0 ⇒ a(b/c)

.
= (ab)/c. On the other hand, S1 is closer to common mathematics,

but the ti are not theorems of S1 because the side condition m 6= 0 is needed.
Hence, we do not have a total theory morphism O : S1 → S2, but we can give

a partial theory morphism O that filters t. Now consider, for example, a proof p
over S1 that instantiates t with some values A,B,C. When translating p to S2,
t is filtered, but we can still communicate p, and S2 can treat O(p) as a proof
sketch. Typically, t is applied in a context where C 6 .= 0 is known anyway so
that S2 can patch O(p) by using t′ — which can easily be found by automated
reasoning.

Integration in the other direction works accordingly.

Spec Spec′

S1

S2

µ′1

µ′2

η′1

η′2

Widening the Filters An alternative solution is to use
additional knowledge about S1 and S2 to obtain a
translation where O(p) is not filtered. In particular,
if p is filtered completely, we can strengthen Spec by
adding an inference system for the consequence rela-
tion of Spec, thus obtaining Spec′. Then we can extend
the morphisms µi accordingly to µ′i, which amounts to
proving that Si is a correct implementation of Spec.
Now ηi can be extended as well so that its domain becomes bigger, i.e., the
morphism η1 and thus O filter less proofs and become “wider”.

Note that we are flexible in defining Spec′ as required by the particular choices
of L1 and L2. That way the official specification remains unchanged, and we can
maximize the filters for every individual integration scenario.

Example 6 (Continuing Ex. 3). A typical situation is that we have a theorem
F over Nat whose proof p uses the Peano axioms and the rules of first-order
logic but does not expand the definitions of the natural numbers. Moreover, if
a : A = P is a theorem in Nat that establishes one of the Peano axioms, then p
will refer to a, but will not expand the definition of a. Formally, we can describe
this as `D p : F where 0, a ∈ Dtype but 0, a 6∈ Ddef .

We can form Spec′ by extending Spec with proof rules for first-order logic
and extend η to η′ accordingly. Since η does not filter the types of 0 and a, we
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obtain a proof `Spec η′(p) : η′(F ) due to the type-preservation properties of our
partial theory morphisms. Despite the partiality of η′, the correctness of this
proof is guaranteed by the framework.

Both ways to integrate systems are not new and have been used ad hoc in
concrete integration approaches, see Sect. 5. With our framework, we are able
to capture them in a rigorous framework where their soundness can be studied
formally.

5 Related Work

In the MoWGLI project [MoW], semantics markup is introduced to distinguish
from specifications given in the content markup languages OpenMath and OM-
Doc, and the implementations given in the calculus of constructions. This cor-
responds closely to the use of meta-theories in MMT: Their content markup
corresponds to MMT theories without meta-theory; and semantics markup cor-
responds to MMT theories with meta-theory CIC.

A framework very similar to ours was given in [CFW03]. Our MMT theories
with meta-theory correspond to their biform theories, except that the latter
adds algorithms. Our theory morphisms I and O correspond to their translations
export and import.

Integration by borrowing is the typical scenario of integrating theorem provers
and proof assistants. For example, Leo-II [BPTF07] or the Sledgehammer tactic
of Isabelle [Pau94] (S2) use first-order provers (S1) to reason in higher-order logic.
Here the input translation I is partial inverse of the inclusion from first-order
logic to higher-order logic. A total translation from modal logic to first-order
logic is used in [HS00]. In all cases, the safety is verified informally on the meta-
level and no output translation O in our sense is used. But Isabelle makes the
communication safe by reconstructing a proof from the proof (sketch) returned
by the prover.

The above systems are called on demand using an input translation I. Alter-
natively a collection of S1-proofs can be translated via an output translation O
for later reuse in S2; in that case no input translation I is used at all. Examples
are the translations from Isabelle/HOL in HOL Light [McL06], from HOL Light
to Isabelle/HOL [OS06], from HOL Light to Coq [KW10], or from Isabelle/HOL
to Isabelle/ZF [KS10].

The translation from HOL to Isabelle/HOL is notable because it permits
faithful translations, e.g., the real numbers of HOL can be translated to the real
numbers of Isabelle/HOL, even though the two systems define them differently.
The safety of the translation is achieved by recording individual S1-proofs and
replaying them in S2. This was difficult to achieve even though S1 and S2 are
based on the same logic.

The translation given in [KW10] is the first faithful translation from HOL
proofs to CIC proofs. Since the two logics are different, in order to obtain a total
map the authors widen the filter by assuming additional axioms on CIC (ex-
cluded middle and extensionality of functions). This technique is not exploitable
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when the required axioms are inconsistent. Moreover, the translation is subop-
timal, since it uses excluded middle also for proofs that are intuitionistic. To
improve the solution, we could use partial theory morphisms that map case
analysis over boolean in HOL to >, and then use automation to avoid excluded
middle in CIC when the properties involved are all decidable.

In all above examples but [KW10], the used translations are not verified
within a logical framework. The Logosphere [PSK+03] project used the proof
theoretical framework LF to provide statically verified logic translations that
permit inherently safe communication. The most advanced such proof translation
is one from HOL to Nuprl [NSM01].

The theory of institutions [GB92] provides a general model theoretical frame-
work in which borrowing has been studied extensively [CM97] and implemented
successfully [MML07]. Here the focus is on giving the morphism I explicitly and
using a model theoretical argument to establish the existence of some O; then
communication is safe without explicitly translating proofs.

Integration by computation is the typical scenario for the integration of com-
puter algebra systems, which is the main topic of the Calculemus series of confer-
ences. For typical examples, see [DM05] where the computation is performed by
a CAS, and [AT07] where the computation is done by a term rewriting system.
Communication is typically unsafe. Alternatively, safety can be achieved if the
results of the CAS — e.g., the factorization of a polynomial — can be verified
formally in a DS as done in [HT98] and [Sor00].

Typical applications of integration by querying are conjunctive query an-
swering for a description logic. For example, in [TSP08], a first-order theorem
prover is used to answer queries about the SUMO ontology.

The communication of filtered proofs essentially leads to formal proof sketch
in the sense of [Wie03]. The idea of abstracting from a proof to a proof sketch
corresponds to the assertion level proofs used in [Mei00] to integrate first-order
provers. The recording and replaying of proof steps in [OS06] and the reconstruc-
tion of proofs in Isabelle are also special cases of the communication of filtered
proofs.

6 Conclusion

In this paper we addressed problems of preserving the semantics in protocol-
based integration of mathematical reasoning and computation systems. We ana-
lyzed the problem from a foundational point of view and proposed a framework
based on theory graphs, partial theory morphisms, and explicit representations
of meta-logics that allows to state solutions to the integration problem.

The main contribution and novelty of the paper is that it paves the way
towards a theory of integration. We believe that this theory of integration is
practical because it requires only a simple extension of the MMT framework,
which already takes scalability issues very seriously [KRZ10].
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