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Abstract

The MMT language constitutes a scalable representation and interchange format for formal math-
ematical knowledge. It is foundation-independent and permits natural representations of the syntax
and semantics of virtually all declarative languages. This is leveraged in the MMT API, which pro-
vides a variety of generic logical and knowledge management services.

In this work-in-progress report, we present a recently started effort to add editing support for
MMT (and thus for any language represented in MMT). To that end, we design a concrete text syntax
for MMT and use it as an input language in two MMT user interfaces. Firstly, we connect the MMT
API with the text editor jEdit in order to obtain IDE-like support. Secondly, we extend the MMT web
server with interface components for wiki-like editing. In both cases, a tight integration of the MMT
API and the user interface makes it easy to provide high-level services to the user.

1 Introduction

Deduction systems such as type checkers, proof assistants, or theorem provers have initially focused
on soundness and efficiency. At this point the most natural design choice has usually been a read-
eval-print loop with large input sequences stored in text files, e.g., [Pau94, TB85]. Over time systems
reached maturity levels that called for more sophisticated user interfaces, but it has proved non-trivial to
supplement these a posteriori.

The typical difficulty here is the integration of an interaction-oriented user interface with a sequential
processing-oriented kernel. This problem is even more severe in the common situation where different
programming languages are most suitable for the two respective components.

For example, for Isabelle, [Wen12] provides an IDE-like environment based on jEdit that is similar
to ours. The key idea here is to expose much of the ML-based Isabelle kernel to a Scala layer [OSV07].
Since Scala is binary-compatible with Java (the language of jEdit), this permits a fine-granular integration
of frontend and kernel, e.g., the editor can display the proof state at the cursor position. In some sense,
the opposite approach is taken in [ABMU11], where a wiki-like frontend is provided for Coq and Mizar.
Here the kernel is an abstract component that validates files and produces a dependency relation and
HTML generation. This permits a scalable integration in a generic wiki framework.

The MMT project offers a somewhat different approach to this problem. It focuses neither on the
deduction system nor on the user interface but instead on the content representation language: MMT,
a prototypical declarative language. It is foundation-independent inspired by OPENMATH [BCC+04]
and OMDOC [Koh06], but it also has a rigorous semantics inspired by the Curry-Howard representation
of logical frameworks like LF [HHP93]. Thus, MMT admits natural representations of the syntax and
semantics of many formal systems.

Consequently, the implementation of MMT takes the form of an API centered around data structures
modeling the MMT language. From this perspective, deduction systems and user interfaces become spe-
cial cases of content production systems that interact with a central content store maintained by the MMT

API. (In fact, we can see them as the extremely machine or human-oriented special case, respectively.)
This design choice is motivated by the assumption that making the representation language strong

enough will ultimately benefit the design of both deduction systems and user interfaces as well as their
integration.

In this work, we present a recently initiated work-in-progress aimed at validating the second half of
that assumption: We design a user-interface based on the MMT API. More concretely, we investigate two
different interfaces: an IDE-like one based on the text editor jEdit, which is suited for intensive use, and
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Theory Graph G ::= Mod∗

Module Declaration Mod ::= %sigT =[T ] {Sym∗}
Symbol Declaration Sym ::= %include T | c[ : ω][ = ω]
Term ω ::= T ?c | x | ω ω+ | ωX .ω | String
Variable Context X ::= · | X , x[ : ω][ = ω]

Theory Identifier T ::= Mmt URI

Local Declaration Name c ::= Mmt Name

Figure 1: Simplified MMT Grammar

a web browser-based one, which is suited for occasional use with a low entry barrier. Like MMT, our
user interfaces are foundation-independent and applicable to any formal system represented in MMT.

Our work is connected in a tight feedback loop with the design of both the MMT language and
the API. Although at this point the various parts of the implementation have reached different levels of
maturity, we find the design very promising and have adopted the present implementation in our every-
day use.

We will briefly describe the main features of MMT in Sect. 2. Then we describe the data flow we use
to convert user-written and thus presentation-oriented input into MMT content representations in Sect. 3.
Finally, we describe our two user interfaces in Sect. 4 and 5.

2 The MMT Language

Syntax Fig. 1 describes a very simple fragment of the abstract syntax of the MMT language that is
sufficient for the purposes of this paper. We refer to [RK11] for an extensive description.

The central notion is that of an MMT theory declaration %sigT = {Sym∗}, which introduces a
theory with name T containing a list of symbol declarations. (See below for the optional meta-theory in
a theory declaration.)

A symbol declaration c : ω = ω ′ introduces a symbol named c with type ω and definiens ω ′. Both
type and definiens are optional. A symbol declaration of the form %include T imports the theory T
into the current theory.

The MMT terms ω over a theory T are inspired by OPENMATH objects [BCC+04]. They are formed
from constants T ?c declared in T , bound variables x, application ω ω1 . . . ωn of a function ω to a se-
quence of arguments, and bindings ωX .ω ′ using a binder ω , a bound variable context X , and a scope ω ′.
Moreover, MMT terms can mix content and presentation markup and thus include arbitrary presentation
markup; for our purposes here, it is sufficient to permit any string as an MMT term.

Every MMT declaration is identified by a canonical, globally unique URI. In particular, the URIs of
a constant with name c declared in theory T is given by T ?c. URIs are logical identifiers. Therefore,
implementations of MMT maintain a catalog, which translates URIs into physical identifiers, e.g., the
URLs of files.

Due to the combination of such general symbol declarations with OPENMATH objects, MMT sym-
bol declarations subsume most semantically relevant statements in declarative mathematical languages
including function and predicate symbols, type and universe symbols, and — using the Curry-Howard
correspondence — axioms, theorems, and inference rules.

Meta-Theories A distinguishing feature of MMT is the explicit formalization of meta-theories: A
theory declaration T =M {ϑ} carries an optional meta-theory M. In many situations, this is the same as
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%sigT = {%includeM, ϑ}, i.e., the symbols of M are additionally available in T . But the meta-theory
has a special role: MMT uses M to determine the valid syntax and semantics of T .

LF

FOL HOL

Monoid Ring

Meta-theories permit using theories as a single primitive to rep-
resent all formal systems involved in a development – in particu-
lar logical frameworks, logics or type theories, and logical theories.
This is particularly powerful in conjunction with the MMT module
system [RK11], which permits using a coherent module system at
all meta-levels.

A typical example is given in the theory graph on the right. Here
the theory FOL for first-order logic is used as the meta-theory for the logical theories Monoid and Ring.
And the theory LF (representing the logical framework LF [HHP93]) is the meta-theory of FOL and
HOL (representing higher-order logic).

Typically the upper-most meta-theory (LF in our example) declares only untyped symbols without
definiens. This corresponds most closely to an OPENMATH content dictionary. For example, in the case
of LF (a dependently-typed λ -calculus), these are the constants type, λ , Π, and→.

Then FOL uses these symbols to give types to all its symbols. The latter include the symbols form :
type and term : type as well as connectives like ∧ : form→ form→ form. LF’s higher-order abstract
syntax is used to declare binders as typed symbols. And LF’s dependent types are used to declare
judgments and proof rules as symbols as well. Similarly, logical theories like Monoid use the symbols
of FOL to give types to their symbols, e.g., ◦ : term→ term→ term.

Semantics The semantics of MMT consists of two parts. Firstly, a generic structural semantics handles
all foundation-independent aspects. For example, a term ω is structurally well-formed over the theory T
if it only uses constants declared or included into T .

Secondly, MMT treats all expressions (such as terms, types, kinds, etc.) uniformly as MMT terms and
does not fix a specific type system. Instead, type systems are provided by foundations, which equip the
upper-most meta-theories with a typing relation. In the example above, a foundation for LF defines the
relation X `T ω : ω for any theory T with (possibly indirect) meta-theory LF. Thus, MMT is parametric
in the type system, and the appropriate foundation is chosen according to the context.

Implementation The MMT API is centered around a model of MMT theory graphs implemented in
the Scala programming language [OSV07]. Based on this model, it provides various generic MKM ser-
vices, in particular presentation and interactive browsing [GLR09], a versioned XML database backend
[KRZ10], project management [HIJ+11], change management [IR12], and querying [Rab12].

Implementations of particular foundations are added to MMT as plugins. In the simplest case, these
are realized as wrappers around existing tools. Such wrappers currently exist for Mizar [TB85], Twelf
[PS99], TPTP [SS98], and OWL [W3C09]. Alternatively, a foundation can be implemented natively.
This is more difficult but permits optimal integration with the API. Such a plugin exists for LF, and this
induces a native foundation for every formal system represented in LF (e.g., those represented in the
LATIN atlas [CHK+11]).

3 From Presentation to Content

We use interpretation to refer to the process that transforms presentation-oriented representations into
content-oriented ones. In particular, in the case of text input, this corresponds to the typical pipeline
of lexing, parsing, and type checking. Our interpretation algorithm is divided into four independent
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components that are explained in detail below: (i) declaration structuring (ii) elaboration of declaration
level extensions (iii) term structuring (iv) term validation

The whole interpretation algorithm tracks the provenance of terms. In particular, declaration struc-
turing annotates each declaration and each object in it with the begin-end line-column position. Similarly,
term structuring annotates every subobject with its coordinates relative to the beginning of the object.
Moreover, all terms produced by a validation procedure (e.g., inferred types or error messages) are an-
notated with information about the producing procedure. Thus, we can offer content-based services in
the presentation-oriented representation such as error hyperlinking, crosslinking between declarations,
dynamically displaying inferred content, or highlighting impacted declarations.

3.1 Interpreting Declarations

Structuring The first phase parses MMT declarations such as theory, include, and constant declara-
tions. We omit the details of the concrete text syntax here, which follows the abstract syntax from Fig. 1
very closely. Most notably, this phase leaves all MMT terms as they are and represents them internally
as strings.

This phase has two important properties: Firstly, it is local in the sense that it can process any MMT

theory without retrieving any of its dependencies (such as included theories). Secondly, because we
permits mixed content/presentation representation of terms, the result is already well-formed MMT.

As errors in the declaration structure are rare and easy to fix, we can assume that this phase always
succeeds. Thus, the declaration structure is always available and can be regenerated permanently while
the user is typing.

Subsequent phases focus on the interpretation of terms, and these can be executed asynchronously
and without any particular order.

Declaration Level Extensions It is straightforward to add to the grammar from Fig. 1 the two primi-
tives of extension and pragmatic declarations recently presented in [HKR12]. Extensions declarations
introduce alternatives to constant declarations, whose semantics is given by elaboration into a list of
constant declarations. Pragmatic declarations make use of these extensions.

For example, we can declare extensions for axiom declarations, implicit definitions, case-based func-
tion definitions, etc. We only consider a trivial example here and refer to [HKR12] for details. The
following extension declaration introduces an extension for axioms:

%extension axiom = λF :formula {assertion : proof F}

An axiom declaration takes one formula F as an argument and elaborates into a single constant
declaration ax of type proof F – the type of proofs of F .

The following pragmatic declaration makes use of this extension to declare an axiom called myax
that asserts that 0 6= 1:

%axiom myax 0 6= 1

The meta-theory determines whether an extension may be used. For example, in FOL, we declare
extensions for n-ary function and predicate symbols in addition to the above extension for axioms. Then
all theories with meta-theory FOL can be formalized using only those three extensions.

These declarations and their semantics are already part of the MMT API but have not been integrated
into the interpretation algorithm yet. Our plan is that declaration structuring interprets every unknown
keyword (e.g., %axiom) as the name of an extension and produces the corresponding pragmatic declara-
tion.
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Symbol Declaration Sym ::= c[ : ω][ = ω][#ν , p]
Notation ν ::= (A | �A | D)∗
Argument A ::= Integer | IntegerD . . .
Delimiter D ::= String

Precedence p ::= Integer

Figure 2: MMT Notation Grammar

Structuring will not yet include an analysis which language extensions are available (which is a
non-local property). Instead, an elaboration step retrieves the extensions declared in the respective meta-
theory, checks pragmatic declarations against them, and adds the elaboration to the MMT content store.

In our example, elaboration produces the declaration myax.assertion : proof F with F substituted by
0 6= 1. Elaboration is orthogonal to the interpretation of terms. Therefore, the substitution has to be
delayed until the term proof F has been interpreted.

3.2 Interpreting Terms

MMT’s abstract typing relation between terms makes it difficult to take typing information into account
while interpreting terms. Therefore, we opt for a two-phased approach. First, term structuring uses
notations to parse strings into (possibly ill-typed) content markup in a type system-independent way.
Then validation transforms these terms into well-typed ones; this phase includes foundation-specific
type-checking (relegated to plugins) and may infer missing information. We take a broad view on in-
ference here: Validation may, for example, add omitted types or implicit arguments, or discharge proof
obligations specified by the user or generated during type checking.

This two-phased approach makes sense in our context but forgoes more sophisticated solutions (e.g.,
[CZ07]) that use typing information to resolve ambiguities that arise during term structuring.

Structuring The term structuring phase uses a simple generic notation language. In addition to type
and definiens, every constant declaration carries an optional notation ν together with a precedence p.
Basic notations are inspired by the mixfix form known, e.g., from Isabelle [Pau94]; however, we avoid
using flexible precedences for simplicity. In addition, we support flexary operators: constants may take
sequences as arguments, which are parsed and rendered by using a separator symbol.

The resulting modifications of the MMT grammar are given in Fig. 2. A notation ν is a list of
argument references A or �A and delimiters D. Here �A is a variant of Andrews’ dot notation: The
argument extends as far to the right as consistent with the placement of brackets. If the n-th argument
is a normal argument, the argument reference is simply n. If it is a sequence arguments, the argument
reference is of the form nD . . . where D is the delimiter used to separate the elements of the sequence.

For example, we have two ways to declare the conjunction connective: ∧ # 1∧2 is used for the usual
binary operator. ∧ # 1∧ . . . makes it a flexary operator that takes a ∧-separated sequence of arguments.

The implementation is straightforward. It is “almost local” in the sense that all notations from all
included theories must be available, but nothing else. Therefore, we first scan all theories and parse their
notations (which is easy and quick). Then terms can be structured in any order.

Currently, our notation language does not provide special treatment for binders. Instead, a bound
variable is seen as a normal argument (which is always presented as x : ω = ω ′). For example, a flexary
λ -binder takes a sequence of bound variables and one scope; a notation is given by λ # [1, . . .] �2
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Validation Validation is carried out by foundation-dependent plugins. We do not cover individual
plugins here and only discuss how our architecture supports the development of such plugins by handling
all bookkeeping tasks. The goal is that plugin implementers have to provide only the core validation
algorithms.

Most importantly, validation is decoupled from the user interface. Thus, plugins can asynchronously
scan the present terms and apply validation procedures to them. If successful, the result is added to the
content store. This may include partial results: for example, if type checking fails at a subterm only, that
subterm can be wrapped in an error term giving the expected and the found type.

Moreover, our architecture provides a basis for change management. If the validation of a particular
term produces a list of dependencies, MMT can maintain these and revalidate terms whenever their
dependents are changed. However, this was added to MMT only recently in [IR12], and is not utilized
for the user interface yet.

4 Towards an MMT-based IDE

jEdit is a widely-used Java-based text editor [jEd]. It is particularly interesting as a frontend for formal
systems due to its strong plugin infrastructure that can be used to provide IDE-like functionality. Thus, it
provides a lightweight alternative to full IDE frameworks like Eclipse [Ecl]. jEdit has also been employed
successfully in [Wen12] as a frontend for Isabelle despite the cost of bridging the programming language
barrier between ML and Scala/Java.

For our purposes, the situation is even easier as MMT is written in Scala already. Therefore, it is
straightforward to integrate MMT’s functionality with jEdit, and we have done that in an MMT plugin
for jEdit (available at [Rab08]).

This plugin maintains an instance of the MMT API’s content store. Our parser is called whenever
a file is edited and fills the API’s data structures with the result of declaration structuring. (Recall that
this is fast and local but already produces well-formed MMT data structures.) In conjunction with the
Sidekick plugin [Sid], this is enough to provide an outline view (see Fig.3) that provides joint focus
between outline and text area.

Figure 4: jEdit Autocomplete

Moreover, it is already sufficient to offer auto-
completion: In Fig. 4, we see how the list of all
identifiers that can complete a given string is dis-
played. This list is context-sensitive, i.e., only
identifiers that are in scope are listed.

Together with provenance tracking, this per-
mits hyperlinking: Using the framework of the
Hyperlinks plugin [Hyp], hovering over an occur-
rence of an identifier displays its MMT URI, and clicking on it jumps to its declaration (see Fig. 5).

Figure 5: jEdit Hyperlinking

Plugins for foundation-specific val-
idation report errors to the MMT API,
and these are displayed using the Er-
rorList plugin [Err], which shows all
known errors in a hyperlinked way.
This is shown in Fig. 3 using an error
reported by the Twelf system [PS99].

Finally, using the Console plugin [Con], users can directly interact with the MMT shell, e.g., to
inspect values or to call MKM services.

6



Figure 3: jEdit-base MMT IDE

5 Towards an MMT-based Wiki

The web interface of MMT provides support for browsing MMT repositories. This includes interactive
features such as type inference, sub-term folding, and hiding/viewing reconstructed types, implicit argu-
ments, implicit binders or redundant brackets. An instance of the MMT browser is available at [KMR09],
where it serves the logic atlas of the LATIN project.

For example, Fig. 6 shows a fragment of the browser windows displaying a theory IMPExt with
meta-theory LF. It imports the theory IMP of the implication connective imp and derives two additional
proof rules. The declaration imp2I derives the rule A,B `C

` Aimp(BimpC) . The user selected an expression (by
clicking on its toplevel node) and chose type inference via the context menu.

The implementation of this feature uses server-side query evaluation. The MMT rendering engine
adds parallel markup annotations that identify each rendered subobject. These are used by the JavaScript
interface to build a query in the QMT query language for MMT [Rab12]. That query is evaluated on the
server and results in the rendered inferred type, which is sent back to the client and displayed.

In a similar way, we obtain web-based editing support. Here, the client sends a query to update a
declaration with a new value that is provided as text.

For example, Figure 7(a) shows a simple MMT theory with meta-theory LF while in Figure 7(b) the
same theory is rendered as text (using the notations declared for LF primitives) and made available for
editing. The theory contains three declarations, two types – o for propositions and i for sets – and one
operator. The operator – and – is declared with the usual type and with an infix notation which preserves
argument order (left argument will be applied at position 0 and the right argument is applied at position
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Figure 6: Dynamic Type Inference

(a) MATHML rendering (b) Notation based presentation

Figure 7: A simple MMT theory with meta-theory LF

1). Also, it has precedence 5 and we omit the associativity here for simplicity.

Figure 8: The updated theory

Figure 8 shows the same theory updated with
two new constant declarations. The first constant
– not – is declared with ! as notation and prece-
dence 10 (higher than and). While using ! instead
of not as a notation is arguably unnecessary for
such a simple theory, it does highlight the flexibil-
ity of our notation language in the sense that the
delimiter values are free and may be unrelated to
the original constant name. The second constant –
or – is defined using not and and in the usual way.

Since structuring is successful, the resulting
MMT theory is rendered using MATHML. Oth-
erwise the raised error would have been returned
together with a source reference. Note that the
higher precedence of the constant not (compared
to and) makes it bind stronger to the variables and
serves to disambiguate the input without needing
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extra parentheses.

6 Conclusion

We have presented the first steps of our ongoing efforts to supplement the foundation-independent content
representation language MMT with IDE and wiki-like editing frontends. Future work will smoothen the
integration of the frontends with the MMT kernel and expose more MMT MKM services to the user.

Despite the relatively early stage of development, it is apparent that MMT provides a very promising
basis for a foundation-independent editing framework for formal systems. We expect that our work will
evolve into a powerful generic user interface that can be instantiated with arbitrary formal systems. This
is particularly attractive for young formal systems with little existing tool support but may also offer
interesting alternatives for established systems.

Finally, in future work, we plan to complement our human-oriented interface components for content
production with machine-oriented ones. Firstly, this includes the integration of sophisticated external
theorem provers. Secondly, it includes the design of an MMT/Scala-based framework in which validation
algorithms for different foundations can be composed modularly.
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