
Management of Change in Declarative
Languages

Mihnea Iancu and Florian Rabe

Jacobs University, Bremen, Germany

Abstract. Due to the high degree of interconnectedness of formal math-
ematical statements and theories, human authors often have difficul-
ties anticipating and tracking the effects of a change in large bodies of
symbolic mathematical knowledge. Therefore, the automation of change
management is often desirable. But while computers can in principle
detect and propagate changes automatically, this process must take the
semantics of the underlying mathematical formalism into account. There-
fore, concrete management of change solutions are difficult to realize.

The Mmt language was designed as a generic declarative language that
captures universal structural features while avoiding a commitment to a
particular formalism. Therefore, it provides a promising framework for
the systematic study of changes in declarative languages. We leverage
this framework by providing a generic change management solution at
the Mmt level, which can be instantiated for arbitrary specific languages.

1 Introduction

Mathematical knowledge is growing at an enormous rate. Even if we restrict
attention to formalized mathematics, libraries are reaching sizes that users have
difficulties overseeing. Since this knowledge is also highly interconnected, it is
getting increasingly difficult for humans to anticipate and follow the effects of
changes. Therefore, management of change (MoC) for mathematics has received
attention recently.

In this paper, we focus on change management for formalized mathemat-
ics, which — contrary to traditional, semi-formal mathematics — permits me-
chanically computing and verifying declarations. In principle, this should permit
change management tools to automatically identify and recheck those declara-
tions that are affected by a change. However, current computer algebra and
deduction systems have not been designed systematically with change manage-
ment in mind. In fact, the question of how to do that is still open.

A major motivation of our work was to provide change management for the
LATIN library [CHK+11], a collection of formalizations of logics and related lan-
guages in a logical framework. Using the Little Theories approach [FGT92], the
LATIN library takes the form of a highly modular and inter-connected network
of theories, which creates an urgent need for change management.

We contribute to the solution of this problem by studying change manage-
ment for the Mmt language [RK11]. Because it was introduced as a foundation-

independent, modular, and scalable representation language for formal mathe-
matical knowledge, it is a very promising framework for change management.
Firstly, foundation-independence means that Mmt avoids a syntactic or se-
mantic commitment to any particular formalism. Thus, an Mmt-based change
management system could be applied to virtually any formal system. Secondly,
modularity is a well-known strategy to rein in the impacts of changes and has
been the basis of successful change management solutions such as [AHMS02].
Thirdly, Mmt deemphasizes sequential in-memory processing of declarations in
favor of maintaining a large scale network of declarations that are retrieved on
demand, a crucial prerequisite for revisiting exactly the affected declarations.

We introduce a formal notion of differences between Mmt documents, an
abstract notion of semantic dependency relation, and a change propagation al-
gorithm that guarantees that validity is preserved. We state our results for a
small fragment of Mmt, but our treatment extends to the full language. Our so-
lution is implemented within the Mmt system [Rab08], thus providing a generic
change management system for formal mathematical languages.

In Sect. 2, we briefly introduce the Mmt language in order to be self-
contained. In Sect. 3, we refine our problem statement and compare it to related
work. Then we develop the theory of change management in Mmt in Sect. 4 and
give an overview of our implementation in Sect. 5.

2 The MMT Language

Theory Graph G ::= · | G, Mod
Module Declaration Mod ::= T = {Sym∗} | v : T → T = {Ass∗}
Symbol Declaration Sym ::= c : ω = ω
Assignment Declaration Ass ::= c := ω
Term ω ::= ⊥ | T?c | x | ω ω+ | ωX.ω | ωv

Variable Context X ::= · | X, x : ω = ω

Module Identifier M ::= T | v
Theory Identifier T ::= Mmt URI

Morphism Identifier v ::= Mmt URI

Local Declaration Name c ::= Mmt Name

Fig. 1. Simplified MMT Grammar

We will only give a brief overview of Mmt and refer to [RK11] for details. The
fragment of the Mmt grammar that we discuss in this paper is given in Fig. 1. In
particular, we have to omit the Mmt module system for simplicity. The central
notion is that of a theory graph, a list of modules, which are theories T or
theory morphisms v.

A theory declaration T = {Sym∗} introduces a theory with name T con-
taining a list of symbol declarations. A symbol declaration c : ω = ω′ introduces

2

a symbol named c with type ω and definiens ω′. Both type and definiens are
optional. However, in order to reduce the number of case distinctions, we use
the special term ⊥: If the type or definiens is omitted, we assume they are ⊥.

Terms ω over a theory T are formed from constants T?c declared in T , bound
variables x, application ω ω1 . . . ωn of a function ω to a sequence of arguments,
bindings ωX.ω′ using a binder ω, a bound variable context X, and a scope
ω′, and morphism application ωv. Except for morphism application, this is a
fragment of the OpenMath language [BCC+04], which can express virtually
every object.

Theory morphism declarations v : T → T ′ = {Ass∗} introduce a mor-
phism with name v from T to T ′ containing a list of assignment declarations.
Such a morphism must contain exactly one assignment c := ω′ for each unde-
fined symbol c : ω = ⊥ in T ; here ω′ is some term over T ′. Theory morphisms
extend homomorphically to a mapping of T -terms to T ′ terms.

Intuitively, a theory morphism formalizes a translation between two formal
languages. For example, the inclusion from the theory of semigroups to the
theory of monoids (which extends the former with two declarations for the unit
element and the neutrality axiom) can be formalized as a theory morphism. More
complex examples are the Gödel-Gentzen negative translation from classical to
intuitionistic logic or the interpretation of higher-order logic in set theory.

Every Mmt declaration is identified by a canonical, globally unique URI. In
particular, the URIs of symbol and assignment declarations are of the form T?c
and v?c.

Mmt symbol declarations subsume most semantically relevant statements in
declarative mathematical languages including function and predicate symbols,
type and universe symbols, and — using the Curry-Howard correspondence —
axioms, theorems, and inference rules. Their syntax and semantics is determined
by the foundation, in which Mmt is parametric. In particular, the validity of a
theory graph is defined relative to a type system provided by the foundation:

Definition 1. A foundation provides for every theory graph G a binary re-
lation on terms that is preserved under morphism application. This relation is
denoted by G ` ω : ω′, i.e., we have G ` ω : ω′ implies G ` ωv : ω′v.

Constant declarations c : ω = ω′ in a theory graph G are valid if G ` ω′ : ω.
Thus, a foundation also has to define typing for the special term⊥: The judgment
G ` ⊥ : ω is interpreted as “ω is a well-typed universe, i.e., it is legal to declare
constants with type ω”. Similarly, G ` ω : ⊥ means that ω may occur as the
definiens of an untyped constant. This way the foundation can precisely control
what symbol declarations are well-formed. Similarly, an assignment c := ω in a
morphism v is valid if G ` ω : ω′v where ω′ is the type of c in the domain of v.

Running Example 1 Below we present a simple Mmt theory for propositional
logic over two revisions Rev1 and Rev2. For simplicity, we will assume that the
Mmt module system is used and that the symbols type, →, and λ have been
imported from a theory representing the logical framework LF, and that all theory
graphs are validated relative to a fixed foundation for LF. PL of Rev1 introduces

3

a type bool of formulas and three binary connectives, the last of which is defined
in terms of the other two. This theory is valid. In Rev2, bool is renamed to
form, ∨ is deleted, and ¬ is added. The other declarations remain unchanged,
thus making the theory invalid.

Rev1

PL = {
bool : type = ⊥
∨ : bool→ bool→ bool = ⊥
∧ : bool→ bool→ bool = ⊥
⇒: bool→ bool→ bool

= λx.λy.y ∨ (x ∧ y)
}

Rev2

PL = {
form : type = ⊥
¬ : form → form = ⊥
∧ : bool→ bool→ bool = ⊥
⇒: bool→ bool→ bool

= λx.λy.y ∨ (x ∧ y)
}

3 Related Work

MoC has been applied successfully in a number of domains such as software
engineering (e.g., [EG89]) or file systems ([Apa00,CVS,Git]). A typical MoC
work flow in this setting uses compilation units, e.g., the classes of a Java pro-
gram: These are compiled independently, and a compilation manager can record
the dependency relation between the units. In particular, if compilation units
correspond to source files, changes in a file can be managed by recompiling all
depending source files.

Intuitively, this work flow can be applied to declarative languages for math-
ematics as well if we replace “compilation” with “validation” where the latter
includes, e.g., type reconstruction, rewriting, and theorem proving. However,
there are a few key differences. Firstly, the validation units are individual types
and definitions (which includes assertions and proofs in Mmt), of which there
are many per source file (around 50 on average in the Mizar library [TB85]).
Their validation can be expensive, and there may be many dependencies within
the same theory and many little theories in the same source file. Therefore,
validation units cannot be mapped to files so that the notions of change and
dependency must consider fragments of source files. Moreover, since foundations
may employ search with backtracking, the validation of a unit U may access
more units than the validity of U depends on. Therefore, the dependency rela-
tion should not be recorded by a generic Mmt validation manager but produced
by the foundation. Recently several systems have become able to produce such
dependency relations, in particular Coq and Mizar [AMU11].

MoC systems for mathematical languages can be classified according to the
nature of changes. In principle, any change in a declarative language can be
expressed as a sequence of add and delete operations on declarations. But us-
ing additional change natures is important for scalability. We use updates to
change the type or definiens of a declaration without changing its Mmt URI,
and renames to change only the Mmt URI. We do not use reordering operations
because Mmt already guarantees that the order of declarations has no effect on

4

the semantics. More complex natures have been studied in [BC08], which uses
splits in ontologies to replace one concept with two new ones. Dually, we could
consider merge changes, which identify two declarations.

Moreover, MoC systems can be classified by the abstraction level of their
document model. The most concrete physical and bit level are relatively bor-
ing, and standard MoC tools operate at the character level treating documents
as arrays of lines [Apa00,CVS,Git]. More abstract document models such as
XML are better suited for mathematical content [AM10,Wag10] and have been
applied to document formats for mathematics [Wag10,ADD+11]. Our work con-
tinues this development to more abstract document models by using Mmt, which
specifically models mathematical data structures. For example, the order of dec-
larations, the flattening of imports, and the resolution of relative identifiers are
opaque in XML but transparent in Mmt representations. Moreover, Mmt URIs
are more suitable to identify the validation units than the XPath-based URLs
usually employed in generic XML-based change models.

The development graph model [AHMS99], which has been applied to change
management in [Hut00,AHMS02], is very similar to Mmt: Both are parametric in
the underlying formal language, and both make the modular structure of math-
ematical theories explicit. The main difference is that Mmt uses a concrete (but
still generic) declarative language for mathematical theories; modular structure
is represented using special declarations. Somewhat dually, development graphs
use an abstract category of theories using diagrams to represent modular struc-
ture; the declarations within a theory can be represented by refining the abstract
model as done in [AHM10].

At an even more abstract level, document models can be specific to one foun-
dational language. While foundation-independent approaches like ours can only
identify potentially affected validation units, those could determine and possi-
bly repair the impact of a change. That would permit treating even subobjects
as validation units. However, presently no systems exists that can provide such
foundation-specific information so that such MoC systems remain future work.

Finally we can classify systems based on how they propagate changes. Our
approach focuses on the theoretical aspect of identifying the (potentially) af-
fected parts. The most natural post-processing steps are to revalidate them,
as, e.g., in [AHMS02], or to present them for user interaction as in [ADD+11].
The Mmt system can be easily adapted for either one. A very different treat-
ment is advocated in [KK11] based on using only references that include revision
numbers so that changes never affect other declarations (because each change
generates a new revision number).

4 A Theory of Changes

4.1 A Data Structure for Changes

Just like we can consider only an exemplary fragment of Mmt here, we can only
consider some of the possible changes. We will only treat changes of declarations

5

within modules. This is justified because these occur most frequently. However,
our treatment can be generalized to changes of any declaration in the full Mmt
language. The grammar for our formal language of changes is given in Fig. 2.

Diff ∆ ::= · | ∆ rδ
Change δ ::= A(M, c : ω = ω) | D(M, c : ω = ω) | U(M, c, o, ω, ω) | R(T, c, c)
Component o ::= def | tp
Box Terms ω ::= ω | · in addition to existing productions for ω

Fig. 2. The Grammar for Mmt Changes

We use terms as validation units because they are the smallest units that can
be validated separately by foundations. Therefore, besides adding and deleting
whole declarations, we use updates that change a term. In updates, we use
components o to distinguish between changes to the type (o = tp) or the
definiens (o = def). More precisely:

– A(M, c : ω = ω′) adds a declaration to the module M
– D(M, c : ω = ω′) deletes a declaration from the module M .
– U(M, c, o, ω, ω′) updates component o of declaration M?c from ω to ω′.
– R(T, c, c′) renames the declaration c in theory T to c′.

Finally, Diffs ∆ are sequences of changes. In our implementation, we locate
changes even more precisely by referring to subobjects of type and definiens.
This is important for user interaction: If an impact has been detected, this
permits showing the user exactly what change caused the impact.

Notation 1. In order to unify the cases of changing symbols in a theory and
assignments in a morphism, we use the following convention: A declaration c :=
ω′ in a morphism v abbreviates a declaration c : ω = ω′ and the components tp
and def are defined accordingly. The type ω is uniquely determined by Mmt to
ensure the type preservation of morphisms: Its value is τv where τ is the type of
c in the domain of v. Updates to assignments work in the same way as updates
to symbols except that the component tp cannot be changed.

We need one additional detail in our grammar: We add two special produc-
tions for terms ω, which we call box terms. These represent invalid terms that
are introduced during change propagation.
· represents a missing term. ω represents a possibly invalid term ω. More

sophisticated box terms can also record the required type, which gives users a
hint what change is needed and permits applications to type-check a declaration
relative to the box terms in it. We omit this here for simplicity.

Algebraically, the set of diffs ∆ is the free monoid generated from changes
δ. As we will see below, the operation of applying a diff to a theory graph can
be regarded as this monoid acting on the set of theory graphs.

6

·−1 = ·
(∆ rδ)−1 = δ−1 r∆−1
A(M, c : ω = ω′)−1 = D(M, c : ω = ω′)
D(M, c : ω = ω′)−1 = A(M, c : ω = ω′)
R(T, c, c′)−1 = R(T, c′, c)
U(M, c, o, ω, ω′)−1 = U(M, c, o, ω′, ω)

As seen on the right, our diffs are
invertible. This permits transactions
where partially applied diffs are rolled
back if they cause an error. This is also
useful to offer undo-redo functionality
in a user interface.

In order to talk efficiently about
Mmt theory graphs, we introduce a few definitions that permit looking up in-
formation in the theory graph:

Definition 2 (Lookup in Theory Graphs). For a theory graph G, we write

– ` G(M) = Mod if a module declaration Mod with URI M is present in G.
– G ` T?c : ω = ω′ if T is a theory URI in G and the symbol declaration
c : ω = ω′ exists in the body of T . We also define the corresponding notation
for morphisms.

– ` G(M?c) = Sym if ` G(M) = Mod and Sym is the declaration with name
c in the body of Mod.

– ` G(M?c/o) = ω if ` G(M?c) = Sym and ω is the component o of Sym.
– G ` π if ` G(π) = Dec for some module or symbol declaration Dec.

We will now define the application of diffs ∆ on theory graphs G, which we
denote by G � ∆. In MoC tools, this is sometimes called patching.

Definition 3. A diff ∆ is called applicable to the theory graph G if G ` ∆
according to the rules in Fig. 3.

G `M G 6`M?c
Adec

G ` A(M, c : ω = ω′)

G `M?c : ω = ω′

Ddec

G ` D(M, c : ω = ω′)

` G(T?c/o) = ω
Usym

G ` U(T, c, o, ω, ω′)

` G(v?c/def) = ω
Uass

G ` U(v, c, def, ω, ω′)

G ` T?c G 6` T?c′

Rdec

G ` R(T, c, c′)

∆base

G ` ·

G ` ∆ G � ∆ ` δ
∆dec

G ` ∆ rδ
Fig. 3. Applicability of Changes

7

Definition 4 (Change Application). Given a theory graph G and a G-applicable
change δ, we define G � δ as follows:

– If δ = A(M, c : ω = ω′) then G � δ is the graph constructed from G by
adding the declaration c : ω = ω′ to module M .

– If δ = D(M, c : ω = ω′) then G � δ is the graph constructed from G by
deleting the declaration c : ω = ω′ from module M .

– If δ = U(M, c, o, ω, ω′) then G � δ is the graph constructed from G by up-
dating the component at M?c/o from ω to ω′.

– If δ = R(T, c, c′) then G � δ is the graph constructed from G by renaming
the declaration at T?c to T?c′.

Moreover, we define G � ∆ by G � · = G and G � (∆ rδ) = (G � ∆)� δ.

Running Example 2 (Continuing Ex. 1) We have Rev1 � ∆ = Rev2 where
∆ is the diff: D(PL, bool : type = ⊥) rA(PL, form : type = ⊥) rD(PL,∨ :
bool→ bool→ bool = ⊥) rA(PL,¬ : form → form = ⊥). Alternatively, we could
use a rename R(PL, bool , form) instead of the add-delete pair.

The following simple theorem permits lookups in a hypothetical patched
theory graph. This is important for scalability in the typical case where a large
G should be neither changed nor copied:

Theorem 1. Assume a theory graph G and a G-applicable diff ∆. Then

` (G � ·)(M?c/o) = G(M?c/o)

` (G � (∆ rA(M, c : ω = ω′))) (M?c/o) =

{
ω if o = tp

ω′ if o = def

` (G � (∆ rD(M, c : ω = ω′))) (M?c/o) = undefined
` (G � (∆ rU(M, c, o, ω, ω′))) (M?c/o) = ω′

` (G � (∆ rR(M, c′, c))) (M?c/o) = (G � ∆) (M?c′/o)
` (G � (∆ r)) (M?c/o) = (G � ∆) (M?c/o)

where is any change not covered by the previous cases.

Proof. This is straightforward to prove using the definitions.

We will now introduce and study an equivalence relation between diffs. In-
tuitively, two diffs are equivalent if their application has the same effect:

Definition 5. Given a theory graph G, two G-applicable diffs ∆ and ∆′ are
called G-equivalent iff G � ∆ = G � ∆′. We write this as ∆ ≡G ∆′.

Our main theorem about change application is that diffs can be normalized.
We need some auxiliary definitions first:

Definition 6. The referenced URIs of a change are defined as follows: For
both A(M, c : ω = ω′) and D(M, c : ω = ω′) they are M?c/tp and M?c/def, for
U(M, c, o, ω, ω′) it is only M?c/o, and for R(T, c, c′) they are T?c/tp, T?c/def,

8

T?c′/tp and T?c′/def. Two changes δ and δ′ have a clash if they reference the
same URI.

A diff ∆ is called minimal if there are no clashes between any two changes
in ∆. A minimal diff is called normal if it is of the form ∆1

r∆2 where ∆1

contains no renames and ∆2 contains only renames.

Theorem 2. Reordering the changes in a minimal diff yields an equivalent diff.

Proof. In a minimal diff, each change affects a different declaration so the order
of application is irrelevant.

Definition 7. G′ − G is obtained as follows:

1. The diff ∆ contains the following changes (in any order):

U(M, c, o, ω, ω′) for G(M?c/o) = ω, G′(M?c/o) = ω′, ω 6= ω′

D(M?c : ω = ω′) for G `M?c : ω = ω′, G′ 6`M?c
A(M?c : ω = ω′) for G′ `M?c : ω = ω′, G 6`M?c

2. We say that a pair (A,D) of changes in ∆ matches if A = A(T, c : ω = ω′)
and D = D(T, c′ : ω = ω′). They match uniquely if there is no other A′ that
matches D and no other D′ that matches A.

3. G′ − G arises from ∆ by removing every uniquely matching pair (A,D) and
appending the respective rename R(T, c, c′).

This definition first generates an add or delete for every URI that exists only
in G′ or G, respectively, and 0−2 updates for every URI that exists in both. Then
uniquely matching add-delete pairs are replaced with renames. The uniqueness
constraint is necessary to make the last step deterministic.

Running Example 3 (Continuing Ex. 2) The first step of the computation
of the difference Rev2 −Rev1 yields the diff from Ex. 2. The next steps simplify
this diff to D(PL,∨ : bool → bool → bool = ⊥) rA(PL,¬ : form → form = ⊥) r
R(PL, bool , form).

Theorem 3. G′ − G is normal, G-applicable, and G � (G′ − G) = G′.

Proof. The proof is straightforward from the definition.

Theorem 4. If G′ = G � ∆, then there is a normal diff ∆′ such that ∆ ≡G ∆′.

Proof. We put ∆′ = (G � ∆)− G. Then the result follows from Thm. 3.

4.2 A Data Structure for Dependencies

As our validation units are the components of Mmt declarations, we need to
formulate the validity of Mmt theory graphs in a way that permits separate
validation of each component:

9

Definition 8. A theory graph G is called foundationally valid if for all symbol
or assignment declarations G `M?c : ω = ω′ (recall Not. 1), we have G ` ω′ : ω.

Now we can make formal statements how the validity of a theory graph is
affected by changes. First, a typical property of typing relations is that they
satisfy a weakening property: Additional information can not invalidate a type
inference:

Definition 9. A foundation is called monotonous if the following rules are
admissible for any A = A(M, c : =) and for any U = U(M, c, o,⊥,):

G ` ω : ω′ G ` A

G � A ` ω : ω′

G ` ω : ω′ G ` U

G � U ` ω : ω′

Almost all practical foundations for Mmt are monotonous. This includes
even substructural type theories like linear LF [CP02] because we only require
weakening for the set of global declarations, not for local contexts. A simple
counter-example is a type theory with induction in which constructors can be
added as individual declarations: Then adding a constructor will break an ex-
isting induction. But most type theories introduce all constructors in the same
declaration.

While monotony permits handling additions to a theory graphs in general,
we must introduce dependency relations between components to handle updates
and deletes. Intuitively, if a validation unit U does not depend on U ′, then
deleting U ′ is guaranteed not to affect the validity of U :

Definition 10. A dependency relation for a theory graph G is a binary re-
lation # between declaration components M?c/o and M ′?c′/o′ such that the
following rules are admissible:

G `M?c/o = ω′′ G `M ′?c′ : ω = ω′ M?c/o 6#M ′?c′/tp

G � U(M, c, o, ω′′,⊥) ` ⊥ : ω

G `M?c/o = ω′′ G `M ′?c′ : ω = ω′ M?c/o 6#M ′?c′/def

G � U(M, c, o, ω′′,⊥) ` ω′ : ω

bool/tp

∨/tp ∧/tp ⇒ /tp

⇒ /def

Note that dependency relations are not
necessarily transitive. That way changes can
be propagated one dependency step at a
time, and intermediate revalidation can show
that no further propagation is necessary. Of
course, the transitive closure (in fact: any
larger relation) is again a dependency rela-
tion. Our definition of a dependency relation was inspired by the one in [RKS11].

Running Example 4 (Continuing Ex. 3) For the theory graph Rev1, we ob-
tain a dependency relation by assuming a dependency whenever a constant occurs
in a component. We also assume a dependency from each definiens to its type.
The graph in the figure above illustrates this relation.

10

4.3 Change Propagation

It is tempting to study the propagation of only a change δ. But this does not
cover the important case of transactions, where multiple changes are propagated
together. This is typical in practice when an author makes multiple related
changes. But it is very complicated to propagate an arbitrary diff. Our key
insight is to focus on the propagation of minimal diffs. These are very easy
to work with, and due to Thm. 3, this is not a loss of generality.

The central idea of our propagation algorithm is to introduce box terms that
mark expressions as impacted. This has the advantage that propagation can be
formalized as a closure operator on sets of changes so that no additional data
structures for impacts are needed.

Definition 11. For a term ω and a rename R = R(T, c, c′), we define ωR as the
term obtained from ω by replacing all occurrences of T?c with T?c′. Similarly, if
∆ contains only renames, we define ω∆ by ω∆

rR = (ω∆)R and ω· = ω.

Definition 12. For the purposes of Def. 13, we say that a component M?c/o
is modified by ∆ if ∆ contains a change of the form D(M, c : =) or
U(M, c, o, ω,).

The following definition and theorem express our main result. We state them
for the special case for a diff that does not add or delete assignments. The general
case holds as well but is more complicated.

Definition 13 (Propagation). Assume a fixed theory graph G and a fixed de-
pendency relation # (which we omit from the notation). Assume a G-applicable
diff in normal form ∆ = ∆1

r∆2 that does not contain any adds or deletes of
assignments. We define the propagation ∆ of ∆ in multiple steps as follows:

1. ∆′1 contains the following changes (in any order): whenever M?c/o#M ′?c′/o′

and M?c/o is modified by ∆1, the change

U(M ′, c′, o′, ω, ω) for G � ∆ `M ′?c′/o′ = ω

2. ∆′2 contains the following changes (in any order): whenever R(T, c,) ∈ ∆2

and T?c/o#M ′?c′/o′, the change

U(M ′, c′, o′, ω, ω∆2) for G � ∆ r∆′1 `M ′?c′/o′ = ω

3. ∆′3 contains the following changes for every morphism G ` v : T → T ′ (in
any order):
– whenever A(T, c : = ⊥) ∈ ∆ or U(T, c, def, ,⊥) ∈ ∆, the change

A(v, c := ·)

– whenever D(T, c : = ⊥) ∈ ∆ or U(T, c, def,⊥,) ∈ ∆, the change

D(v,Ass) for G � ∆ r∆′1 r∆′2 ` v?c = Ass

11

– whenever R(T, c, c′) ∈ ∆ and G � ∆ r∆′1 r∆′2 ` T?c/def = ⊥ and
G � ∆ r∆′1 r∆′2 ` v?c := ω, the changes

D(v, c := ω),A(v, c′ := ω)

4. ∆ is obtained as ∆′1
r∆′2 r∆′3.

Intuitively, ∆′1 updates all impacted terms to box terms. If # is transitive,
this includes all terms that depended on the now boxed terms. ∆′2 updates all
references to renamed declarations to the new name.

∆′3 ensures that all morphisms have exactly one assignment for every unde-
fined constant in the domain. The first two subcases add empty assignments or
delete existing ones if necessary. The third subcase renames those assignments
where the corresponding constant in the domain has been renamed.

Theorem 5. Consider the situation of Def. 13. Assume that the foundation
is monotonous, that G is foundationally valid, and that # is transitive. Let
G′ = G � ∆ r∆, and let G∗ be a theory graph that arises from G′ by replacing
every box term with a term that type checks in the sense of Def. 8. Then G∗ is
foundationally valid.

Proof. Let us first consider the special case without renames or morphisms. We
apply Def. 8 to G∗. Due to ∆′1 and the transitivity of #, all possibly ill-typed
terms have been replaced with box terms in G′; and according to the assumptions,
these are replaced with well-typed terms in G∗. Thus, the claim follows.

If there are renames, care must be taken to update all references to the
renamed declarations. If there are adds, care must be taken to guarantee the
totality of morphisms. Both conditions are already fulfilled in G′. We omit the
details.

PL = {
form : type = ⊥
¬ : form → form = ⊥
∧ : form → form → form = ⊥
⇒: form → form → form

= λx.λy.y ∨ (x ∧ y)

}

A typical situation where we would apply
Thm. 5 is after a user made the changes ∆.
Then propagation marks all terms that have
to be revalidated and — if not well-typed —
replaced interactively with well-typed terms.
The theorem guarantees the resulting graph
is valid again.

Running Example 5 (Continuing Ex. 3 and 4)
Using ∆ = Rev2 − Rev1 and the depen-
dency relation from Ex. 4, we compute ∆. First ∆ = ∆1

r∆2 with ∆1 =
D(PL,∨ : bool → bool → bool = ⊥) r A(PL,¬ : form → form = ⊥) and
∆2 = R(PL, bool , form). Then

∆′1 = U(PL,⇒, def, λx.λy.y ∨ (x ∧ y), λx.λy.y ∨ (x ∧ y))

as well as ∆′2 = U(PL,∧, tp, bool → bool → bool, form → form → form) r
U(PL,⇒, tp, bool → bool → bool, form → form → form) and ∆′3 = ·. Finally,
the theory graph Rev1 � ∆ r∆ is shown above. As stated in Thm. 5, it becomes
foundationally valid after replacing the box term with a term of the right type.

12

5 A Generic Change Management API

Implementation We have implemented the data structures and algorithms from
Sect. 4 as a part of the Mmt API [Rab08]. In fact, our implementation covers a
much larger fragment of Mmt than discussed in this paper.

In particular, the API now contains functions that compute the difference
G′ −G of two theory graphs. The difference of two modules can be computed as
well. The two arguments can either be provided directly or the previous revision
can be pulled automatically from an SVN repository.

We also added functions for change propagation that enrich a normal
diff with its direct impacts according to Def. 13. The generated box terms are
represented as OpenMath error objects. During the propagation algorithm, we
make crucial use of Thm. 1 to increase the efficiency.

Both of these algorithms are implemented foundation-independently. The
foundation is only needed to obtain the dependency relation and to revalidate
the impacted declarations. Both are special cases of type checking.

The Mmt API relegates a type checking obligation ω′ : ω to a plugin for
the respective foundation. In particular, there is a plugin for a monotonous foun-
dation for the logical framework LF [HHP93], which induces implementations of
type checking for all formal systems represented in LF (i.e., for a lot of formal
systems [CHK+11]).

The plugin interface is such that the plugin calls back to the main system
whenever it needs to look up any component M?c/o. In the simplest case, we
can trace these callbacks to obtain the set of components Used(ω′, ω) that were
used to validate ω′ : ω. When the system validates a theory graph G according
to Def. 8, we obtain a dependency relation by putting for every symbol or
assignment G `M ′?c′ : ω = ω′

M?c/o#M ′?c′/tp if M?c/o ∈ Used(⊥, ω)

M?c/o#M ′?c′/def if M?c/o ∈ Used(ω′, ω)

M ′?c′/tp #M ′?c′/def

Note that we first check the type of the declaration and then separately check
the definiens against that type even though the latter implies the former. This
is important because the type will usually have much less dependencies than the
definiens.

This dependency relation is stored in the Mmt ontology, which Mmt main-
tains together with the content [HIJ+11]. Alternatively, the foundation can ex-
plicitly provide a dependency relation, or we can import dependency relations
externally, e.g., the ones from [AMU11].

Application We have applied the resulting system to obtain a change manage-
ment API for the LATIN library. Using the MMT plugins for LF — the language
underlying the LATIN library — we obtain a foundation that validates the li-
brary and computes a dependency relation for it. Fig. 4 gives a summary of the

13

dependency relation, where we include only the about 1700 components falling
into the fragment of Mmt treated in this paper. The tables group the compo-
nents by the number of components that they depend on (left) or that depend
on them (right). This includes only direct dependencies — taking the transitive
closure increases the numbers by about 20 %.

dependencies components (%)

0− 5 1373 (79)
6− 10 271 (15.6)
11− 15 81 (4.7)
16− 26 13 (0.7)

impacts components (%)

0− 5 1504 (86.5)
6− 10 101 (5.8)
11− 25 76 (4.4)
26− 50 31 (1.8)
50− 449 26 (1.5)

Fig. 4. Components grouped by dependencies and impacts

The number of dependencies and impacts is generally low. This is a major
benefit of our choice of using type and definiens as separate validation units,
which avoids the exponential blowup one would otherwise expect. Indeed, on
average a type has 3 times as many impacts as a definiens.

Our differencing algorithm can detect and propagate changes easily, and it
is straightforward to revalidate the impacted components. The numbers show
that even manual inspection (as opposed to automatic revalidation) is feasible
in most cases: For example, changes to 86 % of the components impact only
5 or less components. Even if the number of impacted components is so small,
it is usually very difficult for humans to identify exactly which components are
impacted. Our MoC infrastructure, on the other hand, does not only identify
them automatically but also guarantees that all other components stay valid.

6 Conclusion

We have presented a theory of change management based on the Mmt language
including difference, dependency, and impact analysis. As Mmt is foundation-
independent, our work yields a theory of change management for an arbitrary
declarative language. Our work is implemented as a part of the Mmt API and
thus immediately applicable to any language that is represented in Mmt. The
latter includes in particular the logical framework LF and thus every language
represented in it.

Because we use fine-grained dependencies, change propagation can identify
individual type checking obligations (which subsume proof obligations) that have
to be revalidated. The Mmt API already provides a scalable framework for val-
idating individual such obligations efficiently. Therefore, our work provides the
foundation for a large scale change management system for declarative languages.

While our presentation has focused on a small fragment of Mmt, the results
can be generalized to the whole Mmt language, in particular the module system.

14

Presently the most important missing feature is a connection between the
Mmt abstract syntax and the concrete syntax of individual languages. There-
fore, change management currently requires an export into Mmt’s abstract syn-
tax (which exists for, e.g., Mizar [TB85], TPTP [SS98], and OWL [W3C09]).
Consequently, future work will focus on developing fast bidirectional transla-
tions between human-friendly source languages and their Mmt content represen-
tation. If these include fine-grained cross-references between source and content,
Mmt can propagate changes into the source language; this could happen even
while the user is typing.

More generally, this approach extends to pure mathematics where the source
language is, e.g., LATEX. If the source is formalized manually, it is sufficient to
include cross-references in the above sense. Then changes in the LATEX source can
be treated and propagated like changes in the formalization. Alternatively, we
can avoid a manual formalization if certain annotations are present in the source:
firstly, annotations that map a line number to the identifier of the statement
(definition, theorem, etc.) made at that line; secondly, annotations that explicate
the dependency relation between statements. For example, the sTeX package for
LATEX permits such annotations in a way that supports automated extraction.

References

ADD+11. S. Autexier, C. David, D. Dietrich, M. Kohlhase, and V. Zholudev. Work-
flows for the Management of Change in Science, Technologies, Engineering
and Mathematics. In J. Davenport, W. Farmer, F. Rabe, and J. Urban,
editors, Intelligent Computer Mathematics, pages 164–179. Springer, 2011.

AHM10. S. Autexier, D. Hutter, and T. Mossakowski. Change Management for Het-
erogeneous Development Graphs. In S. Siegler and N. Wasser, editors, Ver-
ification, Induction, Termination Analysis, Festschrift in honor of Christoph
Walther. Springer, 2010.

AHMS99. S. Autexier, D. Hutter, H. Mantel, and A. Schairer. Towards an Evolu-
tionary Formal Software-Development Using CASL. In D. Bert, C. Choppy,
and P. Mosses, editors, WADT, volume 1827 of Lecture Notes in Computer
Science, pages 73–88. Springer, 1999.

AHMS02. S. Autexier, D. Hutter, T. Mossakowski, and A. Schairer. The Development
Graph Manager Maya (System Description). In H. Kirchner and C. Ringeis-
sen, editors, Algebraic Methods and Software Technology, 9th International
Conference, pages 495–502. Springer, 2002.

AM10. S. Autexier and N. Müller. Semantics-Based Change Impact Analysis for
Heterogeneous Collections of Documents. In M. Gormish and R. Ingold, ed-
itors, Proceedings of 10th ACM Symposium on Document Engineering (Do-
cEng2010), 2010.

AMU11. Jesse Alama, Lionel Mamane, and Josef Urban. Dependencies in Formal
Mathematics. CoRR, abs/1109.3687, 2011.

Apa00. Apache Software Foundation. Apache Subversion, 2000. see
http://subversion.apache.org/.

BC08. A. Bundy and M. Chan. Towards Ontology Evolution in Physics. In
W. Hodges and R. de Queiroz, editors, Logic, Language, Information and
Computation, pages 98–110. Springer, 2008.

15

BCC+04. S. Buswell, O. Caprotti, D. Carlisle, M. Dewar, M. Gaetano, and
M. Kohlhase. The Open Math Standard, Version 2.0. Technical report, The
Open Math Society, 2004. See http://www.openmath.org/standard/om20.

CHK+11. M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and F. Rabe.
Project Abstract: Logic Atlas and Integrator (LATIN). In J. Davenport,
W. Farmer, F. Rabe, and J. Urban, editors, Intelligent Computer Mathe-
matics, volume 6824 of Lecture Notes in Computer Science, pages 287–289.
Springer, 2011.

CP02. I. Cervesato and F. Pfenning. A Linear Logical Framework. Information and
Computation, 179(1):19–75, 2002.

CVS. Concurrent Versions System: The open standard for Version Control. Web
site at http://cvs.nongnu.org/. seen February 2012.

EG89. C. Ellis and S. Gibbs. Concurrency control in groupware systems. In Proceed-
ings of the 1989 ACM SIGMOD international conference on Management of
data, pages 399–407. ACM, 1989.

FGT92. W. Farmer, J. Guttman, and F. Thayer. Little Theories. In D. Kapur, editor,
Conference on Automated Deduction, pages 467–581, 1992.

Git. Git. Web Site at: http://git-scm.com/.
HHP93. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.

Journal of the Association for Computing Machinery, 40(1):143–184, 1993.
HIJ+11. F. Horozal, A. Iacob, C. Jucovschi, M. Kohlhase, and F. Rabe. Combining

Source, Content, Presentation, Narration, and Relational Representation. In
J. Davenport, W. Farmer, F. Rabe, and J. Urban, editors, Intelligent Com-
puter Mathematics, volume 6824 of Lecture Notes in Computer Science, pages
211–226. Springer, 2011.

Hut00. D. Hutter. Management of change in structured verification. In Proceedings
Automated Software Engineering, ASE-2000, pages 23–34, 2000.

KK11. Andrea Kohlhase and Michael Kohlhase. Versioned links. In Proceedings of
the 29th annual ACM international conference on Design of communication
(SIGDOC), 2011.

Rab08. F. Rabe. The MMT System, 2008. see https://trac.kwarc.info/MMT/.
RK11. F. Rabe and M. Kohlhase. A Scalable Module System. see http://arxiv.

org/abs/1105.0548, 2011.
RKS11. F. Rabe, M. Kohlhase, and C. Sacerdoti Coen. A Foundational View on

Integration Problems. In J. Davenport, W. Farmer, F. Rabe, and J. Urban,
editors, Intelligent Computer Mathematics, volume 6824 of Lecture Notes in
Computer Science, pages 106–121. Springer, 2011.

SS98. G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning, 21(2):177–203, 1998.

TB85. A. Trybulec and H. Blair. Computer Assisted Reasoning with MIZAR. In
A. Joshi, editor, Proceedings of the 9th International Joint Conference on
Artificial Intelligence, pages 26–28, 1985.

W3C09. W3C. OWL 2 Web Ontology Language, 2009. http://www.w3.org/TR/

owl-overview/.
Wag10. M. Wagner. A change-oriented architecture for mathematical authoring as-

sistance. PhD thesis, Universität des Saarlands, 2010.

16

http://www.openmath.org/standard/om20
http://cvs.nongnu.org/
http://git-scm.com/
https://trac.kwarc.info/MMT/
http://arxiv.org/abs/1105.0548
http://arxiv.org/abs/1105.0548
http://www.w3.org/TR/owl-overview/
http://www.w3.org/TR/owl-overview/

	1 Introduction
	2 The MMT Language
	3 Related Work
	4 A Theory of Changes
	4.1 A Data Structure for Changes
	4.2 A Data Structure for Dependencies
	4.3 Change Propagation

	5 A Generic Change Management API
	6 Conclusion

