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Abstract

Over the recent decades there has been a trend towards formalized mathematics,
and a number of sophisticated systems have been developed to support the formal-
ization process and mechanically verify its result. However, each tool is based on
a speci�c foundation of mathematics, and formalizations in di�erent systems are
not necessarily compatible. Therefore, the integration of these foundations has re-
ceived growing interest. We contribute to this goal by using LF as a foundational
framework in which the mathematical foundations themselves can be formalized
and therefore also the relations between them. We represent three of the most
important foundations � Isabelle/HOL, Mizar, and ZFC set theory � as well as
relations between them. The relations are formalized in such a way that the frame-
work permits the extraction of translation functions, which are guaranteed to be
well-de�ned and sound. Our work provides the starting point of a systematic study
of formalized foundations in order to compare, relate, and integrate them.

1 Introduction

The 20th century saw signi�cant advances in the �eld of foundations of mathematics
stimulated by the discovery of paradoxes in naive set theory, e.g., Russell's paradox of
unlimited set comprehension. Several seminal works have redeveloped and advanced
large parts of mathematics based on one coherent choice of foundation, most notably
the Principia (Whitehead & Russell 1913) and the works by Bourbaki (Bourbaki 1964).
Today various �avors of axiomatic set theory and type theory provide a number of well-
understood foundations.
Given a development of mathematics in one �xed foundation, it is possible to give a

fully formal language in which every mathematical expression valid in that foundation can
be written down. Then mathematics can � in principle � be reduced to the manipulation
of these expression, an approach called formalism and most prominently expressed in
Hilbert's program. Recently this approach has gained more and more momentum due
to the advent of computer technology: With machine support, the formidable e�ort of
formalizing mathematics becomes feasible, and the trust in the soundness of an argument
can be reduced to the trust in the implementation of the foundation.
However, compared to �traditional� mathematics, this approach has the drawback that

it heavily relies on the choice of one speci�c foundation. Traditional mathematics, on
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the other hand, frequently and often crucially abstracts from and moves freely between
foundations to the extent that many mathematical papers do not mention the exact
foundation used. This level of abstraction is very di�cult to capture if every statement
is rigorously reduced to a �xed foundation. Moreover, in formalized mathematics, di�er-
ent systems implementing di�erent (or even the same or similar) foundations are often
incompatible, and no reuse across systems is possible.
But the high cost of formalizing mathematics makes it desirable to join forces and

integrate foundational systems. Currently, due to the lack of integration, signi�cant
overlap and redundancies exist between libraries of formalized mathematics, which slows
down the progress of large projects such as the formal proofs of the Kepler conjecture
(Hales 2003).
Our contribution can be summarized as follows. Firstly, we introduce a new method-

ology for the formal integration of foundations: Using a logical framework, we formalize
not only mathematical theories but also the foundations themselves. This permits for-
mally stating and proving relations between foundations. Secondly, we demonstrate our
approach by formalizing three of the most widely-used important foundations as well
as translations between them. Our work provides the starting point of a formal library
of foundational systems that complements the existing foundation-speci�c libraries and
provides the basis for the systematic and formally veri�ed integration of systems for
formalized mathematics.
We begin by describing our approach and reviewing related work in Sect. 2. Then,

in Sect. 3, we give an overview of the logical framework we use in the remainder of
the paper. We give a new formalization of traditional mathematics based on ZFC set
theory in Sect. 4. Then we formalize two foundations with particularly large formalized
libraries: Isabelle/HOL (Nipkow, Paulson & Wenzel 2002) in Sect. 5 and Mizar (Trybulec
& Blair 1985) in Sect. 6. We also give a translation from Isabelle/HOL into ZFC and
sketch a partial translation from Mizar (which is stronger than ZFC) to ZFC. We discuss
our work and conclude in Sect. 7.
Our formalizations span several thousand lines of declarations, and their descriptions

are correspondingly simpli�ed. The full sources are available at (Iancu & Rabe 2010).

2 Problem Statement and Related Work

Automath (de Bruijn 1970) and the formalization of Landau's analysis (Landau 1930, van
Benthem Jutting 1977) were the �rst major success of formalized mathematics. Since
then a number of computer systems have been put forward and have been adopted to
varying degrees to formalize mathematics such as LCF (Gordon, Milner & Wadsworth
1979), HOL (Gordon 1988), HOL Light (Harrison 1996), Isabelle/HOL (Nipkow et al.
2002), IMPS (Farmer, Guttman & Thayer 1993), Nuprl (Constable, Allen, Bromley,
Cleaveland, Cremer, Harper, Howe, Knoblock, Mendler, Panangaden, Sasaki & Smith
1986), Coq (Coquand & Huet 1988), Mizar (Trybulec & Blair 1985), Isabelle/ZF (Paulson
& Coen 1993), and the body of peer-reviewed formalized mathematics is growing (T.
Hales and G. Gonthier and J. Harrison and F. Wiedijk 2008, Matuszewski 1990, Klein,
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Nipkow & (eds.) 2004). A comparison of some formalizations of foundations in Automath,
including ZFC and Isabelle/HOL, is given in (Wiedijk 2006).
The problem of interoperability and integration between these systems has received

growing attention recently, and a number of connections between them have been estab-
lished. (Obua & Skalberg 2006) and (McLaughlin 2006) translate between Isabelle/HOL
and HOL Light; (Keller & Werner 2010) from HOL Light to Coq; and (Krauss &
Schropp 2010) from Isabelle/HOL to Isabelle/ZF. The OpenTheory format (Hurd 2009)
was designed as an interchange format for di�erent implementations of higher order logic.
We call these translations dynamically veri�ed because they have in common that

they translate theorems in such a way that the target system reproves every translated
theorem. One can think of the source system's proof as an oracle for the target system's
proof search. This approach requires no reasoning about or trust in the translation so
that users of the target system can reuse translated theorems without making the source
system or the translation part of their trusted code base. Therefore, such translations can
be implemented and put to use relatively quickly. It is no surprise that such translations
are advanced by researchers working with the respective target system.
Still, dynamically veri�ed translations can be unsatisfactory. The proofs of the source

theorems may not be available because they only exist transiently when the source system
processes a proof script. The source system might not be able to export the proofs, or
they may be too large to translate. In that case, it is desirable to translate only the
theorems and appeal to a general result that guarantees the soundness of the theorem
translation.
However, the statement of soundness naturally lives outside either of the two involved

foundations. Therefore, stating, let alone proving, the soundness of a translation re-
quires a third formal system in which source and target system and the translation are
represented. We call the third system a foundational framework, and if the soundness
of a translation is proved in a foundational framework, we speak of a statically veri�ed
translation.
Statically veri�ed translations are theoretically more appealing because the soundness

is proved once and for all. Of course, this requires the additional assumptions that the
foundational framework is consistent and that the representations in the framework are
adequate. If this is a concern, the soundness proof should be constructive, i.e., produce
for every proof in the source system a translated proof in the target system. Then users
of the target system have the option to recheck the translated proof.
The most comprehensive example of a statically veri�ed translation � from HOL to

Nuprl (Naumov, Stehr & Meseguer 2001) � was given in (Schürmann & Stehr 2004).
HOL and Nuprl proof terms are represented as terms in the framework Twelf (Harper,
Honsell & Plotkin 1993, Pfenning & Schürmann 1999) using the judgments-as-types
methodology. The translation and a constructive soundness proof are formalized as
type-preserving logic programs in Twelf. The soundness is veri�ed by the Twelf type
checker, and the well-de�nedness � i.e., the totality and termination of the involved logic
programs � is proved using Twelf.
In this work, we demonstrate a general methodology for statically veri�ed translations.

We formalize foundations as signatures in the logical framework Twelf, and we use the
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LF module system's (Rabe & Schürmann 2009) translations-as-morphisms methodology
to formalize translations between them as signature morphisms. This yields translations
that are well-de�ned and sound by design and which are veri�ed by the Twelf type
checker. Moreover, they are constructive, and the extraction of translation programs is
straightforward.
Our work can be seen as a continuation of the Logosphere project (Pfenning, Schür-

mann, Kohlhase, Shankar & Owre. 2003), of which the above HOL-Nuprl translation was
a part. Both Logosphere and our work use LF, and the main di�erence is that we use
the new LF module system to reuse encodings and to encode translations. Logosphere
had to use monolithic encodings and used programs to encode translations. The latter
were either Twelf logic program or Delphin (Poswolsky & Schürmann 2008) functional
programs, and their well-de�nedness and termination was statically veri�ed by Twelf and
Delphin, respectively. Using the module system, translations can be stated in a more
concise and declarative way, and the well-de�nedness of translations is guaranteed by the
LF type theory.
There are some alternative frameworks in which foundations can be formalized: other

variants of dependent type theory such as Agda (Norell 2005), type theories such as
Coq based on the calculus of inductive constructions, or the Isabelle framework (Paulson
1994) based on polymorphic higher-order logic. All of these provide roughly comparably
expressive module systems. We choose LF because the judgments-as-types and relations-
as-morphisms methodologies are especially appropriate to formalize foundations and their
relations.
We discuss related work pertaining to the individual foundations separately below.

3 The Edinburgh Logical Framework

The Edinburgh Logical Framework (Harper et al. 1993) (LF) is a formal meta-language
used for the formalization of deductive systems. It is related to Martin-Löf type theory
and the corner of the lambda cube that extends simple type theory with dependent
function types and kinds. We will work with the Twelf (Pfenning & Schürmann 1999)
implementation of LF and its module system (Rabe & Schürmann 2009).
The central notion of the LF type theory is that of a signature, which is a list Σ of

kinded type family symbols a : K or typed constant symbols c : A. It is convenient
to permit those to carry optional de�nitions, e.g., c : A = t to de�ne c as t. (For
our purposes, it is su�cient to assume that these abbreviations are transparent to the
underlying type theory, which avoids some technical complications. Of course, they are
implemented more intelligently.)
LF contexts are lists Γ of typed variables x : A, i.e., there is no polymorphism. Relative

to a signature Σ and a context Γ, the expressions of the LF type theory are kinds K,
kinded type families A : K, and typed terms t : A. type is a special kind, and type
families of kind type are called types.
We will use the concrete syntax of Twelf to represent expressions:
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• The dependent function type Πx:AB(x) is written {x : A}B x, and correspondingly
for dependent function kinds {x : A}K x. As usual we write A→ B when x does
not occur free in B.

• The corresponding λ-abstraction λx:At(x) is written [x : A] t x, and correspondingly
for type families [x : A] (B x).

• As usual, application is written as juxtaposition.

Given two signatures sig S = {Σ} and sig T = {Σ′}, a signature morphism σ from
S to T is a list of assignments c := t and a := A. They are called views in Twelf and
declared as view v : S → T = {σ}. Such a view is well-formed if

• σ contains exactly one assignment for every symbol c or a that is declared in Σ
without a de�nition,

• each assignment c := t assigns to the Σ-symbol c : A a Σ′-term t of type σ(A),

• each assignment a := K assigns to the Σ-symbol a : K a Σ′-type family K of type
σ(K).

Here σ is the homomorphic extension of σ that maps all closed expressions over Σ to
closed expressions over Σ′, and we will write it simply as σ in the sequel. The central
result about signature morphisms (see (Harper, Sannella & Tarlecki 1994)) is that they
preserve typing and αβη-equality: Judgments `Σ t : A imply judgments `Σ′ σ(t) : σ(A)
and similarly for kinding judgments and equality.
Finally, the Twelf module system permits inclusions between signatures and views.

If a signature T contains the declaration include S, then all symbols declared in (or
included into) S are available in T via quali�ed names, e.g., c of S is available as S.c.
Our inclusions will never introduce name clashes, and we will write c instead of S.c for
simplicity. Correspondingly, if S is included into T , and we have a view v from S to T ′,
a view from T to T ′ may include v via the declaration include v.
This yields the following grammar for Twelf where gray color denotes optional parts.

Toplevel G ::= · | G, sig T = {Σ} | G, view v : S → T = {σ}
Signatures Σ ::= · | Σ, include S | Σ, c : A= t | Σ, a : K = t
Morphisms σ ::= · | Σ, include v | σ, c := t | σ, a := A
Kinds K ::= type | {x : A}K
Type families A ::= a | A t | [x : A]A | {x : A}A
Terms t ::= c | t t | [x : A] t | x

We will sometimes omit the type of a bound variable if it can be inferred from the
context. Moreover, we will frequently use implicit arguments: If c is declared as c : {x :
A}B and the value of s in c s can be inferred from the context, then c may alternatively
be declared as c : B (with a free variable in B that is implicitly bound) and used as c
(where the argument to c inferred). We will also use �xity and precedence declarations
in the style of Twelf to make applications more readable.
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Example 1 (Representation of FOL in LF). The following is a fragment of an LF signature
for �rst-order logic that we will use later to formalize set theory:

sig FOL = {
set : type
prop : type
ded : prop→ type prefix 0

⇒ : prop→ prop→ prop infix 3
∧ : prop→ prop→ prop infix 2
∀ : (set→ prop)→ prop
.= : set→ set→ prop infix 4
⇔ : prop→ prop→ prop infix 1

= [a] [b] (a ⇒ b) ∧ (b ⇒ a)
∧I : ded A→ ded B → ded A ∧ B
∧El

: ded A ∧ B → ded A
∧Er : ded A ∧ B → ded B
⇒I : (ded A→ ded B)→ ded A ⇒ B
⇒E : ded A ⇒ B → ded A→ ded B
∀I : ({x : i} ded (F x))→ ded (∀ [x] F x)
∀E : ded (∀ [x] F x)→ {c : i} ded (F c)

}
This introduces two types set and prop for sets and propositions, respectively, and a

type family ded indexed by propositions. Terms p of type ded F represents proofs of
F , and the inhabitation of ded F represents the provability of F . Higher-order abstract
syntax is used to represent binders, e.g., ∀([x : set]F x) represents the formula ∀x :
set.F (x). Equivalence is introduced as a de�ned connective.
Note that the argument of ded does not need brackets as ded has the weakest prece-

dence. Moreover, by convention, the Twelf binders [] and {} always bind as far to the
right as is consistent with the placement of brackets.
As examples for inference rules, we give natural deduction introduction and elimination

rules conjunction and implication. Here A and B of type prop are implicit arguments
whose types and values are inferred. For example, the theorem of commutativity of
conjunction can now be stated as

comm_conj : ded (A ∧ B) ⇔ (B ∧ A)
= ∧I (⇒I [p]∧I (∧Er

p) (∧El
p))

(⇒I [p]∧I (∧Er
p) (∧El

p))

The LF type system guarantees that the proof is correct.

4 Zermelo-Fraenkel Set Theory

In this section, we present out formalization of Zermelo-Fraenkel set theory. We give
an overview over our variant of ZFC in Sect. 4.1 and describe its encoding in Sect. 4.2
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and 4.3. Finally, we discuss related formalizations in Sect. 4.4.

4.1 Preliminaries

Zermelo-Fraenkel set theory (Zermelo 1908, Fraenkel 1922) (with or without choice) is the
most common implicitly or explicitly assumed foundation of mathematics. It represents
all mathematical objects as sets related by the binary ∈ predicate. Propositions are
stated using an untyped �rst-order logic. The logic is classical, but we will take care to
reason intuitionistically whenever possible.
There are a number of equivalent choices for the axioms of ZFC. Our axioms are

• Extensionality: ∀x∀y(∀z(z ∈ x⇔ z ∈ y)⇒ x = y)

• Set existence: ∃x true (This could be derived from the axiom of in�nity, but we
add it explicitly here to reduce dependence on in�nity.),

• Unordered pairing: ∀x∀y∃a(∀z(z = x ∨ z = y)⇒ z ∈ a)

• Union: ∀X∃a∀z(∃x(x ∈ X ∧ z ∈ X)⇒ z ∈ a)

• Power set: ∀x∃a∀z((∀t(t ∈ z ⇒ t ∈ x))⇒ z ∈ a)

• Speci�cation: ∀X∃a(∀z((z ∈ X∧ϕ(z))⇔ z ∈ a)) for a unary predicate ϕ (possibly
containing free variables)

• Replacement: ∀a(∀x(x ∈ a)⇒ ∃!y(ϕ x y))⇒ ∃b(∀y(∃x(x ∈ a ∧ ϕ(x, y))⇔ y ∈ b))
for a binary predicate ϕ (possibly containing free variables) where ∃! abbreviates
the easily de�nably quanti�er of unique existence

• Regularity: ∀x(∃t(t ∈ x))⇒ (∃y(y ∈ x ∧ ¬(∃z(z ∈ x ∧ z ∈ y)))).

• Choice and in�nity, which we omit here.

It is important to note that there are no �rst-order terms except for the variables.
Speci�c sets (i.e., �rst-order constant symbols) and operations on sets (i.e., �rst-order
function symbols) are introduced only as derived notions: A new symbol may be intro-
duced to abbreviate a uniquely determined set. For example, the empty set ∅ abbreviates
the unique set x satisfying ∀y.¬y ∈ x. Adding such abbreviations is conservative over
�rst-order logic but cannot be formalized within the language of �rst-order.

4.2 Untyped Set Theory

Our Twelf formalization of ZFC uses three main signatures: ZFC_FOL encodes �rst-
order logic, ZFC encodes the �rst-order theory of ZFC, and �nally Operations intro-
duces the basic operations and their properties, most notably products and functions.
The actual encodings (Iancu & Rabe 2010) comprise several hundred lines of Twelf dec-
larations and are factored into a number of smaller signatures to enhance maintainability
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and reuse. Therefore, our presentation here is only a summary. Moreover, to enhance
readability, we will use more Unicode characters in identi�ers here than in the actual
encodings.

First-Order Logic ZFC_FOL is an extension of the signature FOL given in Ex. 1.
Besides the usual components of FOL encodings in LF (see e.g., (Harper et al. 1993)),
we use two special features.
Firstly, we add the (de�nite) description operator δ : {F : set → prop} ded ∃!

([x]F x)→ set, which encodes the mathematical practice of giving a name to a uniquely
determined object. Here ∃! is the quanti�er of unique existence which is easily de�nable.
Thus δ takes a formula F (x) with a free variable x and a proof of ∃!x.F (x) and returns a
new set. The LF type system guarantees that δ can only be applied after showing unique
existence. δ is axiomatized using the axiom scheme axδ : ded F (δ F P ); from this we
can derive irrelevance, i.e., δ F P returns the same object no matter which proof P is
used.
Secondly, we add sequential connectives for conjunction and implication. In a sequen-

tial implication F ⇒′ G, G is only considered if F is true, and similarly for conjunction.
This is very natural in mathematical practice � for example, mathematicians do not hes-
itate to write x 6= 0 ⇒′ x/x = 1 when / is only de�ned for non-zero dividers. All other
connectives remain as usual.
Sequential implication and conjunction are formalized in LF as follows:

∧′ : {F : prop} (ded F → prop)→ prop
⇒′ : {F : prop} (ded F → prop)→ prop
∧′I : {p : ded F} ded G p → F ∧′ [p]G p
∧′El

: ded F ∧′ [p]G p → ded F
∧′Er

: {q : ded F ∧′ [p]G p} ded G (∧′El q)
⇒′I : ({p : ded F} ded G p) → ded F ⇒′ [p]G p
⇒′E : ded F ⇒′ [p]G p → {p : ded F} ded G p

∧′ and ⇒′ are applied to two arguments, �rst a formula F , and then a formula G
stated in a context in which F is true. This is written as, e.g., F ∧′ [p]G p where p is an
assumed proof of F that may occur in G. We will use F∧′G and F ⇒′ G as abbreviations
when p does not occur in G, which yield the non-sequential cases. The introduction and
elimination rules are generalized accordingly. Note that these sequential connectives do
not rely on classicality.
In plain �rst-order logic, such sequential connectives would be useless as a proof cannot

occur in a formula. But in the presence of the description operator, the proofs frequently
occur in terms and thus in formulas.

Set Theory The elementhood predicate is encoded as ∈: set → set → prop together
with a corresponding in�x declaration. The formalization of the axioms is straightfor-
ward, for example, the axiom of extensionality is encoded as:
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ax_exten : ded ∀ [x] ∀ [y] (∀ [z] z ∈ x ⇔ z ∈ y)⇒ x
.= y

It is now easy to establish the adequacy of our encoding in the following sense: Every
well-formed closed LF-term s : set over ZFC encodes a unique set satisfying a certain
predicate F . This is obvious because s must be of the form δ F P . The inverse does
not hold as there are models of set theory with more sets than can be denoted by closed
terms.

Basic Operations We can now derive the basic notions of set theory and their proper-
ties: Using the description operator and the respective axioms, we can introduce de�ned
Twelf symbols

empty : set = . . .
uopair : set→ set = . . .
bigunion : set→ set = . . .
powerset : set→ set = . . .
image : (set→ set)→ set→ set = . . .
filter : set→ (set→ prop)→ set = . . .

such that empty encodes ∅, uopair x y encodes {x, y}, bigunion X encodes
⋃
X,

powerset X encodes PX, image f A encodes {f(x) : x ∈ A}, and filter A F encodes
{x ∈ A | F (x)}.
For example, to de�ne uopair we proceed as follows:

is_uopair : set→ set→ set→ prop
= [x] [y] [a] (∀ [z] (z .= x ∨ z

.= y) ⇔ z ∈ a)
p_uopair : ded ∃! (is_uopair A B)

= spec_unique (shrink (∀E (∀E ax_pairing A) B))
uopair : set→ set→ set = [x] [y] δ (is_uopair x y) p_uopair

Here is_uopair x y a formalizes the de�ning property a
.= {x, y} of the new function

symbol, and p_uopair shows unique existence. The above uses two lemmas

shrink : ded (∃ [X] ∀ ([z] (ϕ z) ⇒ z ∈ X))
→ ded (∃ [x] ∀ ([z] (ϕ z) ⇔ z ∈ x)) = · · ·

spec_unique : ded (∃ [x] ∀ ([z] (ϕ z) ⇔ z ∈ x))
→ ded ∃! [x] ∀ ([z] (ϕ z) ⇔ z ∈ x) = · · ·

shrink expresses that if there is a set X that contains all the elements for which
the predicate ϕ : set → prop holds, then the set described by ϕ exists. spec_unique
expresses that if a predicate ϕ : set→ prop describes a set then that set exists uniquely.
They can be proved easily using extensionality and speci�cation.

Advanced Operations Then we can de�ne the advanced operations on sets in the
usual way. For example, the de�nition of binary union x ∪ y =

⋃
{x, y} can be directly

formalized as
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union : set→ set→ set = [x] [y] bigunion (uopair x y)

We omit the de�nitions of singleton sets, ordered pairs, cartesian products, relations,
partial functions, and functions. Our de�nitions are standard except for the ordered pair.
We de�ne (x, y) = {{x}, {{y}, ∅}}, which is similar to Wiener's de�nition (Wiener 1967)
and di�erent from the more common (x, y) = {{x, y}, {x}} due to Kuratowski. Our
de�nition is a bit simpler to work with than Kuratowski pairs because it avoids the
special case (x, x) = {{x}}.

pair : set→ set→ set
= [a] [b] uopair (singleton a) (uopair (singleton b) empty)

The di�erence with Kuratowski pairs is not signi�cant as we immediately prove the
characteristic properties of pairing and then never appeal to the de�nition anymore.

convpi1 : ded pi1 (pair X Y ) .= X = · · ·
convpi2 : ded pi2 (pair X Y ) .= X = · · ·
convpair : ded ispair X → ded pair (pi1 X) (pi2 X) .= X = · · ·

The proofs are technical but straightforward.
Finally, we can de�ne function construction X 3 x 7→ f(x) and application f(x) as

λ : set→ (set→ set)→ set = [a] [f ] image ([x] pair x (f x)) a
@ : set→ set→ set

= [f ] [a] bigunion (image pi2 (filter f ([x] (pi1 x) .= a)))

where λ A f encodes {(x, f(x)) : x ∈ A}, and @ f x yields �the b such that (a, b) ∈ f �.
Application is de�ned for all sets: for example, it returns ∅ if f is not de�ned for x.
Like for pairs, we immediately prove the characteristic properties, which are known

as βη-conversion and extensionality in computer science. We never use other properties
than these later on:

convapply : ded X ∈ A→ ded @ (λ A F ) X .= F X = · · ·
convlambda : ded F ∈ (⇒ AB)→ ded λ A ([x] @ F x) .= F = · · ·
funcext : ded F ∈ (⇒ AB)→ ded G ∈ (⇒ AB) →

({a} ded a ∈ A→ ded @F a
.= @G a)→ ded F

.= G = · · ·

Again we omit the straightforward proofs.

4.3 Typed Set Theory

Classes as Types A major drawback of formalizations of set theory is the complexity
of reasoning about elementhood and set equality. It is well-known how to overcome
these using typed languages, but in mathematical accounts of set theory, types are not
primitive but derived notions. We proceed accordingly: The central idea is to use the
predicate subtype Elem A = {x : set | ded x ∈ A inhabited } to represent the
set A. In fact, we can use the same approach to recover classes as a derived notion:
Class F = {x : set | ded F x inhabited } for any unary predicate F : set→ prop.
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However, LF does not support predicate subtypes (for the good reason that it would
make the typing relation undecidable). Therefore, we think of elements x of the class
{x | F (x)} as pairs (x, P ) where P : ded F x is a proof that x is indeed in that class. We
encode this in LF as follows:

Class : (set→ prop)→ type
celem : {a : set} ded F a→ Class F
cwhich : Class F → set
cwhy : {a : Class F} ded (F (cwhich a))

Elem : set→ type = [a] Class [x] x ∈ a
elem : {a : set} ded a ∈ A→ elem A = [a] [p] celem a p
which : elem A→ set = [a] cwhich a
why : {a : elem A} ded (which a) ∈ A = [a] cwhy a

Class F encodes {x|F (x)}, celem x P produces an element of a class, and cwhich x
and cwhy x return the set and its proof. The remaining declarations specialize these
notions to the classes {x|x ∈ A}.
To axiomatize these, we use the additional axiom eqwhich : ded cwhich (elem X P ) .=

X as well as the following axiom for proof irrelevance

proofirrel : {f : ded G→ Class A} ded cwhich (f P ) .= cwhich (f Q)

which formalizes that two sets are equal if they only di�er in a proof.

Typed Operations Using the types Elem A, we can now lift all the basic untyped
operations introduced above to the typed level. In particular, we de�ne typed quanti�ers
∀∗, ∃∗, typed equality

.=∗, typed function spaces ⇒∗, and booleans bool as follows.
Firstly, we de�ne typed quanti�ers such as ∀∗ : (elem A → prop) → prop. In higher-

order logic (Church 1940), such typed quanti�cation can be de�ned easily using abstrac-
tion over the booleans. This is not possible in ZFC because the type prop is not a set
itself, i.e., we have prop : type and not prop : set. If we committed to classical logic, we
could use the set bool : set from below.
A natural solution is relativization as in ∀∗ F := ∀[x]x ∈ A⇒′ F x for F : elem A→

prop. However, an attempt to de�ne typed quanti�cation like this meets a subtle di�-
culty: In ∀∗ F , F only needs to be de�ned for elements of A whereas in ∀[x]x ∈ A⇒′ F x,
F must be de�ned for all sets even though F x is intended to be ignored if x 6∈ A. There-
fore, we use sequential connectives:

∀∗ : (Elem A→ prop)→ prop = [F ]
(
∀[x]x ∈ A⇒′ [p] (F (elem x p))

)
∃∗ : (Elem A→ prop)→ prop = [F ]

(
∃[x]x ∈ A ∧′ [p] (F (elem x p))

)
It is easy to derive the expected introduction and elimination rules for ∀∗ and ∃∗.
Secondly, typed equality is easy to de�ne:

.=∗ : Elem A→ Elem A→ prop = [a] [b] (which a) .= (which b)

It is easy to see that all rules for
.= can be lifted to

.=∗.
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Then, thirdly, we can de�ne function types in the expected way:

⇒∗ : set→ set→ set = [x] [y] Elem (x⇒ y)
λ∗ : (Elem A→ Elem B)→ Elem (A⇒∗ B) = . . .
@∗ : Elem (A⇒∗ B)→ Elem A→ Elem B

= [F ] [x] elem (@ (which F ) (which x)) (funcE (why F ) (why x))
beta : ded (@∗ (λ∗ [x]F x) A) .=∗ F A = . . .
eta : ded (λ∗ [x] (@∗ F x)) .=∗ F = . . .

We omit the quite involved de�nitions and only mention that the typed quanti�ers
and thus the sequential connectives are needed in the de�nitions.
Finally, we introduce the set {∅, {∅}} of booleans and derive some important oper-

ations for them. In particular, these are the constants 0 and 1, a supremum operation
on families of booleans, a variant of if-then-else where the then-branch (else-branch)
may depend on the truth (falsity) of the condition, and a re�ection function mapping
propositions to booleans.

bool : set = uopair empty (singleton empty)
0 : Elem bool = . . .
1 : Elem bool = . . .
sup : (Elem A→ Elem bool)→ Elem bool
ifte : {F : prop} (ded F → Elem A)→ (ded ¬ F → Elem A)

→ Elem A = . . .
reflect : Elem prop→ Elem bool

The de�nition of the supremum operation is only possible after proving that {∅, {∅}} =
P{∅}, which requires the use of excluded middle. (In fact, it is equivalent to it.) Simi-
larly, reflect and ifte can only be de�ned in the presence of excluded middle. All other
de�nitions in our formalization of ZFC are also valid intuitionistically.

4.4 Related Work

Several formalizations of set theory have been proposed and developed quite far. Most
notable are the encodings of Tarski-Grothendieck set theory in Mizar (Trybulec & Blair
1985, Trybulec 1989) and of ZF in Isabelle (Paulson 1994, Paulson & Coen 1993). The
most striking di�erence with our formalization is that these employ sophisticated machine
support with structured proof languages. Since there is no comparable machine support
for Twelf, our encoding uses hand-written proof terms.
We chose LF because it permits a more elegant formalization: We use only ∈ as a

primitive symbol and use a description operator to introduce names for derived concepts.
This deviates from standard accounts of formalized mathematics and is in contrast to
Mizar where primitive function symbols are used for singleton, unordered pair, and union,
and to Isabelle/ZF where primitive function symbols are used for empty set, power set,
union, in�nite set, and replacement. But it corresponds more closely to mathematical
practice, where the implicit use of a description operator is prevalent.
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Our encoding depends crucially on dependent types. Description operators are also
used in typed formalizations of mathematics such as HOL (Church 1940). They di�er
from ours by not taking a proof of unique existence as an argument. Consequently, they
must assume the non-emptiness of all types and a global choice function. Other language
features only possible in a dependently-typed framework are sequential connectives and
our ifte construct. Connectives similar to our sequential ones are also used in PVS
(Owre, Rushby & Shankar 1992) and in (de Nivelle 2010), albeit without proof terms
occurring explicitly in formulas.
Moreover, using dependent types, we can recover typed reasoning as a derived notion.

Here, our approach is similar to the one in Scunak (Brown 2006), and in fact our formal-
ization of classes and typed reasoning is inspired by the one used in Scunak. Scunak uses
a variant of dependent type theory speci�cally developed for this purpose: The symbols
set, prop, and Class, and the axioms eqwhich and proofirrel are primitives of the type
theory. This renders the formalization much simpler at the price of using a less elegant
framework.
A compromise between our encoding and Scunak's would be an extension of the LF

framework. For example, the dependent sum type Σx:set(ded F x) could be used instead
of our Class F . Moreover, in (Lovas & Pfenning 2009) a variant of proof irrelevance is
introduced for LF that might make our encoding more elegant.

5 Isabelle and Higher-Order Logic

5.1 Preliminaries

Isabelle Isabelle is a logical framework and generic LCF-style interactive theorem
prover based on polymorphic higher-order logic (Paulson 1994). We will only consider
the core language of Isabelle here � the Pure logic and basic declarations � and omit the
module system and the structured proof language. We gave a comprehensive formaliza-
tion of Pure and the Isabelle module system in (Rabe 2010).
The grammar for Isabelle is given in Fig. 1, which is a simpli�ed variant of the one

given in (Wenzel 2009).

con ::= c :: τ
ax ::= a : ϕ
lem ::= l : ϕ proof
typedecl ::= (α1, . . . , αn)t
types ::= (α1, . . . , αn)t = τ
τ ::= α | (τ, . . . , τ) t | τ ⇒ τ | prop
term ::= x | c | term term | λx :: τ.term
ϕ ::= ϕ =⇒ ϕ |

∧
x :: τ.ϕ | term ≡ term

proof ::= . . .

Figure 1: Isabelle Grammar
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An Isabelle theory is a list of declarations of typed constants c :: τ , axioms a : ϕ,
lemmas a : ϕ P where P proves ϕ, and n-ary type operators (α1, . . . , αn)t which may
carry a de�nition in terms of the αi. De�nitions for constants can be introduced as
special cases of axioms, and we consider base types as nullary type operators.
Types τ are formed from type variables α, type operator applications (τ1, . . . , τn)t,

function types, and the base type prop of propositions. Terms are formed from variables,
constants, application, and lambda abstraction. Propositions are formed from implica-
tion =⇒, universal quanti�cation

∧
at any type, and equality on any type. (Wenzel 2009)

does not give a grammar for proofs but lists the inference rules; they are
∧

introduc-
tion and elimination, =⇒ introduction and elimination, re�exivity and substitution for
equality, β and η conversion, and functional extensionality.
Constants may be polymorphic in the sense that their types may contain free type

variables. When a polymorphic constant is used, Isabelle automatically infers the type
arguments.

HOL The most advanced logic formalized in Isabelle is HOL (Nipkow et al. 2002).
Isabelle/HOL is a classical higher-order logic with shallow polymorphism, non-empty
types, and choice operator (Church 1940, Gordon & Pitts 1993).
Isabelle/HOL uses the same types and function space as Isabelle. But it introduces a

type bool for HOL-propositions (i.e., booleans since HOL is classical) that is di�erent from
the type prop of Isabelle-propositions. The coercion Trueprop : bool ⇒ prop is used as
the Isabelle truth judgment on HOL propositions. HOL declares primitive constants for
implication, equality on all types, de�nite and inde�nite description operator some x :
τ.P and the x : τ.P for a predicate P : τ ⇒ bool. Furthermore, HOL declares a
polymorphic constant undefined of any type and an in�nite base type ind, which we
omit in the following. Based on these primitives and their axioms, simply-typed set
theory is developed by purely de�nitional means.
Going beyond the Isabelle framework, Isabelle/HOL also supports Gordon/HOL-style

type de�nitions using representing sets. A set A on the type τ is given by its charac-
teristic function, i.e., A : τ ⇒ bool. An Isabelle/HOL type de�nition is of the form
(α1, . . . , αn) t = A P where P and A contain the variables α1, . . . , αn and P proves that
A is non-empty. If such a de�nition is in e�ect, t is an additional type that is axiomatized
to be isomorphic to the set A.

5.2 Formalizing Isabelle/HOL

Isabelle Our formalization of Isabelle follows the one we gave in (Rabe 2010). We
declare an LF signature Pure for the inner syntax of Isabelle, which declares symbols
for all primitives that can occur in expressions. Pure is given in Fig. 2.

sig S = {
include Pure
pΣq
}

This yields a straightforward structural encoding function p−q
that acts as described in Fig. 3. Similar encodings are well-known
for LF, see e.g., (Harper et al. 1993). The only subtlety is the case
of polymorphic constant applications c t1 . . . tn where the type
of c contains type variables α1, . . . , αm. Here we need to infer the
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sig Pure = {
tp : type
⇒ : tp→ tp→ tp infix 0
tm : tp→ type prefix 0
λ : (tm A→ tm B)→ tm (A⇒ B)
@ : tm (A⇒ B)→ tm A→ tm B infix 1000

prop : tp∧
: (tm A→ tm prop)→ tm prop

=⇒ : tm prop→ tm prop→ tm prop infix 1
≡ : tm A→ tm A→ tm prop infix 2

` : tm prop→ type prefix 0∧
I : (x : tm A ` (B x)) → `

∧
([x]B x)∧

E : `
∧

([x]B x) → {x : tm A} ` (B x)
=⇒ I : (` A → ` B) → ` A =⇒ B
=⇒ E : ` A =⇒ B → ` A → ` B
refl : ` X ≡ X
subs : {F : tm A → tm B} ` X ≡ Y → ` F X ≡ F Y
exten : ({x : tm A} ` (F x) ≡ (G x)) → ` λF ≡ λG
beta : ` (λ[x : tm A]F x) @ X ≡ F X
eta : ` λ ([x : tm A]F @ x) ≡ F
}

Figure 2: LF Signature for Isabelle

types τ1, . . . , τm at which c is applied, and put pc t1 . . . tnq =
(c pτ1q . . . pτmq) @ pt1q . . . @ ptnq. Polymorphic axioms and lemmas occurring in
proofs are treated accordingly. Finally, an Isabelle theory S = Σ is represented as shown
on the right where pΣq is de�ned declaration-wise according to Fig. 4.

sig HOL = {
include Pure
bool : tp
trueprop : tm bool⇒ prop
eps : tm (A⇒ bool)⇒ A
.= : tm A⇒ A⇒ bool
set : tp→ tp = [a] a⇒ bool
nonempty : (tm set A)→ type = . . .
typedef : {s : tm set A} nonempty s→ tp
Rep : tm (typedef S P )⇒ A
Abs : tm A⇒ (typedef (S : tm set A) P )
}

Figure 5: LF Signature for HOL

Adequacy It is easy to show
the adequacy of this encod-
ing: For an Isabelle theory Σ,
Isabelle types τ over Σ with
type variables from α1, . . . , αm
are in bijection with LF-terms
pτq : tp in context α1 :
tp, . . . , αm : tp, and accord-
ingly Isabelle terms t :: τ with
LF-terms ptq : tm pτq, and Is-
abelle proofs P of ϕ with LF-
terms pPq : ` pϕq.
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Expression Isabelle LF
type τ ptq : tp
term t :: τ ptq : tm pτq
proof P proving ϕ pPq : ` pϕq

containing type variables in context
α1, . . . , αm α1 : tp, . . . , αm : tp

Figure 3: Encoding of Expressions

Declaration Isabelle LF
type operator (α1, . . . , αn) t t : tp→ . . .→ tp→ tp
type de�nition (α1, . . . , αn) t = τ t : tp→ . . .→ tp→ tp

= [α1] . . . [αn] τ
constant c :: τ , α1, . . . , αm in τ c : tp→ . . .→ tp→ tm pτq
axiom a : ϕ, α1, . . . , αm in τ a : tp→ . . .→ tp→ ` pϕq
lemma l : ϕ P , α1, . . . , αm in ϕ, P l : tp→ . . .→ tp→ ` pϕq

= [α1] . . . [αm] pPq

Figure 4: Encoding of Declarations

HOL Since HOL is an Isabelle theory, its LF-encoding follows immediately from the
de�nition above. The fragment arising from translating some of the primitive declarations
of HOL is given in the upper part of the signature HOL in Fig. 5. For example, eps is
the choice operator. The lower part gives some of the additional declarations needed to
encode HOL-style type de�nitions. The central declaration is typedef , which takes a set
S on the type A and a proof that S is nonempty and returns a new type, say T . Rep
and Abs translate between A and T , we refer to (Wenzel 2009) for details.

5.3 Interpreting Isabelle/HOL in ZFC

ZFC+

Pure

HOL

PureZFC

HOLZFC

We formalize the relation between Isabelle/HOL
and ZFC by giving two views PureZFC and
HOLZFC from Pure and HOL, respectively,
to ZFC+ as shown on the right. These for-
malize the standard set-theoretical semantics
of higher-order logic.
ZFC+ arises from ZFC by adding a global

choice function choice : {A : Class nonempty} (Elem (chwich A)) that produces an
element of a non-empty set A. This is stronger than the axiom of choice (which merely
states the existence of such an element) but needed to interpret the choice operators of
HOL.
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Isabelle The general structure of the translation is given in Fig. 6 and the view in Fig. 7.
Types are mapped to non-empty sets, terms to elements, in particular propositions to
booleans, and proofs of ϕ to proofs of PureZFC(ϕ) .=∗ 1. These invariants are encoded
(and guaranteed) by the assignments to tp, tm, prop, and ` in PureZFC. It is tempting
to map Isabelle propositions to ZFC propositions rather than to booleans. However, in
Isabelle, prop is a normal type and thus must be interpreted as a set. An alternative
would be to map prop to a set representing intuitionistic truth values rather than classical
ones, but we omit that for simplicity. (Due to our use of a standard model, we cannot
expect completeness anyway.)

Isabelle/HOL ZFC
τ : tp PureZFC(τ) : Class nonempty.
t : tm τ PureZFC(t) : Elem (cwhich PureZFC(τ)).
ϕ : tm prop PureZFC(ϕ) : Elem (cwhich boolne).
P : ` ϕ PureZFC(P ) : ded PureZFC(ϕ) .=∗ (bbne 1).

Figure 6: Isabelle/HOL Declarations in ZFC

view PureZFC : Pure → ZFC = {
tp := Class nonempty
tm := elem
prop := boolne
` := [x] ded x .=∗ 1
⇒ := ⇒∗
λ := λ∗

@ := @∗∧
:= ∀∗

=⇒ := ⇒
≡ := .=∗

...
}

Figure 7: Interpreting Pure in ZFC

The case for terms t is a bit tricky: Since τ is
interpreted as an element of Class nonempty,
we �rst have to apply cwhich to obtain a set.
Then we apply Elem to this set to obtain the
type of its elements. Similarly, prop cannot be
mapped directly to Elem bool. Instead, we
have to introduce boolne : Class nonempty
which couples bool with the proof that it
is a non-empty set. Therefore, we also
have to de�ne the auxiliary functions bbne :
Elem bool→ Elem (cwhich boolne) and bneb :
Elem (cwhich boolne)→ Elem bool to convert
back and forth. These technicalities indicate a
drawback of our � otherwise perfectly natural
� representation of classes. Di�erent represen-
tations that separate the mapping of types to
sets from the proofs of non-emptiness may prove more scalable, but would require a more
sophisticated framework.
The remaining cases are straightforward. For example, ⇒ must be mapped to a ZFC

expression that takes two arguments of type Class nonempty and returns another, i.e.,
must respect the invariants above.

HOL Similarly, we obtain a view from HOL to ZFC, a fragment of which is shown
in Fig. 8. HOL booleans are mapped to ZFC booleans so that trueprop is mapped to
the identity. The choice operator eps is interpreted using ifte and choice. Note that
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in the given Twelf terms we elide some bookkeeping proof steps. The then-branch uses
elem (filter f) P to construct an element of Class nonempty, to which then choice is
applied. In both cases, P must use the assumption p that the condition of the ifte-split
is true.
typedef s p is interpreted using filter according to s. Thus, type de�nitions using sets

on A are interpreted as subsets of A in the expected way. The proof p is used to obtain
an element of Class nonempty.

view HOLZFC : HOL→ ZFC = {
include PureZFC
bool := bool
trueprop := [x]x
.= := λ∗([x](λ∗([y]bbne(reflect(x .=∗ y)))))
eps := [f : Elem (A⇒∗ bool)] ifte (nonempty (filter f))

([p] (choice (elem (filter f) p)))
([p] choice A)

...
typedef := [s : Elem (A⇒ bool)] [p] celem (filter ([x] s@x

.=∗ 1)) p
...
}

Figure 8: Interpreting HOL in ZFC

5.4 Related Work

Our formalization of Isabelle is a special case of the one we gave in (Rabe 2010). There
we also cover the Isabelle module system. Together with the formalization of HOL given
here, we now cover interpretations of Isabelle locales in terms of Isabelle/HOL. This is
interesting because if Isabelle locales are seen as logical theories and HOL as a foundation
of mathematics, then interpretations can be seen as models.
Formalizations of HOL in logical frameworks have been given in (Pfenning et al. 2003)

using LF and of course in Isabelle itself (Nipkow et al. 2002). Ours appears to be the �rst
formalization of Isabelle and HOL and the meta-relation between them. Moreover, we do
not know any other formalizations of HOL-style type de�nitions in a formal framework �
even in the Isabelle/HOL formalization, the type de�nitions are not expressed exclusively
in terms of the Pure meta-language.
Our semantics of Isabelle/HOL does not quite follow the one given in (Gordon & Pitts

1993). There, individual models provide a set U of sets, and every type is interpreted as an
element of U . Models must provide further structure to interpret HOL type constructors,
in particular a choice function on U . Our semantics can be seen as a single model where
the set theoretical universe is used instead of U . Consequently, our model is not a set
itself and thus not a model in the sense of (Gordon & Pitts 1993), but every individual
model in that sense is subsumed by ours.
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Independent of our work, a similar semantics of Isabelle/HOL is given in (Krauss &
Schropp 2010). They translate Isabelle/HOL to Isabelle/ZF where the interpretation of
Pure is simply the identity. Their semantics is given as a target-trusting implementation
rather than formalized in a framework. They also use the full set-theoretical universe
and a global choice function. An important di�erence is the treatment of non-emptiness:
They assume that interpretations for all type constructors are given that respect non-
emptiness; then they can interpret all types as sets (which will always be non-empty) and
only have to relativize universal quanti�ers over types to quanti�ers over non-empty sets.
Our translation is more complicated in that respect because it uses Class nonempty to
guarantee the non-emptiness.

6 Mizar and Tarski-Grothendieck Set Theory

6.1 Preliminaries

Mizar At its core, Mizar (Trybulec & Blair 1985) is an implementation of classical
�rst-order logic. However, it is designed to be used with a single theory: set theory
following the Tarski-Grothendieck axiomatization (Tarski 1938, Bourbaki 1964) (TG).
Consequently, Mizar is strongly in�uenced by its representation of TG. Like Isabelle, it
includes a semi-automated theorem prover and a structured proof language.
Mizar/TG is notable for being the only major system for the formalization of math-

ematics that is based on set theory. Types are only introduced as a means of e�ciency
and clarity but not as a foundational commitment. Moreover, the Mizar Mathematical
Library is one of the largest libraries of formalized mathematics containing over 50000
theorems and 9500 de�nitions.
Mizar's logic is an extension of classical �rst-order logic with second-order axiom

schemes. The proof system is Jaskowski-style natural deduction (Ja±kowski 1934). Con-
trary to the LCF style implementations of HOL and to our ZFC, which try to use a
small set of primitives, Mizar features a rich ontology of primitive mathematical objects,
types, and proof principles.
In particular, the type set of terms (i.e., sets in Mizar/TG) can be re�ned using

a complex type system, see, e.g., (Wiedijk 2007). The basic types are called modes,
and while they are semantically predicate subsorts (i.e., classes in Mizar/TG), they
are technically primitive in Mizar. Modes can be further re�ned by attributes, which
are predicates on a type. These two re�nement relations generate a subtype relation
between type expressions, called type expansion. Both modes and attributes may take
arguments, which makes Mizar dependently-typed. Mizar enforces the non-emptiness of
all types, and all mode de�nitions and attribute applications induce the respective proof
obligations.
The notion of typed �rst-order functions between types, called functors, is primitive.

Function de�nitions may be implicit, in which case they induce proof obligations for
well-de�nedness.
This expressivity makes theorems and proofs written in Mizar relatively easy to read
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but makes it hard to represent Mizar itself in a logical framework. We will use the
grammar given in Fig. 9, which is a substantially simpli�ed variant of the one given in
(Mizar 2009). Here . . . and ∗ denote possibly empty repetition.

Article ::= Article-Name* Text-Proper
Text-Proper ::= (Block | Theorem)∗

Block ::= definition let (x be ϑ)∗ De�nition end

De�nition ::= Mode | Functor | Attribute
Mode ::= mode M of x1, . . . , xn is ϑ

| mode M of x1, . . . , xn → ϑ means α
existence proof

Attribute ::= attr x is (x1, . . . , xn)V means α
Functor ::= func f(x1, . . . , xn) equals t

| func f(x1, . . . , xn) → ϑ means α
existence proof uniqueness proof

Theorem ::= theorem T : α proof
t ::= x | f(t1, . . . , tn)
α ::= t is ϑ | t in t | α&α | not α | t = t

| for x be ϑ holds α
ϑ ::= Adjective∗ Radix
Adjective ::= (t1, . . . , tn)V | non (t1, . . . , tn)V
Radix ::= M of t1, . . . , tn
proof ::= . . .

Figure 9: Mizar Grammar

A Mizar article starts with one import clause for every kind of declaration to import
from other articles. Instead, we only permit cumulative imports of whole articles. This
is followed by a list of de�nitions and theorems. We only permit mode, functor, and
attribute de�nitions. Predicate de�nitions and schemes could be added easily.
All three kinds of de�nitions introduce a new symbol, which takes a list of typed

term arguments xi. The type ϑi of xi must be given by a let declaration or defaults
to the type set. Mode de�nitions de�ne M of x1, . . . , xn either explicitly as the type
ϑ(x1, . . . , xn) or implicitly as the type of sets it of type ϑ satisfying α(it, x1, . . . , xn).
In the latter case, non-emptiness must be proved. Similarly, functor de�nitions de�ne
f(x1, . . . , xn) either explicitly as t(x1, . . . , xn) or implicitly as the object it of type ϑ satis-
fying α(it, x1, . . . , xn). In the latter case, well-de�nedness, i.e., existence and uniqueness,
must be proved. Finally, attribute de�nitions de�ne (x1, . . . , xn)V as the unary predicate
on the type of x given by α(x, x1, . . . , xn).
Terms t and formulas α are formed in the usual way, and we omit the productions for

proof terms. in and is are used for elementhood in a set or a type, respectively. Finally,
types are formed by providing a list of possibly negated adjectives on a mode. In Mizar,
these types must be proved to be non-empty before they can be used, which we will omit
here.

20



Tarski-Grothendieck Set Theory TG is similar to ZFC but uses Tarski's axiom
asserting that for every set there is a universe containing it. It implies the axioms of
in�nity, choice, power set, and large cardinals. Mizar/TG is de�ned in the Mizar article
Tarski (Trybulec 1989), which contains primitives for elementhood, singleton, unordered
pair, union, the Fraenkel scheme, the Tarski axiom, as well as a de�nition of ordered pairs
following Kuratowski.

6.2 Formalizing Mizar and TG Set Theory

sig Mizar = {
tp : type
prop : type
proof : prop→ type prefix 0
be : tp→ type
set : tp
is : be T → tp→ prop infix 30
in : be T → be T ′ → prop infix 30
not : prop→ prop prefix 20
and : prop→ prop→ prop infix 10
eq : be T → be T ′ → prop infix 10
...
for : (be T → prop)→ prop
...
func : {f : be T → prop}(proof ex [x] f x)→

proof for [x] for [y] (f x and f y) implies x eq y → be T
funcprop : {F} {Ex} {Unq} proof F (func F Ex Unq)
attr : tp→ type = [t] (be t→ prop)
adjective : {t : tp} attr t→ tp
adjI : {x : be X} (proof A x)→ be (adjective X A)
adjE : {x : be (adjective X A)} be X
adjE′ : {x : be (adjective X A)} proof A (adjE x)
...
}

Figure 10: LF Signature for Mizar

Mizar The LF signature that encodes Mizar's logic is given in Fig. 10, where we omit
the declarations of de�nable constants, such as equivalence iff and existential quanti�er
ex. The general form of the encoding of Mizar expressions in LF is given in Fig. 11. Mizar
types, formulas, and proofs of F are represented as LF terms of the types tp, prop, and
proof pFq, respectively. The judgment expand encodes Mizar's type expansion relation.
Mizar's use of a type system within an untyped foundation is hard to represent in

a logical framework. We mimic it by using an auxiliary type constructor be with the
intended meaning that t : be T encodes a Mizar term t of type T . Consequently, if T
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expands to T ′, terms of type T must be explicitly cast to obtain terms of type T ′ by
applying cast.
Attributes on a type ϑ are represented as LF terms of type attr ϑ. In e�ect, they

are represented as LF functions be ϑ → prop. A type ϑ = A1 . . . Am R is encoded as
adjective (. . . (adjective R Am) . . . ) A1. Attributes A = (t1, . . . , tn)V are encoded as
V pt1q . . . ptnq. Finally types M of t1, . . . , tn (radix types in Mizar) are encoded as
M pt1q . . . ptnq.
To that, we add LF constant declarations that represent the primitive formula and

proof constructors of Mizar's �rst-order logic. For formulas and proofs, this is straight-
forward, and the only subtlety is to identify exactly which constructors are primitive.
For example, or and imp are de�ned using and and not. We omit the constructors for
type expansion. This induces an encoding of Mizar terms, types, formulas, and proofs
as LF terms. The only remaining subtlety is that applications of cast must be inserted
whenever the well-formedness of a type depends on the type expansion relations.

Expression Mizar LF
type ϑ pϑq : tp
formula α pαq : prop
proof P proving α pPq : proof pαq
typed term t be ϑ ptq : be pϑq
type expansion ϑ expands to ϑ′ expand pϑq pϑ′q inhabited

Figure 11: Encoding of Expressions

Then we can represent Mizar declarations according to Fig. 12. Explicit functor and
mode de�nitions are represented easily as de�ned LF constants. Implicit de�nitions are
represented using special constants func and mode. func ([x : be ϑ]α x) ex unq encodes
the uniquely existing object of type ϑ that satis�es α. Similar to δ in our ZFC encodings,
it takes proofs of existence and uniqueness as arguments. mode ([x : be ϑ]α x) P encodes
the necessarily non-empty subtype of ϑ containing the objects satisfying α. Attribute
de�nitions are encoded easily. In all three cases, the arguments x1, . . . , xn of Mizar
functors/modes/attributes are represented directly as LF arguments. Finally, theorems
are encoded in the same way as for Isabelle.
Finally, we can encode a Mizar article Art1, . . . , Artn TP in �le A as the following LF

signature where the Text-Proper part TP is encoded declaration-wise.

sig A = {
include Mizar
include Art1
...
include Artn
pTPq
}

Adequacy Intuitively, our Mizar encoding should be adequate
in the sense that Mizar articles that stay within our simpli�ed
grammar are well-formed in Mizar i� their encoding is well-formed
in LF.
We cannot state or even prove the adequacy because there is no

reference semantics of Mizar that would be rigorous and complete
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Mizar LF
let xi be ϑi
mode M of x1, . . . , xn is ϑ M : {x1 : be pϑ1q} . . . {xn : be pϑnq} tp

= [x1] . . . [xn] pϑq
mode M of x1, . . . , xn → ϑ means α M : {x1 : be pϑ1q} . . . {xn : be pϑnq} tp

existence P = [x1] . . . [xn]mode ([it] pαq) pPq
func f(x1, . . . , xn) equals t f : {x1 : be pϑ1q} . . . {xn : be pϑnq} be pϑq

t expands to ϑ = [x1] . . . [xn] ptq
func f(x1, . . . , xn) → ϑ means α f : {x1 : be pϑ1q} . . . {xn : be pϑnq} be pϑq

existence P uniqueness Q = [x1] . . . [xn] func ([it] pαq) pPq pQq
let x be ϑ V : {x1 : be pϑ1q} . . . {xn : be pϑnq} attr pϑq

attr x is (x1, . . . , xn)V means α = [x1] . . . [xn] ([x] pαq)
theorem T : α P T : proof pαq = pPq

Figure 12: Encoding of Declarations

enough for that. This is partially due to the fact that Mizar is
justi�ed more through mathematical intuition than through a formal semantics.

TG Set Theory The encoding of TG set theory given in Fig. 13 is rather straightfor-
ward. The use of LF's {} binder for Mizar's axiom schemes is the only subtlety. The
de�nitions for singleton, uopair, and union are given using func, and their existence
and uniqueness conditions are stated as axioms. We only give the case for singleton.
The Tarski axiom is easy to encode but requires some auxiliary de�nitions.

6.3 Interpreting Mizar/Tarski in ZFC

Similar to the interpretation of Isabelle/HOL in ZFC, we give corresponding views for
Mizar. Here the view from Tarski to ZFC is dashed because it is partial: It omits the
Tarski axiom, which goes beyond ZFC.

Mizar

ZFCTarski

MizarZFC

TarskiSem

Mizar The general idea of the interpretation of Mizar in
ZFC is given in Fig. 14. In particular, a type ϑ is inter-
preted as a unary predicate (the intensional description of
ϑ), and the auxiliary type be ϑ as the class of sets in ϑ
(the extensional description of ϑ). Technically, we should
interpret types as non-empty predicates, i.e., as pairs of a predicate and an existence
proof. We avoid that because it would complicate the encoding even more than in the
case of Isabelle/HOL. This is possible because no part of our restricted Mizar language
relies on the non-emptiness of type.
Type expansion is interpreted as a subclass relationship, and the interpretation of cast

maps a set to itself but treated as an element of a di�erent class. This is formalized by
the �rst declarations in the view MizarZFC in Fig. 15.
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sig Tarski = {
include Mizar
...
singletonex : {y : be set} proof ex [it : be set] (for [x : be set]

(x in it) iff (x eq y))
singletonunq : {y} proof for [it] for [it′] (for [x] (x in it iff x eq y)

and for [x] (x in it′ iff x eq y)) implies it eq it′

singleton : be set→ be set = [y] func ([it] for [x]x in it iff x eq y)
(singletonex y) (singletonunq y)

...
fraenkel : {A : be set} {P : be set→ be set→ prop}

proof (for [x : be set] for [y : be set] for [z : be set]
((P x y) and (P x z)) implies y eq z)→ proof (ex [X]
for [x] ((x in X) iff (ex [y] y in A and (P y x))))

...
subsetclosed : {m} prop = [m] for [x] (for [y]

((( x in m) and (y ⊆ x)) implies (y in m)))
powersetclosed : {m} prop = [m] for [x] (x in m implies (ex [z] z in m

and (for [y] y ⊆ x implies y in z)))
tarski_ax : proof for [n] (ex [m] (

n in m and subsetclosed m and
powersetclosed m and for [x]
(x ⊆ m implies ((isomorphic x m) or x in m))))

...
}

Figure 13: Encoding TG Set Theory

func is interpreted using the description operator from ZFC, and the interpretation
of mode is trivial.
Finally, attributed modes adjective ϑ A are interpreted using the conjunction of the

interpretations P : set→ prop of ϑ and Q : Class P → prop of A. Note how sequential
conjunction is needed to use the truth of P x in the second conjunct. This is necessary
because in Mizar A only has to be de�ned for terms of type ϑ, which corresponds to Q
only being applicable to sets satisfying P .
We omit the straightforward but technical remaining cases for formula and proof con-

structors.

TG The view TarskiZFC from Tarski to ZFC is straightforward, and we omit the
details. However, the view is only partial because it omits the Tarski axiom.
Partial views in LF simply omit cases. Consequently, their homomorphic extensions

are partial functions. For our view, that means that every de�nition or theorem that
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Mizar ZFC
ϑ : tp MizarZFC(ϑ) : set→ prop
α : prop MizarZFC(α) : prop
P : proof α MizarZFC(P ) : ded MizarZFC(P )
α : be ϑ MizarZFC(α) : Class MizarZFC(ϑ)

Figure 14: Mizar/TG Declarations in ZFC

view MizarZFC : Mizar → ZFC = {
tp := set→ prop
prop := prop
proof := ded
be := [f ] Class f
set := [x]>
is := [a] [F ]F (cwhich a)
in := [a] [b] (cwhich a) ∈ (cwhich b)
...
func := [F ] [EX ] [UNQ ] δ F (andI EX UNQ)
mode := [F : Class A→ prop] [EX ] ([x] (A x) ∧′ [p]F (celem x p))
adjective := [P : set→ prop] [Q : Class T → prop]

[x] (P x) ∧′ [p] (Q (celem x p))
...
}

Figure 15: Interpreting Mizar in ZFC

depends on the Tarski axiom cannot be translated to ZFC. This is more harmful than
it sounds: Since the Tarski axiom is used in Mizar to prove the existence of power set,
in�nity, and choice, almost all de�nitions depend on it.
However, we have already designed an elegant extension of the notion of Twelf views

that solves this problem in (Dumbrava & Rabe 2010). With this extension, it is possible
to make TarskiZFC unde�ned for the Tarski axiom, but map Mizar's theorems of power
set, in�nity, and choice, which depend on the Tarski axiom, to their counterparts in
ZFC. We say that power set, in�nity, and choice are recovered by the view. Then Mizar
expressions that are stated in terms of the recovered constants can still be translated
to ZFC, and the preservation of truth is still guaranteed. With this amendment, most
theorems in the Mizar library can be translated. Only theorems that directly appeal to
the Tarski axiom remain untranslatable, and that is intentional because they are likely
to be unprovable over ZFC.
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6.4 Related Work

Mizar is infamous for being impenetrable as a logic, and previous work has focused
on making the syntax and semantics of Mizar more accessible. The main source of
complexity is the type system.
(Wiedijk 2007) gives a comprehensive account on the syntax and semantics of the

Mizar type system. It interprets types as predicates in the same way as we did here. A
translation to �rst-order logic is given that is similar in spirit to our translation to ZFC.
An alternative approach using type algebras was given in (Bancerek 2003).
In (Urban 2003), a translation of Mizar into TPTP-based �rst-order logic is given. It

also interprets types as predicates.

7 Conclusion and Future Work

We have represented three foundations of mathematics and two translations between
them in a formal framework, namely Twelf. The most important feature is that the well-
de�nedness and soundness of the translations are veri�ed statically and automatically by
the Twelf type checker. In particular, the LF type system guarantees that the translation
functions preserve provability. Our work is the �rst systematic case study of statically
veri�ed translations between foundations.
Our foundations are ZFC, Mizar's Tarski-Grothendieck set theory (TG) and Isabelle's

higher-order logic (HOL). We chose ZFC as the most widespread foundation of non-
formalized mathematics, and our formalization stays notably close to textbook develop-
ments of ZFC. (We have to add a global choice function though both for Isabelle/HOL
and for Mizar/TG.) We chose Isabelle/HOL and Mizar because they are two of the
most advanced foundations of formalized mathematics in terms of library size and (semi-
)automated proof support. They are also foundationally very di�erent � higher-order
logic and untyped set theory, respectively � and represent the whole spectrum of founda-
tions. Moreover, our formalizations make the foundational assumptions of these systems
explicit and thus contribute to their documentations and systematic comparison.

Pure

ZFC+ HOL

Mizar

Tarski

We have formalized translations from Isabelle/HOL
and Mizar/TG into ZFC as indicated on the right.
These translations can be seen as giving two founda-
tions used in formalized mathematics a semantics in
terms of the foundation dominant in traditional math-
ematics. Actually, the translation from Mizar/TG to
ZFC+ is only partial because the former is stronger
than the latter, but this is no serious concern as we discussed in Sect. 6.3. We did not
give the inverse translation from ZFC to Mizar/TG, but that would be straightforward.
However, a corresponding translation from ZFC to Isabelle/HOL remains a challenge.
(Translations such as the one in (Aczel 1998) would not be inverse to ours.)
Future work will focus on two research directions.
Firstly, we will formalize more foundations and translations. This is an on-going e�ort
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in the LATIN project (Kohlhase, Mossakowski & Rabe 2009), which will provide a large
library of statically veri�ed foundation translations and for which this work provides the
theoretical bases and seed library. Examples of further systems are Coq (Coquand &
Huet 1988) or PVS (Owre et al. 1992).
Secondly, a major drawback of statically veri�ed translations is that the extracted

translation functions cannot be directly applied to the libraries of the foundations: First
those libraries must be represented in the foundational framework. This is a conceptually
trivial but practically long-term research e�ort that is still under way.
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Deutsche Forschungsgemeinschaft.
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