
Representing Model Theory in a Type-Theoretical

Logical FrameworkI

Fulya Horozala, Florian Rabea

aJacobs University Bremen, Germany

Abstract

In a broad sense, logic is the �eld of formal languages for knowledge and truth
that have a formal semantics. It tends to be di�cult to give a narrower de�ni-
tion because very di�erent kinds of logics exist. One of the most fundamental
contrasts is between the di�erent methods of assigning semantics. Here two
classes can be distinguished: model theoretical semantics based on a foundation
of mathematics such as set theory, and proof theoretical semantics based on an
inference system possibly formulated within a type theory.

Logical frameworks have been developed to cope with the variety of available
logics unifying the underlying ontological notions and providing a meta-theory to
reason abstractly about logics. While these have been very successful, they have
so far focused on either model or proof theoretical semantics. We contribute to
a uni�ed framework by showing how a type/proof theoretical Edinburgh Logical
Framework LF can be applied to the representation of model theoretical logics.

We give a comprehensive formal representation of �rst-order logic covering
both its proof and its model theoretical semantics and its soundness in LF. For
the model theory, we have to represent the mathematical foundation itself in
LF, and we provide two solutions for that. Firstly, we give a meta-language
that is strong enough to represent the model theory while being simple enough
to be treated as a fragment of untyped set theory. Secondly, we represent
Zermelo-Fraenkel set theory and show how it subsumes our meta-language. All
representations are given in and mechanically veri�ed by the Twelf implementa-
tion of LF. Moreover, we use the Twelf module system to treat all connectives
and quanti�ers independently. Thus, individual connectives are available for
reuse when representing other logics, and we obtain the �rst version of a feature
library from which logics can be pieced together.

Our results and methods are not restricted to �rst-order logic and scale to a
wide variety of logical systems thus demonstrating the feasibility of comprehen-
sively formalizing large scale representation theorems in a logical framework.

IThis work was partially supported by the Deutsche Forschungsgemeinschaft within grant
KO 2428/9-1.

Preprint submitted to Elsevier August 23, 2010

Contents

1 Introduction 2

2 Preliminaries 4

2.1 First-Order Logic . 4
2.2 LF and Twelf . 7

3 A Logical Framework Combining Proof and Model Theory 10

4 Representing First-Order Logic 12

4.1 Syntax . 13
4.2 Proof Theory . 15
4.3 A Meta-Language for the Representation of Model Theory 17
4.4 Model Theory . 20
4.5 Adequacy . 23
4.6 Soundness . 27

5 Representing Set-Theoretical Model Theory 27

5.1 Representing Set Theory . 29
5.2 Viewing Higher-Order Logic in Set Theory 35
5.3 Viewing Model Theory in Set Theory 35
5.4 Representing Model Theory . 36
5.5 Adequacy . 38

6 Related Work 41

7 Conclusion 43

1. Introduction

Logic has been an important research topic in mathematics and computer
science since the foundational crisis of mathematics. Research on logics has
included the di�cult and sometimes contentious question how to choose the
ontological foundations of logic. Logical frameworks have proved an impor-
tant research result to answer this question � they are abstract formalisms that
permit the formal de�nition of speci�c logics.

Today we observe that there are two groups of logical frameworks: those
based on set theoretical foundations of mathematics that characterize logics
model theoretically, and those based on type theoretical foundations that char-
acterize logics proof theoretically. The former go back to Tarski's view of con-
sequence ([Tar33, TV56]) with institutions ([GB92, GR02]) and general log-
ics ([Mes89]) being state of the art examples. The latter are usually based
on the Curry-Howard correspondence ([CF58, How80]), examples being Au-
tomath ([dB70]), Isabelle ([Pau94]), and the Edinburgh Logical Framework (LF,
[HHP93]).

2

While some model-theoretical frameworks attempt to integrate proof theory
(e.g., [Mes89, MGDT05, Dia06]), the opposite integration is less developed. This
is unfortunate because many of the results and techniques developed for proof
theoretical logics could also bene�t model-theoretical reasoning.

We are particularly interested in logic encodings in the Edinburgh Logical
Framework (LF), which is related to Martin-Löf type theory and can be seen
as the dependently-typed corner of the λ-cube ([Bar92]). LF represents syntax
and proof theoretical semantics of a logic using higher order abstract syntax and
the judgments-as-types paradigm ([ML96]). This has proved very successful for
proof-theoretical logic representations ([HST94, AHMP98, Pfe00, NSM01]).

In [Rab08], we introduced a framework that attempts to preserve and exploit
the respective advantages of model and proof theoretical representation. The
central idea is to also represent the model theory of a logic in a type-theoretical
logical framework by specifying models in a suitable meta-language.

In this paper we show how to implement such logic representations in LF. We
pick LF because we have recently equipped the Twelf implementation of LF with
a strong module system [PS99, RS09]. This module system is rigorously based
on theory morphisms, which have proved very successful to reason about model-
theoretical logic representations (e.g., [GB92, AHMS99, SW83]). Therefore, it
is particularly appropriate for an encoding that combines proof- and model-
theoretical aspects.

Our central results are (i) the full representation of �rst-order logic (FOL)
comprising syntax, proof theory, and model theory, and (ii) a formal proof of
the soundness of FOL based on this representation. In particular, the soundness
proof is veri�ed mechanically by the LF implementation Twelf. While this is
interesting in itself, the main value of our work is not the encoding but the
methodology we employ. We use FOL as an example logic mainly because it
is most widely known and thus interferes least with the rather abstract subject
matter. Other logics can be represented analogously.

Furthermore, we use the LF module system for a modular development of
syntax, proof theory, model theory, and soundness, i.e., all connectives and quan-
ti�ers are treated separately in all four parts of the encoding. These modules
can be reused �exibly to encode other logics. For example, we obtain encodings
for any logic that arises by omitting some connectives or quanti�ers from FOL.
Less trivially, the encoding of each connective or quanti�er can be reused for
any logic using them. For example, this enabled one of our students to extend
the work presented here to sorted FOL within two days.

Our approach is especially interesting when studying rarer or new logics,
for which no smoothed-out semi-formal de�nitions are available yet. In partic-
ular, our framework can be used for the rapid prototyping of logics. Since it
covers both proof and model theory, it permits an approach that we call syntax-
semantics-codesign, to coin a phrase: Researchers can give a fully formal and
mechanically veri�ed de�nition of a formal language and its semantics at a level
of convenience and elegance that competes with working it out on paper.

In Sect. 2, we describe some preliminaries and introduce some notation: FOL
in Sect. 2.1, and LF in Sect. 2.2. In Sect. 3, we sketch the framework we will

3

use. The main sections of this paper are Sect. 4 and 5. In the former, we give
the encoding of FOL in LF where we use a variant of higher-order logic as a
simple and convenient meta-language to represent the models. In the latter, we
extend the encoding to cover set theory itself as a foundation of mathematics, in
which models are expressed. Thus, we can give a comprehensive representation
of FOL and its set-theoretical model theory in LF. Both in Sect. 4 and 5, we
describe the encoding of FOL in a way that makes the general methodology
apparent and provides a template for the encoding of other logics.

A preliminary version of this paper has appeared as [HR09]. The present
version has been fully revised and substantially extended. Most importantly, the
encoding of set theory, which was only sketched in [HR09], has been worked out.
Among the changes we made, two are especially notable. Firstly, we changed
the meta-language employed to represent models from Martin-Löf type theory
to higher-order logic. This was motivated by the desire to separate types and
propositions rather than identify them. Secondly, in [HR09], we identi�ed some
features missing in the implementation of the LF module system. These have
been added by now, which enabled us to completely refactor the LF encodings.

Our approach is very extensible, and we have treated or are currently working
on corresponding representations of sorted, higher-order, and description logics.
These are part of a logic atlas that is developed as a collaborative research e�ort
within the LATIN project ([KMR09]). All Twelf sources are available from the
project website.

2. Preliminaries

2.1. First-Order Logic

In this section, we will introduce �rst-order logic in order to give an overview
of the de�nitions and notations we will use. The de�nitions here also serve as
the reference de�nitions when proving the adequacy of our encodings.

De�nition 1 (Signatures). A FOL-signature is a triple (Σf ,Σp, ar) where Σf
and Σp are disjoint sets of function and predicate symbols, respectively, and
ar : Σf ∪ Σp → N assigns arities to symbols. We will treat constants and
boolean variables as the special case of arity 0.

De�nition 2 (Expressions). A FOL-context is a list of variables. For a signa-
ture Σ and a context Γ, the terms over Σ and Γ are formed from the variables
in Γ and the application of function symbols f ∈ Σf to terms according to
ar(f). The formulas over Σ and Γ are formed from the application of predicate
symbols p ∈ Σp to a number of terms according to ar(p) as well as

.=, true,
false, ¬, ∧, ∨, ⇒, ∀, and ∃ in the usual way. Formulas in the empty context are
called Σ-sentences, and we write Sen(Σ) for the set of sentences.

De�nition 3 (Theories). A FOL-theory is a pair (Σ,Θ) for a signature Σ and
a set Θ ⊆ Sen(Σ) of axioms.

4

De�nition 4 (Signature Morphisms). Given two signatures Σ = (Σf ,Σp, ar)
and Σ′ = (Σ′f ,Σ

′
p, ar

′), a FOL-signature morphism σ : Σ → Σ′ is an arity-
preserving mapping from Σf to Σ′f and from Σp to Σ′p.

The homomorphic extension of σ � which we also denote by σ � is the
mapping from terms and formulas over Σ to terms and formulas over Σ′ that
replaces every symbol s ∈ Σf ∪Σp with σ(s). The sentence translation Sen(σ) :
Sen(Σ)→ Sen(Σ′) arises as the special case of applying σ to sentences.

Example 5 (Monoids and Groups). We will use the theories Monoid = (MonSig ,
MonAx) and Group = (GrpSig ,GrpAx) of monoids and groups as running
examples. MonSigf is the set {◦, e} where ◦ is binary (written in�x) and e is
nullary, and MonSigp is empty. MonAx consists of the axioms for

• associativity: ∀x ∀y ∀z x ◦ (y ◦ z) .= (x ◦ y) ◦ z,

• left-neutrality: ∀x e ◦ x .= x,

• right-neutrality: ∀x x ◦ e .= x.

The theory Group extends Monoid , i.e., GrpSig adds a unary function symbol
inv (written as superscript −1) to MonSig , and GrpAx adds axioms for

• left-inverseness: ∀x x−1 ◦ x .= e,

• right-inverseness: ∀x x ◦ x−1 .= e

to MonAx . The inclusion mapping MonGrp is a signature morphism from
MonSig to GrpSig . It is also a theory morphism from Monoid to Group.

There are various ways to de�ne the proof theory of FOL. In this paper we
choose the natural deduction calculus (ND) with introduction and elimination
rules. We will use the phrase proof theoretical semantics when speaking about
the induced provability relation; we will not consider proof normalization, which
some authors mean when using that phrase.

De�nition 6 (Proof Theoretical Theorems). Given a theory (Σ,Θ), we say
that F ∈ Sen(Σ) is a theorem of (Σ,Θ) if the judgment F1, . . . , Fn `Σ F is
derivable for some {F1, . . . , Fn} ⊆ Θ using the calculus shown in Fig. 1. We
write this as Θ `Σ F .

De�nition 7 (Proof Theoretical Theory Morphisms). A signature morphism
from Σ to Σ′ is a proof theoretical theory morphism from (Σ,Θ) to (Σ′,Θ′),
written σ : (Σ,Θ) P→ (Σ′,Θ′), if Sen(σ) maps the axioms of (Σ,Θ) to theorems
of (Σ′,Θ′), i.e., for all F ∈ Θ, Θ′ `Σ′ Sen(σ)(F) holds.

Lemma 8 (Proof Translation). Assume a theory morphism σ : (Σ,Θ) →
(Σ′,Θ′). If F is a theorem of (Σ,Θ), then Sen(σ)(F) is a theorem of (Σ′,Θ′).
In other words, provability is preserved along theory morphisms.

We develop the model theory of FOL as an institution ([GB92]).

5

Θ`Σ true

Θ`Σ false

Θ`Σ F

Θ, F `Σ false

Θ`Σ ¬F

Θ`Σ ¬F Θ`Σ F

Θ`Σ false

Θ`Σ F Θ`Σ G

Θ`Σ F ∧G

Θ`Σ F ∧G

Θ`Σ F

Θ`Σ F ∧G

Θ`Σ G

Θ, F `Σ G

Θ`Σ F ⇒G

Θ`Σ F ⇒G Θ`Σ F

Θ`Σ G

Θ`Σ F

Θ`Σ F ∨G

Θ`Σ G

Θ`Σ F ∨G

Θ`Σ F ∨G Θ, F `Σ H Θ, G`Σ H

Θ`Σ H

Θ`Σ F x fresh

Θ`Σ ∀ xF

Θ`Σ ∀ xF

Θ`Σ F [x/t]

Θ`Σ F [x/t]

Θ`Σ ∃ xF

Θ`Σ ∃ xF x fresh Θ, F `Σ H

Θ`Σ H

F ∈Θ

Θ`Σ F Θ`Σ F ∨¬F

Θ`Σ t
.
= t

Θ`Σ s
.
= t

Θ`Σ t
.
= s

Θ`Σ r
.
= s Θ`Σ s

.
= t

Θ`Σ r
.
= t

Θ`Σ si
.
= ti f∈Σf ar(f)=n

Θ`Σ f(s1,...,sn)
.
= f(t1,...,tn)

Θ`Σ si
.
= ti p∈Σp ar(p)=n

Θ`Σ p(s1,...,sn)⇒ p(t1,...,tn)

Figure 1: Proof Rules

De�nition 9 (Models of a FOL-Signature). A FOL-model of a signature Σ
is a pair (U, I) where U is a non-empty set (called the universe) and I is an
interpretation function of Σ-symbols such that

• f I ∈ UUn

for f ∈ Σf with ar(f) = n,

• pI ⊆ Un for p ∈ Σp with ar(p) = n.

We write Mod(Σ) for the class of Σ-models.

De�nition 10 (Model Theoretical Semantics). Assume a signature Σ, a context
Γ, and a Σ-model M = (U, I). An assignment is a mapping from Γ to U . For
an assignment α, the interpretations JtKM,α ∈ U of terms t and JF KM,α ∈ {0, 1}
of formulas F over Σ and Γ are de�ned in the usual way by induction on the
syntax. Given a sentence F , we write M |=Σ F if JF KM = 1.

6

Given a theory (Σ,Θ), we write the class of (Σ,Θ)-models as

Mod(Σ,Θ) = {M ∈ Mod(Σ) |M |=Σ F for all F ∈ Θ}

De�nition 11 (Model Theoretical Theorems). Given a theory (Σ,Θ), we say
that F ∈ Sen(Σ) is a model theoretical theorem of (Σ,Θ) if the following holds
for all Σ-models M : If M |=Σ A for all A ∈ Θ, then also M |=Σ F .

De�nition 12 (Model Reduction). Given a signature morphism σ : Σ → Σ′

and a Σ′-model M ′ = (U, I ′), we obtain a Σ-model (U, I), called the model
reduct of M ′ along σ, by putting sI = σ(s)I

′
for all symbols of Σ. We write

Mod(σ) : Mod(Σ′)→ Mod(Σ) for the induced model reduction.

De�nition 13 (Model Theoretical Theory Morphisms). Given two theories
(Σ,Θ) and (Σ′,Θ′), a model theoretical theory morphism from (Σ,Θ) to (Σ′,Θ′),
written σ : (Σ,Θ) M→ (Σ′,Θ′), is a signature morphism from Σ to Σ′ such
that Mod(σ) reduces models of (Σ′,Θ′) to models of (Σ,Θ), i.e, for all M ′ ∈
Mod(Σ′,Θ′), we have Mod(σ)(M ′) ∈ Mod(Σ,Θ).

Lemma 14 (Satisfaction Condition). Assume a FOL-signature morphism σ :
Σ → Σ′, a Σ-sentence F , and a Σ′-model M ′. Then M ′ |=Σ′ Sen(σ)(F) i�
Mod(σ)(M ′) |=Σ F .

Example 15 (Continued). The integers form a model Int = (Z,+, 0,−) for the
theory of groups (where we use a tuple notation to give the universe and the in-
terpretations of ◦, e, and inv , respectively). The model reduction
Mod(MonGrp)(Int) = (Z,+, 0) along MonGrp yields the integers seen as a
model of the theory of monoids.

We have given both proof theoretical and model theoretical de�nitions of
theorem and theory morphism. In general, these must be distinguished to avoid
a bias towards proof or model theory. However, they coindice if a logic is sound
and complete:

Theorem 16 (Soundness and Completeness). Assume a FOL-theory (Σ,Θ) and
a Σ-sentence F . Then Θ `Σ F i� Θ |=Σ F . Therefore, for a FOL-signature

morphism σ : Σ→ Σ′, we have σ : (Σ,Θ) P→ (Σ′,Θ′) i� σ : (Σ,Θ) M→ (Σ′,Θ′).

2.2. LF and Twelf

LF ([HHP93]) is a dependent type theory that extends simple type theory
with dependent function types. We will work with the Twelf implementation of
LF ([PS99]). The main use of LF and Twelf is as a logical framework in which
deductive systems are represented.

We will develop the syntax and semantics of LF along an example represen-
tation of simple type theory (STT). Typically, kinded type families are declared
to represent the syntactic classes of the system. For STT, we declare

tp : type
tm : tp→ type

7

Here type is the LF-kind of types, and tp is an LF-type whose LF-terms
represent the STT-types. And tp → type is the kind of type families that are
indexed by terms of LF-type tp; then tm A is the LF-type whose terms represent
the STT-terms of type A.

Typed constants are declared to represent the expressions of the represented
system. For STT, we add

=⇒ : tp→ tp→ tp %infix right 0 =⇒
@ : tm (A =⇒ B)→ tm A→ tm B %infix left 1000 @
λ : (tm A→ tm B)→ tm (A =⇒ B)

Here =⇒ is a low-binding right-associative in�x symbol that takes two tp-
arguments and returns a tp. It represents STT-function type formation. In the
following, we will always omit the �xity and associativity declarations if they
are clear from the context. In particular, besides =⇒ and @, binary symbols
such as connectives and equality are always assumed to be declared as in�x.

@ is a strong-binding left-associative in�x symbol that takes two arguments �
an STT-term of type A =⇒ B and an STT-term of type A � and returns an STT-
term of type B. It represents STT-function elimination, i.e., application. In the
declaration of @, A and B are free variables. These variables are implicitly
Π-bound at the outside. The full type of @ is ΠA:tpΠB:tptm (A =⇒ B) →
tm A → tm B, i.e., @ really takes 4 arguments. This uses the main feature
of dependent type theory: The �rst two arguments A and B may occur in the
types of the later arguments and in the return type. Twelf treats A and B as
implicit arguments and infers their values from the other arguments. Thus, we
can write f @ a instead of @ A B f a.

Finally, λ represents STT-function introduction, i.e., abstraction. λ is de-
clared using higher-order abstract syntax. LF-functions of type S → T are in
bijection to the terms of type T with a free variable of type S; thus, higher-
order arguments can be used to represent binders. The above λ takes a term of
STT-type B with a free variable of type A represented as an LF term of type
tm A→ tm B. It returns an STT term of type A =⇒ B.

We will always use Twelf notation for the LF primitives of binding and ap-
plication: The type Πx:AB(x) of dependent functions taking x : A to an element
of B(x) is written {x : A}B x, and the function term λx:At(x) taking x : A to
t(x) is written [x : A] t x. (Therefore, λ is available for user-declared symbols.)
In particular, in the above example, the STT-term λx:At is represented as the
LF-term λ[x : A] t. Finally, we write A→ B instead of {x : A}B if x does not
occur in B, and we will also omit the types of bound variables if they can be
inferred.

LF employs the Curry-Howard correspondence to represent proofs-as-term
([CF58, How80]) and extends it to the judgments-as-types methodology ([ML96]).
For example, we can turn the above STT into a logic by adding a type prop of
propositions and a truth judgment True on it:

8

prop : type
True : prop→ type
⇒ : prop→ prop→ prop
⇒ E : True (F ⇒ G) → True F → True G

Here the type True F represents the judgment that F is true. A judgment
J is proved if there is a term of type J . Consequently, all axioms and inference
rules such as the implication elimination rule⇒ E are represented as constants,
and proofs of F are represented as terms of type True F .

Finally, an LF signature is a list of kinded type family declarations a : K
and typed constant declarations c : A. Both may carry de�nitions, i.e., c : A = t
introduces c as an abbreviation for t. This yields the following grammar for the
fragment of LF we will use:

Signatures Σ ::= · | Σ, c : A | Σ, c : A = t | Σ, a : K | Σ, a : K = A
Morphisms σ ::= · | σ, c := t | σ, a := A
Kinds: K ::= type | A→ K
Type families: A,B ::= a | [x : A]B | B t | {x : A}B
Terms: s, t ::= c | x | [x : A] t | s t

Here we have already included LF signature morphisms. Given two signa-
tures Σ and Σ′, a signature morphism σ : Σ→ Σ′ is a typing-preserving map of
Σ-symbols to Σ′-expressions. Thus, σ maps every constant c : A of Σ to a term
σ(c) : σ(A) and every type family symbol a : K to a type family σ(a) : σ(K).
Here, σ is the homomorphic extension of σ to Σ-expressions, and we will write
σ instead of σ from now on.

Signature morphisms preserve typing, i.e., if `Σ E : F , then `Σ′ σ(E) : σ(F).
In particular, because σ must map all axioms or inference rules declared in Σ
to proofs or derived inference rules, respectively, over Σ′, signature morphisms
preserve the provability of judgments.

We will write σ σ′ for the diagram-order composition of signature mor-
phisms, i.e., (σ σ′)(E) = σ′(σ(E)).

The module system for LF and Twelf ([RS09]) is based on the notion of sig-
nature morphisms ([HST94]). The toplevel declarations of modular LF declare
named signatures and named signature morphisms, called views, e.g.,

%sig S = {Σ}. %sig T = {Σ′}. %view v : S → T = {σ}

Since signature morphisms must map axioms to proofs, a view has the �avor of
a theorem establishing a translation from S to T or a representation of S in T
or a re�nement of S into T .

Besides views, the module system provides inclusion morphisms that hold
by de�nition: %include S declared in T copies all declarations of S into T
(thus changing T). This represents an inheritance or import relationship from
S to T . The inclusion relation is transitive, and multiple inclusions of the same
signature are identi�ed. Twelf uses quali�ed names to access included symbols,
but we will simply assume that included symbols c of S are accessible as c within
T .

9

R

S

T
vS

vR
Views can be given modularly, too. If S includes R, then

a view vS from S to T must map all constants of S, i.e., also
those of R. Often a view vR from R to T is already present.
In that case vS can include vR via %include vR and only
give maps for the symbols of S. If vS is de�ned like that, the
triangle on the right always commutes.

Thus, we arrive at the following grammar for the fragment
of modular LF we will use. Here we use E for a kind, type
family, or term as de�ned above:

Start G ::= · | G, DT | G, Dv

Signatures DT ::= %sig T = {Σ}
Views Dv ::= %view v : S → T = {σ}
Sign. body Σ ::= · | Σ, c : E | Σ, c : E = E | Σ, %include S
View body σ ::= · | σ, c := E | σ, %include v

3. A Logical Framework Combining Proof and Model Theory

LF was designed as a language for the representation of formal systems.
Similarly, the LF module system was designed as a language for the representa-
tion of translations between formal systems. This makes it a very appropriate
framework for the comprehensive representation of a logic where translations �
between di�erent signatures of a logic as well as between syntax and semantics
� are prevalent.

In the following, we will give an overview of the logical framework we gave in
[Rab08, Rab10]. We will not actually give the framework itself, which requires
a further level of abstraction beyond the scope of this paper. Instead, we de�ne
what the encoding of an individual logic looks like.

Lsyn

Lpf

Lmod
µ

π

We assume a logic L de�ned along the lines of Sect. 2.1.
An encoding of L in our framework consists of three LF
signatures Lsyn for the syntax, Lpf for the proof theory,
and Lmod for the model theory, as well as two LF signature
morphisms π and µ that translate the syntax into proof
and model theory.

Lsyn contains LF declarations for all symbols occur-
ring in L-formulas. Type declarations are used for syn-
tactic classes, e.g., sorts, terms, formulas, and judgments
(typically including a truth judgment), and constant declarations are used for
individual connectives, quanti�ers, sorts, functions, predicates, axioms, etc. Lpf

is typically an extension of Lsyn, i.e., π is an inclusion morphisms. Lpf includes
constant declarations for the axioms and inference rules of L; it may also contain
type declarations for auxiliary judgments.

Lsyn typically declares at least a type o of formulas and a type family ded :
o→ type for the truth judgment. In the simplest case, Lpf only adds inference
rules for ded to Lsyn.

10

Lmod contains declarations that describe models. For model-theoretically
motivated logics such as �rst-order logic, Lsyn and Lmod have a similar structure
� after all for many logics L, the syntax was introduced as a way to describe
the models in the �rst place. But for proof-theoretically motivated logics like
some modal logics or intuitionistic logics, the model theory was developed a
posteriori. For these, the Lsyn and Lmod may vary considerable, e.g., Lmod

might contain declarations to describe Kripke frames.
Lmod typically includes some meta-language that is used to reason about the

truth in models, e.g., set theory. In the simplest case µ translates o to a type of
truth values and ded to a predicate that holds for the designated truth values.
Then Lmod axiomatizes the translation of formulas to truth values.

A speci�c signature Σ of L is represented as an extension of L. This cor-
responds to the uniform logic encodings in LF given in [HST94]. For example,
signatures of propositional logic are sets of propositional variables, and the set
Σ = {p1, . . . , pn} is encoded as the LF-signature Σsyn = Lsyn, p1 : o, . . . , pn :
o. By merging Σsyn with Lpf and Lmod, we obtain Σpf and Σmod, respectively.
This leads to the diagram below.

Lsyn

Lpf

Lmod

Σsyn

Σpf

Σmod
µ

π

Technically, Σpf and Σmod are obtained as pushouts, a concept from category
theory. We refer to [Lan98] for the basics of category theory and only remark
that the category of LF-signatures has pushouts along inclusions ([HST94]).
Intuitively, Σmod is obtained as follows: Take Lmod and add to it the translation
along µ of all those declarations in Σsyn that are not in Lsyn. In other words,
Σmod is the union of Lmod and Σsyn sharing Lsyn. Σpf is obtained accordingly.

Then Σ-sentences F are represented as β-η-normal LF-terms of type o over
the signature Σsyn. We will write pFq for the LF-term representing the sentence
F . An encoding is adequate for the syntax if this representation is a bijection.

Similarly, Σ-proofs of F using assumptions F1, . . . , Fn are represented as
β-η-normal LF-terms over Σpf of type π (ded F1 → . . . → ded Fn → ded F).
Again we write pPq for the encoding of the proof P and say that the encoding
is adequate if it is a bijection.

We will elaborate on the representation of Σ-models and the truth in models
throughout the text.

It is noteworthy how the framework takes a balanced position between proof
and model theoretical perspectives on logic. In particular, the type ded F is
used to represent truth both proof- and model-theoretically. Proof-theoretically,
terms of type ded F represent proofs of F , model-theoretically ded F is a pred-
icate on the truth value of F .

11

A particular feature of the framework is that soundness can be represented
very naturally: A soundness proof of L is represented as a view from Lpf to
Lmod that makes the resulting triangle commute. We will get back to that in
Sect. 4.6.

This framework is closely related to the logical frameworks of institutions
([GB92]) and LF ([HHP93]). From the perspective of institutions, it can be
seen as utilizing LF-signatures to obtain concrete, strongly typed syntax to
de�ne signatures and sentences. Similarly, LF-signature morphisms are used
to describe models in a way similar to parchments ([GB86]). A di�erence is
the inclusion of proof theory and the separation into signatures Σsyn, Σpf , and
Σmod. Furthermore, the way LF is used to de�ne logics and to do so modularly
goes back to ideas from [HST94] and [Tar96].

From the perspective of LF, it adds signature morphisms as a means to rea-
son about translations between signatures and logics in addition to the reason-
ing about logics and signatures possible with the existing logic representations.
In this work, we give a concrete semantic domain, which permits to represent
models in the framework as well.

4. Representing First-Order Logic

As described in Sect. 3, the encoding of FOL in LF consists of signatures
FOLsyn for the syntax, FOLpf for the proof theory, and FOLmod for the model
theory, together with two views π : FOLsyn → FOLpf and µ : FOLsyn →
FOLmod. FOL signatures and theories will be encoded as extensions of FOLsyn.

FOLsyn

FOLpf

FOLmod

HOL

µ

π

We will describe FOLsyn in Sect. 4.1, FOLpf

and π in Sect. 4.2, and FOLmod and µ in Sect. 4.4.
FOLmod will include a meta-language in which the
models are speci�ed. In textbook style descrip-
tions, this meta-language is usually natural lan-
guage implicitly based on some set-theoretical foun-
dation of mathematics. We have to formalize this
meta-language and thus pick an intuitionistic logic
on top of simple type theory, which we refer to as
HOL. We de�ne it in Sect. 4.3. Then we discuss
the adequacy of our encoding in Sect. 4.5. Finally,
we prove the soundness of FOL by giving a view from FOLpf to FOLmod in
Sect. 4.6.

When encoding signatures and theories in LF, we have the problem that def-
initions of FOL signatures usually permit arbitrary objects as symbol names.
But LF and Twelf expressions have to be words over a countable alphabet.
Therefore, we employ two restrictions that are somewhat severe theoretically
but natural for applications in computer science. From now on, all FOL the-
ories have a �nite number of function and predicate symbols and axioms. It
is straightforward to de�ne encodings for in�nite theories, but type-theoretical
frameworks usually avoid reasoning about in�nite signatures. Furthermore, all

12

function and predicate symbols are chosen from a �xed countable set, and with-
out loss of generality, we assume this set to be the set of legal Twelf identi�ers.
Thus, we can use the same names in FOL signatures and their encodings.

4.1. Syntax

B0
syn B1

syn

¬syn ∨syn ∀syn ∃syn

PLsyn FOLsyn

Figure 2: Modular Encoding of FOL Syntax

We encode the signature FOLsyn modularly, where each logical connective
and quanti�er is declared in a separate LF signature. The modular representa-
tion of FOLsyn is illustrated by the diagram in Fig. 2. Each node corresponds
to a LF signature and each edge to an inclusion morphism. B0

syn and B1
syn are

base signatures for propositional and �rst-order respectively, each connective or
quanti�er is encoded as an extension of the base signature, and then PLsyn for
propositional logic and FOLsyn for �rst-order logic are encoded by including
the needed fragments.

We only give some of the fragments as examples. The full encoding has one
signature each for true, false, ¬, ∨, ∧, ⇒, ∀, ∃ and

.=, and all of those are
included into FOLsyn.

The LF signatures are given in Fig. 3. In the signature B0
syn we introduce

the type o for formulas and a type family ded : o→ type for the truth judgment
on formulas. In the signatures ¬syn and ∨syn we introduce ¬ and ∨ respectively.
Both ¬syn and ∨syn inherit the symbols o and ded by including B0

syn. We
merge them to form the signature PLsyn. The signature B1

syn extends B0
syn

with a type i for terms. We introduce the universal and existential quanti�ers
in the signatures ∀syn and ∃syn, respectively. Finally, we de�ne FOLsyn by
including the signatures PLsyn, ∀syn and ∃syn.

We can now encode FOL-signatures as LF-signatures that extend FOLsyn.
The distinction between signatures and theories is not important from the per-
spective of LF as the encoding of axioms is very similar to the encoding of
function and predicate symbols. Furthermore, we can always consider signa-
tures as the special case of theories without axioms. Therefore, we will unify
them and use Σ for both signatures and theories.

De�nition 17 (Encoding Syntax). Let Σ be a FOL-signature or theory. We
de�ne the LF-encoding Σsyn of Σ as the LF-signature that includes FOLsyn

and adds the following symbol declarations:

• f : i→ . . .→ i︸ ︷︷ ︸
n

→ i for function symbols f of Σ with ar(f) = n,

13

%sig B0
syn = {

o : type

ded : o→ type

}
%sig ¬syn = {
%include B0

syn

¬ : o→ o
}
%sig ∨syn = {
%include B0

syn

∨ : o→ o→ o
}
%sig PLsyn = {
%include ¬syn
%include ∨syn
}

%sig B1
syn = {

%include B0
syn

i : type

}
%sig ∀syn = {
%include B1

syn

∀ : (i→ o)→ o
}
%sig ∃syn = {
%include B1

syn

∃ : (i→ o)→ o
}
%sig FOLsyn = {
%include PLsyn

%include ∀syn
%include ∃syn
}

Figure 3: LF Signatures for FOL Syntax

• p : i→ . . .→ i︸ ︷︷ ︸
n

→ o for predicate symbols p of Σ with ar(p) = n,

• a : ded pFq for axioms F of Σ and some fresh name a.

Here pFq is the encoding of F ∈ Sen(Σ). Every Σ-term t or formula F in
context x1, . . . , xn is encoded as an LF term ptq : i or pFq : o, respectively, in
context x1 : i, . . . , xn : i. ptq and pFq are de�ned by an obvious induction, and
we only give the case of quanti�ers as an example:

p∀x Fq = ∀[x : i] pFq.

De�nition 18 (Encoding Signature Morphisms). Let σ : Σ→ Σ′ be a FOL sig-
nature morphism. Its LF-encoding is the LF signature morphism σsyn : Σsyn →
Σ′syn that maps all symbols of FOLsyn to themselves and every function or
predicate symbol s of Σ to σ(s).

Example 19. Monoidsyn is the encoding of the theory Monoid from Ex. 5. For
example, the binary function symbol ◦ in MonSig is encoded as the symbol
◦ : i→ i→ i that takes two arguments of LF-type i and returns an LF-term of
type i. Groupsyn is de�ned accordingly.

14

%sig Monoidsyn = {
%include FOLsyn

◦ : i→ i→ i %infix ◦
e : i
assoc : ded ∀ [x]∀ [y]∀ [z]x ◦ (y ◦ z) .= (x ◦ y) ◦ z
neutl : ded ∀ [x] (e ◦ x) .= x
neutr : ded ∀ [x] (x ◦ e) .= x
}

4.2. Proof Theory

B0
pf B1

pf

¬pf ∨pf ∀pf ∃pf

PLpf FOLpf

Figure 4: Modular Encoding of FOL Proof Theory

The encoding of the FOL proof theory has the same modular structure as
the encoding of the FOL syntax. This is illustrated in Fig. 4 where each node
has one additional � not displayed � inclusion from its counterpart in Fig. 2.

The signatures B0
pf and B1

pf typically contain the structural rules of the
chosen calculus. In our case, they are equal to the signature B0

syn and B1
syn

because encodings of natural deduction calculi in LF automatically inherit weak-
ening, exchange, and contraction rules from LF. We distinguish these signatures
anyway because of the conceptual clarity, and because the analogues of B0

pf or
B1

pf in the encodings of other logics do contain additional declarations, e.g.,
when using sequent or tableaux calculi.

%sig B0
pf = {

%include B0
syn

}
%sig B1

pf = {
%include B0

pf

%include B1
syn

}

The signatures ¬pf , ∀pf , etc. encode the introduction and elimination rules
for the individual connectives. We refer to [HHP93] for details about the en-
coding of proof rules and only give disjunction as an example.

15

%sig ∨pf = {
%include B0

pf

%include ∨syn
orIl : ded F → ded F ∨G
orIr : ded G → ded F ∨G
orE : ded F ∨G → (ded F → ded H) → (ded G→ ded H)

→ ded H
}

Finally, the signatures PLpf and FOLpf collect the fragments in almost the
same way as for the syntax encodings. The only di�erence in PLpf is that the
law of excluded middle is added:

%sig PLpf = {
%include ¬pf
%include ∨pf
tnd : ded F ∨ ¬F
}

Similarly, there is one further proof rule added to FOLpf : the axiom
ded ∃[x] true. This axiom may be surprising because it is redundant in usual
axiomatizations of FOL. This redundancy is due to the ∀ elimination rule, which
can instantiate ∀[x] true with any term including fresh variables. This amounts
to assuming non-emptiness of the universe. In LF, only terms that are well-
formed in the current context are eligible so that we obtain a system that is
complete for a variant of FOL where the universe may be empty. Therefore, we
explicitly add an axiom to make it non-empty.

De�nition 20. For every FOL-signature or theory Σ, the LF signature Σpf is
the canonical pushout of the diagram below.

FOLsyn

FOLpf

Σsyn

Σpf

π πΣ

Here by canonical we mean that Σpf includes FOLpf and adds a declaration
c : πΣ(A) for every declaration c : A that Σsyn adds to FOLsyn. πΣ maps
FOLsyn-symbols according to π and other symbols to themselves.

Note that in the special case of FOL, both π and πΣ are inclusions.
We have the Curry-Howard representation of proofs as terms:

De�nition 21 (Encoding Proofs). For a FOL-theory Σ, every derivation p
of F1, . . . , Fn `Σ F is encoded as as an LF term ppq : ded pF1q → . . . →
ded pFnq→ ded pFq over Σpf by a straightforward induction.

16

4.3. A Meta-Language for the Representation of Model Theory

Foundations. As all formal representations, the representation of the model
theory requires a suitable meta-language. For the syntax and proof theory, LF
is a very appropriate meta-language � this is not surprising because it is what
LF was designed to be. LF only o�ers minimal syntactic means: judgments as
types with implication (via →) and universal quanti�cation (via Π), and the
former is just a special case of the latter. Still, it has been quite successful at
covering a large class of logics because the syntax and proof theory of a logic
are often (and in fact should usually be � see [ML96]) de�ned in terms of a
grammar, judgments about its expressions, and an inference system for these
judgments. LF can be seen as the result of applying Occam's razor to these
requirements.

The situation is di�erent for the representation of model theory. Models
are described in the language of mathematics, and it is di�cult to formalize
this language without making a foundational commitment. For example, we
could chose a variant of set theory (as in [PC93, TB85]), higher-order logic
([Chu40], as in [Gor88, NPW02, Har96]), Martin-Löf type theory ([ML74], as in
[Nor05]), or the calculus of constructions ([CH88], as in [BC04, ACTZ06]), all
of which provide implementations with strong computational support. LF, on
the other hand, is too weak to be such a foundation because the type theory is
minimalistic and the use of higher-order abstract syntax is incompatible with
the natural way of adding computational power.

However, because of this weakness, LF can serve as a minimal, neutral frame-
work in which to formalize the foundation itself. Moreover, since the choice
of foundation changes the notion of model (and thus possibly the truth of a
statement about models), an encoding can only be adequate relative to a �xed
foundation. For example, consider �rst-order logic with models taken in a set
theory with large cardinals. Therefore, it is even desirable to make the founda-
tion part of the encoding. This also has the bene�t that it becomes possible to
build foundations modularly and to compare and translate between them. For
example, we have formalized Mizar and Isabelle/HOL along with translations
into ZFC set theory [KMR09].

Approximating Foundations. In this paper, we choose ZFC set theory as the
foundation because it is the standard foundation of mathematics. Therefore, we
encode ZFC in LF and use it as the meta-language to de�ne models. However,
ZFC behaves badly computationally because it is engineered towards elegance
and simplicity rather than decidability or e�ciency. Therefore, we also use a
second meta-language � a variant of higher-order logic (HOL) � which can be
worked with e�ciently.

The intuition is that ZFC gives the o�cial de�nition, and HOL is a sound but
incomplete approximation of ZFC. Using the module system, we can state the
relation between HOL and ZFC precisely by giving an LF signature morphism ϕ
from HOL to ZFC. Via ϕ, we can regard ZFC as a re�nement of HOL or HOL
as a fragment of ZFC. Of course, HOL is not complete (relative to standard
models in ZFC) and thus does not necessarily yield adequate encodings of model

17

theory. However, for certain results, working with HOL is su�cient, and then
it is preferable.

Moreover, we can construct a chain of foundations of increasing strength,
e.g., HOL → ZF → ZFC, and always work in the weakest possible founda-
tion. This is in keeping with mathematical practice not to commit to a speci�c
foundation unless necessary, and leads to an approach we call little foundations
(inspired by [FGT92]). For example, our encodings in [KMR09], avoid the use
of excluded middle and the axiom of choice whenever possible.

In this section, we will only consider HOL, which we introduce below and
use as the meta-language to represent models in Sect. 4.4. In Sect. 5, we encode
ZFC set theory in LF, re�ne our HOL-based semantics into a ZFC-based one,
and revisit the encoding of model theory.

HOL as a Meta-Language. For the representation of �rst-order logic, we need
the booleans bool , an arbitrary set univ (the universe), and functions between
the universe and the booleans. Among the latter are functions from univn to
univ , from univn to bool , and from bool and bool2 to bool interpreting the func-
tion symbols, predicate symbols, and the propositional connectives, respectively.
Furthermore, the quanti�ers must be interpreted as second-order functions from
booluniv to bool . Finally, these functions should be typed, and that leads us to
the choice of HOL as the meta-language.

%sig HOL = {
set : type

=⇒ : set→ set→ set
elem : set→ type

λ : (elem A→ elem B)→ elem (A =⇒ B)
@ : elem (A =⇒ B)→ elem A→ elem B
prop : type

True : prop→ type

true : prop
false : prop
∧ : prop→ prop→ prop
⇒ : prop→ prop→ prop
¬ : prop→ prop
∨ : prop→ prop→ prop
⇔ : prop→ prop→ prop
.= : elem A→ elem A→ prop
∀ : (elem A→ prop)→ prop
∃ : (elem A→ prop)→ prop
}

Figure 5: Encoding of HOL

To de�ne HOL, we encode it as the LF signature given in Fig. 5. Actually, we

18

only give a partial signature here and omit all the proof rules. The full version
of the encoding of HOL can be found at [KMR09]. Note that this signature
extends the running example of Sect. 2.2 except that we write set and elem
instead of tp and tm to emphasize the relation to set theory. set is the type of
sets, and =⇒ gives the set of functions between two sets. elem A is the type
of elements of set A � this lets us reason about the elements of a set without
using the ∈ relation. HOL must be a sound but not necessarily a complete
fragment of set theory: Thus, the relation a : elem A must imply a ∈ A, but
the inverse does not have to hold. Then λ and @ encode function formation and
application. This yields the standard encoding of simple type theory in LF.

Finally, prop is the type of propositions. The propositional connectives are
declared in the usual way. Equality and the quanti�ers take an implicit argument
A for the set which they operate on. Note that this means that we use equality
only between elements of the same set and only use bound quanti�ers. We
omit the proof rules for HOL here and only state that we use rules for β and
η conversion, and natural deduction introduction and elimination rules for the
connectives and quanti�ers. Equality is axiomatized as a congruence relation
on each type. We do not assume the axiom of excluded middle � this turns out
to su�ce to axiomatize FOL models and makes us more �exible because we are
not a priori committed to classical foundations of mathematics.

It is interesting to note that the actual encoding in Twelf is a little di�er-
ent because it already bene�ts from the LF module system: Our logic library
represents the syntax and proof theory of the propositional connectives once
and for all, and they are imported both into the object logic FOL and into the
meta-language HOL.

The use of HOL as the meta-language means that the model theory of the
object language (e.g., FOL) is represented as an extension of the signatureHOL,
i.e., a HOL-theory. Therefore, we de�ne:

De�nition 22 (HOL-theories). A theory of HOL is an LF signature that in-
cludes the signature HOL and that only adds declarations of the following
forms:

• base sets: S : set,

• constant symbols: c : elem S for some set S,

• axioms: a : True F for some proposition F .

While the model theory of the object language is represented as a HOL-
theory, every individual model is represented as a HOL model. Therefore, we
have to de�ne HOL models as well. In Sect. 5, we will show how models can
be encoded as syntactical entities of LF, but here we will do something simpler
and de�ne (standard) HOL models as platonic objects in an underlying set
theoretical universe:

De�nition 23 (HOL-Models). Assume a �xed set-theoretical universe. A
model M of an HOL-theory T is a mapping that assigns:

19

• to every base set S : set a set SM ,

• to every constant symbol c : elem S an element cM ∈ SM ,

such that FM is true for every axiom a : True F . Here SM is obtained by
recursively replacing (S1 =⇒ S2)M with the set of functions from SM1 to SM2 .
And FM is obtained by replacing every base set S or constant c occurring in
F with SM or cM , respectively, and evaluating the result as a proposition over
the set theoretical universe.

Def. 23 is somewhat vague. For sake of de�niteness, we can assume ZFC as
the underlying set theory:

Example 24 (HOL-Models in ZFC). If our underlying set theory is ZFC, we can
de�ne FM as follows:

1. replace all S and c with SM and cM , respectively,
2. relativize all quanti�ers, i.e., ∀ [x : elem S]F becomes ∀x ∈ SM . FM ,

3. replace S =⇒ S′ with the set of functions from SM to S′M , and replace
λ and @ with function formation and function application.

Then we are ready to represent the model theory of object logics in HOL in
Sect. 4.4.

4.4. Model Theory

FOLsyn FOLmod

HOL

µ

In this section we present our representation of
FOL model theory in LF. Our encoding of FOL
model theory consists two parts as illustrated in
the diagram below: The speci�cation of FOL mod-
els (given by the signature FOLmod) and the inter-
pretation of FOL syntax in terms of the semantics
(given by the view µ from FOLsyn to FOLmod).
Both FOLmod and µ follow the same modular structure as in FOLsyn and
FOLpf , however, for the sake of simplicity, we will present the �at version of
our encoding in this paper.

Speci�cation of FOL Models. In FOLmod we �rst encode the model theoretical
notion of truth and the universe of a model. We declare a set bool which
represents the set {0, 1} of truth values and axiomatize this by declaring 0
and 1, and axioms axcons and axboole to state that bool is indeed the desired
2-element set:

bool : set
0 : elem bool
1 : elem bool
axcons : True ¬ (0 .= 1)
axboole : {F} True (F .= 0 ∨ F

.= 1)

Recall that True : prop→ type is the truth judgment of the meta-language
HOL, that ¬ and ∨ are the negation and disjunction on HOL propositions, and

20

.= is the typed-equality of HOL terms. In particular, these symbols are di�erent
from the symbols of the same name in the syntax of FOL.

We declare the symbol univ as a set for the universe of a FOL-model, and
add an axiom making univ non-empty.

univ : set
nonemp : True ∃ [x : elem univ] true

Next we encode the semantics of the logical symbols introduced in FOLsyn.
For each logical symbol ssyn in FOLsyn, we declare a symbol smod, which repre-
sents the semantic operation used to interpret ssyn along with axioms specifying
its values. This corresponds to the case-based de�nition of the semantics of a
formula.

As examples we present the cases for ∨ and ∀. For the interpretation of ∨,
we declare the symbol or as a HOL-function from bool2 to bool and axiomatize
it to be the binary supremum in the boolean 2-element lattice.

or : elem (bool =⇒ bool =⇒ bool)
or1 : True ((F .= 1 ∨ G .= 1) ⇒ (or @F @G) .= 1)
or0 : True ((F .= 0 ∧ G .= 0) ⇒ (or @F @G) .= 0)

Similarly, for the interpretation of ∀, we specify the function forall that takes
a univ -indexed family F of booleans and returns its in�mum, i.e., it returns 1
i� all F@x is 1 for all x.

forall : elem ((univ =⇒ bool) =⇒ bool)
forall1 : {F : elem (univ =⇒ bool)}

True (∀ [x : elem univ] (F @x) .= 1 ⇒ (forall @F) .= 1)
forall0 : {F : elem (univ =⇒ bool)}

True (∃ [x : elem univ] (F @x) .= 0 ⇒ (forall @F) .= 0)

An overview of the operations and axioms declared for the remaining con-
nectives and quanti�ers is given in Fig. 6. In all cases except for equality, we
have two axioms of the form C0 ⇒ F

.= 0 and C1 ⇒ F
.= 1, e.g., and0 for when

a conjunction is false and and1 for when it is true. For equality, our results
below require a slightly stronger condition, namely the axiom eq1 of the form
C1 ⇔ F

.= 1 (from which the corresponding ¬C1 ⇔ F
.= 0 can be derived).

Interpretation Function. The idea of the view µ is that it maps from the syntax
to the semantics; it gives the cases of the interpretation function for the logical
symbols. This takes the form of a view from FOLsyn to FOLmod, which must
give a FOLmod-expression for all symbols declared in or included into FOLsyn.

Formulas are interpreted as boolean truth values, and we map the type o of
formulas to the type elem bool of truth values. The truth value 1 is designated,
i.e., represents truth. Therefore, we map ded to a type family that takes an
argument F of type elem bool and returns the judgment that F is equal to 1.
FOL-terms are interpreted as elements of the universe. Therefore, we map the
type i of FOL-terms to the type elem univ of elements of univ .

21

true : elem bool
true1 : True true .= 1
false : elem bool
false0 : True false .= 0
not : elem (bool =⇒ bool)
not0 : True (F .= 0 ⇒ (not @F) .= 1)
not1 : True (F .= 1 ⇒ (not @F) .= 0)
and : elem (bool =⇒ bool =⇒ bool)
and1 : True (F .= 1 ∧ G .= 1 ⇒ (and @F @G) .= 1)
and0 : True (F .= 0 ∨ G .= 0 ⇒ (and @F @G) .= 0)
impl : elem (bool =⇒ bool =⇒ bool)
impl1 : True (F .= 0 ∨ G .= 1 ⇒ (impl @F @G) .= 1)
impl0 : True (F .= 1 ∧ G .= 0 ⇒ (impl @F @G) .= 0)
exists : elem ((univ =⇒ bool) =⇒ bool)
exists1 : {F : elem (univ =⇒ bool)}

True (∃ [x] (F @x) .= 1 ⇒ (exists @F) .= 1)
exists0 : {F : elem (univ =⇒ bool)}

True (∀ [x] (F @x) .= 0 ⇒ (exists @F) .= 0)
eq : elem (univ =⇒ univ =⇒ bool)
eq1 : True (F .= G ⇔ (eq @F @G) .= 1)

Figure 6: Speci�cation of FOL Models

o := elem bool
ded := [F : elem bool] True (F .= 1)
i := elem univ

The interpretation of the logical connectives is as expected. For example,
the disjunction F ∨ G is interpreted by applying or to µ(F) and µ(G). And
the universal quanti�cation ∀ ([x : i]F) is interpreted as µ(∀) µ([x : i]F) =
forall @λ ([x : elem univ]µ(F)).

∨ := [F : elem bool] [G : elem bool] or @F @G
∀ := [F : elem (univ =⇒ bool)] forall @ (λ F)

Models of FOL-Theories. Finally we can de�ne Σmod just like Σpf :

De�nition 25. For every FOL-signature or theory Σ, the LF signature Σmod

is the canonical pushout in the diagram below.

FOLsyn

FOLmod

Σsyn

Σmod

µ µΣ

Here by canonical we mean that Σmod includes FOLmod and adds a declaration
c : µΣ(A) for every declaration c : A that Σsyn adds to FOLsyn. µΣ maps
FOLsyn-symbols according to µ and other symbols to themselves.

22

Example 26 (Continued). The signature Groupmod looks as follows:

%sig Groupmod = {
%include FOLmod

◦ : elem univ → elem univ → elem univ
e : elem univ
inv : elem univ → elem univ
assoc : True

(
forall @ (λ[x] forall @ (λ[y] forall @ (λ[z]

eq @ (x ◦ (y ◦ z)) @ ((x ◦ y) ◦ z))))
) .= 1

...
}

Notation 27. Note that the canonical pushout yields declarations ◦ : elem univ →
elem univ → elem univ rather than ◦ : elem (univ =⇒ univ =⇒ univ). Thus,
Groupmod is technically not a HOL-theory in the sense of Def. 22. However, we
can give signature morphisms back and forth between these. For example, if we
have a signature with ◦′ : elem (univ =⇒ univ =⇒ univ), the morphisms map ◦′
to λ[x]λ[y]x◦y and ◦ to [x] [y] ◦′ @x@ y. In the following, we will assume that
Σmod extends FOLmod with declarations of the form c : elem S1 =⇒ . . . =⇒ Sn
and omit the connecting signature morphisms from the notation.

De�nition 28 (Encoding Models). Assume a �xed set theory in which FOL
and HOL-models are de�ned, and pick two arbitrary sets F and T as the truth
values. Then for every FOL-signature Σ and every Σ-model M = (U, I), we
de�ne a HOL-model pMq of Σmod as follows:

0pMq = F 1pMq = T boolpMq = {F , T } univpMq = U,

notpMq, andpMq, orpMq, implpMq, eqpMq, forallpMq, and existspMq are de�ned
in the obvious way, and for function symbols f and predicate symbols p we put

fpMq = f I and ppMq(u1, . . . , un) = T iff (u1, . . . , un) ∈ pI .

It is easy to check that this is indeed a HOL-model of Σmod, i.e., satis�es all the
axioms of Σmod.

We could also encode model translations, but we can do this more elegantly
in Sect. 5.

Example 29 (Continued). Consider the model Int from Ex. 15. It is encoded as a
HOL-model of Groupmod by putting univpIntq = Z, ◦pIntq = +, epIntq = 0, and
invpIntq = −. The interpretations of all other symbols are uniquely determined.

4.5. Adequacy

In the previous sections, we have de�ned the LF signatures and morphisms
(FOLsyn,FOLpf , π,FOLmod, µ) intended to encode FOL. (π is simply an in-
clusion for FOL, but we will keep it in the notation to stress that FOL is only
an example for a generic method.) Showing that such an encoding is adequate

23

means to show that the encoding has the same properties as the encoded logic.
If an encoding is adequate, meta-logical results reached by reasoning about the
logic encoding are guaranteed to hold for the encoded logic as well.

To give a general formal de�nition what adequacy means, we need to do three
things: (i) de�ne in general what a logic is and when two logics are isomorphic,
(ii) de�ne in general what a logic encoding in LF is and how every such logic
encoding induces a logic, and then (iii) for a speci�c logic encoding show that
the induced logic is isomorphic to the encoded logic. Especially (ii) requires a
large amount of work, which we carried out in [Rab08]. For simplicity, here,
we will only consider the special case of adequacy of our encoding of FOL. For
other logic encodings, the procedure is the same.

We begin by restating some known results for the adequacy of syntax and
proof theory in our notation. See e.g. [HHP93, HST94], the encodings used
there are not modular, but that is a minor di�erence that does not a�ect the
proofs.

Theorem 30 (Adequacy for Syntax). For every FOL-signature Σ and context
Γ = x1, . . . , xn, the formulas are in a natural bijection with the βη-normal LF-
terms of type o over Σsyn in context x1 : i, . . . , xn : i.

Theorem 31 (Adequacy for Signature Morphisms). For every FOL-signature
morphism σ : Σ → Σ′ and every sentence F ∈ Sen(Σ), we have pσ(F)q =
σsyn(pFq).

Theorem 32 (Adequacy for Proof Theory). For every FOL-theory Σ, the
derivations of F1, . . . , Fn `Σ F are in a natural bijection with the βη-normal
LF-terms of type πΣ(ded pF1q→ . . .→ ded pFnq→ ded pFq) over Σpf .

In particular, F is a Σ-theorem i� πΣ(ded pFq) is inhabited over Σpf .

Theorem 33 (Adequacy for Proof Theoretical Theory Morphisms). For a FOL-

signature morphism σ : Σ → Σ′, we have σ : (Σ,Θ) P→ (Σ′,Θ′) i� σpf : Σpf →
Σ′pf can be extended to an LF signature morphism (Σ,Θ)pf → (Σ′,Θ′)pf .

Proof. This follows from Thm. 32 by extending σpf such that every a : πΣ(ded pFq)
occurring in (Σ,Θ)pf is mapped to ppq for some proof p of Sen(σ)(F).

To give similar results for the model theory, we need a bijection between
FOL-models of Σ and HOL-models of Σmod. First we prove that every single
model of FOLmod is adequate in the following sense:

Lemma 34. Assume a HOL-model M of FOLmod. Then boolM = {0M , 1M}
is a two-element set, univM is an arbitrary non-empty set, and trueM , falseM ,
andM , orM , implM , eqM , forallM , and existsM are the usual operations in the
semantics of �rst-order logic with respect to the universe univM and the truth
values 0M for falsity and 1M for truth.

Proof. Straightforward using the axioms in FOLmod.

24

Note that the interpretations of the booleans (and thus of the remaining
operations on them) are not determined uniquely because the speci�c choice
of truth values remains free. If we wanted to characterize them uniquely, e.g.,
0M = ∅ and 1M = {∅}, we would need to have more access to the underlying
set theory than provided by HOL. However, once two arbitrary truth values and
the universe are �xed, the interpretation of the connectives and quanti�ers is
determined. Then we can state the adequacy of the model theory as follows:

Theorem 35 (Adequacy for Model Theory). Assume a �xed set theory in which
FOL- and HOL-models are de�ned, and pick two arbitrary sets F and T . Let
us call a FOLmod-model normal if 0 and 1 are interpreted as F and T .

Then for every FOL-signature Σ, there is a natural bijection between FOL-
models M of Σ and normal HOL models of Σmod. Furthermore, for every M
and every Σ-sentence F , we have

M |=Σ F iff (µΣ(ded pFq))pMq.

Recall that for FOL, we have µΣ(ded pFq) = True (µΣ(pFq) .= 1).

Proof. One direction of the bijection is the encodingM 7→ pMq. For the inverse
direction, assume a normal HOL-model M of Σmod. Because M is normal and
because of Lem. 34, M has no freedom but to pick a non-empty set for univM

and operations for fM and pM . It is easy to see that each such choice yields a
FOL-model of Σ, and that the two functions are bijections.

The second claim follows by a straightforward induction on F using the
axioms of FOLmod.

It is tempting to assume that, parallel to Thm. 33, σ : (Σ,Θ) M→ (Σ′,Θ′)
can be encoded using LF-signature morphisms (Σ,Θ)mod → (Σ′,Θ′)mod. But
this is not the case: The existence of such morphisms is only su�cient but not
necessary for σ to be a model-theoretical theory morphism. This is because
HOL is not complete with respect to standard models. We will get back to this
in Sect. 5.

Taking all these adequacy results together, we see that all results about
FOL that can be stated in terms of encodings of syntax, proof theory, and
model theory, carry over to FOL. As an example, let us consider soundness and
completeness.

Theorem 36. For a FOL-signature Σ and LF terms Fi, F , de�ne

(i) There is a term of type πΣ(ded F1 → . . .→ ded Fn → ded F) over Σpf .

(ii) For every HOL-modelM of Σmod, if (µΣ(Fi))M for all i, then also (µΣ(F))M .

Then the logic FOL is sound i� (i) implies (ii), and complete i� (ii) implies (i).

Proof. Immediately using the adequacy of proof and model theory.

25

Among all the meta-logical properties that can be studied after encoding a
logic in LF, soundness is particularly interesting because we have the following
result:

Theorem 37. If there is a signature morphism σ from FOLpf to FOLmod

such that π σ = µ, then the logic FOL is sound.

Proof. We proceed in two steps. First, we show that for every FOL-signature
Σ there is a signature morphism σΣ from Σpf to Σmod such that the following
diagram commutes:

FOLsyn

FOLpf

FOLmod

Σsyn

Σpf

Σmod
µ

π

µΣ

πΣ
σ

σΣ

σΣ is simply the universal morphism factoring σ and µΣ through the pushout
Σpf .

Secondly, we show soundness using Thm. 36. So assume (i). Since signa-
ture morphisms are type-preserving mappings, there must be a term of type
σΣ(πΣ(ded F1 → . . . → ded Fn → ded F)) over Σmod. Because πΣ σΣ = µΣ,
this type is equal to µΣ(ded F1)→ . . .→ µΣ(ded Fn)→ µΣ(ded F). Now the
implication introduction rule of HOL shows that (ii) holds.

These results may be criticized as being implications between statements
known to be true. But recall that the same methodology can be applied to a
very wide variety of other logics, and we obtain the corresponding result for
every such logic.

In general, Thm. 37 is only a su�cient criterion. It cannot be necessary for
all logic encodings because HOL is only a (sound but incomplete) fragment of set
theory, which may or may not be strong enough to carry out the soundness proof
for the encoded logic. However, in our experience such a morphism typically
exists for reasonable choices of the meta-language.

It is tempting to look for the analogue of Thm. 37 for completeness. But
a morphism Σmod → Σpf can usually not be given. For example, FOLmod is
signi�cantly more expressive than FOLpf and therefore cannot be interpreted
in FOLpf . Even when such a morphism exists, it does not imply completeness.
But it is promising to investigate other ways to encode completeness, which we
leave to future work. For example, the central idea of many completeness proofs
is to construct a canonical model whose objects are given by the syntax of the
logic. Since LF provides an excellent way to talk about syntax, it is interesting
to use LF to form a canonical model. If the syntax of LF is be re�ected into
the representation of the model theory, it can yield a general way of formalizing
completeness proofs.

26

4.6. Soundness

FOLsyn

FOLpf

FOLmod
µ

π

σFOL

Now we will apply Thm. 37 to encode the sound-
ness proof of FOL in LF by giving a view σFOL
from FOLpf to FOLmod. The structure of σFOL
follows the modular structure of FOLpf , i.e., the
soundness is proved separately for every connective
or quanti�er. In particular, σFOL includes the view
µ for all symbols of FOLsyn. Thus, the LF module
system guarantees the commutativity of the dia-
gram on the right.

The remaining symbols of FOLpf are those encoding proof rules. Each of
those must be mapped to a proof term in FOLmod. This is straightforward,
and we only give one example case and refer [KMR09] for the remaining cases.

The proof rule orIl : ded F → ded F ∨ G is included into FOLpf from
∨pf . It uses two implicit arguments F : o and G : o and must be mapped to a
FOLmod-term of type

{F : elem bool} {G : elem bool} True F .= 1 → True (or @F @G) .= 1

Its map is given by

orIl := [F : elem bool] [G : elem bool] [p : True F .= 1] ⇒E or1 (∨Il p)

Here ⇒E is the modus ponens rule, and ∨Il is the left introduction rule of dis-
junction of the meta-language. ⇒E and ∨Il are among the proof rules declared
in HOL, which we omitted in Sect. 4.3.

5. Representing Set-Theoretical Model Theory

The representation of models given in Sect. 4.4 uses HOL as a meta-language.
HOL is seen as a fragment of the foundation of mathematics, and to work with
HOL rather than, e.g., a set theory, has the advantage of being simpler while not
committing to a speci�c foundation. But it also has a drawback: FOL-models
are represented as HOL-models and thus as platonic entities that live outside
the logical framework LF.

It would be more appealing if FOL-models could be represented as LF enti-
ties themselves. This is indeed possible without changing the principal features
of our approach: All we have to do is to re�ne the meta-language HOL so much
that it becomes set theory. The re�nements can be represented elegantly as LF
signature morphisms � in this case from the encoding of HOL to an encoding of
set theory.

More generally, we obtain the diagram below. Here (Lsyn, Lpf , π, Lmod, µ)
is a logic encoding as before. The foundation of mathematics is encoded as an
LF signature F , and the model theory is de�ned in terms of a meta-language
F0, which is a fragment of F . A view ϕ : F0 → F encodes the re�nement of
F0 into F , or in other words, ϕ formalizes in what sense F0 is a fragment of F .

27

Finally, we want to give a view µ′ from Lmod to F , which translates the F0-based
encoding of model theory to F . µ′ must have some free parameters, and this
can be expressed in LF by adding these free parameters to the codomain of the
view. Lmod+ is the extension of F with these parameters.

Then, for any choice of these parameters, the composition µ µ′ translates
the logical syntax into mathematics. In other words, we re�ne the logic encoding
(Lsyn, Lpf , π, Lmod, µ) based on F0 to a logic encoding (Lsyn, Lpf , π, Lmod+, µ µ′)
based on F .

Lsyn

Lpf

Lmod

F0 F

Lmod+

µ

π

ϕ

µ′

So far we have used �rst-order logic for L and higher-order logic for F0. In the
following, we will give F , µ′, and ϕ. F will be an encoding of Zermelo-Fraenkel
set theory (ZFC, [Zer08, Fra22]) encoded as an LF signature ZFC developed
in Sect. 5.1. ϕ will give the standard semantics of hihger-order logic encoded
as a view from HOL to ZFC developed in Sect. 5.2. Note that these steps are
independent of the chosen logic L because higher-order logic is su�cient for the
model theory of many logics (including sorted, simply-typed, modal, description,
and intuitionistic logics). We will give Lmod+ and the view µ′ from FOLmod to
ZFC in Sect. 5.3. Lmod+ will arise by adding to ZFC a free parameter for the
universe.

We use ZFC because it is the most widely used foundation of mathematics.
Other set theories such as Von-Neumann-Bernays-Gödel ([vN25, Ber37, Göd40])
could be used equally well. Similarly, type theoretic foundations such as HOL
([Chu40]) or the Calculus of Constructions ([CH88]) would work in the same
way. We will elaborate on that in Sect. 5.2.

The above diagram still leaves open how individual models can be repre-
sented in LF. We will look at that in Sect. 5.4 where we will form a signature
Σmod+, which will be like Σmod but in terms of ZFC rather thanHOL, and then
represent Σ-models as LF signature morphisms from Σmod+ to ZFC. Finally we
look at the encoding of model theoretical theory morphisms, at which point all
aspects of FOL are encoded in LF. But since the Σ-models form a proper class
and the LF expressions are countable, this raises adequacy questions, which we
discuss in Sect. 5.5.

28

5.1. Representing Set Theory

Now we will represent ZFC set theory in LF. This is a necessary condition
for the comprehensive representation of model theory in a logical framework.
But it requires a signi�cant investment. Very advanced encodings of set theory
have been established in Mizar ([TB85] using Tarski-Grothendieck set theory
[Try89, Tar38]), and in Isabelle/ZF ([Pau94, PC93]) employing sophisticated
machine support. In particular, these encodings use semi-automated reasoning
support and high-level proof description languages such as Isar ([Nip02]) for
Isabelle. Our encoding was designed from scratch using hand-written proof
terms.

There are two reasons to forgo those sophisticated encodings in favor of LF.
Firstly, LF is superior to Isabelle as a logical framework: The dependent type
theory permits elegant encodings of logics, and the module system based on
signature morphisms permits elegant encodings of translations. We appreciate
these fundamental aspects even though Isabelle is vastly superior to LF in terms
of automation and tool support. Mizar o�ers dependent types, but it is a
standalone encoding of set theory not based on a logical framework so that it
cannot encode other languages such as logics or alternative set theories.

Secondly, our encoding of set theory di�ers from the above two in two fun-
damental but non-trivial design aspects. In both cases, only the existence of
dependent types makes our design choices possible. These two aspects are the
choice of primitive symbols and the use of a type system, which we will detail
in Sect. 5.1.2 and 5.1.3, respectively.

The whole encoding of set theory comprises over 1000 lines of Twelf decla-
rations. Therefore, we only showcase the most important features and refer to
[KMR09] for the full encoding. In the following we will �rst explain the logic we
use for our set theory in Sect. 5.1.1, then use it to develop untyped set theory
in Sect. 5.1.2, and then build a typed set theory on top of the untyped one in
Sect. 5.1.3. Only the typed set theory will be strong enough to subsume the
meta-language HOL we developed in Sect. 4.3. Finally, we de�ne the 2-element
Boolean lattice B and its operations in Sect. 5.1.4. The Booleans are not needed
to subsume HOL but are needed as the set of truth values when de�ning the
semantics of FOL. All declarations together form the LF signature ZFC.

Notation 38. This section will require the reader to be very careful in separating
levels as the LF encoding of ZFC contains three groups of connectives and
quanti�ers.

The �rst two groups are meta-level operations on propositions. They share
the propositional connectives which are written normally, e.g., ∧. The �rst
group consists of the symbols used in the (untyped) �rst-order logic underlying
set theory; here equality and quanti�ers will be written as

.=∗, ∀∗, and ∃∗. The
second group consists of the symbols used in the typed set theory that we will
develop on top of the untyped one; here equality and quanti�ers will be written
as

.=, ∀, and ∃.
Finally the third group consists of the object level operations on Booleans.

These will be written as ∧∗, ∀∗,
.=∗, etc.

29

The notations are chosen such that the symbols ∧, ∀, .=, etc. are the intended
interpretations of their counterparts in HOL, and the symbols ∧∗, ∀∗,

.=∗, etc.
are the intended interpretations of the symbols declared in FOLmod.

5.1.1. Logical Language

We base ZFC on �rst-order logic with equality. To reason about truth, we use
an intuitionistic natural deduction calculus with introduction and elimination
rules. The main LF declarations encoding this logic are the following ones.

set : type

prop : type

True : prop→ type

set is the single sort of sets, prop is the type of propositions, and TrueF is
the judgment for the truth of F .

We make two additions to the otherwise well-known syntax of �rst-order
logic: sequential connectives and a description operator. Both arise naturally
when encoding set theory as we will see below.

Sequential connectives mean that, e.g., in an implication F ⇒ G, G is only
considered if F is true. This is very natural in mathematical practice � for
example, mathematicians do not hesitate to write x 6= 0 ⇒ x/x = 1 when /
is only de�ned for non-zero dividers. This can be solved by using �rst-order
logic with partial functions, but we hold that it is more elegant and closer to
mathematics to use a sequential implication, i.e., the truth of F is assumed
when considering G. Similarly, in a sequential conjunction F ∧G, F is assumed
true when considering G. We use sequential conjunction and implication; all
other connectives are as usual.

Then the LF encoding contains the following declarations for propositions:

∧ : {F : prop} (TrueF → prop)→ prop
⇒ : {F : prop} (TrueF → prop)→ prop
¬ : prop→ prop.
∨ : prop→ prop→ prop
⇔ : prop→ prop→ prop
.=∗ : set→ set→ prop
∀∗ : (set→ prop)→ prop
∃∗ : (set→ prop)→ prop

Thus ∧ and ⇒ are applied to two arguments, a formula F and another
formula which is stated in a context where F is true. This is written as, e.g.,
F ∧ [p]Gp where p is a proof of F that may be used by G. We will use F ∧G
and F ⇒ G as abbreviations when p does not occur in G; this yields the non-
sequential variants of the connectives as special cases.

At this point it is not possible for G to actually make use of the truth of
F because proofs cannot occur in formulas. This will change by the use of a
description operator, and we will also use it when de�ning our typed set theory.

30

The proof rules for the sequential connectives are almost the same as for the
usual ones. The only di�erence is that the proof of the �rst argument has to be
supplied in a few places:

∧I : {p : True F} True Gp → True F ∧ [p]Gp
∧El : True F ∧ [p]Gp → True F
∧Er : {q : True F ∧ [p]Gp} True G (∧El q)
⇒ I : ({p : True F} True Gp) → True F ⇒ [p]Gp
⇒ E : True F ⇒ [p]Gp → {p : True F} True Gp

Note that these rules contain the rules for the non-sequential connectives
as special cases. We omit the well-known encoding of the introduction and
elimination proof rules for the remaining connectives.

The description operator is a binder that takes a formula F x with a free
variable and returns the unique x satisfying F x. This is of course not well-
formed for all F . Therefore, δ takes a dependent argument, which is a proof
of ∃∗![x]F x. Here ∃∗! abbreviates the quanti�er of unique existence. It can be
encoded naturally using

∃∗! : (set→ prop)→ set = [F]
(
∃∗[x]F x ∧ (∀∗[y]F y ⇒ y

.=∗x)
)
.

δ : {F : set→ prop} (True ∃∗![x] F x) → set

Here dependent types permit us to require a proof of unique existence as an
argument thus guaranteeing that only well-formed terms are formed. This is in
contrast to the two description operators that are formalized in Isabelle/ZF or
induced by the Mizar type system, respectively. Both are well-formed even for
unsatis�able formulas, in which case they return an arbitrary element. Thus,
both Isabelle/ZF and Mizar assume not only the axiom of choice but also the
existence of a global choice function, a commitment that we can avoid.

δ comes with an axiom scheme

axδ : True F (δ ([x]F x) P)

for an arbitrary proof P , which states that δ indeed yields the element with
property F . Note that proof irrelevance is derivable from axδ, i.e., (δ F P)
returns the same object no matter which proof P is used.

Note that both sequential connectives and the description operator crucially
depend on the existence of dependent types in the logical framework.

5.1.2. Untyped Set Theory

Regarding the primitive symbols, our encoding attempts to stay as closely
to mathematical practice as possible. We only use a single primitive non-logical
symbol: the binary predicate ∈: set → set → prop. This means that the
only terms are the variables and those obtained from the description operator.
Thus, all mathematical symbols besides ∈ are introduced as abbreviations for
sets whose (unique) existence has been proved.

Our encoding is in contrast to Mizar where primitive function symbols are
used for singleton, unordered pair, and union ([Try89]) together with Tarski's

31

axiom of universes, and to Isabelle/ZF where primitive function symbols are
used for empty set, powerset, union, in�nite set, and replacement ([PC93]).

This permits us to follow the literature and encode all ZFC operations as
existential axioms. For example, we can use

∀∗[X]∃∗[u] (∀∗[y] (∃[x]x ∈ X ∧ y ∈ x)⇒ y ∈ u)

as the axiom of union. From this we can obtain a proof P X of

∃∗![u] (∀∗[y] (∃[x]x ∈ X ∧ y ∈ x)⇔ y ∈ u)

for an arbitrary set X. Then we can de�ne the union operation as⋃
: set→ set = [X]

(
δ ([u] ∀∗[y] (∃[x]x ∈ X ∧ y ∈ x)⇔ y ∈ u) (P X)

)
Similarly, we proceed to de�ne the empty set, unordered pairs, and powersets
using the respective axiom, as well as encodings of the sets {x ∈ A|F (x)}
and {f(x) : x ∈ A} using the axiom schemes of speci�cation and replacement,
respectively. Furthermore, we use δ and the axiom of in�nity to obtain a speci�c
in�nite set, in our case the set of natural numbers. For all results described in
this paper, we do not use δ or any of these seven axioms anywhere else, i.e., all
other sets and operations on sets are de�ned in terms of these seven applications
of δ.

Our results do not actually require the axioms of choice and excluded middle.
Similarly, regularity and in�nity are not used for the results presented in this
section. However, these axioms may be needed to construct speci�c models such
as models with an in�nite domain.

We de�ne ordered pairs (x, y) as {{x}, {{y},∅}}. Our de�nition is un-
usual and similar to Wiener's {{{x},∅}, {{y}}} ([Wie67]). We do not use the
common Kuratowski pairs {{x}, {x, y}} because reasoning about them often
requires the principle of excluded middle to distinguish the cases x

.=∗y and
x 6 .=∗y, which we try to avoid unless necessary. However, we immediately de-
�ne the projections π1 and π2 and prove the conversions πi(x1, x2) .=∗xi and
isPair u ⇒ (π1(u), π2(u)) .=∗u, which are known from simple type theory. Af-
terwards all work is carried out in terms of these derived operations and prop-
erties so that the speci�c de�nition of pairing becomes less relevant. (The LF
module system can check that only the derived operations are used.)

Based on ordered pairs, we can de�ne relations and functions in the usual
way. In particular, we de�ne set theoretical notions of λ abstraction and ap-
plication as operations λ∗A ([x : set] f x) encoding {(x, f(x)) : x ∈ A} and
f @∗ a encoding �the b such that (a, b) ∈ f �. Again we immediately prove the
conversions of β- and η-equality and use only those later on.

In a similar way, we de�ne various other notions such as subset, singleton
set, binary union, intersection, di�erence, disjoint union, etc., and derive natural
deduction rules for them.

32

5.1.3. Typed Set Theory

We have already remarked that a major problem with formalizations of set
theory is their complexity. Type theories favor algorithmic de�nitions and de-
cidable notions, and these prove indispensable when formalizing major parts of
mathematics in a computer.

It is not surprising that most of the biggest successes of formalized math-
ematics such as the formalization of the Four Color Theorem and the Kepler
Conjecture ([Gon06, Hal03]) are achieved in type theory-based formalizations
of mathematics � Coq ([BC04]) and HOL Light ([Har96]), respectively. Sim-
ilarly, while Mizar is untyped a priori, it supports a very sophisticated type
system as a derived notion that is internally represented using predicates over
sets ([Wie07]). Isabelle/ZF o�ers much weaker support for typed reasoning, and
this is one of the main reasons why both tool support and available content are
farther developed in Isabelle/HOL ([NPW02]) using a typed foundation rather
than in Isabelle/ZF.

In LF, again using the dependent typing, we can derive typed set theory
in a rather simple way. The crucial idea is to use the dependent sum type
elem A := Σx:set(True x ∈ A) to represent the set A. Thus, elements x of
A are represented as pairs (x, P) where P is a proof that x is indeed in A. If
we also require proof irrelevance, i.e., (x, P) = (x, P ′), then the type elem A
has exactly one term for every element of A. This is inspired by the Scunak
language ([Bro06]), which uses this representation as a primitive notion and
provides implementation support for it.

It is a minor inconvenience that LF (unlike Scunak) supports neither de-
pendent sum types nor the ability to make all elements of a type de�nitionally
equal (which would permit to state the proof irrelevance). Therefore, we have
to add elem and its properties as primitives to our LF encoding as shown below

elem : set→ type

el : {x : set} True x ∈ A→ elemA
which : elem A→ set
why : {a : elem A} True (which a) ∈ A

along with an axiom for proof irrelevance and one for (which (el xP)) .=∗ x.
el, which, and why would simply be pairing and the two projections if LF had
sum types. While this increases the needed primitives, these declarations only
emulate features that could easily be added to the LF language: Dependent
sum types are used in, e.g., [ML74] and [Nor05]; proof irrelevance is added in
[LP09].

Using the types elem A, we can now lift all the basic untyped operations
introduced above to the typed level. In particular, we de�ne typed quanti�ers
∀, ∃, typed equality

.=, and typed function spaces =⇒ in the following.
Firstly, we de�ne typed quanti�ers such as ∀ : (elem A → prop) → prop.

In higher-order logic with internal propositions ([Chu40], compare prop : set
rather than prop : type in Sect. 4.3), such typed quanti�cation can be de�ned
easily. In untyped set theory, this is intuitively possible using relativization,

33

e.g., ∀F := ∀∗[x]x ∈ A⇒ F x for F : elem A→ prop.
However, an attempt to formally de�ne typed quanti�cation like this meets

a subtle di�culty: In ∀F , F only needs to be de�ned for elements of A whereas
in ∀∗[x]x ∈ A ⇒ F x, F must be de�ned for all sets. Thus, ∀ is more general
than ∀∗ in that it permits a weaker argument. Of course, in ∀∗[x]x ∈ A⇒ F x,
it is intended not to consider F x if x 6∈ A. This is the motivation behind the
introduction of sequential connectives in Sect. 5.1.1 above.

Using sequential connectives, we can de�ne ∀ and ∃ as follows:

∀ : (elem A→ prop)→ prop = [F]
(
∀∗[x]x ∈ A⇒ [p] (F (el x p))

)
∃ : (elem A→ prop)→ prop = [F]

(
∃∗[x]x ∈ A ∧ [p] (F (el x p))

)
Then we can derive introduction and elimination rules for ∀ and ∃, which

look the same as those for the untyped ones.
Secondly, typed equality is easy to de�ne:

.= : elem A → elem A → prop = [a] [b] (which a) .=∗ (which b)

It is easy to see that all rules for
.=∗ can be lifted to

.=.
Finally, we can de�ne function types that are de�ned in terms of untyped

functions:

=⇒ : set→ set→ set = . . .
λ : (elem A → elem B) → elem (A =⇒ B) = . . .
@ : elem (A =⇒ B) → elem A → elem B = . . .
beta : True ((@ (λ [x]F x)A) .=∗ F A) = . . .
eta : True ((λ [x] (@F x)) .=∗ F) = . . .

We omit the quite involved de�nitions and only mention that the typed
quanti�ers and thus the sequential connectives are needed in the de�nitions.

5.1.4. The Booleans

The Booleans B are easy to de�ne as the set containing the two elements
0 = ∅ and 1 = {∅}. However, it is interesting to note that there are two
di�erent ways to de�ne this set: We can use the unordered pair {0, 1} or the
powerset P(1).

Clearly, {0, 1} is a two-element set and {0, 1} ⊆ P(1), but it turns out that
the two sets are only equal in the presence of the axiom of excluded middle. In
fact, � maybe surprisingly � by using the set {x ∈ 1 |F}, it can be shown that
{0, 1} .=∗P(1) is equivalent to F ∨ ¬F for all formulas F .

Therefore, an intuitionistic set theory would have to de�ne B = {0, 1}, and
it presents no fundamental obstacles to do so. But it is more convenient to use
B = P(1) because then all operations on the Booleans can be obtained from the
lattice operations in P(1). Therefore, we put B = P(1).

Then most of the operations on the Booleans are straightforward:

34

¬∗ : elem B =⇒ B = λ[x] 1 \ x
∧∗ : elemB =⇒ B =⇒ B = λ[x]λ[y]x ∩ y
∨∗ : elemB =⇒ B =⇒ B = λ[x]λ[y]x ∪ y
⇒∗ : elemB =⇒ B =⇒ B = λ[x]λ[y] reflect (x ⊆ y)
∀∗ : elem (A =⇒ B) =⇒ B = λ[f]

⋂
(image f)

∃∗ : elem (A =⇒ B) =⇒ B = λ[f]
⋃

(image f)

where \ returns the di�erence of two sets, image f is the image of the
function f , reflect F encodes the set {x ∈ 1|F}, and

⋂
and

⋃
return the union

or intersection, respectively, of a set of sets. We omit their de�nitions.
In the usual way, we can prove the basic properties of the lattice operations,

from which we can prove the intended properties of the Boolean operations.
Finally, we use the axiom of excluded middle once to prove that B is equal

to {0, 1}.

5.2. Viewing Higher-Order Logic in Set Theory

Now that we have developed an encoding of set theory, we want to show that
it subsumes the meta-language HOL used in Sect. 4 to represent model theory.
Let ZFC be the LF signature containing our set theory. Then the subsumption
can be expressed in LF formally as a view from HOL to ZFC.

This basic idea of the view is straightforward because all constants of HOL
are mapped to ZFC-constants of the same name, i.e., we have a view

%view ϕ : HOL → ZFC = {
set := set
elem := elem
prop := prop
True := True
...
}

The view must also map all proof rules of HOL to proofs of the correspond-
ing ZFC theorems. For the propositional connectives, those are the same rules
assumed for the �rst-order logic underlying ZFC. For the quanti�ers and equal-
ity, they are derived rules for ∀, ∃, and .=. For β- and η-equality, they are the
corresponding derived rules of ZFC.

Instead of ZFC set theory, we could use any other foundation into which
we can give such a view ϕ. This includes other set theories but also typed
foundations such as the usual higher-order logic with internal propositions. For
example, the latter arises if we use the type theory from Sect. 2.2 but with a
declaration prop : tp; in that case the view would map prop to tm prop.

5.3. Viewing Model Theory in Set Theory

Next we should de�ne a view µ′ from FOLmod to ZFC. However, it is not
possible to �x the value of µ′(univ) because it may be di�erent in every model.
Thus, µ′ must be parametric in the choice of µ′(univ) and consequently also in

35

that of µ′(nonemp). We solve that by introducing FOLmod+ as ZFC with two
free parameters as below

%sig FOLmod+ = {
%include ZFC
U : set
P : True ∃∗[x]x ∈ U
}

and giving a view µ′ : FOLmod → FOLmod+ instead.

FOLmod FOLmod+

HOL ZFC
ϕ

µ′This view is again modular to interpret every con-
nective separately. Moreover, µ′ includes (and thus
reuses) ϕ so that the LF module system guarantees
that the diagram on the right commutes. We will not
present the modular structure here, but rather give
examples of the most interesting cases.

µ′ interprets the booleans as the two-element set of
truth values, and maps univ and nonemp to the free parameters U and P as
below.

bool := B
0 := 0
1 := 1
...
univ := U
nonemp := P

All connectives and quanti�ers are mapped to their counterparts on B, e.g.,
∧ is mapped to ∧∗ and ∀ to ∀∗. The proofs of the axioms are simple.

5.4. Representing Model Theory

Models. Assume a logic encoding (Lsyn, Lpf , π, Lmod+, µ µ′) using a foundation
F as before. The basic idea behind the encoding of L-models M of Σ is given
by the diagram below. Here Σmod+ arises in the same way as Σmod, i.e., by
pushout of Σsyn along µ µ′ over Lsyn, or equivalently by pushout of Σmod along
µ′ over Lmod. Then the encoding pMq of M is a morphism from Σmod+ to F
such that following diagram commutes:

Lsyn

Lmod+

F F

Σsyn

Σmod+

µ µ′ µΣ µ′Σ

idF
pMq

Notation 39. The notation pMq was already used in Sect. 4 for the encoding of
M in HOL. We will reuse it in Sect. 5 for the encoding of a model M in LF.

36

This encoding captures and formalizes two of the most central intuitions
about the syntax and semantics of formal languages. Firstly, the semantics
of a formal language is a structure-preserving translation of the syntax into
some semantic realm. For logics the semantic realm is usually mathematics, in
our case encoded by a foundation F . The interpretation function is given by
µΣ µ′Σ pMq. Secondly, the syntax consists of two parts: logical and non-logical
symbols. In our case, the semantics of the logical symbols is given by a �xed
morphism µ µ′, and the semantics of the non-logical symbols is given by the
morphism pMq.

pMq must map all symbols of Σmod+, which can be split into three groups.
Firstly, symbols included from F have a �xed meaning in the foundation; the
commutativity ensures that pMq is the identity on them. Secondly, symbols
included from Lmod+ encode �xed parts of the models that do not depend
on the signature; in the case of FOL, this is the universe encoded using the
symbols U and P . Thirdly, the symbols inherited from Σsyn when constructing
the pushout are the non-logical symbols.

We can formalize the above intuitions as follows:

De�nition 40 (Encoding Models). An LF-based model of a FOL-signature or
theory Σ is a morphism I : Σmod+ → ZFC that is a retraction of the inclusion
ZFC ↪→ Σmod+.

Note that this de�nition includes the case when Σ is a theory. In that case,
LF-based models map the axioms in Σmod+ (which stem from the pushout of
Σsyn) to proof terms in ZFC.

De�nition 41 (Encoding Semantics). Assume an LF-based model I of a FOL-
signature Σ and a term or formula E over Σ. Then the LF-based semantics of
E is given by (µΣ µ′Σ I)(pEq), which we also write as JEKI .

Due to the type preservation of LF signature morphism, the LF-based se-
mantics JtKI of a term t is indeed an (encoding of an) element of the universe
and the LF-based semantics JF KI of a formula is an (encoding of a) truth value.

We have a very strict notion of identity between LF-based models inherited
from LF signature morphisms: Two signature morphisms are equal if they agree
for all arguments up to βη-equality. For the representation of models, we need
a more relaxed notion based on whether equality can be proved in ZFC:

De�nition 42 (Equality of Models). Two LF-based model I1 and I2 of a FOL-
signature or theory Σ are provably equal if True I1(U) .=∗I2(U) and all types
True I1(s) .= I2(s) for all function or predicate symbols s of Σ are inhabited.

Note that if Σ is a theory, we do not require the equality of I1(a) and I2(a)
for axioms a, i.e., the proofs of the axioms are irrelevant (as long as they exist).
Similarly, we do not require any equality of I1(P) and I2(P).

Model Reduction. As before, a FOL-signature morphism σ : Σ→ Σ′ is encoded
as an LF signature morphism σsyn : Σsyn → Σ′syn, and pushout along µµ′ yields

37

an LF signature morphism σmod+ : Σmod+ → Σ′mod+. Then our representation
of models as morphisms permits a very elegant representation of model reduction
by composition with σmod+.

Theorem 43 (Encoding Model Reduction). Assume a FOL signature mor-
phism σ : Σ→ Σ′. If I is an LF-based model of Σ′, then σmod+ I is an LF-based
model of Σ. Moreover, for a term or formula E over Σ, we have

JEKσ
mod+ I = Jσ(E)KI .

Proof. Both claims follow immediately from the properties of signature mor-
phisms and the construction of σmod+ by pushout.

Readers familiar with institutions will recognize the second claim as the
satisfaction condition.

Example 44 (Continued). Consider the model Int from Ex. 15. It can be repre-
sented as an LF-based model I : GrpSigmod+ → ZFC. I(U) is the ZFC-term
for the set of integers, which is straightforward to de�ne using the natural num-
bers. I(P) is some proof over ZFC that proves U is non-empty. Then we only
have to de�ne I for the symbols ◦, e, and inv , which are mapped to ZFC-
expressions representing the operations +, 0, and inv on the integers.

Via pushout, the FOL-signature morphism MonGrp : MonSig → GrpSig
from Ex. 5 gives rise to an LF signature morphism MonGrpmod+ : MonSigmod+ →
GrpSigmod+. The encoding of the model reduct Mod(MonGrp)(Int) is obtained
as the composition MonGrpmod+ I as in the following diagram:

FOLmod+ MonSigmod+ GrpSigmod+

MonGrpmod+

ZFC

I

MonGrpmod I agrees with I but is not de�ned for inv .
Alternatively, we can encode Int as a model of the theory Group. That

model must map from Groupmod+ to ZFC, i.e., additionally maps the axioms
of Group to ZFC. These are mapped to proofs that the integers do indeed
satisfy the axioms of a group.

5.5. Adequacy

The encoding of models as signature morphisms raises a di�cult question
based on a simple cardinality argument: There is a proper class of FOL-models
of Σ, but only countably many signature morphisms to encode them. Therefore,
we have to look carefully at the adequacy of our encoding.

First of all we have:

38

Lemma 45. Our encoding of set theory is adequate in the following sense:

• Every closed term t : set induces a set xty.

• Two closed terms s, t induce the same set if the type True s
.=∗t is inhab-

ited.

• For every closed term t : elem A, the set xwhich ty is an element of xAy.

Proof. All claims rely on the assumption that every proof rule of the underlying
�rst-order logic and every axiom in ZFC is sound with respect to the platonic
universe of set theory. For researchers objecting to parts of the encoding (e.g.,
to excluded middle), the corresponding result holds after modifying ZFC.

For the �rst claim, we expand all de�nitions in t. This yields either a term
of the form which (el t′ P), which is provably equal to the smaller term t′ so
that we can recurse, or a term of the form δ F Q. Thus, for every term t : set,
we can obtain a provable formula ∃∗![x]F x ∧ F t. This shows the existence of
a set that t represents. The second claim holds because the existence of a term
inhabiting True s

.=∗t shows that s .=∗t is a provable formula. The third claim
follows easily from the �rst one.

Then we have:

Theorem 46. Assume a FOL-signature Σ. Every LF-based model I induces a
FOL-model xIy.

Proof. The universe of xIy is the set xI(U)y. For Σ-symbols s, the interpretation
of s in xIy is the object xwhich I(s)y.

Whether or not all sets and models are induced by LF-terms and LF-based
models is a philosophical question. If we adopt a formalist or even a construc-
tivist point of view, then the LF-terms are (representatives of) all the sets and
thus the LF-based models are all the models. If we adopt a platonic point of
view, only some models can be encoded, but these include � intuitively � all
models whose components can be written down or named. Furthermore, we can
always create variations of our signature ZFC to accommodate other perspec-
tives. For example, we can add a choice operator to represent models obtained
by applying the axiom of choice.

Then we have the following adequacy results for those models that can be
represented:

De�nition 47. A FOL-model M is de�nable if M = xIy for some LF-based
model I. In that case we also write I = pMq.

Theorem 48 (Adequacy for Model Theory). For every de�nable FOL-model
M of Σ, and every term or formula E over Σ:

JEKM = xJEKpMqy

39

Proof. This is straightforward from the de�nitions. The only subtlety is to
show that xJEKpMqy does not depend on which LF-based model is chosen for
pMq. But that is the case because any two possible choices must be provably
equal.

Theorem 49 (Adequacy for Model Reduction). For every FOL-signature mor-
phism σ : Σ→ Σ′ and every de�nable FOL-model M ′ of Σ′:

Mod(σ)(M ′) = xσmod+ pM ′qy

In particular, reducts of de�nable models are de�nable.

Proof. This is straightforward from the de�nitions.

Finally, even though we may not be able to encode all models, we can ade-
quately encode the property of being a model theoretical theory morphism:

Theorem 50 (Adequacy for Model Theoretical Theory Morphisms). For a

FOL-signature morphism σ : Σ → Σ′, we have σ : (Σ,Θ) M→ (Σ′,Θ′) i�
σmod+ : Σmod+ → Σ′mod+ can be extended to an LF signature morphism
ϑ : (Σ,Θ)mod+ → (Σ′,Θ′)mod+.

Proof. Consider the following commutative diagram, where as before σsyn :
Σsyn → Σ′syn is the encoding of σ and all mod+-nodes arise as pushouts of the
corresponding syn-node along µµ′ : Lsyn → Lmod+:

Σsyn Σ′syn

(Σ,Θ)syn (Σ′,Θ′)syn

σsyn

Σmod+ Σ′mod+

(Σ,Θ)mod+ (Σ′,Θ′)mod+

σmod+

ϑ

The claim is that σ is a model theoretical theory morphism i� such a ϑ exists.
The right-to-left direction is easy: ϑ contains proof terms that show that the

reduct of a (Σ′,Θ′)-model satis�es all the axioms of Θ.
To show the converse direction, recall that we only consider �nite theories,

and observe that given Σ, Θ, Σ′, Θ′, and σ, we can write the following formula
in the �rst-order language of ZFC.

f = ∀U, s1, . . . , sn.(M ′(U, s1, . . . , sn) ∧
∧
iA
′
i(U, s1, . . . , sn))

⇒ (M(U, σ1, . . . , σm) ∧
∧
iAi(U, σ1, . . . , σm))

40

Here m is the number of function and predicate symbols declared in Σ; Σ′

declares function and predicate symbols named s1, . . . , sn; M(x, y1, . . . , ym) ex-
presses that (x, y1, . . . , ym) is a Σ-model with universe x; Ai(x, y1, . . . , ym) ex-
presses that said Σ-model satis�es the i-th axiom in Θ; M ′(x, y1, . . . , yn) and
A′i(x, y1, . . . , yn) are de�ned accordingly for Σ′ and Θ′; and σi ∈ {s1, . . . , sn} is
the result of applying σ to si.

Then f is a theorem over ZFC i� σ is a model-theoretical theory morphism.
So assume a proof of f , from which we obtain a corresponding LF proof term p
over the signature ZFC.

Moreover, over the signature Σ′mod+, which extends ZFC, we have a proof
term q provingM ′(U, s1, . . . , sn)∧

∧
iA
′
i(U, s1, . . . , sn). From p and q, we obtain

a Σ′mod+-proof term ri proving Ai(U, σ1, . . . , σn) for the i-th axiom in Θ. By
putting ϑ(ai) = ri, we obtain the needed LF signature morphism.

The above proof rests on the philosophical assumption that a statement
about ZFC � in this case, the statement σ : (Σ,Θ) M→ (Σ′,Θ′) � can only be
true if there is a proof of it in the �rst-order language of ZFC. Moreover, we
assume that this �rst-order language is indeed the one that we encoded in ZFC.
Researchers working with a di�erent variant of set theory can apply Thm. 50
accordingly after modifying ZFC.

Finally, observe that the proof depends on the ability to switch between
the internal representation of models � the tuples (U, s1, . . . , sn), which can be
encoded as LF terms over ZFC � and the external representation of models as
LF signature morphisms into ZFC.

6. Related Work

There are formalizations of the semantics of formal languages in various
frameworks. For example, in [BKV09], a simple functional programming lan-
guage is formalized in Coq ([BC04]). In [MNvOS99], a simple while-language
is formalized in Isabelle/HOL ([NPW02]). Both use domain-theoretical models
formalized based on posets where we use set theoretical models. In [CD97],
simple type theory is formalized in ALF ([MN94]) using the normalization-by-
evaluation method. They use a glued model in which interpretations are paired
with normal forms. A similar result was obtained in [Coq02] using Kripke mod-
els.

Although the settings of these results are very di�erent from each other's and
from ours, all approaches are quite similar in that they de�ne syntax and models
and give an interpretation function satisfying a soundness property. A novelty
of our approach is to base the models on an explicitly formalized foundation:
We formalize set theory and use sets as the universes of the models. In the cited
formalizations, on the other hand, the universes are types of the framework's
type theory, which thus acts as an implicit foundation. Our approach makes the
foundation �exible and avoids such an implicit commitment. For example, we
could represent the cited formalizations in LF using an LF signature for Coq,
Isabelle/HOL, or ALF, respectively, instead of the one for set theory.

41

Another di�erence is that the cited approaches all represent the interpreta-
tion function as a function of the framework's type theory. As this is impossible
in LF, we use LF signature morphisms, which are less �exible but provide an
elegant characterization of sound interpretation functions.

Dually, there are other formalizations of the semantics of formal languages in
Twelf. In [App01], a formalization of HOL in Twelf is used to de�ne the seman-
tics of a machine language for proof-carrying code. This work does not focus on
the separation of syntax, models, and interpretation. Instead, all notions are in-
troduced as de�nitional extensions of HOL. From our perspective, they use HOL
as the foundation and de�ne the models by extending HOL whereas syntax and
interpretation function are left implicit. In [LCH07], an SML-equivalent lan-
guage is given, and state-transition systems are used to formalize the evaluation
of expressions. These corresponds to our models, but they are not strictly sepa-
rated from the syntax as in our case. Like our views, the interpretation function
and soundness proof live on the meta-level: They are given by a number of logic
programs formalized in the Twelf meta-theory. Despite their formidable sizes,
both these Twelf developments are monolithic because they predate the module
system.

Regarding our speci�c encodings, the encodings of �rst-order syntax and
proof theory are straightforward and well-known (see, e.g., [HHP93]). Only the
systematic use of modularity is novel. Our encoding of HOL is well-known,
too, but note that there are two �avors of HOL, both based on simple type
theory. The most common one based on [Chu40] treats propositions as terms of
a special type prop. In LF, that would correspond to the declaration prop : set.
This �avor is used in, e.g., [HST94, App01, Har96, NPW02]. The advantage
is that the connectives and quanti�ers can be introduced as HOL-terms. Our
variant with prop : type treats propositions as external to the type theory, i.e.,
propositions are not HOL-terms. This is more general and necessary to treat
HOL as a fragment of �rst-order set theory where propositions and sets are
strictly separated.

Our encoding of set theory is novel both in general and in the context of
Twelf. The most advanced other formalizations of set theories are the ones in
Mizar ([TB85]) and Isabelle/ZF ([PC93]). Scunak ([Bro06]) is a recent system
developed speci�cally to exploit dependent type theory when encoding set the-
ory. We discussed the di�erences between these and our encoding in Sect. 5.1.
Other ways to encode set theory in dependently-typed frameworks use the frame-
work's type theory as the foundation of mathematics, as in [Acz78]. Such en-
codings can be mechanized in systems like Agda and Coq, see e.g., [Gri09].

The main advantage of these other systems over LF/Twelf is that they pro-
vide a stronger notion of de�nitional equality and (semi-)automated proof sup-
port. For example, Isabelle, Agda, and Coq permit the declaration of recursive
functions that are evaluated automatically by the framework. Scunak imple-
ments the proof irrelevance we axiomatize in Sect. 5.1.3. All of them are con-
nected to automated or semi-automated proof tools or provide tactic languages.
LF, on the other hand, is ontologically much simpler, even minimalistic. Con-

42

sequently, proof terms are fully explicit and more complicated to construct by
hand. But LF (as well as Scunak) can bene�t from the use of higher-order
abstract syntax, which simpli�es the reasoning about adequacy relative to tra-
ditional mathematics.

Finally, the idea of encoding models as morphisms goes back to Lawvere's
work on functorial models ([Law63]) and the work on initial algebra semantics,
e.g., in [GTW78]. While these have been developed in logical frameworks on
paper before, e.g., in [MTP97] and [GMdP+07], our work marks the �rst time
that they can be formalized and machine-checked in a logical framework.

7. Conclusion

We have given a comprehensive representation of �rst-order logic in a logi-
cal framework. Contrary to previous work, our representation covers both the
proof and the model theoretical semantics given as provability and satisfaction,
respectively. For example, the framework of institutions has been applied to
the model theoretical semantics ([GB92]), and the framework LF to the proof
theoretical semantics ([HHP93]), but a comprehensive representation has so far
been lacking. This was due to the large ontological and philosophical di�erences
between these two views on logic.

These di�erences are so big that we needed three major preliminary e�orts to
make this representation possible. In [Rab08, Rab10], we conceived the logical
framework combining model and proof theory that we have built upon here. In
[RS09], we gave the LF and Twelf module system that we used to implement the
representation. In fact, our work is the largest case study in the Twelf module
system to date. And �nally, we needed a representation of a foundation of
mathematics, which we have described in Sect. 5.1. These combine to a strong
and �exible framework whose potential is exempli�ed by the representation of
FOL we have given.

Our work will leverage future representations in two ways. Firstly, frame-
work design and implementation are in place now, and this paper provides a
detailed template how to represent logics. In fact, we have started this al-
ready ([KMR09]), and we expect further successes fast. Secondly, the Twelf
module system permits the reuse of existing representation fragments. Our rep-
resentation has separated all language features into independent and reusable
components so that further logics can be represented by only adding individual
language features such as sorted quanti�cation or simple function types. More-
over, the meta-language for the model theory and its interpretation in ZFC set
theory are composed modularly as well. Therefore, they cannot only be reused
for many other logics but can also be re�ned �exibly if a more expressive meta-
language or a di�erent foundation of mathematics are needed. For example,
we could easily extend the meta-language from HOL to a dependently-typed
DHOL for a particular logic representation.

An important application of logical frameworks is to use the logic represen-
tations to reason about the represented logic. To that e�ect, we gave adequacy

43

results for syntax, proof theory, and model theory, and for the respective trans-
lations along morphisms. We gave a criterion to prove the soundness of a logic
within the framework, and we used this to give a fully machine-veri�ed sound-
ness proof of �rst-order logic. A similar treatment of completeness remains
future work.

Finally our work is part of a larger e�ort to obtain an atlas of logics and trans-
lations between them. Our work explains and exempli�es how logics, foundation,
and models should be represented. A similar case study for logic translations is
given recently in [Soj10]. Within the LATIN project ([KMR09]), our results will
be integrated with the heterogeneous speci�cation tool Hets ([MML07]) and the
scalable Web infrastructure based on the markup language OMDoc ([Koh06]).

[ACTZ06] A. Asperti, C. Sacerdoti Coen, E. Tassi, and S. Zacchiroli. Craft-
ing a Proof Assistant. In T. Altenkirch and C. McBride, editors,
TYPES, pages 18�32. Springer, 2006.

[Acz78] P. Aczel. The Type Theoretic Interpretation of Constructive Set
Theory. In A. Macintyre, L. Pacholski, and J. Paris, editors, Logic
Colloquium '77, pages 55�66. North-Holland, 1978.

[AHMP98] A. Avron, F. Honsell, M. Miculan, and C. Paravano. Encoding
modal logics in logical frameworks. Studia Logica, 60(1):161�208,
1998.

[AHMS99] S. Autexier, D. Hutter, H. Mantel, and A. Schairer. Towards
an Evolutionary Formal Software-Development Using CASL. In
D. Bert, C. Choppy, and P. Mosses, editors, WADT, volume 1827
of Lecture Notes in Computer Science, pages 73�88. Springer, 1999.

[App01] A. Appel. Foundational Proof-Carrying Code. In 16th Annual
IEEE Symposium on Logic in Computer Science, pages 247�258.
IEEE, 2001.

[Bar92] H. Barendregt. Lambda calculi with types. In S. Abramsky,
D. Gabbay, and T. Maibaum, editors, Handbook of Logic in Com-
puter Science, volume 2. Oxford University Press, 1992.

[BC04] Y. Bertot and P. Castéran. Coq'Art: The Calculus of Inductive
Constructions. Springer, 2004.

[Ber37] P. Bernays, 1937. Seven papers between 1937 and 1954 in the
Journal of Symbolic Logic.

[BKV09] N. Benton, A. Kennedy, and C. Varming. Some Domain Theory
and Denotational Semantics in Coq. In S. Berghofer, T. Nipkow,
C. Urban, and M. Wenzel, editors, Theorem Proving in Higher
Order Logics, volume 5674 of Lecture Notes in Computer Science,
pages 115�130. Springer, 2009.

44

[Bro06] C. Brown. Combining Type Theory and Untyped Set Theory. In
U. Furbach and N. Shankar, editors, International Joint Confer-
ence on Automated Reasoning, pages 205�219. Springer, 2006.

[CD97] T. Coquand and P. Dybjer. Intuitionistic model constructions and
normalization proofs. Mathematical Structures in Computer Sci-
ence, 7(1):75�94, 1997.

[CF58] H. Curry and R. Feys. Combinatory Logic. North-Holland, Ams-
terdam, 1958.

[CH88] T. Coquand and G. Huet. The Calculus of Constructions. Infor-
mation and Computation, 76(2/3):95�120, 1988.

[Chu40] A. Church. A Formulation of the Simple Theory of Types. Journal
of Symbolic Logic, 5(1):56�68, 1940.

[Coq02] C. Coquand. A Formalised Proof of the Soundness and Complete-
ness of a Simply Typed Lambda-Calculus with Explicit Substitu-
tions. Higher-Order and Symbolic Computation, 15(1):57�90, 2002.

[dB70] N. de Bruijn. The Mathematical Language AUTOMATH. In
M. Laudet, editor, Proceedings of the Symposium on Automated
Demonstration, volume 25 of Lecture Notes in Mathematics, pages
29�61. Springer, 1970.

[Dia06] R. Diaconescu. Proof systems for institutional logic. Journal of
Logic and Computation, 16(3):339�357, 2006.

[FGT92] W. Farmer, J. Guttman, and F. Thayer. Little Theories. In D. Ka-
pur, editor, Conference on Automated Deduction, pages 467�581,
1992.

[Fra22] A. Fraenkel. The notion of 'de�nite' and the independence of the
axiom of choice. 1922.

[GB86] J. Goguen and R. Burstall. A study in the foundations of pro-
gramming methodology: speci�cations, institutions, charters and
parchments. In D. Pitt, S. Abramsky, A. Poigné, and D. Ryde-
heard, editors, Workshop on Category Theory and Computer Pro-
gramming, pages 313�333. Springer, 1986.

[GB92] J. Goguen and R. Burstall. Institutions: Abstract model theory
for speci�cation and programming. Journal of the Association for
Computing Machinery, 39(1):95�146, 1992.

[GMdP+07] J. Goguen, T. Mossakowski, V. de Paiva, F. Rabe, and L. Schröder.
An Institutional View on Categorical Logic. International Journal
of Software and Informatics, 1(1):129�152, 2007.

45

[Göd40] K. Gödel. The Consistency of Continuum Hypothesis. Annals of
Mathematics Studies, 3:33�101, 1940.

[Gon06] G. Gonthier. A computer-checked proof of the four colour theorem,
2006. http://research.microsoft.com/~gonthier/.

[Gor88] M. Gordon. HOL: A Proof Generating System for Higher-Order
Logic. In G. Birtwistle and P. Subrahmanyam, editors, VLSI
Speci�cation, Veri�cation and Synthesis, pages 73�128. Kluwer-
Academic Publishers, 1988.

[GR02] J. Goguen and G. Rosu. Institution morphisms. Formal Aspects
of Computing, 13:274�307, 2002.

[Gri09] J. Grimm. Implementation of Bourbaki's Elements of Mathematics
in Coq: Part One, Theory of Sets. Technical Report HAL:inria-
00408143, INRIA, 2009.

[GTW78] J. Goguen, J. Thatcher, and E. Wagner. An initial algebra ap-
proach to the speci�cation, correctness and implementation of ab-
stract data types. In R. Yeh, editor, Current Trends in Program-
ming Methodology, volume 4, pages 80�149. Prentice Hall, 1978.

[Hal03] T. Hales. The �yspeck project, 2003. See http://code.google.

com/p/flyspeck/.

[Har96] J. Harrison. HOL Light: A Tutorial Introduction. In Proceed-
ings of the First International Conference on Formal Methods in
Computer-Aided Design, pages 265�269. Springer, 1996.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for de�n-
ing logics. Journal of the Association for Computing Machinery,
40(1):143�184, 1993.

[How80] W. Howard. The formulas-as-types notion of construction. In To
H.B. Curry: Essays on Combinatory Logic, Lambda-Calculus and
Formalism, pages 479�490. Academic Press, 1980.

[HR09] F. Horozal and F. Rabe. Representing Model Theory in a Type-
Theoretical Logical Framework. In Fourth Workshop on Logical
and Semantic Frameworks, with Applications, volume 256 of Elec-
tronic Notes in Theoretical Computer Science, pages 49�65, 2009.

[HST94] R. Harper, D. Sannella, and A. Tarlecki. Structured presenta-
tions and logic representations. Annals of Pure and Applied Logic,
67:113�160, 1994.

[KMR09] M. Kohlhase, T. Mossakowski, and F. Rabe. The LATIN Project,
2009. See https://trac.omdoc.org/LATIN/.

46

http://research.microsoft.com/~gonthier/
http://code.google.com/p/flyspeck/
http://code.google.com/p/flyspeck/
https://trac.omdoc.org/LATIN/

[Koh06] M. Kohlhase. OMDoc: An Open Markup Format for Mathemat-
ical Documents (Version 1.2). Number 4180 in Lecture Notes in
Arti�cial Intelligence. Springer, 2006.

[Lan98] S. Mac Lane. Categories for the working mathematician. Springer,
1998.

[Law63] F. Lawvere. Functional Semantics of Algebraic Theories. PhD
thesis, Columbia University, 1963.

[LCH07] D. Lee, K. Crary, and R. Harper. Towards a mechanized metathe-
ory of Standard ML. In M. Hofmann and M. Felleisen, editors,
Symposium on Principles of Programming Languages, pages 173�
184. ACM, 2007.

[LP09] W. Lovas and F. Pfenning. Re�nement Types as Proof Irrelevance.
In P. Curien, editor, Typed Lambda Calculi and Applications, vol-
ume 5608 of Lecture Notes in Computer Science, pages 157�171.
Springer, 2009.

[Mes89] J. Meseguer. General logics. In H.-D. Ebbinghaus et al., edi-
tors, Proceedings, Logic Colloquium, 1987, pages 275�329. North-
Holland, 1989.

[MGDT05] T. Mossakowski, J. Goguen, R. Diaconescu, and A. Tarlecki. What
is a logic? In J. Béziau, editor, Logica Universalis, pages 113�133.
Birkhäuser Verlag, 2005.

[ML74] P. Martin-Löf. An Intuitionistic Theory of Types: Predicative
Part. In Proceedings of the '73 Logic Colloquium, pages 73�118.
North-Holland, 1974.

[ML96] P. Martin-Löf. On the meanings of the logical constants and the
justi�cations of the logical laws. Nordic Journal of Philosophical
Logic, 1(1):3�10, 1996.

[MML07] T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous
Tool Set. In O. Grumberg and M. Huth, editor, TACAS 2007,
volume 4424 of Lecture Notes in Computer Science, pages 519�
522, 2007.

[MN94] L. Magnusson and B. Nordström. The ALF proof editor and its
proof engine. In H. Barendregt and T. Nipkow, editors, Types for
Proofs and Programs, volume 806 of Lecture Notes in Computer
Science, pages 213�237. Springer, 1994.

[MNvOS99] O. Müller, T. Nipkow, D. von Oheimb, and O. Slotosch.
HOLCF=HOL+LCF. Journal of Functional Programming,
9(2):191�223, 1999.

47

[MTP97] T. Mossakowski, A. Tarlecki, and W. Pawlowski. Combining and
Representing Logical Systems. In E. Moggi and G. Rosolini,
editors, Category Theory and Computer Science, pages 177�196.
Springer, 1997.

[Nip02] T. Nipkow. Structured Proofs in Isar/HOL. In H. Geuvers and
F. Wiedijk, editors, TYPES conference, pages 259�278. Springer,
2002.

[Nor05] U. Norell. The Agda WiKi, 2005. http://wiki.portal.

chalmers.se/agda.

[NPW02] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL � A Proof
Assistant for Higher-Order Logic. Springer, 2002.

[NSM01] P. Naumov, M. Stehr, and J. Meseguer. The HOL/NuPRL proof
translator - a practical approach to formal interoperability. In
14th International Conference on Theorem Proving in Higher Or-
der Logics. Springer, 2001.

[Pau94] L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
Lecture Notes in Computer Science. Springer, 1994.

[PC93] L. Paulson and M. Coen. Zermelo-Fraenkel Set Theory, 1993. Is-
abelle distribution, ZF/ZF.thy.

[Pfe00] F. Pfenning. Structural cut elimination: I. intuitionistic and clas-
sical logic. Information and Computation, 157(1-2):84�141, 2000.

[PS99] F. Pfenning and C. Schürmann. System description: Twelf - a
meta-logical framework for deductive systems. Lecture Notes in
Computer Science, 1632:202�206, 1999.

[Rab08] F. Rabe. Representing Logics and Logic Translations. PhD the-
sis, Jacobs University Bremen, 2008. Available at http://kwarc.
info/frabe/Research/phdthesis.pdf.

[Rab10] F. Rabe. A Logical Framework Combining Model and Proof The-
ory. To be submitted, see http://kwarc.info/frabe/Research/
rabe_combining_09.pdf, 2010.

[RS09] F. Rabe and C. Schürmann. A Practical Module System for LF.
In J. Cheney and A. Felty, editors, Proceedings of the Workshop on
Logical Frameworks: Meta-Theory and Practice (LFMTP), pages
40�48. ACM Press, 2009.

[Soj10] K. Sojakova. Toward Mechanically Verifying Logic Translations,
2010. Master's thesis, Jacobs University Bremen.

48

http://wiki.portal.chalmers.se/agda
http://wiki.portal.chalmers.se/agda
http://kwarc.info/frabe/Research/phdthesis.pdf
http://kwarc.info/frabe/Research/phdthesis.pdf
http://kwarc.info/frabe/Research/rabe_combining_09.pdf
http://kwarc.info/frabe/Research/rabe_combining_09.pdf

[SW83] D. Sannella and M. Wirsing. A Kernel Language for Algebraic
Speci�cation and Implementation. In M. Karpinski, editor, Fun-
damentals of Computation Theory, pages 413�427. Springer, 1983.

[Tar33] A. Tarski. Poj¦cie prawdy w j¦zykach nauk dedukcyjnych.
Prace Towarzystwa Naukowego Warszawskiego Wydzial III Nauk
Matematyczno-Fizycznych, 34, 1933. English title: The concept of
truth in the languages of the deductive sciences.

[Tar38] A. Tarski. Über Unerreichbare Kardinalzahlen. Fundamenta Math-
ematicae, 30:176�183, 1938.

[Tar96] A. Tarlecki. Moving between logical systems. In M. Haveraaen,
O. Owe, and O.-J. Dahl, editors, Recent Trends in Data Type Spec-
i�cations. 11th Workshop on Speci�cation of Abstract Data Types,
volume 1130 of Lecture Notes in Computer Science, pages 478�502.
Springer Verlag, 1996.

[TB85] A. Trybulec and H. Blair. Computer Assisted Reasoning with
MIZAR. In A. Joshi, editor, Proceedings of the 9th International
Joint Conference on Arti�cial Intelligence, pages 26�28, 1985.

[Try89] A. Trybulec. Tarski Grothendieck Set Theory. Journal of Formal-
ized Mathematics, Axiomatics, 1989.

[TV56] A. Tarski and R. Vaught. Arithmetical extensions of relational
systems. Compositio Mathematica, 13:81�102, 1956.

[vN25] J. von Neumann. Eine Axiomatisierung der Mengenlehre. Journal
für die reine und angewandte Mathematik, 154:219�240, 1925.

[Wie67] N. Wiener. A Simpli�cation of the Logic of Relations. In J. van
Heijenoort, editor, From Frege to Gödel, pages 224�227. Harvard
Univ. Press, 1967.

[Wie07] F. Wiedijk. Mizar's Soft Type System. In K. Schneider and
J. Brandt, editors, Theorem Proving in Higher Order Logics, vol-
ume 4732 of Lecture Notes in Computer Science, pages 383�399.
Springer, 2007.

[Zer08] E. Zermelo. Untersuchungen über die Grundlagen der Mengen-
lehre I. Mathematische Annalen, 65:261�281, 1908. English title:
Investigations in the foundations of set theory I.

49

	1 Introduction
	2 Preliminaries
	2.1 First-Order Logic
	2.2 LF and Twelf

	3 A Logical Framework Combining Proof and Model Theory
	4 Representing First-Order Logic
	4.1 Syntax
	4.2 Proof Theory
	4.3 A Meta-Language for the Representation of Model Theory
	4.4 Model Theory
	4.5 Adequacy
	4.6 Soundness

	5 Representing Set-Theoretical Model Theory
	5.1 Representing Set Theory
	5.2 Viewing Higher-Order Logic in Set Theory
	5.3 Viewing Model Theory in Set Theory
	5.4 Representing Model Theory
	5.5 Adequacy

	6 Related Work
	7 Conclusion

