
Representing Model Theory in a

Type-Theoretical Logical Framework

Fulya Horozal and Florian Rabe

Jacobs University Bremen, Germany

Abstract

We give a comprehensive formal representation of �rst-order logic using the recently developed module
system for the Twelf implementation of the Edinburgh Logical Framework LF. The module system places
strong emphasis on signature morphisms as the main primitive concept, which makes it particularly useful
to reason about structural translations, which occur frequently in proof and model theory.
Syntax and proof theory are encoded in the usual way using LF's higher order abstract syntax and
judgments-as-types paradigm, but using the module system to treat all connectives and quanti�ers in-
dependently. The di�culty is to reason about the model theory, for which the mathematical foundation in
which the models are expressed must be encoded itself. We choose a variant of Martin-Löf's type theory
as this foundation and use it to axiomatize �rst-order model theoretic semantics. Then we can encode the
soundness proof as a signature morphism from the proof theory to the model theory. We extend our results
to models given in terms of set theory by encoding Zermelo-Fraenkel set theory in LF and giving a signature
morphism from Martin-Löf type theory into it. All encodings are given explicitly and can thus be checked
mechanically.
Our results demonstrate the feasibility of comprehensively formalizing large scale representation theorems
and thus promise signi�cant future applications.

1 Introduction

Since the Grundlagenkrise of mathematics logic has been an important research topic

in mathematics and computer science. A central issue has always been what a logic

actually is. Important research results to answer this question are logical frameworks

� abstract formalisms that permit the formal de�nition of speci�c logics.

Today we observe that there are two groups of logical frameworks: those based

on set theoretical foundations of mathematics that characterize logics model theoret-

ically, and those based on type theoretical foundations that characterize logics proof

theoretically. The former go back to Tarski's view of consequence ([Tar33,TV56])

with institutions ([GB92,GR02]) and general logics ([Mes89]) being the most impor-

tant examples. The latter are usually based on the Curry-Howard correspondence

([CF58,How80]), examples being Automath ([dB70]), Isabelle ([Pau94]), and the

Edinburgh Logical Framework (LF, [HHP93]).

While some model-theoretical frameworks attempt to integrate proof theory (e.g.,

Preprint submitted to Electronic Notes in Theoretical Computer Science 20 April 2009

[Mes89,MGDT05,Dia06]), the opposite integration is less developed. This is unfortu-

nate because many of the results and techniques developed for proof theoretical logics

could also bene�t model-theoretical reasoning. We are particularly interested in logic

encodings in LF, which is related to Martin-Löf type theory (MLTT). These rep-

resent syntax and proof theoretical semantics of a logic using higher order abstract

syntax and the judgments-as-types paradigm ([ML96]). This has proved very suc-

cessful for proof-theoretical logic representations ([Pfe00,HST94,AHMP98,NSM01]).

In [Rab09], we introduced a framework that attempts to preserve and exploit the

respective advantages of model and proof theoretical representation. The central

idea is to also represent the model theory of a logic in a type-theoretical logical

framework by axiomatizing models and the interpretation of formulas using MLTT

as a meta-language.

In this paper we show how to implement and reason about such logic represen-

tations in LF. We pick LF because we have recently equipped the Twelf implemen-

tation of LF with a strong module system [RS09]. This module system is rigorously

based on theory morphisms, which have proved very successful to reason about

model-theoretical logic representations (e.g., [GB92,AHMS99,SW83]). Therefore, it

is particularly appropriate for the modular development of syntax, proof theory, and

models, and the translations between them.

In Sect. 2, we describe the Twelf system and its module system, and in Sect. 3, we

describe how logics are represented in it. Our main result is the full representation

of �rst-order logic (FOL) in Sect. 4: It comprises syntax, proof theory, model theory,

and soundness proof of �rst-order logic, all of which use the module system to treat

all connectives and quanti�ers independently. In particular, the soundness is veri�ed

mechanically by Twelf. In Sect. 5, we go one step further: We show how to encode

both Zermelo-Fraenkel set theory (ZFC) and a translation from MLTT to ZFC in

LF. Thus, we can represent set-theoretical models as LF theory morphisms and

reason about them within the logical framework.

2 The Twelf System

The Twelf system is an implementation of the logical framework LF designed as a

meta-language for the representation of deductive systems. It is a dependent type

theory with typed terms and kinded type families.

Kinds: K ::= type | A→ K

Type families: A,B ::= a | A M | Πx:AB | A→ B

Objects: M,N ::= c | x | λx:AM |M N

Twelf features the dependent product type constructor Πx:AB and its introduc-

tory axiom, the λ-binder λx:AM . As usual, application is written as iuxtaposition

M N . A→ B abbreviates Πx:AB if x does not occur freely in B. Type families are

kinded by kinds, where types are the type families kinded by type, and objects are

typed by types.

Twelf signatures contain declarations of type- or object-level constants. Con-

2

stants are declared in the form of declarations a : K or c : A, or de�nitions a : K = A

or c : A = M . Variables x : A are typed, never kinded.

The Twelf module system permits to use multiple named signatures that can

be related via inheritance, i.e., structures, and translations, i.e., views. Readers

familiar with modular theory development languages such as development graphs

([AHMS99]) will recognize structures as de�nitional theory morphisms and views as

postulated theory morphisms. The grammar is given in Fig. 1 and explained below.

Signature graph G ::= · | G, DT | G, Dv

Signature DT ::= T := {Σ}
View Dv ::= v : T → T := {σ}

Signature body Σ ::= · | Σ, Dc | Σ, Ds | Σ, DI

Constant Dc ::= c : C | c : C := C
Structure Ds ::= s : T := {σ}
Inclusion DI ::= include T
Assignment list σ ::= · | σ, c := C | σ, s := µ

Term C ::= kind, type family, or object
Morphism µ ::= s | v | µµ

Quali�ed identi�ers c ::= s.s.c
s ::= s.s.s

Identi�ers T, v, c, s

Fig. 1. The Grammar for Expressions

We will give all larger listings of signatures in Twelf's concrete syntax as given

below. Keywords are introduced with % and precede all declarations except for

constant declarations. The Π-binder is written with braces {}, the λ-binder with

square brackets [].

Signatures: DT ::= %sig T = { (Dc | Ds | DI)
∗ }.

Views: Dv ::= %view v : S -> T = { (c := C | %struct s := µ)∗ }.
Inclusions: DI ::= %include T.
Constants: Dc ::= c : C. | c : C = C.
Structures: Ds ::= %struct s : S = { (c := C. | %struct s := µ.)∗ }.
Expressions: C ::= type | c | x | C -> C | C C | {x:C} C | [x:C] C

An inheritance relation from signature S to signature T is represented by a

structure declaration occurring within T , which creates a possibly translated copy of

S. The copied constants are accessible by quali�ed names formed by pre�xing the

structure name. The declaration of a structure s induces a signature morphism from

the instantiated signature S to its containing signature, which maps every constant

c of S to s.c.

For example, consider the following signature declarations, which we will reuse

later on. Base contains a type o for formulas and an o-indexed type family ded. This

type family exempli�es how logic encodings in LF represent judgments as types and

derivations as objects: Objects of type dedA represent derivations of the judgment

3

�A is true�.
%sig Base = {

o : type.
ded : o -> type.

}.
%sig NEG = {

%struct base : Base.
¬ : base.o -> base.o.

}.

The signature NEG encodes the negation con-

nective by inheriting from Base with a structure

called base and adding the constant ¬ encoding

the unary negation connective. Then the signature

NEGPF encodes natural deduction style proof rules

for it. Firstly, it inherits from Base and NEG where

the instantiation %struct base := base. in the structure neg works as follows:

The left side of the instantiation is a symbol declared in the domain signature �

here: NEG � and the right side is an expression over the codomain signature � here:

NEGPF. This instantiation has the e�ect of a sharing declaration: The two struc-

tures base and neg.base inheriting from Base are identi�ed. Secondly, it declares

the constants notI and notE encoding the introduction and the elimination rule of

negation.

%sig NEGPF = {
%struct base : Base.
%struct neg : NEG = {% struct base := base .}.
notI : (base.ded A -> {B} base.ded B) -> base.ded (neg.¬ A).
notE : base.ded A -> base.ded (neg.¬ A) -> {B} base.ded B.

}.

Note that we use implicit arguments: Upper case free variables in declarations are

assumed be implicitly Π-bound on the outside. This has the e�ect of free parameters.

For example, in notE, the variable A is free. The verbal reading of the rule is �For

any A, if A is true and ¬A is true, then for all B we have B is true �.

Twelf computes the semantics of the modular signatures by elaborating them to

the non-modular syntax. For example, NEGPF is equivalent to

%sig NEGPF2 = {
base.o : type.
base.ded : base.o -> type.
neg.base.o : type = base.o.
neg.base.ded : neg.base.o -> type = base.ded.
neg.¬ : neg.base.o -> neg.base.o.
notI : (base.ded A -> {B} base.ded B) -> base.ded (neg.¬ A).
notE : base.ded (neg.¬ A) -> base.ded A -> {B} base.ded B.

}.

A special case of inheritance relation is the include declaration. The declaration

%include S occurring in T creates an inclusion from S to T . This is similar to a

structure declaration but simpler and only possible in certain cases. If a signature

is included in multiple ways, all inclusions are identi�ed. Therefore, a symbol c

included from S into T is identi�ed uniquely by the name S..c.

A translation relation between two signatures is encoded by view declarations. A

view is similar to a structure except that it occurs on toplevel and gives domain and

codomain explicitly. Views must instantiate all constants (except those that have

de�nitions) of the domain signature with expressions of the codomain signature.

Views induce signature morphisms in the obvious way.

Finally, we call a list of (names of) structures or views a morphism. Its semantics

4

is that of the diagram-order composition of the signature morphisms induced by its

components. Structure names may be quali�ed, e.g., above the structure neg.base

is a morphism from Base to NEGPF; it is an abbreviation of the composition of

the morphism induced by the structure base of NEG and the morphism induced

by the structure neg of NEGPF. Morphisms preserve all judgments regarding well-

formedness, typing, and equality (see [HST94,RS09] for the preservation results).

3 A Logical Framework Combining Proof and Model

Theory

Since the structuring concepts of the Twelf module system are based on signature

morphisms, we can obtain very elegant encodings of mathematical concepts that are

de�ned in terms of signature morphisms. One example is the logical framework we

gave in [Rab09].

Lsyn

Lpf

Lmodlmod

lpf
A representation of a logic L in this framework consists

of three signatures: Lsyn for the syntax, Lpf for the proof

theory, and Lmod for the model theory. These are related by

signature morphisms that translate from Lsyn to the others

as in the diagram on the right. The morphism lpf is typically

just an inclusion; this is in keeping with the practice of logic

encodings in LF where syntax and proof theory are closely related. The morphism

lmod interprets the syntax in the semantic realm. In particular, lmod maps o to a type

encoding the set of truth values of L. Therefore, Lmod must contain an encoding of

the mathematical foundation in which the models are expressed, which makes lmod

typically more complicated than lpf .

For example, for propositional logic with only negation, Lsyn and Lpf could be

the signatures NEG and NEGPF from Sect. 2. lpf would be the morphism induced by

the structure neg of NEGPF. Lmod could be a signature formalizing the two-element

boolean lattice. Note that this formalization might be carried out in some other

logic, e.g., �rst-order logic, which would have to be included in Lmod. Alternatively,

Lmod could include a full axiomatization of set theory; then lmod could map base.o

to the set {0, 1}.

Lsyn

Lpf

Lmod

Σsyn

Σpf

Σmodlmod

lpf
A speci�c theory Σ of L is represented as an

extension of L. This corresponds to the uni-

form logic encodings in LF given in [HST94].

For example, signatures of propositional logic

are sets of propositional variables, and the set

Σ = {p1, . . . , pn} is encoded as the LF-signature

Lsyn, p1 : o, . . . , pn : o. The corresponding extensions Σpf and Σmod of Lpf and

Lmod lead to the diagram on the right.

With two further assumptions, it becomes possible to represent all aspects of L

in LF: Lsyn should contain a type o and a type family ded : o → type, which have

the same intuition as explained for the signature Base in Sect. 2.

Then Σ-sentences are represented as β-η-normal LF-terms of type o over the

5

signature Σsyn. Σ-proofs of A using assumptions A1, . . . , An are represented as β-

η-normal LF-terms over Σpf of type lpf (ded A1 → . . . → ded An → ded A) where

lpf (−) denotes morphism application.

Σ-models are represented as LF-models of the signature Σmod. Such a model I

interprets all types A as sets [A]I and all terms s of type A as elements [s]I ∈ [A]I .
The details can be found in [Rab09] and [AR09]. Finally, the satisfaction I |=Σ A

of the Σ-sentence A in the Σ-model I is represented by the condition [ded A]I 6= ∅.
Note how the type ded A is used to represent truth both proof- and model-

theoretically. Proof-theoretically, elements of type ded A represent proofs of A.

And model-theoretically, and [ded] : [o]→ Set acts as a predicate on the set of truth

values singling out the designated truth values: A truth value v is designated i�

[ded](v) 6= ∅.
A particular strength of this framework is that soundness can be represented very

naturally: A soundness proof of L is represented as a view from Lpf to Lmod that

makes the diagram above commute. In the language of category theory ([Lan98]),

Σpf and Σmod arise as pushouts along the inclusion Lsyn → Σsyn. (The category

of LF-signatures has pushouts along inclusions.) This implies that a signature mor-

phism from Lpf to Lmod induces one from Σpf to Σmod thus proving soundness for

all theories of L.

4 Representing First-Order Logic

As described in Sect. 3, the encoding of FOL consists of three main LF signatures:

FOL for the syntax, FOLPF for the proof theory, and FOLMOD for the semantics.

A speci�c theory Σ of FOL is a list of function and predicate symbols and

axioms. Therefore, theories can be encoded naturally in LF by extending FOL with

declarations of the form f : i → . . . → i → i for function symbols, f : i → . . . →
i → o for predicate symbols, and a : ded F for axioms where the types i and o of

FOL represent the universe and the sentences of FOL.

We will describe the signature FOL in Sect. 4.1, FOLPF in Sect. 4.2, and FOLMOD

in Sect.4.4. To describe the semantics of �rst-order logic, we need a meta-language

in which the models are expressed. In less formal descriptions, this meta-language

is usually natural language implicitly based on some set-theoretical foundation of

mathematics. Here we use a variant of Martin-Löf type theory [ML74], which we

refer to as MLTT, as a simple formal language that is expressive enough to de�ne the

semantics of �rst-order logic. Therefore, we give the encoding of MLTT in Sect. 4.3

before we are able to de�ne FOLMOD. Finally, we encode soundness by giving a view

from FOLPF to FOLMOD in Sect. 4.5.

4.1 Syntax
Base BaseFOL

NEG DISJ Forall Exists

PL FOL

Fig. 2: Modular Encoding of FOL Syntax

We encode the signature FOL mod-

ularly, where each logical connective

and quanti�er is declared in a sepa-

rate Twelf signature. The modular

6

representation of FOL is illustrated as a diagram in Fig. 2. Each node in this di-

agram corresponds to a signature declaration in Twelf, and each edge corresponds

to a structure. For example, the edge between Base and NEG represents a structure

declared in NEG that imports Base into NEG. For the sake of simplicity, we use only

negation (¬) and disjunction (∨) as primitive connectives in this paper. In our Twelf

encoding, we declare all connectives as primitive connectives except for equivalence.

%sig Base = {
o : type.
ded : o -> type.

}.
%sig NEG = {

%struct base : Base %open o.
¬ : o -> o.

}.
%sig DISJ = {

%struct base : Base %open o.
∨ : o -> o -> o. %infix ∨.

}.

The signature Base introduces a

type o for propositions and a type fam-

ily ded : o → type for the proofs of

propositions. ¬ and ∨ are declared in

the signatures NEG and DISJ, respec-

tively. NEG and DISJ copy the content

of Base via a structure � named as base

locally in both signatures � so that o can

be used in the declaration of ¬ and ∨.
The keyword %open provides syntac-

tic sugar to avoid quali�ed names. Without %open o one would have to refer to the

type o as base.o. The keyword %infix permits to declare a constant as in�x.

%infix requires arguments for the associativity and precedence, which we omit here

simply because they are not so relevant.

Then we import Base, NEG and DISJ into the signature PL via the structures

base, neg and disj, respectively, as shown below. This gives us an encoding of the

PL syntax. In neg and disj, the assignment %struct base := base. maps the

structure base of NEG and base of DISJ, respectively, to the structure base of PL.

This assignment allows us to identify the copies of Base that are imported from NEG

and DISJ with the copy of Base that is imported by the structure base of PL.

%sig PL = {
%struct base : Base.
%struct neg : NEG = {% struct base := base .}.
%struct disj : DISJ = {% struct base := base .}.

}.

%sig BaseFOL = {
%struct base : Base.
i : type.

}.
%sig Forall = {

%struct basefol : BaseFOL
%open base.o i.

∀ : (i -> o) -> o.
}.
%sig Exists = {

%struct basefol : BaseFOL
%open base.o i.

∃ : (i -> o) -> o.
}.

In the signature BaseFOL, we import Base

and introduce a type i for the individuals

of FOL. The universal quanti�er ∀ and the

existential quanti�er ∃ are declared in the

signatures Forall and Exists, respectively.

BaseFOL is imported to both Forall and

Exists so that i and o can be used to de-

clare the quanti�ers.

Finally, we de�ne FOL based on the signa-

tures BaseFOL, PL, Forall and Exists. Once

again, we identify the multiple imports of sig-

natures into FOL using structure assignments. These signatures are Base imported

from BaseFOL and PL, and BaseFOL imported from Forall and Exists.

7

%sig FOL = {
%struct basefol : BaseFOL.
%struct pl : PL = {% struct base := basefol.base .}.
%struct univq : Forall = {% struct basefol := basefol .}.
%struct existq : Exists = {% struct basefol := basefol .}.

}.

4.2 Proof Theory
BasePF BaseFOLPF

NEGPF DISJPF ForallPF ExistsPF

PLPF FOLPF

Fig. 3: Modular Encoding of FOL Proof Rules

The encoding of the signa-

ture FOLPF follows the modu-

larity in the encoding of FOL:

We de�ne a separate signature

for the natural deduction style

proof rules of each logical connective and quanti�er. This is illustrated in Fig. 3.

%sig BasePF = {
%struct base : Base.

}.
%sig BaseFOLPF = {

%struct basepf : BasePF.
%struct basefol : BaseFOL = {

%struct base := basepf.base .}.
}.

The signature BasePF is a copy

of the signature Base to carry over

the constants o and ded to the en-

coding proof theory. Similarly, the

signature BaseFOLPF imports the sig-

nature BaseFOL to carry over i to

the encoding of proof theory, and ex-

tends BasePF to �rst-order. We distinguish these signatures anyway because of the

conceptual clarity. (The analogues of BasePF in the encodings of other logics do

contain additional declarations, e.g., the structural rules of sequent style calculi.)

The signatures NEGPF, DISJPF, ForallPF and ExistsPF encode the introduction

and elimination rules for ¬, ∨, ∀ and ∃, respectively. They extend the respective

node in Fig. 2 that declares the corresponding logical symbol by adding the proof

rules. We use the well-known encoding of FOL natural deduction rules in LF, see

e.g. [HHP93]. Therefore, we only present the rules for negation as an example.

%sig NEGPF = {
%struct basepf : BasePF %open base.ded.
%struct neg : NEG = {% struct base := basepf.base.} %open ¬.
notI : (ded A -> {B} ded B) -> ded (¬ A).
notE : ded A -> ded (¬ A) -> {B} ded B.

}.

The signature PLPF imports all the signatures in which the proof rules for the

logical connectives are declared, and adds tertium non datur.

%sig PLPF = {
%struct basepf : BasePF.
%struct negpf : NEGPF = {% struct basepf := basepf .}.
%struct disjpf : DISJPF = {% struct basepf := basepf .}.
tnd : ded (A ∨ (¬ A)).

}.

The signature FOLPF extends PLPF by importing the signatures for the proof rules

of the quanti�ers. The multiple copies of signatures are identi�ed to one speci�c copy

using structure assignments.

8

%sig FOLPF = {
%struct basefolpf : BaseFOLPF.
%struct plpf : PLPF = {

%struct basepf := basefolpf.basepf .}
%struct forallpf : ForallPF = {% struct basefolpf := basefolpf .}.
%struct existspf : ExistsPF = {% struct basefolpf := basefolpf .}.

}.

Note that our encodings in [HR09] factor out tertium non datur into a separate

signature so that we can distinguish intuitionistic and classical reasoning. We skip

this here because we focus on classical model theory.

4.3 Martin-Löf Type Theory

The abstract syntax for MLTT is given below.

Types A,B,C . . . ::= a s1 . . . sn | id(s, t) | unit | void |A+B |Σx:AB |Πx:AB

Terms s, t, s1, s2, . . . ::= x | c | refl(s) | ∗ | !!A | inj1(s) | inj2(s) | case(s, s1, s2)

| (s, t) |π1(s) |π2(s) |λx:St | s t

We use the following type constructors: the application of type-valued constants

a s1 . . . sn, extensional identity type id(s, t) for terms s and t of the same type, unit

type unit, disjoint union A + B, dependent product types Σx:AB, and dependent

function types Πx:AB. As usual Σx:AB and Πx:AB are written as A×B and A→ B,

respectively, if the variable x does not occur freely in B. In addition, MLTT adds an

empty type void, and a negation type −A de�ned as an abbreviation for A→ void.

The term constructors are constants c, variables x, the element ∗ of the unit

type, functions !!A from void to any type A, the element refl(s) of the type id(s, s),
injections inj1(s) and inj2(s) of s into a union type, case distinctions case(s, s1, s2)
(where s : A1 + B2 and si : Ai → B), pairs (s, t), projections π1(s) and π2(s) for a
pair s, λ-abstractions λx:At, and function applications s t.

Thus, our type theory corresponds to intuitionistic �rst-order logic via the Curry-

Howard correspondence. The addition of the empty type to express negation is

crucial to reason about model theory. For example, without negation, it would be

impossible to express the condition that models must be consistent, i.e., may not

interpret all formulas as truths.
TT

IDENT UNIT VOID UNION PI SIGMA

MLTT

Fig. 4: Modular Encoding of MLTT

Our encoding of MLTT uses

the module system to treat all

type constructors independently

as illustrated in Fig. 4. In this

paper, we will omit the somewhat

complicated encoding we have for

substitution and equality of types.
%sig TT = {

tp : type.
tm : tp -> type.

}.

In the signature TT, we introduce a type tp for types

and a type family tm for terms. The encoding uses

intrinsic typing, i.e., the intuition of the LF-type tm A

is that its LF-terms encode the MLTT-terms of MLTT-type A.

9

As an example, we give the encoding of dependent sum types, which is encoded

in the signature SIGMA. The Σ-binder is encoded using higher-order abstract syntax:

S' ([x: tm A] B) encodes the type Σx:AB where [x : tm A] B is an LF func-

tion representing an MLTT-type B with a free variable of MLTT-type A. The con-

stants pair, pi1 and pi2 encode the usual introduction and elimination rules for

dependent sum types (see, e.g., [ML74]).

%sig SIGMA = {
%struct TT : TT %open tp tm.
S' : (tm A -> tp) -> tp.
pair : {a : tm A} tm (B a) -> tm (S' [x] (B x)).
pi1 : tm (S' [x : tm A] (B x)) -> tm A.
pi2 : {u : tm (S' [x : tm A] (B x))} tm (B (pi1 u)).

}.

Similarly, the other type constructors are encoded in the signatures IDENT, UNIT,

VOID, UNION, and PI. The types id(s, t), unit, void, A+B, and Πx:AB are encoded

as the LF-terms s ==' t, unit, void, A +' B, and P' [x: tm A] B, respectively.

Note that all type constructors are primed in Twelf. This is because we will use the

unprimed variants as abbreviations later. Finally, we merge all these signatures into

the signature MLTT in the same way as for FOL and FOLPF.

4.4 Model Theory

BaseMOD BaseFOLMOD

NEGMOD DISJMOD ForallMOD ExistsMOD

PLMOD FOLMOD

Fig. 5: Modular Encoding of the Model Theory

In this section, we de�ne the

model theory of FOL in Twelf.

We follow the same modular-

ity (see Fig. 5) as in the en-

coding of the FOL syntax and

proof theory. We use MLTT

as the meta-language for the

model theory. Therefore, all signatures that encode the model theory start with

the declaration %include MLTT. in order to include the signature MLTT.

%sig BaseMOD = {
%include MLTT %open tm tp.
o' : tp.
1 : tm o'.
0 : tm o'.
ded ' : tm o' -> tp.
desig1 : tm (ded ' 1).
desig0 : tm -' (ded ' 0).
boole : {A} (A ==' 1 + A ==' 0).

}.

In BaseMOD, we declare the con-

stant o' as an MLTT-type of propo-

sitions. We encode the truth val-

ues 1 and 0 as terms of MLTT-type

o', i.e., LF-type tm o'. The MLTT-

type family ded' acts as a judgment

on truth values: desig1 makes 1 a

designated truth value, and desig0

makes 0 non-designated. 0 being non-designated means that a model must inter-

pret ded' 0 as the empty set because otherwise it could not interpret void as the

empty set. Given a proposition A, boole returns the proof of the fact that A is

equal to either 1 or 0. This encodes that truth values are the elements of the set

{1, 0}. Note that we use unprimed type constructors as abbreviations for pre�xing

tm. For example, A + B abbreviates tm (A +' B), void abbreviates tm void', and

10

-A abbreviates tm (-' A).

%sig BaseFOLMOD = {
%include MLTT %open tm tp.
%struct basemod : BaseMOD.
i' : tp.
non_empty_universe : tm i'.

}.

In BaseFOLMOD, we extend BaseMOD

with the MLTT-type i' for individuals.

The interpretation of this type is the uni-

verse of a FOL model. Then we declare

non_empty_universe, which is an axiom

stating the non-emptiness of the universe. This is provable in usual �rst-order ax-

iomatizations because they permit arbitrary variables and thus representatives of

elements of the universe. However, it must be added explicitly in encodings within

a framework like LF, which only permits those variables that are in the current �

possibly empty � context.

For all signatures of Fig. 2, there are morphisms into their counterparts in Fig. 5.

For NEGMOD, DISJMOD, ForallMOD and ExistsMOD, these morphisms are induced by

structure declarations. For the signatures BaseMOD and BaseFOLMOD, these are given

by the following two views, which interpret the constants o, ded and i in terms of o',

ded', and i'. Note that the view BaseFOLMODView reuses the translation of o and

ded by using the view BaseMODView in the assignment to base. This has the e�ect

that the rectangle made up of the morphism compositions base BaseFOLMODView

and BaseMODView basemod commutes.

%view BaseMODView : Base -> BaseMOD = {
o := tm o'.
ded := [A] tm (ded ' A).

}.
%view BaseFOLMODView : BaseFOL -> BaseFOLMOD = {

%struct base := BaseMODView basemod.
i := tm i'.

}.

For each logical connective and quanti�er, the semantics is encoded by declaring

two terms: One to encode when a formula containing the connective or quanti�er is

interpreted as true, i.e., when it is equal to the LF-term 1, and one to encode when

the formula is interpreted as false, i.e., when it is equal to the LF-term 0.

As examples, we give the signatures NEGMOD and ForallMOD below. They are

based on BaseMOD and BaseFOLMOD, respectively, and reuse the above views when

importing from their counterparts NEG and Forall. not1 axiomatizes that ¬A is

true if A is false, and not0 axiomatizes that ¬A is false if A is true. Similarly,

forall1 and forall0 axiomatize the semantics of ∀. In the latter, the dependent

product and sum types are used as meta-level universal and existential quanti�ers:

For example, the type P ([x] (F x) ==' 1) is inhabited i� for all x the type (F

x) ==' 1 is inhabited, and thus encodes the judgment that the truth value of F (x)
is 1 for all values of x.

%sig NEGMOD = {
%include MLTT %open =='.
%struct basemod : BaseMOD %open 1 0.
%struct neg : NEG = {% struct base := BaseMODView basemod} %open ¬.
not1 : A == 0 -> (¬ A) == 1.
not0 : A == 1 -> (¬ A) == 0.

11

}.
%sig ForallMOD = {

%include MLTT %open ==' P' S'.
%struct basefolmod : BaseFOLMOD %open 1 0.
%struct univq : Forall = {

%struct basefol := BaseFOLMODView basefolmod .} %open ∀.
forall1 : P ([x] (F x) ==' 1) -> (∀ [x] F x) == 1.
forall0 : S ([x] (F x) ==' 0) -> (∀ [x] F x) == 0.

}.

Finally, these signatures can be merged into PLMOD and FOLMOD in the same way

as for syntax and proof theory above, e.g.:

%sig FOLMOD = {
%include MLTT.
%struct basefolmod : BaseFOLMOD.
%struct plmod : PLMOD = {% struct basemod := basefolmod.basemod .}.
%struct univq : ForallMOD = {% struct basefolmod := basefolmod .}.
%struct existq : ExistsMOD = {% struct basefolmod := basefolmod .}.

}.

4.5 Soundness

A view v : S → T from a signature S to a signature T maps every symbol s in S

to an expression t in T , where the typing relation is preserved. The homomorphic

extension of v maps all S-expressions (i.e., terms, types and kinds) to T -expressions.

This means that a term s : A of S is translated to a term v(s) : v(A) in T .
We encode the soundness of FOL by means of a view from FOLPF to FOLMOD.

This encoding follows the same modularity we used in order to encode the proof and

model theory, i.e., we give separate views from each signature for proof theory in

Fig. 3 to the respective signature for model theory in Fig. 5.

BasePF BaseMOD

NEGPF NEGMODDISJPF DISJMOD

PLPF PLMOD

SoundBase

SoundNEG

SoundDISJ

SoundPL

Fig. 6: Modular Encoding of Views for PL

This is illustrated in Fig. 6 for the

soundness of PL. The left and right

diamonds in the diagram illustrate

the encoding of proof and model the-

ory, respectively, using single arrows

to denote structures and double ar-

rows to denote the views.

For the sake of simplicity, we

present the view SoundPL; the view from FOLPF to FOLMOD is encoded in a simi-

lar way. SoundPL encodes the soundness of PL by interpreting all expressions in

PLPF in terms of the expressions in PLMOD. PLPF consists of expressions that come

from BasePF, NEGPF and DISJPF, which are interpreted in BaseMOD, NEGMOD and

DISJMOD via the views SoundBase, SoundNEG and SoundDISJ, respectively. Then

SoundPL can be pieced together as follows, where we omit the proof of tertium non

datur for brevity.

%view SoundPL : PLPF -> PLMOD = {
%struct basepf := SoundBase basemod.
%struct negpf := SoundNEG negmod.
%struct disjpf := SoundDISJ disjmod.

12

tnd := ...
}.

BasePF BaseMOD

NEGPF NEGMOD

PLPF PLMOD

basemodbasepf

negmodnegpf

SoundBase

SoundNEG

SoundPL

To see how this works, we explain the view

SoundNEG in detail. The view SoundPL uses

this view in the assignment %struct negpf :=

SoundNEG negmod.. Its semantics is that negpf

as mapped by SoundPL is intended to be equal

to the composition of the view SoundNEG and the

structure negmod. This corresponds to the commutativity of the lower rectangle in

the diagram above. In general, the Twelf implementation checks all the preconditions

that are necessary to guarantee the commutativity.

SoundNEG interprets all the expressions of NEGPF, i.e., the structures basepf,

neg and the terms notI and notE, in terms of the expressions of NEGMOD. The

view SoundBase interprets BasePF in BaseMOD. This interpretation is carried over

to NEGMOD via the composed morphism SoundBase basemod. Then the structure

basepf is mapped to SoundBase basemod, which ensures the commutativity of the

upper rectangle in the diagram on the right. The structure neg is mapped to the

signature neg in NEGMOD.

%view SoundNEG : NEGPF -> NEGMOD = {
%struct basepf := SoundBase basemod.
%struct neg := neg.
notI := [A][p : basemod.base.ded A -> {B} basemod.base.ded B]

(MLTT..case (basemod.boole A)
([q : A == 1] p (basemod.1-ded q) (not A))
([q : A == 0] basemod.1-ded (not1 q))).

notE := ...
}.

Finally, the proof rules are mapped to their soundness proofs. These proofs are

straightforward in principle but quite complex to formalize. Therefore, we give only

one example here and refer to [HR09] for the rest. notI is mapped to a proof term.

It formalizes the following proof, where 1-ded : A ==' 1 -> ded A is a lemma

proved in the signature BaseMOD that establishes one half of an equivalence between

a formula having truth value 1 and that formula's truth judgment:
A: Let A be a proposition.

p: Assume that given A is true, any proposition B is also true.

MLTT..case (basemod.boole A): We do a case analysis on the truth value of A.

(Case 1) q: Assume A = 1.
p (basemod.1-ded q) (not A): Then ¬A = 1 by instantiating B with ¬A in p.

(Case 2) q: Assume A = 0.
basemod.1-ded (not1 q): Then ¬A = 1 by not1.

5 Representing Set-Theoretical Models

The representation of models given in Sect. 3 and employed in Sect. 4 uses LF to

axiomatize the semantics of models of a logic L. The signature morphism lmod

interprets L-syntax in terms of the LF-signature Lmod, and the individual L-models

13

are represented as LF-models of that signature.

This can be unsatisfactory as the L-models are still represented as set-theoretical

entities. It would be more appealing if L-models could be represented as LF-

signatures themselves. This is indeed possible without changing the principal fea-

tures of our approach: All we have to do is to re�ne the signature Lmod so much

that it becomes (a syntactical representation of) speci�c L-models.

More precisely, we can axiomatize the particular set theory in which we want to

express L-models as a part of Lmod. We can do this in such a way that every choice

of some free parameters in the signature morphism lmod corresponds to a speci�c

L-model. Thus, we can represent L-models as certain LF-signature morphisms out

of Lsyn.

FOL

FOLPF

FOLMOD

MLTT

ZFC

lpf

lmod I

For our representation of FOL, we arrive at

the diagram on the right. The signatures FOL,

FOLPF, and FOLMOD are as before. Here we also

make the signature MLTT that is included into

FOLMOD explicit. Then we axiomatize Zermelo-

Fraenkel set theory in the signature ZFC and give a view I that interprets FOLMOD

in set theory. By composing lmod and I, we obtain a signature morphism out of FOL

that represents FOL-models. Note that the morphism of Sect. 4.5 proving soundness

can be reused immediately to prove the soundness of models in ZFC.

Naturally, this approach requires a signi�cant investment in order to represent

set theory within a logical framework. The representation of ZFC is highly non-

trivial and leads to lots of signi�cant design questions. For example, very advanced

encodings have been established in Mizar ([TB85]) and Isabelle ([Pau94]) employing

sophisticated machine support. Even the proof of concept that we hand-coded in

LF for this paper took over a week (which we consider in fact quite an achievement)

to implement and still has some gaps. We will only sketch our encoding of ZFC and

refer the reader to our full encoding for the details.

We encode ZFC as theory of a variant of �rst-order logic with universe Set,

namely intuitionistic �rst-order logic with a description operator. The latter permits

to de�ne the basic operations such as union and replacement set, whose existence is

only axiomatized indirectly in the ZFC axioms. This is di�erent from Isabelle and

Mizar where these operations are primitive.

After building up the basic operations on sets and the natural numbers, we

introduce an operator Elem : Set → type, which serves the purpose of lifting sets

� which are LF terms of type Set � to the type level in order to employ typed

reasoning. Elem A can be regarded as an abbreviation of Σx:Set(ded x ∈ A). Then,
using proof-irrelevance, the LF terms of type Elem A are in correspondence with

the ZFC elements of the set A. This trick was inspired by the similar treatment in

Scunak ([Bro06]).

Then it becomes possible to give a view from MLTT to ZFC, which is a prereq-

uisite to obtain a view from FOLMOD to ZFC. For example, o is mapped to the set

{0, 1} and all connectives are mapped to the corresponding functions. An important

technical detail of the views is the treatment of the universe of FOL, which is already

14

part of FOL and FOLMOD: the view I has a free parameter mapping the universe to

an arbitrary set.

6 Conclusion

We took two developments on logical framework research to a practical test. Firstly,

the module system for the logical framework LF and its implementation Twelf were

designed to enhance the scalability of logic encodings ([RS09]). Secondly, the proof-

and model-theoretical framework given by the second author in [Rab09].

Both were developed very recently, and our case study is the �rst scalability test

for either one. We picked classical �rst-order logic and represented its syntax, proof

theory, model theory, and soundness in LF. The most di�cult part is the encoding

of model theory and soundness, and we undertook two approaches to it that di�er

in the meta-language used to represent models.

Firstly, we de�ned models in Martin-Löf type theory. This is relatively simple to

represent in LF, and it makes the reasoning about models manageably easy. On the

down side, it does not correspond exactly to the usual paper de�nition of �rst-order

models. This means that � depending on one's familiarity with LF � one might

require adequacy proofs to trust that the representation indeed formalizes the right

notion of models.

Secondly, we de�ned them in Zermelo-Fraenkel set theory. This permits a very

direct representation of models. While it has the disadvantage of the higher in-

vestment in representing set theory in LF, it o�ers the additional advantage that

even individual models can be represented, namely as signature morphisms from the

signature representing the syntax to the signature representing set theory.

We evaluate both developments very favorably. The representation of �rst-order

logic was straightforward and made easy by the module system. All logical symbols

are treated separately so that the encodings can be used to piece together di�erent

logics. The representation of model theory feels elegant and appealing. We are

already working on further encodings of intuitionistic logic, higher-order logic, and

description logics. The only doubt we have is about the representation of set theory:

Clearly, the lack of automated proving support in Twelf will prevent scalable appli-

cations. Therefore, we will investigate the possibilities of borrowing formalizations

from other systems in the future. This will be supported by the logic-independent

module system we designed in [Rab08], which permits to express cross-framework

translations (e.g., LF to Isabelle) in terms of signature morphisms as well.

References

[AHMP98] B. Avron, F. Honsell, M. Miculan, and C. Paravano. Encoding modal logics in logical
frameworks. Studia Logica, 60(1):161�208, 1998.

[AHMS99] S. Autexier, D. Hutter, H. Mantel, and A. Schairer. Towards an Evolutionary Formal Software-
Development Using CASL. In D. Bert, C. Choppy, and P. Mosses, editors, WADT, volume 1827
of Lecture Notes in Computer Science, pages 73�88. Springer, 1999.

[AR09] S. Awodey and F. Rabe. Kripke Semantics for Martin-Löf Type Theory. 2009. Accepted
at Conference on Typed Lambda Calculi and Applications (TLCA), see http://kwarc.info/
frabe/Research/LamKrip.pdf.

15

http://kwarc.info/frabe/Research/LamKrip.pdf
http://kwarc.info/frabe/Research/LamKrip.pdf

[Bro06] C. Brown. Combining Type Theory and Untyped Set Theory. In U. Furbach and N. Shankar,
editors, International Joint Conference on Automated Reasoning, pages 205�219. Springer, 2006.

[CF58] H. Curry and R. Feys. Combinatory Logic. North-Holland, Amsterdam, 1958.

[dB70] N. de Bruijn. The Mathematical Language AUTOMATH. In M. Laudet, editor, Proceedings
of the Symposium on Automated Demonstration, volume 25 of Lecture Notes in Mathematics,
pages 29�61. Springer, 1970.

[Dia06] R. Diaconescu. Proof systems for institutional logic. Journal of Logic and Computation,
16(3):339�357, 2006.

[GB92] J. Goguen and R. Burstall. Institutions: Abstract model theory for speci�cation and
programming. Journal of the Association for Computing Machinery, 39(1):95�146, 1992.

[GR02] J. A. Goguen and G. Rosu. Institution morphisms. Formal Aspects of Computing, 13:274�307,
2002.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logics. Journal of the
Association for Computing Machinery, 40(1):143�184, 1993.

[How80] W. Howard. The formulas-as-types notion of construction. In To H.B. Curry: Essays on
Combinatory Logic, Lambda-Calculus and Formalism, pages 479�490. Academic Press, 1980.

[HR09] Feryal Fulya Horozal and Florian Rabe. Twelf Encoding of the Soundness of FOL, 2009. https:
//svn.kwarc.info/repos/twelf/soundness.

[HST94] R. Harper, D. Sannella, and A. Tarlecki. Structured presentations and logic representations.
Annals of Pure and Applied Logic, 67:113�160, 1994.

[Lan98] S. Mac Lane. Categories for the working mathematician. Springer, 1998.

[Mes89] J. Meseguer. General logics. In H.-D. Ebbinghaus et al., editors, Proceedings, Logic Colloquium,
1987, pages 275�329. North-Holland, 1989.

[MGDT05] T. Mossakowski, J. Goguen, R. Diaconescu, and A. Tarlecki. What is a logic? In J. Béziau,
editor, Logica Universalis, pages 113�133. Birkhäuser Verlag, 2005.

[ML74] P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In Proceedings of the '73
Logic Colloquium. North-Holland, 1974.

[ML96] P. Martin-Löf. On the meanings of the logical constants and the justi�cations of the logical
laws. Nordic Journal of Philosophical Logic, 1(1):3�10, 1996.

[NSM01] P. Naumov, M. Stehr, and J. Meseguer. The HOL/NuPRL proof translator - a practical
approach to formal interoperability. In 14th International Conference on Theorem Proving
in Higher Order Logics. Springer, 2001.

[Pau94] L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in Computer
Science. Springer, 1994.

[Pfe00] F. Pfenning. Structural cut elimination: I. intuitionistic and classical logic. Information and
Computation, 157(1-2):84�141, 2000.

[Rab08] F. Rabe. Representing Logics and Logic Translations. PhD thesis, Jacobs University Bremen,
2008.

[Rab09] F. Rabe. A Logical Framework Combining Model and Proof Theory. Submitted to Conference
on Algebra and Coalgebra in Computer Science (CALCO) see http://kwarc.info/frabe/
Research/rabe_combining_09.pdf, 2009.

[RS09] F. Rabe and C. Schürmann. A Practical Module System for LF. Submitted to Conference on
Automated Deduction (CADE), see http://kwarc.info/frabe/Research/lf.pdf, 2009.

[SW83] D. Sannella and M. Wirsing. A Kernel Language for Algebraic Speci�cation and
Implementation. In M. Karpinski, editor, Fundamentals of Computation Theoryational, pages
413�427. Springer, 1983.

[Tar33] A. Tarski. Poj¦cie prawdy w j¦zykach nauk dedukcyjnych. Prace Towarzystwa Naukowego
Warszawskiego Wydzial III Nauk Matematyczno-Fizycznych, 34, 1933. English title: The
concept of truth in the languages of the deductive sciences.

[TB85] A. Trybulec and H. Blair. Computer Assisted Reasoning with MIZAR. In A. Joshi, editor,
Proceedings of the 9th International Joint Conference on Arti�cial Intelligence, pages 26�28,
1985.

[TV56] A. Tarski and R. Vaught. Arithmetical extensions of relational systems. Compositio
Mathematica, 13:81�102, 1956.

16

https://svn.kwarc.info/repos/twelf/soundness
https://svn.kwarc.info/repos/twelf/soundness
http://kwarc.info/frabe/Research/rabe_combining_09.pdf
http://kwarc.info/frabe/Research/rabe_combining_09.pdf
http://kwarc.info/frabe/Research/lf.pdf

	Introduction
	The Twelf System
	A Logical Framework Combining Proof and Model Theory
	Representing First-Order Logic
	Syntax
	Proof Theory
	Martin-Löf Type Theory
	Model Theory
	Soundness

	Representing Set-Theoretical Models
	Conclusion
	References

